1
|
Saisorn W, Saithong S, Phuengmaung P, Udompornpitak K, Bhunyakarnjanarat T, Visitchanakun P, Chareonsappakit A, Pisitkun P, Chiewchengchol D, Leelahavanichkul A. Acute Kidney Injury Induced Lupus Exacerbation Through the Enhanced Neutrophil Extracellular Traps (and Apoptosis) in Fcgr2b Deficient Lupus Mice With Renal Ischemia Reperfusion Injury. Front Immunol 2021; 12:669162. [PMID: 34248948 PMCID: PMC8269073 DOI: 10.3389/fimmu.2021.669162] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022] Open
Abstract
Renal ischemia is the most common cause of acute kidney injury (AKI) that might be exacerbate lupus activity through neutrophil extracellular traps (NETs) and apoptosis. Here, the renal ischemia reperfusion injury (I/R) was performed in Fc gamma receptor 2b deficient (Fcgr2b-/-) lupus mice and the in vitro experiments. At 24 h post-renal I/R injury, NETs in peripheral blood neutrophils and in kidneys were detected using myeloperoxidase (MPO), neutrophil elastase (NE) and citrullinated histone H3 (CitH3), as well as kidney apoptosis (activating caspase-3), which were prominent in Fcgr2b-/- mice more compared to wild-type (WT). After 120 h renal-I/R injury, renal NETs (using MPO and NE) were non-detectable, whereas glomerular immunoglobulin (Ig) deposition and serum anti-dsDNA were increased in Fcgr2b-/- mice. These results imply that renal NETs at 24 h post-renal I/R exacerbated the lupus nephritis at 120 h post-renal I/R injury in Fcgr2b-/- lupus mice. Furthermore, a Syk inhibitor attenuated NETs, that activated by phorbol myristate acetate (PMA; a NETs activator) or lipopolysaccharide (LPS; a potent inflammatory stimulator), more prominently in Fcgr2b-/- neutrophils than the WT cells as determined by dsDNA, PAD4 and MPO. In addition, the inhibitors against Syk and PAD4 attenuated lupus characteristics (serum creatinine, proteinuria, and anti-dsDNA) in Fcgr2b-/- mice at 120 h post-renal I/R injury. In conclusion, renal I/R in Fcgr2b-/- mice induced lupus exacerbation at 120 h post-I/R injury partly because Syk-enhanced renal NETs led to apoptosis-induced anti-dsDNA, which was attenuated by a Syk inhibitor.
Collapse
Affiliation(s)
- Wilasinee Saisorn
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Supichcha Saithong
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Pornpimol Phuengmaung
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Kanyarat Udompornpitak
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Thansita Bhunyakarnjanarat
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Peerapat Visitchanakun
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Awirut Chareonsappakit
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Prapaporn Pisitkun
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Direkrit Chiewchengchol
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Chronic Kidney Disease Increases Cerebral Microbleeds in Mouse and Man. Transl Stroke Res 2019; 11:122-134. [PMID: 31055735 PMCID: PMC6957561 DOI: 10.1007/s12975-019-00698-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 01/28/2019] [Accepted: 02/22/2019] [Indexed: 01/07/2023]
Abstract
Brain microbleeds are increased in chronic kidney disease (CKD) and their presence increases risk of cognitive decline and stroke. We examined the interaction between CKD and brain microhemorrhages (the neuropathological substrate of microbleeds) in mouse and cell culture models and studied progression of microbleed burden on serial brain imaging from humans. Mouse studies: Two CKD models were investigated: adenine-induced tubulointerstitial nephritis and surgical 5/6 nephrectomy. Cell culture studies: bEnd.3 mouse brain endothelial cells were grown to confluence, and monolayer integrity was measured after exposure to 5–15% human uremic serum or increasing concentrations of urea. Human studies: Progression of brain microbleeds was evaluated on serial MRI from control, pre-dialysis CKD, and dialysis patients. Microhemorrhages were increased 2–2.5-fold in mice with CKD independent of higher blood pressure in the 5/6 nephrectomy model. IgG staining was increased in CKD animals, consistent with increased blood–brain barrier permeability. Incubation of bEnd.3 cells with uremic serum or elevated urea produced a dose-dependent drop in trans-endothelial electrical resistance. Elevated urea induced actin cytoskeleton derangements and decreased claudin-5 expression. In human subjects, prevalence of microbleeds was 50% in both CKD cohorts compared with 10% in age-matched controls. More patients in the dialysis cohort had increased microbleeds on follow-up MRI after 1.5 years. CKD disrupts the blood–brain barrier and increases brain microhemorrhages in mice and microbleeds in humans. Elevated urea alters the actin cytoskeleton and tight junction proteins in cultured endothelial cells, suggesting that these mechanisms explain (at least in part) the microhemorrhages and microbleeds observed in the animal and human studies.
Collapse
|
3
|
Zhou XL, Guo X, Song YP, Zhu CY, Zou W. The LPI/GPR55 axis enhances human breast cancer cell migration via HBXIP and p-MLC signaling. Acta Pharmacol Sin 2018; 39:459-471. [PMID: 29188802 DOI: 10.1038/aps.2017.157] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/09/2017] [Indexed: 01/06/2023] Open
Abstract
The G protein-coupled receptor 55 (GPR55) is expressed in multiple tissues, and has been implicated in cancer pathogenesis, but little is known about its role in the migratory behavior of cancer cells, particularly breast cancer cells. In this study we first showed that GPR55 expression levels in 38 metastatic lymph nodes of breast cancer patients were profoundly elevated, and were positively associated in human breast cancer cells with their migratory ability. Moreover, the plasma levels of GPR55 endogenous agonist L-a-lysophosphatidylinositol (LPI) were significantly increased in breast cancer patients compared with healthy individuals. In human breast cancer LM-MCF-7 and MDA-MB-231 cells, treatment with LPI (2.5 μmol/L) significantly increased filopodia formation and resulted in cell migration, which could be blocked either by the GPR55 antagonist CID16020046 or by siRNA-mediated GPR55 knockdown. Furthermore, dual-luciferase report gene assays showed that GPR55 upregulated HBXIP at the promoter; GPR55 expression levels were positively correlated with HBXIP expression levels in breast cancer tissues and 8 breast cancer cell lines. We also showed that the LPI/GPR55 axis promoted the migration of breast cancer cells via two mutually exclusive pathways - the HBXIP/p-ERK1/2/Capn4 and MLCK/MLC signaling pathways. In xenograft nude mouse model, loss of GPR55 mainly affected breast cancer cell metastasis and the formation of metastatic foci. Thus, GPR55 is involved in the migratory behavior of human breast cancer cells and could serve as a pharmacological target for preventing metastasis.
Collapse
|
4
|
Dakic A, DiVito K, Fang S, Suprynowicz F, Gaur A, Li X, Palechor-Ceron N, Simic V, Choudhury S, Yu S, Simbulan-Rosenthal CM, Rosenthal D, Schlegel R, Liu X. ROCK inhibitor reduces Myc-induced apoptosis and mediates immortalization of human keratinocytes. Oncotarget 2018; 7:66740-66753. [PMID: 27556514 PMCID: PMC5341834 DOI: 10.18632/oncotarget.11458] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/11/2016] [Indexed: 01/06/2023] Open
Abstract
The Myc/Max/Mad network plays a critical role in cell proliferation, differentiation and apoptosis and c-Myc is overexpressed in many cancers, including HPV-positive cervical cancer cell lines. Despite the tolerance of cervical cancer keratinocytes to high Myc expression, we found that the solitary transduction of the Myc gene into primary cervical and foreskin keratinocytes induced rapid cell death. These findings suggested that the anti-apoptotic activity of E7 in cervical cancer cells might be responsible for negating the apoptotic activity of over-expressed Myc. Indeed, our earlier in vitro studies demonstrated that Myc and E7 synergize in the immortalization of keratinocytes. Since we previously postulated that E7 and the ROCK inhibitor, Y-27632, were members of the same functional pathway in cell immortalization, we tested whether Y-27632 would inhibit apoptosis induced by the over-expression of Myc. Our findings indicate that Y-27632 rapidly inhibited Myc-induced membrane blebbing and cellular apoptosis and, more generally, functioned as an inhibitor of extrinsic and intrinsic pathways of cell death. Most important, Y-27632 cooperated with Myc to immortalize keratinocytes efficiently, indicating that apoptosis is a major barrier to Myc-induced immortalization of keratinocytes. The anti-apoptotic activity of Y-27632 correlated with a reduction in p53 serine 15 phosphorylation and the consequent reduction in the expression of downstream target genes p21 and DAPK1, two genes involved in the induction of cell death.
Collapse
Affiliation(s)
- Aleksandra Dakic
- Department of Pathology, Georgetown University Medical School, Washington, DC 20057, USA.,Center for Cell Reprogramming, Georgetown University Medical School, Washington, DC 20057, USA
| | - Kyle DiVito
- Department of Molecular and Cell Biology and Biochemistry, Georgetown University Medical School, Washington, DC 20057, USA
| | - Shuang Fang
- Department of Pathology, Georgetown University Medical School, Washington, DC 20057, USA.,Center for Cell Reprogramming, Georgetown University Medical School, Washington, DC 20057, USA
| | - Frank Suprynowicz
- Department of Pathology, Georgetown University Medical School, Washington, DC 20057, USA.,Center for Cell Reprogramming, Georgetown University Medical School, Washington, DC 20057, USA
| | - Anirudh Gaur
- Department of Molecular and Cell Biology and Biochemistry, Georgetown University Medical School, Washington, DC 20057, USA
| | - Xin Li
- Department of Biostatistics, Bioinformatics, Georgetown University Medical School, Washington, DC 20057, USA
| | - Nancy Palechor-Ceron
- Department of Pathology, Georgetown University Medical School, Washington, DC 20057, USA.,Center for Cell Reprogramming, Georgetown University Medical School, Washington, DC 20057, USA
| | - Vera Simic
- Department of Pathology, Georgetown University Medical School, Washington, DC 20057, USA.,Center for Cell Reprogramming, Georgetown University Medical School, Washington, DC 20057, USA
| | - Sujata Choudhury
- Department of Pathology, Georgetown University Medical School, Washington, DC 20057, USA.,Center for Cell Reprogramming, Georgetown University Medical School, Washington, DC 20057, USA
| | - Songtao Yu
- Department of Pathology, Georgetown University Medical School, Washington, DC 20057, USA.,Center for Cell Reprogramming, Georgetown University Medical School, Washington, DC 20057, USA
| | - Cynthia M Simbulan-Rosenthal
- Department of Molecular and Cell Biology and Biochemistry, Georgetown University Medical School, Washington, DC 20057, USA
| | - Dean Rosenthal
- Department of Molecular and Cell Biology and Biochemistry, Georgetown University Medical School, Washington, DC 20057, USA
| | - Richard Schlegel
- Department of Pathology, Georgetown University Medical School, Washington, DC 20057, USA.,Center for Cell Reprogramming, Georgetown University Medical School, Washington, DC 20057, USA
| | - Xuefeng Liu
- Department of Pathology, Georgetown University Medical School, Washington, DC 20057, USA.,Center for Cell Reprogramming, Georgetown University Medical School, Washington, DC 20057, USA
| |
Collapse
|
5
|
Oxidative stress, caspase-3 activation and cleavage of ROCK-1 play an essential role in MeHg-induced cell death in primary astroglial cells. Food Chem Toxicol 2018; 113:328-336. [PMID: 29428217 DOI: 10.1016/j.fct.2018.01.057] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 12/13/2022]
Abstract
Methylmercury is a toxic environmental contaminant that elicits significant toxicity in humans. The central nervous system is the primary target of toxicity, and is particularly vulnerable during development. Rho-associated protein kinase 1 (ROCK-1) is a major downstream effector of the small GTPase RhoA and a direct substrate of caspase-3. The activation of ROCK-1 is necessary for membrane blebbing during apoptosis. In this work, we examined whether MeHg could affect the RhoA/ROCK-1 signaling pathway in primary cultures of mouse astrocytes. Exposure of cells with 10 μM MeHg decreased cellular viability after 24 h of incubation. This reduction in viability was preceded by a significant increase in intracellular and mitochondrial reactive oxygen species levels, as well as a reduced NAD+/NADH ratio. MeHg also induced an increase in mitochondrial-dependent caspase-9 and caspase-3, while the levels of RhoA protein expression were reduced or unchanged. We further found that MeHg induced ROCK-1 cleavage/activation and promoted LIMK1 and MYPT1 phosphorylation, both of which are the best characterized ROCK-1 downstream targets. Inhibiting ROCK-1 and caspases activation attenuated the MeHg-induced cell death. Collectively, these findings are the first to show that astrocytes exposed to MeHg showed increased cleavage/activation of ROCK-1, which was independent of the small GTPase RhoA.
Collapse
|
6
|
Orr K, Buckley NE, Haddock P, James C, Parent JL, McQuaid S, Mullan PB. Thromboxane A2 receptor (TBXA2R) is a potent survival factor for triple negative breast cancers (TNBCs). Oncotarget 2018; 7:55458-55472. [PMID: 27487152 PMCID: PMC5342429 DOI: 10.18632/oncotarget.10969] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 06/12/2016] [Indexed: 12/19/2022] Open
Abstract
Triple Negative Breast Cancer (TNBC) is defined by the lack of ERα, PR expression and HER2 overexpression and is the breast cancer subtype with the poorest clinical outcomes. Our aim was to identify genes driving TNBC proliferation and/or survival which could represent novel therapeutic targets. We performed microarray profiling of primary TNBCs and generated differential genelists based on clinical outcomes following the chemotherapy regimen FEC (5-Fluorouracil/Epirubicin/Cyclophosphamide -‘good’ outcome no relapse > 3 years; ‘poor’ outcome relapse < 3 years). Elevated expression of thromboxane A2 receptor (TBXA2R) was observed in ‘good’ outcome TNBCs. TBXA2R expression was higher specifically in TNBC cell lines and TBXA2R knockdowns consistently showed dramatic cell killing in TNBC cells. TBXA2R mRNA and promoter activities were up-regulated following BRCA1 knockdown, with c-Myc being required for BRCA1-mediated transcriptional repression. We demonstrated that TBXA2R enhanced TNBC cell migration, invasion and activated Rho signalling, phenotypes which could be reversed using Rho-associated Kinase (ROCK) inhibitors. TBXA2R also protected TNBC cells from DNA damage by negatively regulating reactive oxygen species levels. In summary, TBXA2R is a novel breast cancer-associated gene required for the survival and migratory behaviour of a subset of TNBCs and could provide opportunities to develop novel, more effective treatments.
Collapse
Affiliation(s)
- Katy Orr
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Niamh E Buckley
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Paula Haddock
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Colin James
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | | | - Stephen McQuaid
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Paul B Mullan
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| |
Collapse
|
7
|
Liu Z, Zou D, Yang X, Xue X, Zuo L, Zhou Q, Hu R, Wang Y. Melatonin inhibits colon cancer RKO cell migration by downregulating Rho‑associated protein kinase expression via the p38/MAPK signaling pathway. Mol Med Rep 2017; 16:9383-9392. [PMID: 29152648 PMCID: PMC5779993 DOI: 10.3892/mmr.2017.7836] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 08/25/2017] [Indexed: 01/05/2023] Open
Abstract
Melatonin is predominately produced and secreted by the pineal gland, and inhibits cell growth in various cancer cell lines such as colorectal cancer. However, the precise mechanisms involved have not been fully elucidated. In the present study, the potential molecular mechanism underlying the efficacy of melatonin on migration in RKO colon cancer cells was investigated. The effects of melatonin and H-1152, a selective inhibitor of Rho-associated protein kinase (ROCK), on the migration of RKO cells were analyzed by an in vitro wound healing assay. The localization of zonula occludens-1 (ZO-1) and occludin were observed by immunofluorescence. Reverse transcription-quantitative polymerase chain reaction (qPCR) was performed to analyze the relative mRNA levels of ROCK, ZO-1 and occludin. In addition, western blot analysis was implemented to examine the expression of ROCK, phospho (p)-myosin phosphatase targeting subunit 1 (MYPT1), p-myosin light chains (MLC) and p-p38. The results revealed that the expression levels of ROCK2, p-MYPT1 and p-MLC in RKO cells were decreased, and the membrane protein expression of ZO-1 and occludin increased when the cells were treated with melatonin. qPCR demonstrated that melatonin downregulated ROCK2 gene expression, and upregulated the expression of the ZO-1 and occludin genes. The levels of ZO-1 and occludin localized in the tight junctions were markedly increased in the immunofluorescence assay. In addition, the phosphorylation levels of p38 were reduced when the cells were treated with melatonin, and treatment with H-1152 downregulated p38 phosphorylation. The results indicated that melatonin may inhibit the migration of RKO colon cancer cells by downregulating ROCK expression via the p38/mitogen-activated protein kinase signaling pathway.
Collapse
Affiliation(s)
- Zhen Liu
- Laboratory of Molecular Biology, and Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Duobing Zou
- Laboratory of Stem Cell Transplantation, Ningbo First Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Xiaoping Yang
- Laboratory of Molecular Biology, and Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xiaolong Xue
- Laboratory of Molecular Biology, and Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Li Zuo
- Laboratory of Molecular Biology, and Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Qing Zhou
- Laboratory of Molecular Biology, and Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Ruolei Hu
- Laboratory of Molecular Biology, and Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yuan Wang
- Laboratory of Molecular Biology, and Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
8
|
The lauric acid-activated signaling prompts apoptosis in cancer cells. Cell Death Discov 2017; 3:17063. [PMID: 28924490 PMCID: PMC5601385 DOI: 10.1038/cddiscovery.2017.63] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 08/02/2017] [Indexed: 12/27/2022] Open
Abstract
The saturated medium-chain fatty-acid lauric acid (LA) has been associated to certain health-promoting benefits of coconut oil intake, including the improvement of the quality of life in breast cancer patients during chemotherapy. As it concerns the potential to hamper tumor growth, LA was shown to elicit inhibitory effects only in colon cancer cells. Here, we provide novel insights regarding the molecular mechanisms through which LA triggers antiproliferative and pro-apoptotic effects in both breast and endometrial cancer cells. In particular, our results demonstrate that LA increases reactive oxygen species levels, stimulates the phosphorylation of EGFR, ERK and c-Jun and induces the expression of c-fos. In addition, our data evidence that LA via the Rho-associated kinase-mediated pathway promotes stress fiber formation, which exerts a main role in the morphological changes associated with apoptotic cell death. Next, we found that the increase of p21Cip1/WAF1 expression, which occurs upon LA exposure in a p53-independent manner, is involved in the apoptotic effects prompted by LA in both breast and endometrial cancer cells. Collectively, our findings may pave the way to better understand the anticancer action of LA, although additional studies are warranted to further corroborate its usefulness in more comprehensive therapeutic approaches.
Collapse
|
9
|
Fan R, Enkhjargal B, Camara R, Yan F, Gong L, ShengtaoYao, Tang J, Chen Y, Zhang JH. Critical role of EphA4 in early brain injury after subarachnoid hemorrhage in rat. Exp Neurol 2017; 296:41-48. [PMID: 28698029 DOI: 10.1016/j.expneurol.2017.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/07/2017] [Accepted: 07/07/2017] [Indexed: 01/31/2023]
Abstract
Early brain injury (EBI) is reported as a primary cause of mortality in subarachnoid hemorrhage (SAH) patients. Eph receptor A4 (EphA4) has been associated with blood-brain barrier integrity and pro-apoptosis. We aimed to investigate a role of EphA4 in EBI after SAH. One hundred and seventy-nine male adult Sprague-Dawley rats were randomly divided into sham versus endovascular perforation model of SAH groups. SAH grade, neurological score, Evans blue dye extravasation, brain water content, mortality, Fluoro-Jade staining, immunofluorescence staining, and western blot experiments were performed after SAH. Small interfering RNA (siRNA) for EphA4, recombinant Ephexin-1 (rEphx-1), and Fasudil, a potent ROCK2 inhibitor, were used for intervention to study a role of EphA4 on EBI after SAH. The expression of EphA4, Ephexin-1, RhoA, and ROCK2 significantly increased after SAH. Knockdown of EphA4 using EphA4 siRNA injection intracerebroventricularly (i.c.v) reduced Evans blue extravasation, decreased brain water content, and alleviated neurobehavioral dysfunction after SAH. Additionally, the expression of Ephexin-1, RhoA, ROCK2 and cleaved caspase-3 were decreased. Tight junction proteins increased, and apoptotic neuron death decreased. The effects of EphA4 siRNA were abolished by rEphx-1. In contrast, Fasudil abolished the effects of rEphx-1. These results suggest that EphA4, a novel and promising target for treatment, exacerbates EBI through an Ephexin-1/ROCK2 pathway after SAH.
Collapse
Affiliation(s)
- Ruiming Fan
- Department of Neurology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China; Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - Budbazar Enkhjargal
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - Richard Camara
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - Feng Yan
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - Lei Gong
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - ShengtaoYao
- Department of cerebrovascular, the Affiliated Hospital, Zunyi Medical University, Guizhou 563000, China
| | - Jiping Tang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - Yangmei Chen
- Department of Neurology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States; Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, United States; Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States.
| |
Collapse
|
10
|
Yang G, Qian C, Wang N, Lin C, Wang Y, Wang G, Piao X. Tetramethylpyrazine Protects Against Oxygen-Glucose Deprivation-Induced Brain Microvascular Endothelial Cells Injury via Rho/Rho-kinase Signaling Pathway. Cell Mol Neurobiol 2017; 37:619-633. [PMID: 27380043 DOI: 10.1007/s10571-016-0398-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/22/2016] [Indexed: 01/24/2023]
Abstract
Tetramethylpyrazine (TMP, also known as Ligustrazine), which is isolated from Chinese Herb Medicine Ligustium wollichii Franchat (Chuan Xiong), has been widely used in China for the treatment of ischemic stroke by Chinese herbalists. Brain microvascular endothelial cells (BMECs) are the integral parts of the blood-brain barrier (BBB), protecting BMECs against oxygen-glucose deprivation (OGD) which is important for the treatment of ischemic stroke. Here, we investigated the protective mechanisms of TMP, focusing on OGD-injured BMECs and the Rho/Rho-kinase (Rho-associated kinases, ROCK) signaling pathway. The model of OGD-injured BMECs was established in this study. BMECs were identified by von Willebrand factor III staining and exposed to fasudil, or TMP at different concentrations (14.3, 28.6, 57.3 µM) for 2 h before 24 h of OGD injury. The effect of each treatment was examined by cell viability assays, measurement of intracellular reactive oxygen species (ROS), and transendothelial electric resistance and western blot analysis (caspase-3, endothelial nitric oxide synthase (eNOS), RhoA, Rac1). Our results show that TMP significantly attenuated apoptosis and the permeability of BMECs induced by OGD. In addition, TMP could notably down-regulate the characteristic proteins in Rho/ROCK signaling pathway such as RhoA and Rac1, which triggered abnormal changes of eNOS and ROS, respectively. Altogether, our results show that TMP has a strong protective effect against OGD-induced BMECs injury and suggest that the mechanism might be related to the inhibition of the Rho/ROCK signaling pathway.
Collapse
Affiliation(s)
- Guang Yang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China
- Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Chen Qian
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China
- Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Ning Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China.
- Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China.
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
| | - Chenyu Lin
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China
- Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Yan Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China
- Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Guangyun Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China
- Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Xinxin Piao
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China
- Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| |
Collapse
|
11
|
Wang Y, Xu Y, Liu Q, Zhang Y, Gao Z, Yin M, Jiang N, Cao G, Yu B, Cao Z, Kou J. Myosin IIA-related Actomyosin Contractility Mediates Oxidative Stress-induced Neuronal Apoptosis. Front Mol Neurosci 2017; 10:75. [PMID: 28352215 PMCID: PMC5348499 DOI: 10.3389/fnmol.2017.00075] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/03/2017] [Indexed: 12/22/2022] Open
Abstract
Oxidative stress-induced neuronal apoptosis plays an important role in the progression of central nervous system (CNS) diseases. In our study, when neuronal cells were exposed to hydrogen peroxide (H2O2), an exogenous oxidant, cell apoptosis was observed with typical morphological changes including membrane blebbing, neurite retraction and cell contraction. The actomyosin system is considered to be responsible for the morphological changes, but how exactly it regulates oxidative stress-induced neuronal apoptosis and the distinctive functions of different myosin II isoforms remain unclear. We demonstrate that myosin IIA was required for neuronal contraction, while myosin IIB was required for neuronal outgrowth in normal conditions. During H2O2-induced neuronal apoptosis, myosin IIA, rather than IIB, interacted with actin filaments to generate contractile forces that lead to morphological changes. Moreover, myosin IIA knockout using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease (CRISPR/Cas9) reduced H2O2-induced neuronal apoptosis and the associated morphological changes. We further demonstrate that caspase-3/Rho-associated kinase 1 (ROCK1) dependent phosphorylation of myosin light chain (MLC) was required for the formation of the myosin IIA-actin complex. Meanwhile, either inhibition of myosin II ATPase with blebbistatin or knockdown of myosin IIA with siRNA reversely attenuated caspase-3 activation, suggesting a positive feedback loop during oxidative stress-induced apoptosis. Based on our observation, myosin IIA-actin complex contributes to actomyosin contractility and is associated with the positive feedback loop of caspase-3/ROCK1/MLC pathway. This study unravels the biochemical and mechanistic mechanisms during oxidative stress-induced neuronal apoptosis and may be applicable for the development of therapies for CNS diseases.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University Nanjing, China
| | - Yingqiong Xu
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University Nanjing, China
| | - Qian Liu
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine Nanjing, China
| | - Yuanyuan Zhang
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University Nanjing, China
| | - Zhen Gao
- Department of Medicine-Ather and Lipo, Baylor College of Medicine Houston, TX, USA
| | - Mingzhu Yin
- Department of Pathology, Yale School of Medicine New Haven, CT, USA
| | - Nan Jiang
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University Nanjing, China
| | - Guosheng Cao
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University Nanjing, China
| | - Boyang Yu
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University Nanjing, China
| | - Zhengyu Cao
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University Nanjing, China
| | - Junping Kou
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University Nanjing, China
| |
Collapse
|
12
|
Zhang JG, Zhang DD, Wu X, Wang YZ, Gu SY, Zhu GH, Li XY, Li Q, Liu GL. Incarvine C suppresses proliferation and vasculogenic mimicry of hepatocellular carcinoma cells via targeting ROCK inhibition. BMC Cancer 2015; 15:814. [PMID: 26510899 PMCID: PMC4625643 DOI: 10.1186/s12885-015-1809-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/16/2015] [Indexed: 02/07/2023] Open
Abstract
Background Studies have described vasculogenic mimicry (VM) as an alternative circulatory system to blood vessels in multiple malignant tumor types, including hepatocellular carcinoma (HCC). In the current study, we aimed to seek novel and more efficient treatment strategies by targeting VM and explore the underlying mechanisms in HCC cells. Methods Cell counting kit-8 (CCK-8) assay and colony survival assay were performed to explore the inhibitory effect of incarvine C (IVC) on human cancer cell proliferation. Flow cytometry was performed to analyze the cell cycle distribution after DNA staining and cell apoptosis by the Annexin V-PE and 7-AAD assay. The effect of IVC on Rho-associated, coiled-coil-containing protein kinase (ROCK) was determined by western blotting and stress fiber formation assay. The inhibitory role of IVC on MHCC97H cell VM formation was determined by formation of tubular network structures on Matrigel in vitro, real time-qPCR, confocal microscopy and western blotting techniques. Results We explored an anti-metastatic HCC agent, IVC, derived from traditional Chinese medicinal herbs, and found that IVC dose-dependently inhibited the growth of MHCC97H cells. IVC induced MHCC97H cell cycle arrest at G1 transition, which was associated with cyclin-dependent kinase 2 (CDK-2)/cyclin-E1 degradation and p21/p53 up-regulation. In addition, IVC induced apoptotic death of MHCC97H cells. Furthermore, IVC strongly suppressed the phosphorylation of the ROCK substrate myosin phosphatase target subunit-1 (MYPT-1) and ROCK-mediated actin fiber formation. Finally, IVC inhibited cell-dominant tube formation in vitro, which was accompanied with the down-regulation of VM-key factors as detected by real time-qPCR and immunofluorescence. Conclusions Taken together, the effective inhibitory effect of IVC on MHCC97H cell proliferation and neovascularization was associated with ROCK inhibition, suggesting that IVC may be a new potential drug candidate for the treatment of HCC.
Collapse
Affiliation(s)
- Ji-Gang Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No. 100 Haining Road, Shanghai, 200080, P. R. China.
| | - Dan-Dan Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No. 100 Haining Road, Shanghai, 200080, P. R. China.
| | - Xin Wu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No. 100 Haining Road, Shanghai, 200080, P. R. China.
| | - Yu-Zhu Wang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No. 100 Haining Road, Shanghai, 200080, P. R. China.
| | - Sheng-Ying Gu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No. 100 Haining Road, Shanghai, 200080, P. R. China.
| | - Guan-Hua Zhu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No. 100 Haining Road, Shanghai, 200080, P. R. China.
| | - Xiao-Yu Li
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No. 100 Haining Road, Shanghai, 200080, P. R. China.
| | - Qin Li
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No. 100 Haining Road, Shanghai, 200080, P. R. China.
| | - Gao-Lin Liu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No. 100 Haining Road, Shanghai, 200080, P. R. China.
| |
Collapse
|
13
|
Shen K, Wang Y, Zhang Y, Zhou H, Song Y, Cao Z, Kou J, Yu B. Cocktail of Four Active Components Derived from Sheng Mai San Inhibits Hydrogen Peroxide-Induced PC12 Cell Apoptosis Linked with the Caspase-3/ROCK1/MLC Pathway. Rejuvenation Res 2015; 18:517-27. [PMID: 26058543 DOI: 10.1089/rej.2015.1697] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
SMXZF, a combination of four active components including ginsenoside Rb1, ginsenoside Rg1, schizandrin, and DT-13 (6:9:5:4) that is derived from Sheng Mai San, has previously been shown to exhibit a neuroprotective effect against focal ischemia/reperfusion injury. Due to the key role of oxidative stress-induced neuronal apoptosis in the pathogenesis of stroke, we examined the effect of SMXZF in oxidative stress responses and related signaling pathways in differentiated pheochromocytoma (PC12) cells. Our results showed that incubation with 100 μM hydrogen peroxide (H2O2) for 12 hr could reduce cell viability and superoxide dismutase (SOD) activity with an increase of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA). In contrast, SMXZF alleviated oxidative stress by reducing the over-production of ROS and MDA in parallel to concentration dependently increasing SOD activity. In addition, SMXZF significantly attenuated H2O2-induced caspase-3 cleavage, Rho-associated coiled-coil-containing protein kinase-1 (ROCK1) activation, and myosin light-chain (MLC) phosphorylation. Inhibiting either caspase-3 or ROCK1 mimicked the effect. Consequently, our results suggest that SMXZF inhibits H2O2-induced neuronal apoptosis linked with the caspase-3/ROCK1/MLC pathway, which has also been confirmed to be a positive feedback loop in oxidative stress-injured PC12 cells. These findings support the pharmacological potential of SMXZF for neurodegenerative diseases and stroke.
Collapse
Affiliation(s)
- Kai Shen
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University , Nanjing, P.R. China
| | - Yan Wang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University , Nanjing, P.R. China
| | - Yuanyuan Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University , Nanjing, P.R. China
| | - Huana Zhou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University , Nanjing, P.R. China
| | - Yunfei Song
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University , Nanjing, P.R. China
| | - Zhengyu Cao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University , Nanjing, P.R. China
| | - Junping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University , Nanjing, P.R. China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University , Nanjing, P.R. China
| |
Collapse
|
14
|
Zou DB, Wei X, Hu RL, Yang XP, Zuo L, Zhang SM, Zhu HQ, Zhou Q, Gui SY, Wang Y. Melatonin inhibits the Migration of Colon Cancer RKO cells by Down-regulating Myosin Light Chain Kinase Expression through Cross-talk with p38 MAPK. Asian Pac J Cancer Prev 2015; 16:5835-42. [DOI: 10.7314/apjcp.2015.16.14.5835] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
15
|
Chen YL, Kan WM. Down-regulation of superoxide dismutase 1 by PMA is involved in cell fate determination and mediated via protein kinase D2 in myeloid leukemia cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2662-75. [PMID: 26241492 DOI: 10.1016/j.bbamcr.2015.07.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/10/2015] [Accepted: 07/31/2015] [Indexed: 11/26/2022]
Abstract
Myeloid leukemia cells maintain a high intracellular ROS level and use redox signals for survival. The metabolism of ROS also affects cell fate, including cell death and differentiation. Superoxide dismutases (SODs) are major antioxidant enzymes that have high levels of expression in myeloid leukemia cells. However, the role of SODs in the regulation of myeloid leukemia cells' biological function is still unclear. To investigate the function of SODs in myeloid leukemia cell death and differentiation, we used myeloid leukemia cell lines K562, MEG-01, TF-1, and HEL cells for this study. We found that PMA-induced megakaryocytic differentiation in myeloid leukemia cells is accompanied by cell death and SOD1 down-regulation, while SOD2 expression is not affected. The role of SOD1 is verified when ATN-224, a SOD1 specific inhibitor, inhibits cell proliferation and promotes cell death in myeloid leukemia cells without PMA treatment. Moreover, inhibition or silencing of SODs further increases cell death and decreases polyploidization induced by PMA while they were partially reversed by SOD1 overexpression. Thus, SOD1 expression is required for myeloid leukemia cell fate determination. In addition, the knockdown of PKD2 reduces cell death and promotes polyploidization induced by PMA. PMA/PKD2-mediated necrosis via PARP cleavage involves both SOD1-dependent and -independent pathways. Finally, ATN-224 enhanced the inhibition of cell proliferation by Ara-C. Taken together, the results demonstrate that SOD1 regulates cell death and differentiation in myeloid leukemia cells. ATN-224 may be beneficial for myeloid leukemia therapy.
Collapse
Affiliation(s)
- Yu-Lin Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Wai-Ming Kan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
16
|
Chen HC, Chang JP, Chang TH, Lin YS, Huang YK, Pan KL, Fang CY, Chen CJ, Ho WC, Chen MC. Enhanced expression of ROCK in left atrial myocytes of mitral regurgitation: a potential mechanism of myolysis. BMC Cardiovasc Disord 2015; 15:33. [PMID: 25956928 PMCID: PMC4429363 DOI: 10.1186/s12872-015-0038-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 04/30/2015] [Indexed: 11/10/2022] Open
Abstract
Background Severe mitral regurgitation (MR) may cause myolysis in the left atrial myocytes. Myolysis may contribute to atrial enlargement. However, the relationship between Rho-associated kinase (ROCK) and myolysis in the left atrial myocytes of MR patients remain unclear. Methods This study comprised 22 patients with severe MR [12 with atrial fibrillation (AF) and ten in sinus rhythm]. Left atrial appendage tissues were obtained during surgery. Normal left atrial tissues were purchased. Immunofluorescence histochemical and immunoblotting studies were performed. Results The expression of ROCK2 in the myolytic left atrial myocytes of MR AF patients (p = 0.009) and MR sinus patients (p = 0.011) were significantly higher than that of the normal subjects. Similarly, the expression of ROCK1 in the myolytic left atrial myocytes of MR AF patients was significantly higher than that of the normal subjects (p = 0.010), and the expression of ROCK1 in the myolytic left atrial myocytes of MR sinus patients was higher than that of the normal subjects (p = 0.091). Immunofluorescence study revealed significant co-localization and juxtaposition of ROCK2 and cleaved caspase-3 in the left atrial myocytes both in the MR AF group (Pearson’s coefficient = 0.74 ± 0.03) and the MR sinus group (Pearson’s coefficient = 0.73 ± 0.02). Similarly, immunofluorescence study revealed significant co-localization and juxtaposition of ROCK1 and cleaved caspase-3 in the left atrial myocytes both in the MR AF group (Pearson’s coefficient = 0.65 ± 0.03) and the MR sinus group (Pearson’s coefficient = 0.65 ± 0.03). Correlation analysis demonstrated that there was a significant direct relationship between the expression of ROCK2 in the myolytic left atrial myocytes and left atrial diameter in the MR patients (p = 0.041; r = 0.440). Moreover, the ratio of phosphorylated myosin-binding subunit of myosin light chain phosphatase (pMBS)/total MBS of left atrial tissues was significantly higher in the MR AF group (p < 0.04) and the MR sinus group (p < 0.04) compared with the normal control group. Conclusions The enhanced expression of ROCKs might be involved in the myolysis of the left atrial myocytes of MR patients.
Collapse
Affiliation(s)
- Huang-Chung Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta Pei Road, Niao Sung District, Kaohsiung City, 83301, Taiwan.
| | - Jen-Ping Chang
- Division of Cardiovascular Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei, Taiwan.
| | - Yu-Sheng Lin
- Division of Cardiology, Chang Gung Memorial Hospital, Chiayi, Taiwan.
| | - Yao-Kuang Huang
- Department of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan.
| | - Kuo-Li Pan
- Division of Cardiology, Chang Gung Memorial Hospital, Chiayi, Taiwan.
| | - Chih-Yuan Fang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta Pei Road, Niao Sung District, Kaohsiung City, 83301, Taiwan.
| | - Chien-Jen Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta Pei Road, Niao Sung District, Kaohsiung City, 83301, Taiwan.
| | - Wan-Chun Ho
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta Pei Road, Niao Sung District, Kaohsiung City, 83301, Taiwan.
| | - Mien-Cheng Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta Pei Road, Niao Sung District, Kaohsiung City, 83301, Taiwan.
| |
Collapse
|
17
|
Real-time quantification of protein expression and translocation at individual cell resolution using imaging-dish-based live cell array. Anal Bioanal Chem 2014; 406:7085-101. [PMID: 25258284 DOI: 10.1007/s00216-014-8157-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/19/2014] [Accepted: 09/02/2014] [Indexed: 01/19/2023]
Abstract
Cell populations represent intrinsically heterogeneous systems with a high level of spatiotemporal complexity. Monitoring and understanding cell-to-cell diversity is essential for the research and application of intra- and interpopulation variations. Optical analysis of live cells is challenging since both adherent and nonadherent cells change their spatial location. However, most currently available single-cell techniques do not facilitate treatment and monitoring of the same live cells over time throughout multistep experiments. An imaging-dish-based live cell array (ID-LCA) has been developed and produced for cell handling, culturing, and imaging of numerous live cells. The dish is composed of an array of pico scale cavities-pico wells (PWs) embossed on its glass bottom. Cells are seeded, cultured, treated, and spatiotemporally measured on the ID-LCA, while each cell or small group of cells are locally constrained in the PWs. Finally, predefined cells can be retrieved for further evaluation. Various types of ID-LCAs were used in this proof-of-principle work, to demonstrate on-ID-LCA transfection of fluorescently tagged chimeric proteins, as well as the detection and kinetic analysis of their induced translocation. High variability was evident within cell populations with regard to protein expression levels as well as the extent and dynamics of protein redistribution. The association of these parameters with cell morphology and functional parameters was examined. Both the new methodology and the device facilitate research of the translocation process at individual cell resolution within large populations and thus, can potentially be used in high-throughput fashion.
Collapse
|
18
|
Tiftik RN, Başkurt OK, Kul S, Büyükafşar K. The functional significance of the rho/rho-kinase pathway in human erythrocytes. Turk J Haematol 2014; 31:168-74. [PMID: 25035675 PMCID: PMC4102045 DOI: 10.4274/tjh.2013.0115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 07/19/2013] [Indexed: 01/16/2023] Open
Abstract
Objective: Erythrocyte deformability, which can be influenced by various intracellular signaling mechanisms, such as nitric oxide, cAMP, cGMP, and protein kinases, is the most important physiological factor providing the blood flow in microcirculation. However, the functional significance of the Rho/Rho-kinase pathway, which contributes cell shape changes and the reorganization of the actin cytoskeleton, has yet to be explored in erythrocytes. Therefore, we examined the influence of several activators and inhibitors of Rho/Rho-kinase signaling on human erythrocyte deformability. Materials and Methods: RhoA and ROCK-2 proteins were studied by western blotting. Influences of 2 Rho-kinase inhibitors, fasudil and Y-27632 (both 10-7 to 10-4 M), on erythrocyte deformability was determined by ektacytometer at various shear stresses (0-30 Pa) in the presence or absence of a known Rho activator, lysophosphatidic acid (LPA, 10-5 to 5x10-5 M, 1-15 min). Results: LPA incubation reduced deformability with concomitant RhoA-GTP inhibition. Y-27632 and fasudil also decreased deformability, but had no effect on LPA-induced reduction of deformability. Rho inhibitor C3 had no effect on RhoA activation. Reduction in RhoA activation was induced by sub-hemolytic mechanical stress. Conclusion: Our findings may indicate that the Rho/Rho-kinase pathway could contribute to the regulation of deformability of human erythrocytes.
Collapse
Affiliation(s)
- R Nalan Tiftik
- Mersin University Faculty of Medicine, Department of Pharmacology, Mersin, Turkey
| | | | - Seval Kul
- Gaziantep University Faculty of Medicine, Department of Biostatistics, Gaziantep, Turkey
| | - Kansu Büyükafşar
- Mersin University Faculty of Medicine, Department of Pharmacology, Mersin, Turkey
| |
Collapse
|
19
|
Alexaki A, Quiterio SJ, Nonnemacher MR, Shah S, Liu Y, Banerjee A, Li L, Passic S, Pirrone V, Kilareski E, Petrovas C, Wigdahl B. Modeling Bone Marrow Progenitor Cell Differentiation and Susceptibility to HIV-1 Infection. ACTA ACUST UNITED AC 2014; 1:00009-9. [PMID: 26229980 DOI: 10.15406/moji.2014.01.00009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection of the monocytic lineage is involved in the pathologic events associated with AIDS and HIV-1-associated dementia (HAD). Hematopoietic progenitor cells (HPCs) within the bone marrow are refractile to HIV-1 infection, while their progeny of the monocyte-macrophage lineage are susceptible. Previous studies, using phorbol-myristate-acetate (PMA) as a differentiating agent, have suggested that the CD34+/CD38+ TF-1 cell line may be used as one model to study the differentiation processes of HPCs. In the present study, medium that has been conditioned by PMA-treated TF-1 cells but is devoid of any traces of PMA, was utilized to induce differentiation of TF-1 cells. The conditioned medium (CM) from this bone marrow-derived cell population is enriched with respect to numerous cytokines and induces differentiation and activation of TF-1 cells, as indicated by changes in the expression of CD34, CD38, and CD69 cell surface molecules. Furthermore, treatment with CM was also shown to induce the expression of CCR5 and CXCR4, while maintaining the expression of CD4, which was ultimately correlated with increased susceptibility to HIV-1. Additionally, the activation of the TF-1 cells was shown to lead to increased LTR activity, with specificity protein (Sp) and nuclear factor kappa-light-chain-enhancer of activated B cells) NF-κB factors playing a crucial role in HIV-1 long terminal repeat (LTR)-mediated transcription and possibly overall TF-1 permissivity. Interleukin (IL)-1β, which is elevated in the CM, recapitulates some of the CM effects. In summary, these studies suggest that the TF-1 cell line could serve as a model to study the susceptibility of bone marrow progenitor cells to HIV-1 infection.
Collapse
Affiliation(s)
- Aikaterini Alexaki
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine Philadelphia, USA
| | - Shane J Quiterio
- Department of Microbiology and Immunology, The Pennsylvania State University, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine Philadelphia, USA
| | - Sonia Shah
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine Philadelphia, USA
| | - Yujie Liu
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine Philadelphia, USA
| | - Anupam Banerjee
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine Philadelphia, USA
| | - Luna Li
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine Philadelphia, USA
| | - Shendra Passic
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine Philadelphia, USA
| | - Vanessa Pirrone
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine Philadelphia, USA
| | - Evelyn Kilareski
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine Philadelphia, USA
| | - Constantinos Petrovas
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases/NIH, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine Philadelphia, USA
| |
Collapse
|
20
|
Yang Q, Zhang XF, Van Goor D, Dunn AP, Hyland C, Medeiros N, Forscher P. Protein kinase C activation decreases peripheral actin network density and increases central nonmuscle myosin II contractility in neuronal growth cones. Mol Biol Cell 2013; 24:3097-114. [PMID: 23966465 PMCID: PMC3784383 DOI: 10.1091/mbc.e13-05-0289] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
PKC activation enhances myosin II contractility in the central growth cone domain while decreasing actin density and increasing actin network flow rates in the peripheral domain. This dual mode of action has mechanistic implications for interpreting reported effects of PKC on growth cone guidance and neuronal regeneration. Protein kinase C (PKC) can dramatically alter cell structure and motility via effects on actin filament networks. In neurons, PKC activation has been implicated in repulsive guidance responses and inhibition of axon regeneration; however, the cytoskeletal mechanisms underlying these effects are not well understood. Here we investigate the acute effects of PKC activation on actin network structure and dynamics in large Aplysia neuronal growth cones. We provide evidence of a novel two-tiered mechanism of PKC action: 1) PKC activity enhances myosin II regulatory light chain phosphorylation and C-kinase–potentiated protein phosphatase inhibitor phosphorylation. These effects are correlated with increased contractility in the central cytoplasmic domain. 2) PKC activation results in significant reduction of P-domain actin network density accompanied by Arp2/3 complex delocalization from the leading edge and increased rates of retrograde actin network flow. Our results show that PKC activation strongly affects both actin polymerization and myosin II contractility. This synergistic mode of action is relevant to understanding the pleiotropic reported effects of PKC on neuronal growth and regeneration.
Collapse
Affiliation(s)
- Qing Yang
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511
| | | | | | | | | | | | | |
Collapse
|
21
|
Saito K, Sakaguchi M, Iioka H, Matsui M, Nakanishi H, Huh NH, Kondo E. Coxsackie and adenovirus receptor is a critical regulator for the survival and growth of oral squamous carcinoma cells. Oncogene 2013; 33:1274-86. [PMID: 23503462 DOI: 10.1038/onc.2013.66] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 12/27/2012] [Accepted: 01/07/2013] [Indexed: 12/16/2022]
Abstract
Coxsackie and adenovirus receptor (CAR) is essential for adenovirus infection to target cells, and its constitutive expression in various cancerous and normal tissues has been reported. Recently, the biological role of CAR in human cancers of several different origins has been investigated with respect to tumor progression, metastasis and tumorigenesis. However, its biological function in tumor cells remains controversial. Here we report the critical role of CAR in growth regulation of oral squamous cell carcinomas (SCCs) in vitro and in vivo via the specific interaction with Rho-associated protein kinase (ROCK). Loss of endogenous CAR expression by knockdown using specific small interfering RNA (siRNA) against CAR facilitates growth suppression of SCC cells due to cell dissociation, followed by apoptosis. The consequent morphological reaction was reminiscent of anoikis, rather than epithelial-mesenchymal transition, and the dissociation of oral SCC cells was triggered not by lack of contact with extracellular matrix, but by loss of cell-to-cell contact caused by abnormal translocation of E-cadherin from surface membrane to cytoplasm. Immunoprecipitation assays of the CAR-transfected oral SCC cell line, HSC-2, with or without ROCK inhibitor (Y-27632) revealed that CAR directly associates with ROCKI and ROCKII, which results in inhibition of ROCK activity and contributes to maintenance of cell-to-cell adhesion for their growth and survival. Based on these findings, in vivo behavior of CAR-downregulated HSC-2 cells from siRNA knockdown was compared with that of normally CAR-expressing cells in intraperitoneally xenografted mouse models. The mice engrafted with CAR siRNA-pretreated HSC-2 cells showed poor formation of metastatic foci in contrast to those implanted with the control siRNA-pretreated cells. Thus, CAR substantially has an impact on growth and survival of oral SCC cells as a negative regulator of ROCK in vitro and in vivo.
Collapse
Affiliation(s)
- K Saito
- Division of Oncological Pathology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - M Sakaguchi
- Department of Cell Biology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - H Iioka
- 1] Division of Oncological Pathology, Aichi Cancer Center Research Institute, Nagoya, Japan [2] Division of Translational Research, Advanced Medical Research Center, Aichi Medical University, Nagakute, Japan
| | - M Matsui
- Division of Oncological Pathology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - H Nakanishi
- Division of Oncological Pathology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - N H Huh
- Department of Cell Biology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - E Kondo
- 1] Division of Oncological Pathology, Aichi Cancer Center Research Institute, Nagoya, Japan [2] Department of Epidemiology, Program in Health and Community Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
22
|
Oskoueian E, Abdullah N, Ahmad S. Phorbol esters from Jatropha meal triggered apoptosis, activated PKC-δ, caspase-3 proteins and down-regulated the proto-oncogenes in MCF-7 and HeLa cancer cell lines. Molecules 2012; 17:10816-30. [PMID: 22964499 PMCID: PMC6268826 DOI: 10.3390/molecules170910816] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/02/2012] [Accepted: 08/21/2012] [Indexed: 01/31/2023] Open
Abstract
Jatropha meal produced from the kernel of Jatropha curcas Linn. grown in Malaysia contains phorbol esters (PEs). The potential benefits of PEs present in the meal as anticancer agent are still not well understood. Hence, this study was conducted to evaluate the cytotoxic effects and mode of actions of PEs isolated from Jatropha meal against breast (MCF-7) and cervical (HeLa) cancer cell lines. Isolated PEs inhibited cells proliferation in a dose-dependent manner of both MCF-7 and HeLa cell lines with the IC₅₀ of 128.6 ± 2.51 and 133.0 ± 1.96 µg PMA equivalents/mL respectively, while the values for the phorbol 12-myristate 13-acetate (PMA) as positive control were 114.7 ± 1.73 and 119.6 ± 3.73 µg/mL, respectively. Microscopic examination showed significant morphological changes that resemble apoptosis in both cell lines when treated with PEs and PMA at IC₅₀ concentration after 24 h. Flow cytometry analysis and DNA fragmentation results confirmed the apoptosis induction of PEs and PMA in both cell lines. The PEs isolated from Jatropha meal activated the PKC-δ and down-regulated the proto-oncogenes (c-Myc, c-Fos and c-Jun). These changes probably led to the activation of Caspase-3 protein and apoptosis cell death occurred in MCF-7 and HeLa cell lines upon 24 h treatment with PEs and PMA. Phorbol esters of Jatropha meal were found to be promising as an alternative to replace the chemotherapeutic drugs for cancer therapy.
Collapse
Affiliation(s)
- Ehsan Oskoueian
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Agriculture Biotechnology Research Institute of Iran (ABRII)-East and North-East Branch, Mashhad 91735, Iran
| | - Norhani Abdullah
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Institute of Tropical Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Syahida Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
23
|
Ichikawa H, Nakata N, Abo Y, Shirasawa S, Yokoyama T, Yoshie S, Yue F, Tomotsune D, Sasaki K. Gene pathway analysis of the mechanism by which the Rho-associated kinase inhibitor Y-27632 inhibits apoptosis in isolated thawed human embryonic stem cells. Cryobiology 2012; 64:12-22. [DOI: 10.1016/j.cryobiol.2011.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Revised: 09/27/2011] [Accepted: 11/15/2011] [Indexed: 12/11/2022]
|
24
|
Preventive effects of fasudil on adriamycin-induced cardiomyopathy: Possible involvement of inhibition of RhoA/ROCK pathway. Food Chem Toxicol 2011; 49:2975-82. [DOI: 10.1016/j.fct.2011.06.080] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 06/03/2011] [Accepted: 06/27/2011] [Indexed: 11/17/2022]
|
25
|
Schackmann RCJ, van Amersfoort M, Haarhuis JHI, Vlug EJ, Halim VA, Roodhart JML, Vermaat JS, Voest EE, van der Groep P, van Diest PJ, Jonkers J, Derksen PWB. Cytosolic p120-catenin regulates growth of metastatic lobular carcinoma through Rock1-mediated anoikis resistance. J Clin Invest 2011; 121:3176-88. [PMID: 21747168 DOI: 10.1172/jci41695] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 05/18/2011] [Indexed: 01/28/2023] Open
Abstract
Metastatic breast cancer is the major cause of cancer-related death among women in the Western world. Invasive carcinoma cells are able to counteract apoptotic signals in the absence of anchorage, enabling cell survival during invasion and dissemination. Although loss of E-cadherin is a cardinal event in the development and progression of invasive lobular carcinoma (ILC), little is known about the underlying mechanisms that govern these processes. Using a mouse model of human ILC, we show here that cytosolic p120-catenin (p120) regulates tumor growth upon loss of E-cadherin through the induction of anoikis resistance. p120 conferred anchorage independence by indirect activation of Rho/Rock signaling through interaction and inhibition of myosin phosphatase Rho-interacting protein (Mrip), an antagonist of Rho/Rock function. Consistent with these data, primary human ILC samples expressed hallmarks of active Rock signaling, and Rock controlled the anoikis resistance of human ILC cells. Thus, we have linked loss of E-cadherin - an initiating event in ILC development - to Rho/Rock-mediated control of anchorage-independent survival. Because activation of Rho and Rock are strongly linked to cancer progression and are susceptible to pharmacological inhibition, these insights may have clinical implications for the development of tailor-made intervention strategies to better treat invasive and metastatic lobular breast cancer.
Collapse
Affiliation(s)
- Ron C J Schackmann
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ohgushi M, Sasai Y. Lonely death dance of human pluripotent stem cells: ROCKing between metastable cell states. Trends Cell Biol 2011; 21:274-82. [PMID: 21444207 DOI: 10.1016/j.tcb.2011.02.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 02/21/2011] [Accepted: 02/23/2011] [Indexed: 11/26/2022]
Abstract
Two kinds of human pluripotent cells, human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), promise new avenues for medical innovation. These human cells share many similarities with mouse counterparts, including pluripotency, and they exhibit several unique properties. This review examines the diversity of mammalian pluripotent cells from a perspective of metastable pluripotency states. An intriguing phenomenon unique to human pluripotent stem cells is dissociation-induced apoptosis, which has been a technical problem for various cellular manipulations. The discovery that this apoptosis is suppressed by ROCK inhibitors brought revolutionary change to this troublesome situation. We discuss possible links of the metastable pluripotent state to ROCK-dependent human embryonic stem cell apoptosis and summarize recent progress in molecular understandings of this phenomenon.
Collapse
Affiliation(s)
- Masatoshi Ohgushi
- Unit for Human Stem Cell Technology, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan
| | | |
Collapse
|
27
|
Abstract
G protein-coupled receptors (GPCRs) belong to a superfamily of cell surface signalling proteins that have a pivotal role in many physiological functions and in multiple diseases, including the development of cancer and cancer metastasis. Current drugs that target GPCRs - many of which have excellent therapeutic benefits - are directed towards only a few GPCR members. Therefore, huge efforts are currently underway to develop new GPCR-based drugs, particularly for cancer. We review recent findings that present unexpected opportunities to interfere with major tumorigenic signals by manipulating GPCR-mediated pathways. We also discuss current data regarding novel GPCR targets that may provide promising opportunities for drug discovery in cancer prevention and treatment.
Collapse
|
28
|
Street CA, Routhier AA, Spencer C, Perkins AL, Masterjohn K, Hackathorn A, Montalvo J, Dennstedt EA, Bryan BA. Pharmacological inhibition of Rho-kinase (ROCK) signaling enhances cisplatin resistance in neuroblastoma cells. Int J Oncol 2011; 37:1297-305. [PMID: 20878077 DOI: 10.3892/ijo_00000781] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The role of the RhoA/Rho kinase (ROCK) signaling pathway in cell survival remains a very controversial issue, with its activation being pro-apoptotic in many cell types and anti-apoptotic in others. To test if ROCK inhibition contributes to tumor cell survival or death following chemotherapy, we treated cisplatin damaged neuroblastoma cells with a pharmacological ROCK inhibitor (Y27632) or sham, and monitored cell survival, accumulation of a chemoresistant phenotype, and in vivo tumor formation. Additionally, we assayed if ROCK inhibition altered the expression of genes known to be involved in cisplatin resistance. Our studies indicate that ROCK inhibition results in increased cell survival, acquired chemoresistance, and enhanced tumor survival following cisplatin cytotoxicity, due in part to altered expression of cisplatin resistance genes. These findings suggest that ROCK inhibition in combination with cisplatin chemotherapy may lead to enhanced tumor chemoresistance in neuroblastoma.
Collapse
Affiliation(s)
- Catharine A Street
- Ghosh Science and Technology Center, Worcester State College, Worcester, MA 01602-2597, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Valiya Veettil M, Sadagopan S, Kerur N, Chakraborty S, Chandran B. Interaction of c-Cbl with myosin IIA regulates Bleb associated macropinocytosis of Kaposi's sarcoma-associated herpesvirus. PLoS Pathog 2010; 6:e1001238. [PMID: 21203488 PMCID: PMC3009604 DOI: 10.1371/journal.ppat.1001238] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 11/22/2010] [Indexed: 12/03/2022] Open
Abstract
KSHV is etiologically associated with Kaposi's sarcoma (KS), an angioproliferative endothelial cell malignancy. Macropinocytosis is the predominant mode of in vitro entry of KSHV into its natural target cells, human dermal microvascular endothelial (HMVEC-d) cells. Although macropinocytosis is known to be a major route of entry for many viruses, the molecule(s) involved in the recruitment and integration of signaling early during macropinosome formation is less well studied. Here we demonstrate that tyrosine phosphorylation of the adaptor protein c-Cbl is required for KSHV induced membrane blebbing and macropinocytosis. KSHV induced the tyrosine phosphorylation of c-Cbl as early as 1 min post-infection and was recruited to the sites of bleb formation. Infection also led to an increase in the interaction of c-Cbl with PI3-K p85 in a time dependent manner. c-Cbl shRNA decreased the formation of KSHV induced membrane blebs and macropinocytosis as well as virus entry. Immunoprecipitation of c-Cbl followed by mass spectrometry identified the interaction of c-Cbl with a novel molecular partner, non-muscle myosin heavy chain IIA (myosin IIA), in bleb associated macropinocytosis. Phosphorylated c-Cbl colocalized with phospho-myosin light chain II in the interior of blebs of infected cells and this interaction was abolished by c-Cbl shRNA. Studies with the myosin II inhibitor blebbistatin demonstrated that myosin IIA is a biologically significant component of the c-Cbl signaling pathway and c-Cbl plays a new role in the recruitment of myosin IIA to the blebs during KSHV infection. Myosin II associates with actin in KSHV induced blebs and the absence of actin and myosin ubiquitination in c-Cbl ShRNA cells suggested that c-Cbl is also responsible for the ubiquitination of these proteins in the infected cells. This is the first study demonstrating the role of c-Cbl in viral entry as well as macropinocytosis, and provides the evidence that a signaling complex containing c-Cbl and myosin IIA plays a crucial role in blebbing and macropinocytosis during viral infection and suggests that targeting c-Cbl could lead to a block in KSHV infection. KSHV is etiologically associated with Kaposi's sarcoma (KS), the most common AIDS related neoplasm. The first key step in KSHV infection is its initial contact with target cells and entry. While it is known that KSHV uses macropinocytosis for its infectious entry into its natural target cells, HMVEC-d cells, we know little about the molecule(s) involved in this event. Here, we show that the adaptor protein c-Cbl plays a major role in regulating bleb associated macropinocytosis of KSHV. The results demonstrate that c-Cbl protein functions as an adaptor for the myosin II hexameric complex in macropinocytic events. Knocking down c-Cbl by shRNA induces defects in myosin II dependent blebbing and KSHV entry, indicating that c-Cbl uses myosin II to coordinate signaling pathways, resulting in bleb formation and bleb retraction. This work provides a clear understanding of the role of c-Cbl in the recruitment and integration of signaling molecules around the macropinosome during virus infection, and identifies potential targets to intervene in KSHV infection.
Collapse
Affiliation(s)
- Mohanan Valiya Veettil
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | | | | | | | | |
Collapse
|
30
|
Biswas PS, Gupta S, Chang E, Song L, Stirzaker RA, Liao JK, Bhagat G, Pernis AB. Phosphorylation of IRF4 by ROCK2 regulates IL-17 and IL-21 production and the development of autoimmunity in mice. J Clin Invest 2010; 120:3280-95. [PMID: 20697158 PMCID: PMC2929726 DOI: 10.1172/jci42856] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 06/30/2010] [Indexed: 12/25/2022] Open
Abstract
Deregulated production of IL-17 and IL-21 plays a key pathogenic role in many autoimmune disorders. A delineation of the mechanisms that underlie the inappropriate synthesis of IL-17 and IL-21 in autoimmune diseases can thus provide important insights into potential therapies for these disorders. Here we have shown that the serine-threonine kinase Rho-associated, coiled-coil-containing protein kinase 2 (ROCK2) becomes activated in mouse T cells under Th17 skewing conditions and phosphorylates interferon regulatory factor 4 (IRF4), a transcription factor that is absolutely required for the production of IL-17 and IL-21. We furthermore demonstrated that ROCK2-mediated phosphorylation of IRF4 regulated the synthesis of IL-17 and IL-21 and the differentiation of Th17 cells. Whereas CD4+ T cells from WT mice activated ROCK2 physiologically under Th17 conditions, CD4+ T cells from 2 different mouse models of spontaneous autoimmunity aberrantly activated ROCK2 under neutral conditions. Moreover, administration of ROCK inhibitors ameliorated the deregulated production of IL-17 and IL-21 and the inflammatory and autoantibody responses observed in these autoimmune mice. Our findings thus uncover a crucial link among ROCK2, IRF4, and the production of IL-17 and IL-21 and support the idea that selective inhibition of ROCK2 could represent an important therapeutic regimen for the treatment of autoimmune disorders.
Collapse
Affiliation(s)
- Partha S Biswas
- Department of Medicine, Columbia University, New York, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Nazarenko I, Jenny M, Keil J, Gieseler C, Weisshaupt K, Sehouli J, Legewie S, Herbst L, Weichert W, Darb-Esfahani S, Dietel M, Schäfer R, Ueberall F, Sers C. Atypical protein kinase C zeta exhibits a proapoptotic function in ovarian cancer. Mol Cancer Res 2010; 8:919-34. [PMID: 20501645 DOI: 10.1158/1541-7786.mcr-09-0358] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Intracellular signaling governed by serine/threonine kinases comprises the molecular interface between cell surface receptors and the nuclear transcriptional machinery. The protein kinase C (PKC) family members are involved in the control of many signaling processes directing cell proliferation, motility, and survival. Here, we examined a role of different PKC isoenzymes in protein phosphatase 2A (PP2A) and HRSL3 tumor suppressor-dependent cell death induction in the ovarian carcinoma cell line OVCAR-3. Phosphorylation and activity of PKC isoenzymes were measured in response to PP2A or phosphoinositide 3-kinase inhibition or HRSL3 overexpression. These experiments indicated a regulation of PKC, epsilon, zeta, and iota through PP2A and/or HRSL3, but not of PKCalpha and beta. Using isoform-specific peptide inhibitors and overexpression approaches, we verified a contribution to PP2A- and HRLS3-dependent apoptosis only for PKCzeta, suggesting a proapoptotic function of this kinase. We observed a significant proportion of human ovarian carcinomas expressing high levels of PKCzeta, which correlated with poor prognosis. Primary ovarian carcinoma cells isolated from patients also responded to okadaic acid treatment with increased phosphorylation of PKCzeta and apoptosis induction. Thus, our data indicate a contribution of PKCzeta in survival control in ovarian carcinoma cells and suggest that upregulation or activation of tyrosine kinase receptors in this tumor might impinge onto apoptosis control through the negative regulation of the atypical PKCzeta.
Collapse
Affiliation(s)
- Irina Nazarenko
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Hermann von Helmholtz Platz 1, Eggenstein-Leopoldshafen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sanno H, Shen X, Kuru N, Bormuth I, Bobsin K, Gardner HAR, Komljenovic D, Tarabykin V, Erzurumlu RS, Tucker KL. Control of postnatal apoptosis in the neocortex by RhoA-subfamily GTPases determines neuronal density. J Neurosci 2010; 30:4221-31. [PMID: 20335457 PMCID: PMC2852171 DOI: 10.1523/jneurosci.3318-09.2010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Revised: 01/25/2010] [Accepted: 01/30/2010] [Indexed: 12/26/2022] Open
Abstract
Apoptosis of neurons in the maturing neocortex has been recorded in a wide variety of mammals, but very little is known about its effects on cortical differentiation. Recent research has implicated the RhoA GTPase subfamily in the control of apoptosis in the developing nervous system and in other tissue types. Rho GTPases are important components of the signaling pathways linking extracellular signals to the cytoskeleton. To investigate the role of the RhoA GTPase subfamily in neocortical apoptosis and differentiation, we have engineered a mouse line in which a dominant-negative RhoA mutant (N19-RhoA) is expressed from the Mapt locus, such that all neurons of the developing nervous system are expressing the N19-RhoA inhibitor. Postnatal expression of N19-RhoA led to no major changes in neocortical anatomy. Six layers of the neocortex developed and barrels (whisker-related neural modules) formed in layer IV. However, the density and absolute number of neurons in the somatosensory cortex increased by 12-26% compared with wild-type littermates. This was not explained by a change in the migration of neurons during the formation of cortical layers but rather by a large decrease in the amount of neuronal apoptosis at postnatal day 5, the developmental maximum of cortical apoptosis. In addition, overexpression of RhoA in cortical neurons was seen to cause high levels of apoptosis. These results demonstrate that RhoA-subfamily members play a major role in developmental apoptosis in postnatal neocortex of the mouse but that decreased apoptosis does not alter cortical cytoarchitecture and patterning.
Collapse
Affiliation(s)
- Hitomi Sanno
- Interdisciplinary Center for Neurosciences and
- Institute of Anatomy, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Xiao Shen
- Interdisciplinary Center for Neurosciences and
- Institute of Anatomy, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Nilgün Kuru
- Department of Biology, Faculty of Education, Cumhuriyet University, TR-58140 Sivas, Turkey
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Ingo Bormuth
- Max Planck Institute for Experimental Medicine, D-37075 Göttingen, Germany
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Campus Mitte, D-10098 Berlin, Germany, and
| | - Kristin Bobsin
- Interdisciplinary Center for Neurosciences and
- Institute of Anatomy, University of Heidelberg, D-69120 Heidelberg, Germany
| | | | - Dorde Komljenovic
- Institute of Anatomy, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Victor Tarabykin
- Max Planck Institute for Experimental Medicine, D-37075 Göttingen, Germany
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Campus Mitte, D-10098 Berlin, Germany, and
| | - Reha S. Erzurumlu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Kerry L. Tucker
- Interdisciplinary Center for Neurosciences and
- Institute of Anatomy, University of Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
33
|
Kuzelová K, Pluskalová M, Brodská B, Otevrelová P, Elknerová K, Grebenová D, Hrkal Z. Suberoylanilide hydroxamic acid (SAHA) at subtoxic concentrations increases the adhesivity of human leukemic cells to fibronectin. J Cell Biochem 2010; 109:184-95. [PMID: 19911379 DOI: 10.1002/jcb.22397] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Suberoylanilide hydroxamic acid (SAHA) is an inhibitor of histone deacetylases (HDACs) which is being introduced into clinic for the treatment of hematological diseases. We studied the effect of this compound on six human hematopoietic cell lines (JURL-MK1, K562, CML-T1, Karpas-299, HL-60, and ML-2) as well as on normal human lymphocytes and on leukemic primary cells. SAHA induced dose-dependent and cell type-dependent cell death which displayed apoptotic features (caspase-3 activation and apoptotic DNA fragmentation) in most cell types including the normal lymphocytes. At subtoxic concentrations (0.5-1 microM), SAHA increased the cell adhesivity to fibronectin (FN) in all leukemia/lymphoma-derived cell lines but not in normal lymphocytes. This increase was accompanied by an enhanced expression of integrin beta1 and paxillin, an essential constituent of focal adhesion complexes, both at the protein and mRNA level. On the other hand, the inhibition of ROCK protein, an important regulator of cytoskeleton structure, had no consistent effect on SAHA-induced increase in the cell adhesivity. The promotion of cell adhesivity to FN seems to be specific for SAHA as we observed no such effects with other HDAC inhibitors (trichostatin A and sodium butyrate).
Collapse
Affiliation(s)
- Katerina Kuzelová
- Department of Cellular Biochemistry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
34
|
Vetterkind S, Lee E, Sundberg E, Poythress RH, Tao TC, Preuss U, Morgan KG. Par-4: a new activator of myosin phosphatase. Mol Biol Cell 2010; 21:1214-24. [PMID: 20130087 PMCID: PMC2847525 DOI: 10.1091/mbc.e09-08-0711] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We show here for the first time that the pro-apoptotic protein Par-4 binds to and activates myosin phosphatase (MP). During agonist stimulation, Par-4 facilitates ZIPK targeting and inhibitory phosphorylation of MP, however, phosphorylation of Par-4 is required for MP inhibition. Our model presents Par-4 as an amplifier of the MP activity range. Myosin phosphatase (MP) is a key regulator of myosin light chain (LC20) phosphorylation, a process essential for motility, apoptosis, and smooth muscle contractility. Although MP inhibition is well studied, little is known about MP activation. We have recently demonstrated that prostate apoptosis response (Par)-4 modulates vascular smooth muscle contractility. Here, we test the hypothesis that Par-4 regulates MP activity directly. We show, by proximity ligation assays, surface plasmon resonance and coimmunoprecipitation, that Par-4 interacts with the targeting subunit of MP, MYPT1. Binding is mediated by the leucine zippers of MYPT1 and Par-4 and reduced by Par-4 phosphorylation. Overexpression of Par-4 leads to increased phosphatase activity of immunoprecipitated MP, whereas small interfering RNA knockdown of endogenous Par-4 significantly decreases MP activity and increases MYPT1 phosphorylation. LC20 phosphorylation assays demonstrate that overexpression of Par-4 reduces LC20 phosphorylation. In contrast, a phosphorylation site mutant, but not wild-type Par-4, interferes with zipper-interacting protein kinase (ZIPK)-mediated MP inhibition. We conclude from our results Par-4 operates through a “padlock” model in which binding of Par-4 to MYPT1 activates MP by blocking access to the inhibitory phosphorylation sites, and inhibitory phosphorylation of MYPT1 by ZIPK requires “unlocking” of Par-4 by phosphorylation and displacement of Par-4 from the MP complex.
Collapse
Affiliation(s)
- Susanne Vetterkind
- Department of Health Sciences, Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA 02215, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Naoghare PK, Ki HA, Paek SM, Tak YK, Suh YG, Kim SG, Lee KH, Song JM. Simultaneous quantitative monitoring of drug-induced caspase cascade pathways in carcinoma cells. Integr Biol (Camb) 2009; 2:46-57. [PMID: 20473412 DOI: 10.1039/b916481b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Caspases are the key mediators of apoptosis. The caspase cascade includes a series of events leading to the activation of initiator and downstream caspases in a cell. Analysis of the caspase cascade in intact cells, however, has generally been limited as the simultaneous monitoring of upstream and downstream caspases is not well executed. In an effort to monitor the activation of caspase cascades in an intact cell, high-content cellular imaging that allows simultaneous quantitative monitoring of caspase activation has been developed. This has great significance for the exploration of various cellular caspases involved in apoptotic pathways as possible therapeutic targets in the process of drug discovery. To explore the potential of simultaneous monitoring of caspase-mediated apoptotic pathways, human myeloid leukemia HL-60 cells were treated with SH-03 {(7S,7aR,13aS)-9,10-dimethoxy-3,3-dimethyl-7,7a,13,13a-tetrahydro-3H-chromeno [3,4-b]pyrano[2,3-h]chromen-7-ol} (a newly synthesized candidate), camptothecin or naringenin (agents known to induce apoptosis) with or without caspase inhibitors. SH-03 or naringenin treatment initiated the caspase cascade through an intrinsic apoptotic pathway, whereas camptothecin treatment triggered both intrinsic and extrinsic caspase cascades. We now report a new approach based on uniform threshold intensity distribution that facilitates rapid, quantitative monitoring of drug-induced caspase cascades through multi-spectral and multicolor imaging cytometry.
Collapse
Affiliation(s)
- Pravin K Naoghare
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul 151-742, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Integrin alpha8beta1 regulates adhesion, migration and proliferation of human intestinal crypt cells via a predominant RhoA/ROCK-dependent mechanism. Biol Cell 2009; 101:695-708. [PMID: 19527220 PMCID: PMC2782361 DOI: 10.1042/bc20090060] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background. Integrins are transmembrane αβ heterodimer receptors that function as structural and functional bridges between the cytoskeleton and ECM (extracellular matrix) molecules. The RGD (arginine-glycine-aspartate tripeptide motif)-dependent integrin α8β1 has been shown to be involved in various cell functions in neuronal and mesenchymal-derived cell types. Its role in epithelial cells remains unknown. Results. Integrin α8β1 was found to be expressed in the crypt cell population of the human intestine but was absent from differentiating and mature epithelial cells of the villus. The function of α8β1 in epithelial crypt cells was investigated at the cellular level using normal HIECs (human intestinal epithelial cells). Specific knockdown of α8 subunit expression using an shRNA (small-hairpin RNA) approach showed that α8β1 plays important roles in RGD-dependent cell adhesion, migration and proliferation via a RhoA/ROCK (Rho-associated kinase)-dependent mechanism as demonstrated by active RhoA quantification and pharmacological inhibition of ROCK. Moreover, loss of α8β1, through RhoA/ROCK, impairs FA (focal adhesion) complex integrity as demonstrated by faulty vinculin recruitment. Conclusions. Integrin α8β1 is expressed in epithelial cells. In intestinal crypt cells, α8β1 is closely involved in the regulation of adhesion, migration and cell proliferation via a predominant RhoA/ROCK-dependent mechanism. These results suggest an important role for this integrin in intestinal crypt cell homoeostasis.
Collapse
|
37
|
Xiao L, Eto M, Kazanietz MG. ROCK mediates phorbol ester-induced apoptosis in prostate cancer cells via p21Cip1 up-regulation and JNK. J Biol Chem 2009; 284:29365-75. [PMID: 19667069 DOI: 10.1074/jbc.m109.007971] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
It is established that androgen-dependent prostate cancer cells undergo apoptosis upon treatment with phorbol esters and related analogs, an effect primarily mediated by PKCdelta. Treatment of LNCaP prostate cancer cells with phorbol 12-myristate 13-acetate (PMA) causes a strong and sustained activation of RhoA and its downstream effector ROCK (Rho kinase) as well as the formation of stress fibers. These effects are impaired in cells subjected to PKCdelta RNA interference depletion. Functional studies revealed that expression of a dominant negative RhoA mutant or treatment with the ROCK inhibitor Y-27632 inhibits the apoptotic effect of PMA in LNCaP cells. Remarkably, the cytoskeleton inhibitors cytochalasin B and blebbistatin blocked not only PMA-induced apoptosis but also the activation of JNK, a mediator of the cell death effect by the phorbol ester. In addition, we found that up-regulation of the cell cycle inhibitor p21(Cip1) is required for PMA-induced apoptosis and that inhibitors of ROCK or the cytoskeleton organization prevent p21(Cip1) induction. Real time PCR analysis and reporter gene assay revealed that PMA induces p21(Cip1) transcriptionally in a ROCK- and cytoskeleton-dependent manner. p21(Cip1) promoter analysis revealed that PMA induction is dependent on Sp1 elements in the p21(Cip1) promoter but independent of p53. Taken together, our studies implicate ROCK-mediated up-regulation of p21(Cip1) and the cytoskeleton in PKCdelta-dependent apoptosis in prostate cancer cells.
Collapse
Affiliation(s)
- Liqing Xiao
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6160, USA
| | | | | |
Collapse
|
38
|
Zhou X, Liu Y, You J, Zhang H, Zhang X, Ye L. Myosin light-chain kinase contributes to the proliferation and migration of breast cancer cells through cross-talk with activated ERK1/2. Cancer Lett 2008; 270:312-27. [PMID: 18710790 DOI: 10.1016/j.canlet.2008.05.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 04/24/2008] [Accepted: 05/15/2008] [Indexed: 11/17/2022]
Abstract
Myosin light-chain kinase (MLCK) plays a crucial role in the cell migration and tumor metastasis. Herein, we investigated the signaling pathways involved in MLCK using ML-7, a specific inhibitor of MLCK, in breast cancer cell proliferation and migration. Our data showed that reduction of MLCK in breast cancer cells mediated by 20 microM ML-7 was able to depress the cell proliferation and migration using two parallel cell lines (MCF-7 and LM-MCF/MDA-MB-231) with different metastatic abilities through reciprocal cross-talk with activated ERK1/2, in which both phosphorylated myosin light chain (p-MLC) and cascades of beta-catenin, cyclin D1, survivin, and c-Myc serve as essential downstream effectors.
Collapse
Affiliation(s)
- Xiaolei Zhou
- Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | | | | | | | | | | |
Collapse
|
39
|
Slotta JE, Laschke MW, Menger MD, Thorlacius H. Rho-kinase signalling mediates endotoxin hypersensitivity after partial hepatectomy. Br J Surg 2008; 95:976-84. [PMID: 18563790 DOI: 10.1002/bjs.6082] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Excessive loss of functional liver mass results in hepatic dysfunction and is associated with an increased sensitivity to infection. This experimental study investigated the role of Rho-kinase in hepatectomy-induced sensitization to endotoxin. METHODS Male C57BL/6J mice underwent 68 per cent hepatectomy and were injected 24 h later with 100 microg Escherichia coli lipopolysaccharide (LPS). Simultaneously, animals received either fasudil or Y-27632 for Rho-kinase inhibition, or phosphate-buffered saline. Untreated hepatectomized animals served as positive controls and sham-operated animals as negative controls. Liver injury and inflammatory parameters were assessed 6 h after LPS challenge by serum alanine aminotransferase (ALT) levels, histomorphology and enzyme-linked immunosorbent assay. RESULTS Hepatectomy resulted in a significant susceptibility to LPS, as indicated by inflammatory leucocyte recruitment (mean(s.e.m.) 10(1) leucocytes per high-power field), hepatocellular disintegration (ALT 22.4(3.1) microkat/l) and apoptotic cell death (3.8(0.2) per cent). Rho-kinase inhibition reduced leucocytic infiltration by more than 33 per cent, abolished hepatocellular apoptosis entirely, and reduced tumour necrosis factor alpha expression by more than 48 per cent and CXC chemokine expression by more than 36 per cent. CONCLUSION Hepatectomy increased susceptibility to LPS by Rho-kinase-dependent mechanisms. Blocking Rho-kinase signalling decreased LPS-induced liver injury in hepatectomized mice.
Collapse
Affiliation(s)
- J E Slotta
- Department of Surgery, Malmö University Hospital, Lund University, Malmö, Sweden
| | | | | | | |
Collapse
|
40
|
Abstract
Contractile forces mediated by RhoA and Rho kinase (ROCK) are required for a variety of cellular processes, including cell adhesion. In this study, we show that RhoA-dependent ROCKII activation is negatively regulated by phosphorylation at a conserved tyrosine residue (Y722) in the coiled-coil domain of ROCKII. Tyrosine phosphorylation of ROCKII is increased with cell adhesion, and loss of Y722 phosphorylation delays adhesion and spreading on fibronectin, suggesting that this modification is critical for restricting ROCKII-mediated contractility during these processes. Further, we provide evidence that Shp2 mediates dephosphorylation of ROCKII and, therefore, regulates RhoA-induced cell rounding, indicating that Shp2 couples with RhoA signaling to control ROCKII activation during deadhesion. Thus, reversible tyrosine phosphorylation confers an additional layer of control to fine-tune RhoA-dependent activation of ROCKII.
Collapse
Affiliation(s)
- Hsiao-Hui Lee
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | | |
Collapse
|
41
|
van der Heijden M, Versteilen AMG, Sipkema P, van Nieuw Amerongen GP, Musters RJP, Groeneveld ABJ. Rho-kinase-dependent F-actin rearrangement is involved in the inhibition of PI3-kinase/Akt during ischemia-reperfusion-induced endothelial cell apoptosis. Apoptosis 2008; 13:404-12. [PMID: 18165899 PMCID: PMC2257993 DOI: 10.1007/s10495-007-0173-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Activation of cytoskeleton regulator Rho-kinase during ischemia-reperfusion (I/R) plays a major role in I/R injury and apoptosis. Since Rho-kinase is a negative regulator of the pro-survival phosphatidylinositol 3-kinase (PI3-kinase)/Akt pathway, we hypothesized that inhibition of Rho-kinase can prevent I/R-induced endothelial cell apoptosis by maintaining PI3-kinase/Akt activity and that protective effects of Rho-kinase inhibition are facilitated by prevention of F-actin rearrangement. Human umbilical vein endothelial cells were subjected to 1 h of simulated ischemia and 1 or 24 h of simulated reperfusion after treatment with Rho-kinase inhibitor Y-27632, PI3-kinase inhibitor wortmannin, F-actin depolymerizers cytochalasinD and latrunculinA and F-actin stabilizer jasplakinolide. Intracellular ATP levels decreased following I/R. Y-27632 treatment reduced I/R-induced apoptosis by 31% (P < 0.01) and maintained Akt activity. Both effects were blocked by co-treatment with wortmannin. Y-27632 treatment prevented the formation of F-actin bundles during I/R. Similar results were observed with cytochalasinD treatment. In contrast, latrunculinA and jasplakinolide treatment did not prevent the formation of F-actin bundles during I/R and had no effect on I/R-induced apoptosis. Apoptosis and Akt activity were inversely correlated (R (2) = 0.68, P < 0.05). In conclusion, prevention of F-actin rearrangement by Rho-kinase inhibition or by cytochalasinD treatment attenuated I/R-induced endothelial cell apoptosis by maintaining PI3-kinase and Akt activity.
Collapse
Affiliation(s)
- Melanie van der Heijden
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
42
|
Koyanagi M, Takahashi J, Arakawa Y, Doi D, Fukuda H, Hayashi H, Narumiya S, Hashimoto N. Inhibition of the Rho/ROCK pathway reduces apoptosis during transplantation of embryonic stem cell-derived neural precursors. J Neurosci Res 2008; 86:270-80. [PMID: 17828770 DOI: 10.1002/jnr.21502] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Rho-GTPase has been implicated in the apoptosis of many cell types, including neurons, but the mechanism by which it acts is not fully understood. Here, we investigate the roles of Rho and ROCK in apoptosis during transplantation of embryonic stem cell-derived neural precursor cells. We find that dissociation of neural precursors activates Rho and induces apoptosis. Treatment with the Rho inhibitor C3 exoenzyme and/or the ROCK inhibitor Y-27632 decreases the amount of dissociation-induced apoptosis (anoikis) by 20-30%. Membrane blebbing, which is an early morphological sign of apoptosis; cleavage of caspase-3; and release of cytochrome c from the mitochondria are also reduced by ROCK inhibition. These results suggest that dissociation of neural precursor cells elicits an intrinsic pathway of cell death that is at least partially mediated through the Rho/ROCK pathway. Moreover, in an animal transplantation model, inhibition of Rho and/or ROCK suppresses acute apoptosis of grafted cells. After transplantation, tumor necrosis factor-alpha and pro-nerve growth factor are strongly expressed around the graft. ROCK inhibition also suppresses apoptosis enhanced by these inflammatory cytokines. Taken together, these results indicate that inhibition of Rho/ROCK signaling may improve survival of grafted cells in cell replacement therapy.
Collapse
Affiliation(s)
- Masaomi Koyanagi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Alexaki A, Quiterio SJ, Liu Y, Irish B, Kilareski E, Nonnemacher MR, Wigdahl B. PMA-induced differentiation of a bone marrow progenitor cell line activates HIV-1 LTR-driven transcription. DNA Cell Biol 2007; 26:387-94. [PMID: 17570762 DOI: 10.1089/dna.2006.0542] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cells of the monocyte-macrophage lineage play an important role in human immunodeficiency virus type 1 (HIV-1)-associated disease. Infected myeloid precursor cells of the bone marrow are thought to be a viral reservoir that may repopulate the peripheral blood, central nervous system (CNS), and other organ systems throughout the course of disease. To model select aspects of HIV-1 infection of the bone marrow compartment in vitro, the erythro-myeloid precursor cell line, TF-1, was used. Phorbol 12-myristate 13-acetate (PMA) was found to induce the TF-1 cell line to differentiate through the myeloid lineage and become activated, as demonstrated by cellular morphologic changes and surface expression of differentiation and activation markers. Herein we demonstrate that HIV-1 long terminal repeats (LTRs) from T-, M-, and dual-tropic molecular clones have similar basal LTR activity in TF-1 cells and that differentiation of these cells by PMA resulted in increased LTR activity. Examination of specific cis-acting elements involved in basal and PMA-induced LTR activity demonstrated that the transcription factor families nuclear factor-kappa B (NF-kappaB) and specificity protein (Sp) contributed to the LTR activity of TF-1 cells, the Sp family being the most critical. These studies elucidate the impact of infected bone marrow monocytic cell differentiation on LTR activity and its potential impact on HIV-1-associated disease.
Collapse
Affiliation(s)
- Aikaterini Alexaki
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Zhang Y, Gu X, Yuan X. Phenylalanine activates the mitochondria-mediated apoptosis through the RhoA/Rho-associated kinase pathway in cortical neurons. Eur J Neurosci 2007; 25:1341-8. [PMID: 17425560 DOI: 10.1111/j.1460-9568.2007.05404.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phenylketonuria (PKU) is caused by deficiency of phenylalanine hydroxylase, resulting in an accumulation of phenylalanine in brain tissue and cerebrospinal fluid of phenylketonuria patients. Phenylketonuria is neuropathologically characterized by neuronal cell loss, white matter abnormalities, dendritic simplification, and synaptic density reduction. The neuropathological effect may be due to the "toxicity" of the high concentration of phenylalanine, while the underlying mechanism remains unclear. In this study, we found that cultured cerebral cortical neurons underwent mitochondria-mediated apoptosis when exposed to phenylalanine. We further demonstrated that phenylalanine induced RhoA activation. Phenylalanine also promoted myosin light chain (MLC) phosphorylation, which might be the result of the activation of Rho-associated kinase (ROCK). The RhoA antagonist, C3 transferase (C3), Rho-associated kinase specific inhibitor, Y-27632, and the overexpression of either dominant negative RhoA or dominant negative Rho-associated kinase inhibited phenylalanine-induced caspase-3 activation and rescued neurons from apoptosis, indicating that the RhoA/Rho-associated kinase signalling pathway plays an important role in phenylalanine-induced neuronal apoptosis.
Collapse
Affiliation(s)
- Yongjun Zhang
- XinHua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China.
| | | | | |
Collapse
|
45
|
Shi J, Wei L. Rho kinase in the regulation of cell death and survival. Arch Immunol Ther Exp (Warsz) 2007; 55:61-75. [PMID: 17347801 PMCID: PMC2612781 DOI: 10.1007/s00005-007-0009-7] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 12/21/2006] [Indexed: 12/19/2022]
Abstract
Rho kinase (ROCK) belongs to a family of serine/threonine kinases that are activated via interaction with Rho GTPases. ROCK is involved in a wide range of fundamental cellular functions, such as contraction, adhesion, migration, and proliferation. Recent studies have shown that ROCK plays an important role in the regulation of apoptosis in various cell types and animal disease models. Two ROCK isoforms, ROCK1 and ROCK2, are assumed to be function redundant, this based largely on kinase construct overexpression and chemical inhibitors (Y27632 and fasudil) which inhibit both ROCK1 and ROCK2. Gene targeting and RNA interference approaches allow further dissection of distinct cellular, physiological, and patho-physiological functions of the two ROCK isoforms. This review, based on recent molecular, cellular, and animal studies, focuses on the current understanding of ROCK signaling in the regulation of apoptosis and highlights new findings from recently generated ROCK-deficient mice.
Collapse
Affiliation(s)
- Jianjian Shi
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, School of Medicine, R4 building, Room 370, 1044 West Walnut Str, Indianapolis, IN 46202-5225, USA
| | | |
Collapse
|
46
|
Ongusaha PP, Kim HG, Boswell SA, Ridley AJ, Der CJ, Dotto GP, Kim YB, Aaronson SA, Lee SW. RhoE is a pro-survival p53 target gene that inhibits ROCK I-mediated apoptosis in response to genotoxic stress. Curr Biol 2006; 16:2466-72. [PMID: 17174923 PMCID: PMC2779528 DOI: 10.1016/j.cub.2006.10.056] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 10/25/2006] [Accepted: 10/27/2006] [Indexed: 01/14/2023]
Abstract
The Rho family of GTPases regulates many aspects of cellular behavior through alterations to the actin cytoskeleton . The majority of the Rho family proteins function as molecular switches cycling between the active, GTP-bound and the inactive, GDP-bound conformations . Unlike typical Rho-family proteins, the Rnd subfamily members, including Rnd1, Rnd2, RhoE (also known as Rnd3), and RhoH, are GTPase deficient and are thus expected to be constitutively active . Here, we identify an unexpected role for RhoE/Rnd3 in the regulation of the p53-mediated stress response. We show that RhoE is a transcriptional p53 target gene and that genotoxic stress triggers actin depolymerization, resulting in actin-stress-fiber disassembly through p53-dependent RhoE induction. Silencing of RhoE induction in response to genotoxic stress maintains stress fiber formation and strikingly increases apoptosis, implying an antagonistic role for RhoE in p53-dependent apoptosis. We found that RhoE inhibits ROCK I (Rho-associated kinase I) activity during genotoxic stress and thereby suppresses apoptosis. We demonstrate that the p53-mediated induction of RhoE in response to DNA damage favors cell survival partly through inhibition of ROCK I-mediated apoptosis. Thus, RhoE is anticipated to function by regulating ROCK I signaling to control the balance between cell survival and cell death in response to genotoxic stress.
Collapse
Affiliation(s)
- Pat P. Ongusaha
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129
| | - Hyung-Gu Kim
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129
| | - Sarah A. Boswell
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129
| | - Anne J. Ridley
- Ludwig Institute for Cancer Research, Royal Free and University College School of Medicine, London, UK
| | - Channing J. Der
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - G. Paolo Dotto
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129
| | - Young-Bum Kim
- Department of Medicine, Beth Israel Deaconess Medical Center, and, Harvard Medical School, Boston, MA 02215
| | - Stuart A. Aaronson
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY 10029
| | - Sam W. Lee
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129
| |
Collapse
|
47
|
Chang J, Xie M, Shah VR, Schneider MD, Entman ML, Wei L, Schwartz RJ. Activation of Rho-associated coiled-coil protein kinase 1 (ROCK-1) by caspase-3 cleavage plays an essential role in cardiac myocyte apoptosis. Proc Natl Acad Sci U S A 2006; 103:14495-500. [PMID: 16983089 PMCID: PMC1599988 DOI: 10.1073/pnas.0601911103] [Citation(s) in RCA: 187] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rho-associated coiled-coil protein kinase 1 (ROCK-1) is a direct cleavage substrate of activated caspase-3, which is associated with heart failure. In the course of human heart failure, we found marked cleavage of ROCK-1 resulting in a 130-kDa subspecies, which was absent in normal hearts and in an equivalent cohort of patients with left ventricular assist devices. Murine cardiomyocytes treated with doxorubicin led to enhanced ROCK-1 cleavage and apoptosis, all of which was blocked by a caspase-3 inhibitor. In addition, a bitransgenic mouse model of severe cardiomyopathy, which overexpresses Gq protein and hematopoietic progenitor kinase-/germinal center kinase-like kinase, revealed the robust accumulation of the 130-kDa ROCK-1 cleaved fragment. This constitutively active ROCK-1 subspecies, when expressed in cardiomyocytes, led to caspase-3 activation, indicating a positive feed-forward regulatory loop. ROCK-1-dependent caspase-3 activation was coupled with the activation of PTEN and the subsequent inhibition of protein kinase B (Akt) activity, all of which was attenuated by siRNA directed against ROCK-1 expression. Similarly, ROCK-1-null mice (Rock-1(-/-)) showed a marked reduction in myocyte apoptosis associated with pressure overload. These data suggest an obligatory role for ROCK-1 cleavage in promoting apoptotic signals in myocardial hypertrophy and/or failure.
Collapse
Affiliation(s)
- Jiang Chang
- *Center for Molecular Development and Disease, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, 2121 West Holcombe Boulevard, Houston, TX 77030
- Affiliated Hospital of Hainan Medical College, Haikou, Hainan 571101, China
| | - Min Xie
- Center for Cardiovascular Development
- Department of Medicine, and
| | - Viraj R. Shah
- *Center for Molecular Development and Disease, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, 2121 West Holcombe Boulevard, Houston, TX 77030
| | | | - Mark L. Entman
- Department of Medicine, and
- Section of Cardiovascular Sciences, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030; and
| | - Lei Wei
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
- **To whom correspondence may be addressed. E-mail:
or
| | - Robert J. Schwartz
- *Center for Molecular Development and Disease, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, 2121 West Holcombe Boulevard, Houston, TX 77030
- **To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
48
|
Abstract
Exposure of cells to phorbol ester activates protein kinase C (PKC) to induce apoptosis or differentiation, depending on the cellular context. In erythroblastic cell lines, TF-1 and D2, upregulation of the RhoA signaling promotes phorbol ester-induced apoptosis through activating Rho-associated kinase (ROCK)/phosphorylation of myosin light chain (MLC), thus generating membrane contraction force. As a result, cell adhesion is inhibited and death receptor-mediated death pathway is activated in these cells with a concurrent changes in nucleocytoplasmic signaling for protein trafficking. A microtubule-regulated GEF-H1, which is a specific RhoA activator, was identified to contribute to RhoA activation in these cells. Thus, a cytoskeleton-regulated RhoA signaling cooperates with PKC activation constitutes a cellular context to determine the cell fate in response to phorbol ester stimulation.
Collapse
Affiliation(s)
- Zee-Fen Chang
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, Taiwan, ROC.
| | | |
Collapse
|
49
|
Chang YC, Lee HH, Chen YJ, Bokoch GM, Chang ZF. Contribution of guanine exchange factor H1 in phorbol ester-induced apoptosis. Cell Death Differ 2006; 13:2023-32. [PMID: 16601754 DOI: 10.1038/sj.cdd.4401901] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Phorbol-12-myristate-13-acetate (PMA) treatment induces erythroblastoma D2 cells kept in suspension to undergo RhoA-dependent contraction and to become proapoptotic, while attached cells are induced to differentiate accompanied by the reduction of RhoA activity. In this study, we found that guanine exchange factor H1 (GEF-H1) is highly expressed in D2 cells. Depletion of GEF-H1 expression in D2 cells decreased RhoA activity and prevented PMA-induced contraction and apoptosis. Upon PMA stimulation, GEF-H1 became associated with microtubules in cells that were induced to differentiate. As a contrast, in the proapoptotic population of cells GEF-H1 stayed in the cytoplasm without showing PMA-responsive microtubule translocation. Given that GEF-H1 is inactivated when associated with microtubules and its release into cytosol due to depolymerization of microtubules activates RhoA, our results demonstrated that nonmicrotubule-associated GEF-H1 in D2 cells contributes to the sustained activation of RhoA/ROCK signaling in suspension cells, making cells susceptible to PMA-induced apoptosis.
Collapse
Affiliation(s)
- Y-C Chang
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, No. 1 Section 1 Jen-Ai Road, Taipei, Taiwan, ROC
| | | | | | | | | |
Collapse
|
50
|
Carothers AM, Javid SH, Moran AE, Hunt DH, Redston M, Bertagnolli MM. Deficient E-cadherin adhesion in C57BL/6J-Min/+ mice is associated with increased tyrosine kinase activity and RhoA-dependent actomyosin contractility. Exp Cell Res 2006; 312:387-400. [PMID: 16368433 DOI: 10.1016/j.yexcr.2005.11.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 11/01/2005] [Accepted: 11/03/2005] [Indexed: 11/16/2022]
Abstract
The Min/+ mouse is a model for APC-dependent colorectal cancer (CRC). We showed that tumorigenesis in this animal was associated with decreased E-cadherin adhesion and increased epidermal growth factor receptor (Egfr) activity in the non-tumor intestinal mucosa. Here, we tested whether these abnormalities correlated with changes in the actin cytoskeleton due to increased Rho-ROCK signaling. We treated Apc+/+ (WT) littermate small intestine with EGTA, an inhibitor of E-cadherin, and with LPA, an RhoA activator; both induced effects on adhesion and kinase activity that mimicked the Min/+ phenotype. GTP-bound Rho was increased in Min/+ enterocytes relative to WT. Since RhoA activity is associated with actomyosin contractility, markers of this signaling cascade were assessed including phosphorylated myosin light chain (MLC), cofilin, Pyk2, Src, and MAPK kinases. The increased actomyosin contractility characterizing Min/+ intestinal tissue was suppressed by the ROCK inhibitor, Y27632, but was inducible in the WT by EGTA or LPA. Finally, ultrastructural imaging revealed changes consistent with actomyosin contractility in Min/+ enterocytes. Thus, the positive regulation of E-cadherin adhesion provided by Apc+ in vivo allows proper negative regulation of Egfr, Src, Pyk2, and MAPK, as well as RhoA activities.
Collapse
Affiliation(s)
- Adelaide M Carothers
- Department of Surgery, Carrie Hall, Room 116, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|