1
|
Aravindan N, Rapaport D. A modified procedure for separating yeast peroxisomes from mitochondria. Methods Enzymol 2024; 706:37-57. [PMID: 39455225 DOI: 10.1016/bs.mie.2024.07.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Mitochondria and peroxisomes are mutually dependent organelles that share several membrane proteins that carry out the same function in both organelles. To study the unique features of these dually localized proteins in each of the two organelles, it is essential to separate mitochondria from peroxisomes. Isolating organelles from cells of Baker's yeast, Saccharomyces cerevisiae, is crucial for our understanding of the biogenesis and functions of proteins. Traditionally, subcellular fractionation and isolation of individual organelles by differential centrifugation benefit from the specific and unique density of each organelle. However, when yeast cells are grown under normal conditions, certain organelles like mitochondria and peroxisomes share strikingly similar densities. This similarity challenges the separation of these organelles from one another. In this chapter, we describe an optimized procedure to address this task. We depict growth conditions that would favor stimulation of peroxisomes to increase their number and density, and portray organellar isolation followed by gradient centrifugation, enabling an improved separation of both organelles. Additionally, we illustrate the advantage of the procedure to study the dual localization of the membrane protein Fis1.
Collapse
Affiliation(s)
- Nitya Aravindan
- Interfaculty Institute of Biochemistry, University of Tuebingen, Tuebingen, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
2
|
Carmichael RE, Richards DM, Fahimi HD, Schrader M. Organelle Membrane Extensions in Mammalian Cells. BIOLOGY 2023; 12:biology12050664. [PMID: 37237478 DOI: 10.3390/biology12050664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023]
Abstract
Organelles within eukaryotic cells are not isolated static compartments, instead being morphologically diverse and highly dynamic in order to respond to cellular needs and carry out their diverse and cooperative functions. One phenomenon exemplifying this plasticity, and increasingly gaining attention, is the extension and retraction of thin tubules from organelle membranes. While these protrusions have been observed in morphological studies for decades, their formation, properties and functions are only beginning to be understood. In this review, we provide an overview of what is known and still to be discovered about organelle membrane protrusions in mammalian cells, focusing on the best-characterised examples of these membrane extensions arising from peroxisomes (ubiquitous organelles involved in lipid metabolism and reactive oxygen species homeostasis) and mitochondria. We summarise the current knowledge on the diversity of peroxisomal/mitochondrial membrane extensions, as well as the molecular mechanisms by which they extend and retract, necessitating dynamic membrane remodelling, pulling forces and lipid flow. We also propose broad cellular functions for these membrane extensions in inter-organelle communication, organelle biogenesis, metabolism and protection, and finally present a mathematical model that suggests that extending protrusions is the most efficient way for an organelle to explore its surroundings.
Collapse
Affiliation(s)
- Ruth E Carmichael
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - David M Richards
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, UK
| | - H Dariush Fahimi
- Institute for Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Michael Schrader
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
3
|
Schrader TA, Carmichael RE, Islinger M, Costello JL, Hacker C, Bonekamp NA, Weishaupt JH, Andersen PM, Schrader M. PEX11β and FIS1 cooperate in peroxisome division independently of mitochondrial fission factor. J Cell Sci 2022; 135:275634. [PMID: 35678336 PMCID: PMC9377713 DOI: 10.1242/jcs.259924] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/27/2022] [Indexed: 11/20/2022] Open
Abstract
Peroxisome membrane dynamics and division are essential to adapt the peroxisomal compartment to cellular needs. The peroxisomal membrane protein PEX11β (also known as PEX11B) and the tail-anchored adaptor proteins FIS1 (mitochondrial fission protein 1) and MFF (mitochondrial fission factor), which recruit the fission GTPase DRP1 (dynamin-related protein 1, also known as DNML1) to both peroxisomes and mitochondria, are key factors of peroxisomal division. The current model suggests that MFF is essential for peroxisome division, whereas the role of FIS1 is unclear. Here, we reveal that PEX11β can promote peroxisome division in the absence of MFF in a DRP1- and FIS1-dependent manner. We also demonstrate that MFF permits peroxisome division independently of PEX11β and restores peroxisome morphology in PEX11β-deficient patient cells. Moreover, targeting of PEX11β to mitochondria induces mitochondrial division, indicating the potential for PEX11β to modulate mitochondrial dynamics. Our findings suggest the existence of an alternative, MFF-independent pathway in peroxisome division and report a function for FIS1 in the division of peroxisomes. This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
- Tina A. Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Ruth E. Carmichael
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Markus Islinger
- Institute of Neuroanatomy, Mannheim Centre for Translational Neuroscience, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Joseph L. Costello
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Christian Hacker
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Nina A. Bonekamp
- Institute of Neuroanatomy, Mannheim Centre for Translational Neuroscience, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Jochen H. Weishaupt
- Division of Neurodegeneration, Department of Neurology, Mannheim Center for Translational Neurosciences, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Peter M. Andersen
- Department of Clinical Science, Neurosciences, Umeå University, Umeå SE-90185, Sweden
| | - Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, UK
- Author for correspondence ()
| |
Collapse
|
4
|
Fission Impossible (?)-New Insights into Disorders of Peroxisome Dynamics. Cells 2022; 11:cells11121922. [PMID: 35741050 PMCID: PMC9221819 DOI: 10.3390/cells11121922] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
Peroxisomes are highly dynamic and responsive organelles, which can adjust their morphology, number, intracellular position, and metabolic functions according to cellular needs. Peroxisome multiplication in mammalian cells involves the concerted action of the membrane-shaping protein PEX11β and division proteins, such as the membrane adaptors FIS1 and MFF, which recruit the fission GTPase DRP1 to the peroxisomal membrane. The latter proteins are also involved in mitochondrial division. Patients with loss of DRP1, MFF or PEX11β function have been identified, showing abnormalities in peroxisomal (and, for the shared proteins, mitochondrial) dynamics as well as developmental and neurological defects, whereas the metabolic functions of the organelles are often unaffected. Here, we provide a timely update on peroxisomal membrane dynamics with a particular focus on peroxisome formation by membrane growth and division. We address the function of PEX11β in these processes, as well as the role of peroxisome–ER contacts in lipid transfer for peroxisomal membrane expansion. Furthermore, we summarize the clinical phenotypes and pathophysiology of patients with defects in the key division proteins DRP1, MFF, and PEX11β as well as in the peroxisome–ER tether ACBD5. Potential therapeutic strategies for these rare disorders with limited treatment options are discussed.
Collapse
|
5
|
Hickey K, Wood M, Sexton T, Sahin Y, Nazarov T, Fisher J, Sanguinet KA, Cousins A, Kirchhoff H, Smertenko A. Drought Tolerance Strategies and Autophagy in Resilient Wheat Genotypes. Cells 2022; 11:1765. [PMID: 35681460 PMCID: PMC9179661 DOI: 10.3390/cells11111765] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 01/18/2023] Open
Abstract
Drought resiliency strategies combine developmental, physiological, cellular, and molecular mechanisms. Here, we compare drought responses in two resilient spring wheat (Triticum aestivum) genotypes: a well-studied drought-resilient Drysdale and a resilient genotype from the US Pacific North-West Hollis. While both genotypes utilize higher water use efficiency through the reduction of stomatal conductance, other mechanisms differ. First, Hollis deploys the drought escape mechanism to a greater extent than Drysdale by accelerating the flowering time and reducing root growth. Second, Drysdale uses physiological mechanisms such as non-photochemical quenching (NPQ) to dissipate the excess of harvested light energy and sustain higher Fv/Fm and ϕPSII, whereas Hollis maintains constant NPQ but lower Fv/Fm and ϕPSII values. Furthermore, more electron donors of the electron transport chain are in the oxidized state in Hollis than in Drysdale. Third, many ROS homeostasis parameters, including peroxisome abundance, transcription of peroxisome biogenesis genes PEX11 and CAT, catalase protein level, and enzymatic activity, are higher in Hollis than in Drysdale. Fourth, transcription of autophagy flux marker ATG8.4 is upregulated to a greater degree in Hollis than in Drysdale under drought, whereas relative ATG8 protein abundance under drought stress is lower in Hollis than in Drysdale. These data demonstrate the activation of autophagy in both genotypes and a greater autophagic flux in Hollis. In conclusion, wheat varieties utilize different drought tolerance mechanisms. Combining these mechanisms within one genotype offers a promising strategy to advance crop resiliency.
Collapse
Affiliation(s)
- Kahleen Hickey
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| | - Magnus Wood
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| | - Tom Sexton
- School of Biological Sciences, Washington State University, P.O. Box 644236, Pullman, WA 99164, USA; (T.S.); (A.C.)
| | - Yunus Sahin
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| | - Taras Nazarov
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| | - Jessica Fisher
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| | - Karen A. Sanguinet
- Department of Crop and Soil Sciences, Washington State University, P.O. Box 646420, Pullman, WA 99164, USA;
| | - Asaph Cousins
- School of Biological Sciences, Washington State University, P.O. Box 644236, Pullman, WA 99164, USA; (T.S.); (A.C.)
| | - Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| |
Collapse
|
6
|
Picca A, Guerra F, Calvani R, Romano R, Coelho-Junior HJ, Damiano FP, Bucci C, Marzetti E. Circulating Mitochondrial DNA and Inter-Organelle Contact Sites in Aging and Associated Conditions. Cells 2022; 11:cells11040675. [PMID: 35203322 PMCID: PMC8870554 DOI: 10.3390/cells11040675] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are primarily involved in cell bioenergetics, regulation of redox homeostasis, and cell death/survival signaling. An immunostimulatory property of mitochondria has also been recognized which is deployed through the extracellular release of entire or portioned organelle and/or mitochondrial DNA (mtDNA) unloading. Dynamic homo- and heterotypic interactions involving mitochondria have been described. Each type of connection has functional implications that eventually optimize mitochondrial activity according to the bioenergetic demands of a specific cell/tissue. Inter-organelle communications may also serve as molecular platforms for the extracellular release of mitochondrial components and subsequent ignition of systemic inflammation. Age-related chronic inflammation (inflamm-aging) has been associated with mitochondrial dysfunction and increased extracellular release of mitochondrial components—in particular, cell-free mtDNA. The close relationship between mitochondrial dysfunction and cellular senescence further supports the central role of mitochondria in the aging process and its related conditions. Here, we provide an overview of (1) the mitochondrial genetic system and the potential routes for generating and releasing mtDNA intermediates; (2) the pro-inflammatory pathways elicited by circulating mtDNA; (3) the participation of inter-organelle contacts to mtDNA homeostasis; and (4) the link of these processes with senescence and age-associated conditions.
Collapse
Affiliation(s)
- Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.P.D.); (E.M.)
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, 73100 Lecce, Italy; (F.G.); (R.R.); (C.B.)
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.P.D.); (E.M.)
- Correspondence: ; Tel.: +39-06-3015-5559; Fax: +39-06-3051-911
| | - Roberta Romano
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, 73100 Lecce, Italy; (F.G.); (R.R.); (C.B.)
| | - Hélio José Coelho-Junior
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Francesco P. Damiano
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.P.D.); (E.M.)
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, 73100 Lecce, Italy; (F.G.); (R.R.); (C.B.)
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.P.D.); (E.M.)
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
7
|
Carmichael RE, Schrader M. Determinants of Peroxisome Membrane Dynamics. Front Physiol 2022; 13:834411. [PMID: 35185625 PMCID: PMC8853631 DOI: 10.3389/fphys.2022.834411] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Organelles within the cell are highly dynamic entities, requiring dramatic morphological changes to support their function and maintenance. As a result, organelle membranes are also highly dynamic, adapting to a range of topologies as the organelle changes shape. In particular, peroxisomes—small, ubiquitous organelles involved in lipid metabolism and reactive oxygen species homeostasis—display a striking plasticity, for example, during the growth and division process by which they proliferate. During this process, the membrane of an existing peroxisome elongates to form a tubule, which then constricts and ultimately undergoes scission to generate new peroxisomes. Dysfunction of this plasticity leads to diseases with developmental and neurological phenotypes, highlighting the importance of peroxisome dynamics for healthy cell function. What controls the dynamics of peroxisomal membranes, and how this influences the dynamics of the peroxisomes themselves, is just beginning to be understood. In this review, we consider how the composition, biophysical properties, and protein-lipid interactions of peroxisomal membranes impacts on their dynamics, and in turn on the biogenesis and function of peroxisomes. In particular, we focus on the effect of the peroxin PEX11 on the peroxisome membrane, and its function as a major regulator of growth and division. Understanding the roles and regulation of peroxisomal membrane dynamics necessitates a multidisciplinary approach, encompassing knowledge across a range of model species and a number of fields including lipid biochemistry, biophysics and computational biology. Here, we present an integrated overview of our current understanding of the determinants of peroxisome membrane dynamics, and reflect on the outstanding questions still remaining to be solved.
Collapse
Affiliation(s)
- Ruth E Carmichael
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, United Kingdom
| | - Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
8
|
Hypothyroidism Intensifies Both Canonic and the De Novo Pathway of Peroxisomal Biogenesis in Rat Brown Adipocytes in a Time-Dependent Manner. Cells 2021; 10:cells10092248. [PMID: 34571897 PMCID: PMC8472630 DOI: 10.3390/cells10092248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 02/08/2023] Open
Abstract
Despite peroxisomes being important partners of mitochondria by carrying out fatty acid oxidation in brown adipocytes, no clear evidence concerning peroxisome origin and way(s) of biogenesis exists. Herein we used methimazole-induced hypothyroidism for 7, 15, and 21 days to study peroxisomal remodeling and origin in rat brown adipocytes. We found that peroxisomes originated via both canonic, and de novo pathways. Each pathway operates in euthyroid control and over the course of hypothyroidism, in a time-dependent manner. Hypothyroidism increased the peroxisomal number by 1.8-, 3.6- and 5.8-fold on days 7, 15, and 21. Peroxisomal presence, their distribution, and their degree of maturation were heterogeneous in brown adipocytes in a Harlequin-like manner, reflecting differences in their origin. The canonic pathway, through numerous dumbbell-like and “pearls on strings” structures, supported by high levels of Pex11β and Drp1, prevailed on day 7. The de novo pathway of peroxisomal biogenesis started on day 15 and became dominant by day 21. The transition of peroxisomal biogenesis from canonic to the de novo pathway was driven by increased levels of Pex19, PMP70, Pex5S, and Pex26 and characterized by numerous tubular structures. Furthermore, specific peroxisomal origin from mitochondria, regardless of thyroid status, indicates their mutual regulation in rat brown adipocytes.
Collapse
|
9
|
Reglinski K, Steinfort-Effelsberg L, Sezgin E, Klose C, Platta HW, Girzalsky W, Eggeling C, Erdmann R. Fluidity and Lipid Composition of Membranes of Peroxisomes, Mitochondria and the ER From Oleic Acid-Induced Saccharomyces cerevisiae. Front Cell Dev Biol 2020; 8:574363. [PMID: 33195209 PMCID: PMC7658010 DOI: 10.3389/fcell.2020.574363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/05/2020] [Indexed: 01/08/2023] Open
Abstract
The maintenance of a fluid lipid bilayer is key for organelle function and cell viability. Given the critical role of lipid compositions in determining membrane properties and organelle identity, it is clear that cells must have elaborate mechanism for membrane maintenance during adaptive responses to environmental conditions. Emphasis of the presented study is on peroxisomes, oleic acid-inducible organelles that are essential for the growth of yeast under conditions of oleic acid as single carbon source. Here, we isolated peroxisomes, mitochondria and ER from oleic acid-induced Saccharomyces cerevisiae and determined the lipid composition of their membranes using shotgun lipidomics and compared it to lipid ordering using fluorescence microscopy. In comparison to mitochondrial and ER membranes, the peroxisomal membranes were slightly more disordered and characterized by a distinct enrichment of phosphaditylinositol, indicating an important role of this phospholipid in peroxisomal membrane associated processes.
Collapse
Affiliation(s)
- Katharina Reglinski
- Leibniz-Institute of Photonic Technologies, Jena, Germany
- Institute of Applied Optics and Biophysics, Friedrich-Schiller University Jena, Jena, Germany
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- University Hospital Jena, Jena, Germany
| | | | - Erdinc Sezgin
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
| | | | - Harald W. Platta
- Biochemistry of Intracelluar Transport, Ruhr-University Bochum, Bochum, Germany
| | - Wolfgang Girzalsky
- Systems Biochemistry, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Christian Eggeling
- Leibniz-Institute of Photonic Technologies, Jena, Germany
- Institute of Applied Optics and Biophysics, Friedrich-Schiller University Jena, Jena, Germany
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Jena Center for Soft Matter (JCSM), Jena, Germany
| | - Ralf Erdmann
- Systems Biochemistry, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
10
|
Navarro-Espíndola R, Takano-Rojas H, Suaste-Olmos F, Peraza-Reyes L. Distinct Contributions of the Peroxisome-Mitochondria Fission Machinery During Sexual Development of the Fungus Podospora anserina. Front Microbiol 2020; 11:640. [PMID: 32351478 PMCID: PMC7175800 DOI: 10.3389/fmicb.2020.00640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022] Open
Abstract
Mitochondria and peroxisomes are organelles whose activity is intimately associated and that play fundamental roles in development. In the model fungus Podospora anserina, peroxisomes and mitochondria are required for different stages of sexual development, and evidence indicates that their activity in this process is interrelated. Additionally, sexual development involves precise regulation of peroxisome assembly and dynamics. Peroxisomes and mitochondria share the proteins mediating their division. The dynamin-related protein Dnm1 (Drp1) along with its membrane receptors, like Fis1, drives this process. Here we demonstrate that peroxisome and mitochondrial fission in P. anserina depends on FIS1 and DNM1. We show that FIS1 and DNM1 elimination affects the dynamics of both organelles throughout sexual development in a developmental stage-dependent manner. Moreover, we discovered that the segregation of peroxisomes, but not mitochondria, is affected upon elimination of FIS1 or DNM1 during the division of somatic hyphae and at two central stages of sexual development—the differentiation of meiocytes (asci) and of meiotic-derived spores (ascospores). Furthermore, we found that FIS1 and DNM1 elimination results in delayed karyogamy and defective ascospore differentiation. Our findings reveal that sexual development relies on complex remodeling of peroxisomes and mitochondria, which is driven by their common fission machinery.
Collapse
Affiliation(s)
- Raful Navarro-Espíndola
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Harumi Takano-Rojas
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Fernando Suaste-Olmos
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Leonardo Peraza-Reyes
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
11
|
Passmore JB, Carmichael RE, Schrader TA, Godinho LF, Ferdinandusse S, Lismont C, Wang Y, Hacker C, Islinger M, Fransen M, Richards DM, Freisinger P, Schrader M. Mitochondrial fission factor (MFF) is a critical regulator of peroxisome maturation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118709. [PMID: 32224193 PMCID: PMC7262603 DOI: 10.1016/j.bbamcr.2020.118709] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 02/21/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022]
Abstract
Peroxisomes are highly dynamic subcellular compartments with important functions in lipid and ROS metabolism. Impaired peroxisomal function can lead to severe metabolic disorders with developmental defects and neurological abnormalities. Recently, a new group of disorders has been identified, characterised by defects in the membrane dynamics and division of peroxisomes rather than by loss of metabolic functions. However, the contribution of impaired peroxisome plasticity to the pathophysiology of those disorders is not well understood. Mitochondrial fission factor (MFF) is a key component of both the peroxisomal and mitochondrial division machinery. Patients with MFF deficiency present with developmental and neurological abnormalities. Peroxisomes (and mitochondria) in patient fibroblasts are highly elongated as a result of impaired organelle division. The majority of studies into MFF-deficiency have focused on mitochondrial dysfunction, but the contribution of peroxisomal alterations to the pathophysiology is largely unknown. Here, we show that MFF deficiency does not cause alterations to overall peroxisomal biochemical function. However, loss of MFF results in reduced import-competency of the peroxisomal compartment and leads to the accumulation of pre-peroxisomal membrane structures. We show that peroxisomes in MFF-deficient cells display alterations in peroxisomal redox state and intra-peroxisomal pH. Removal of elongated peroxisomes through induction of autophagic processes is not impaired. A mathematical model describing key processes involved in peroxisome dynamics sheds further light into the physical processes disturbed in MFF-deficient cells. The consequences of our findings for the pathophysiology of MFF-deficiency and related disorders with impaired peroxisome plasticity are discussed. Peroxisomes are highly elongated in cells from patients lacking fission factor MFF. Peroxisomal proteins are not uniformly distributed in highly elongated peroxisomes. Peroxisomal metabolism is unaltered in MFF-deficient patients. Peroxisomal elongations are stabilised through interaction with microtubules. Highly elongated peroxisomes are not spared from degradation.
Collapse
Affiliation(s)
| | | | | | | | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centre, University of Amsterdam, the Netherlands
| | - Celien Lismont
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Yunhong Wang
- Institute of Neuroanatomy, Medical Faculty Manheim, University of Heidelberg, Mannheim, Germany
| | | | - Markus Islinger
- Institute of Neuroanatomy, Medical Faculty Manheim, University of Heidelberg, Mannheim, Germany
| | - Marc Fransen
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | | | - Peter Freisinger
- Department of Pediatrics, Kreiskliniken Reutlingen, Reutlingen, Germany
| | | |
Collapse
|
12
|
Abe Y, Tamura S, Honsho M, Fujiki Y. A Mouse Model System to Study Peroxisomal Roles in Neurodegeneration of Peroxisome Biogenesis Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1299:119-143. [PMID: 33417212 DOI: 10.1007/978-3-030-60204-8_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fourteen PEX genes are currently identified as genes responsible for peroxisome biogenesis disorders (PBDs). Patients with PBDs manifest as neurodegenerative symptoms such as neuronal migration defect and malformation of the cerebellum. To address molecular mechanisms underlying the pathogenesis of PBDs, mouse models for the PBDs have been generated by targeted disruption of Pex genes. Pathological phenotypes and metabolic abnormalities in Pex-knockout mice well resemble those of the patients with PBDs. The mice with tissue- or cell type-specific inactivation of Pex genes have also been established by using a Cre-loxP system. The genetically modified mice reveal that pathological phenotypes of PBDs are mediated by interorgan and intercellular communications. Despite the illustrations of detailed pathological phenotypes in the mutant mice, mechanistic insights into pathogenesis of PBDs are still underway. In this chapter, we overview the phenotypes of Pex-inactivated mice and the current understanding of the pathogenesis underlying PBDs.
Collapse
Affiliation(s)
- Yuichi Abe
- Faculty of Arts and Science, Kyushu University, Fukuoka, Japan
| | | | | | - Yukio Fujiki
- Institute of Rheological Functions of Food, Fukuoka, Japan. .,Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
13
|
Sharma A, Smith HJ, Yao P, Mair WB. Causal roles of mitochondrial dynamics in longevity and healthy aging. EMBO Rep 2019; 20:e48395. [PMID: 31667999 PMCID: PMC6893295 DOI: 10.15252/embr.201948395] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/24/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are organized in the cell in the form of a dynamic, interconnected network. Mitochondrial dynamics, regulated by mitochondrial fission, fusion, and trafficking, ensure restructuring of this complex reticulum in response to nutrient availability, molecular signals, and cellular stress. Aberrant mitochondrial structures have long been observed in aging and age-related diseases indicating that mitochondrial dynamics are compromised as cells age. However, the specific mechanisms by which aging affects mitochondrial dynamics and whether these changes are causally or casually associated with cellular and organismal aging is not clear. Here, we review recent studies that show specifically how mitochondrial fission, fusion, and trafficking are altered with age. We discuss factors that change with age to directly or indirectly influence mitochondrial dynamics while examining causal roles for altered mitochondrial dynamics in healthy aging and underlying functional outputs that might affect longevity. Lastly, we propose that altered mitochondrial dynamics might not just be a passive consequence of aging but might constitute an adaptive mechanism to mitigate age-dependent cellular impairments and might be targeted to increase longevity and promote healthy aging.
Collapse
Affiliation(s)
- Arpit Sharma
- Department of Genetics and Complex DiseasesHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Hannah J Smith
- Department of Genetics and Complex DiseasesHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Pallas Yao
- Department of Genetics and Complex DiseasesHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - William B Mair
- Department of Genetics and Complex DiseasesHarvard T.H. Chan School of Public HealthBostonMAUSA
| |
Collapse
|
14
|
Label-Free Proteomics of the Fetal Pancreas Identifies Deficits in the Peroxisome in Rats with Intrauterine Growth Restriction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1520753. [PMID: 31781323 PMCID: PMC6874927 DOI: 10.1155/2019/1520753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/31/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022]
Abstract
Aim The objective of the present study was to identify differentially expressed proteins (DEPs) in the pancreas of a fetus with intrauterine growth restriction (IUGR) and to investigate the molecular mechanisms leading to adulthood diabetes in IUGR. Methods The IUGR rat model was induced by maternal protein malnutrition. The fetal pancreas was collected at embryonic day 20 (E20). Protein was extracted, pooled, and subjected to label-free quantitative proteomic analysis. Bioinformatics analysis (GO and IPA) was performed to define the pathways and networks associated with DEPs. LC-MS results were confirmed by western blotting and/or quantitative PCR (q-PCR). The principal parameters of oxidative stress-superoxide dismutase (Sod) were determined in blood samples of fetal rats. Results A total of 57 DEPs (27 upregulated, 30 downregulated) were identified with a 1.5-fold change threshold and a p value ≤ 0.05 between the IUGR and the control pancreas. Bioinformatics analysis revealed that these proteins play important roles in peroxisome biogenesis and fission, fatty acid beta-oxidation (FAO), mitotic cell cycle, and histone modification. The peroxin Pex14 was downregulated in the IUGR pancreas as confirmed by western blotting and q-PCR. Pmp70, a peroxisomal membrane protein involved in the transport of fatty acids, was upregulated. Hsd17b4 and Acox1/2, which catalyze different steps of peroxisomal FAO, were dysregulated. Sod plasma concentrations in the IUGR fetus were higher than those in the control, suggesting partial compensation for oxidative stress. Multiple DEPs were related to the regulation of the cell cycle, including reduced Cdk1, Mcm2, and Brd4. The histone acetylation regulators Hdac1/2 were downregulated, whereas Sirt1/3 and acetylated H3K56 were increased in the IUGR fetal pancreas. Conclusion The present study identified DEPs in the fetal pancreas of IUGR rats by proteomic analysis. Downregulation of pancreas peroxins and dysregulation of enzymes involved in peroxisomal FAO may impair the biogenesis and function of the peroxisome and may underlie the development of T2 diabetes mellitus in adult IUGR rats. Disorders of cell cycle regulators may induce cell division arrest and lead to smaller islets. The present data provide new insight into the role of the peroxisome in the development of the pancreas and may be valuable in furthering our understanding of the pathogenesis of IUGR-induced diabetes.
Collapse
|
15
|
Bishop A, Kamoshita M, Passmore JB, Hacker C, Schrader TA, Waterham HR, Costello JL, Schrader M. Fluorescent tools to analyse peroxisome-ER interactions in mammalian cells. ACTA ACUST UNITED AC 2019; 2. [PMID: 31198905 DOI: 10.1177/2515256419848641] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Peroxisomes and the endoplasmic reticulum (ER) cooperate extensively in lipid-related metabolic pathways, and the ER also provides phospholipids to enable the peroxisomal membrane to expand prior to division. Recently, we identified peroxisomal proteins ACBD5 and ACBD4, and the ER protein VAPB as tethering components which physically interact to foster peroxisome-ER associations at membrane contact sites. Overexpression or loss of these tether proteins alters the extent of peroxisome-ER interactions, impacting on lipid exchange between these two compartments. To facilitate further studies into peroxisome-ER associations at the level of membrane contact sites, their role, composition and regulation, we have developed two fluorescence-based systems to monitor peroxisome-ER interactions. We modified a proximity ligation assay and a split-fluorescence reporter system using split superfolder green fluorescent protein. Using the proximity ligation assay we were able to measure changes in peroxisome-ER interactions whilst the split-fluorescence reporter was more limited and only allowed us to label ER-peroxisome contacts. We show that both techniques can be useful additions to the toolkit of methods to study peroxisome-ER associations and explore the relative merits of each.
Collapse
Affiliation(s)
- Alexa Bishop
- Biosciences, University of Exeter, Exeter, EX4 4QD, UK.,Centre for Vascular Biology, Institute of Molecular and Clinical Sciences, St George's, University of London, London SW17 0RE, UK
| | | | | | | | | | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Academic Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
16
|
Sanad MNME, Smertenko A, Garland-Campbell KA. Differential Dynamic Changes of Reduced Trait Model for Analyzing the Plastic Response to Drought Phases: A Case Study in Spring Wheat. FRONTIERS IN PLANT SCIENCE 2019; 10:504. [PMID: 31080454 PMCID: PMC6497792 DOI: 10.3389/fpls.2019.00504] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 04/01/2019] [Indexed: 05/21/2023]
Abstract
Current limited water availability due to climate changes results in severe drought stress and desiccation in plants. Phenotyping drought tolerance remains challenging. In particular, our knowledge about the discriminating power of traits for capturing a plastic phenotype in high-throughput settings is scant. The study is designed to investigate the differential performance and broad-sense heritability of a battery set of morphological, physiological, and cellular traits to understand the adaptive phenotypic response to drought in spring wheat during the tillering stage. The potential of peroxisome abundance to predict the adaptive response under severe drought was assessed using a high-throughput technique for peroxisome quantification in plants. The research dissected the dynamic changes of some phenological traits during three successive phases of drought using two contrasting genotypes of adaptability to drought. The research demonstrates 5 main findings: (1) a reduction of the overall dimension of the phenological traits for robust phenotyping of the adaptive performance under drought; (2) the abundance of peroxisomes in response to drought correlate negatively with grain yield; (3) the efficiency of ROS homeostasis through peroxisome proliferation which seems to be genetically programmed; and (4) the dynamics of ROS homeostasis seems to be timing dependent mechanism, the tolerant genotype response is earlier than the susceptible genotype. This work will contribute to the identification of robust plastic phenotypic tools and the understanding of the mechanisms for adaptive behavior under drought conditions. SUMMARY STATEMENT This study presents the estimated broad-sense heritability of 24 phenological traits under drought compared with non-stressed conditions. The results demonstrated a reduced model of the overall dimension of the phenological traits for phenotyping drought tolerant response including a novel trait (peroxisome abundance). Also, it displays that the adaptive mechanism through peroxisomes proliferation that is a genetic-dependent manner and related to the stress phase, since tolerant plants can sense the stress and maintain the cellular balance earlier than the sensitive plants.
Collapse
Affiliation(s)
- Marwa N. M. E. Sanad
- Department of Genetics and Cytology, National Research Centre, Giza, Egypt
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Kimberley A. Garland-Campbell
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
- USDA-ARS Wheat Health, Genetics, and Quality Research Unit, Washington State University, Pullman, WA, United States
| |
Collapse
|
17
|
Srv2 Is a Pro-fission Factor that Modulates Yeast Mitochondrial Morphology and Respiration by Regulating Actin Assembly. iScience 2018; 11:305-317. [PMID: 30639852 PMCID: PMC6327880 DOI: 10.1016/j.isci.2018.12.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/16/2018] [Accepted: 12/20/2018] [Indexed: 01/04/2023] Open
Abstract
Dynamic processes such as fusion, fission, and trafficking are important in the regulation of cellular organelles, with an abundant literature focused on mitochondria. Mitochondrial dynamics not only help shape its network within cells but also are involved in the modulation of respiration and integrity. Disruptions of mitochondrial dynamics are associated with neurodegenerative disorders. Although proteins that directly bind mitochondria to promote membrane fusion/fission have been studied intensively, machineries that regulate dynamic mitochondrial processes remain to be explored. We have identified an interaction between the mitochondrial fission GTPase Dnm1/DRP1 and the actin-regulatory protein Srv2/CAP at mitochondria. Deletion of Srv2 causes elongated-hyperfused mitochondria and reduces the reserved respiration capacity in yeast cells. Our results further demonstrate that the irregular network morphology in Δsrv2 cells derives from disrupted actin assembly at mitochondria. We suggest that Srv2 functions as a pro-fission factor in shaping mitochondrial dynamics and regulating activity through its actin-regulatory effects. Srv2 interacts with fission protein Dnm1 on mitochondria in yeast cells Srv2 deletion causes an irregular, hyperfused-elongated mitochondrial network The irregular network derives from loss of Srv2-mediated actin assembly at mitochondria Srv2 modulates both mitochondrial dynamics and activity
Collapse
|
18
|
Su J, Thomas AS, Grabietz T, Landgraf C, Volkmer R, Marrink SJ, Williams C, Melo MN. The N-terminal amphipathic helix of Pex11p self-interacts to induce membrane remodelling during peroxisome fission. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1292-1300. [PMID: 29501607 DOI: 10.1016/j.bbamem.2018.02.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/07/2018] [Accepted: 02/27/2018] [Indexed: 10/17/2022]
Abstract
Pex11p plays a crucial role in peroxisome fission. Previously, it was shown that a conserved N-terminal amphipathic helix in Pex11p, termed Pex11-Amph, was necessary for peroxisomal fission in vivo while in vitro studies revealed that this region alone was sufficient to bring about tubulation of liposomes with a lipid consistency resembling the peroxisomal membrane. However, molecular details of how Pex11-Amph remodels the peroxisomal membrane remain unknown. Here we have combined in silico, in vitro and in vivo approaches to gain insights into the molecular mechanisms underlying Pex11-Amph activity. Using molecular dynamics simulations, we observe that Pex11-Amph peptides form linear aggregates on a model membrane. Furthermore, we identify mutations that disrupted this aggregation in silico, which also abolished the peptide's ability to remodel liposomes in vitro, establishing that Pex11p oligomerisation plays a direct role in membrane remodelling. In vivo studies revealed that these mutations resulted in a strong reduction in Pex11 protein levels, indicating that these residues are important for Pex11p function. Taken together, our data demonstrate the power of combining in silico techniques with experimental approaches to investigate the molecular mechanisms underlying Pex11p-dependent membrane remodelling.
Collapse
Affiliation(s)
- Juanjuan Su
- Molecular Dynamics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Ann S Thomas
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Tanja Grabietz
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Christiane Landgraf
- Institut für Medizinische Immunologie, Charité-Universitätsmedizin Berlin, 10115 Berlin, Germany
| | - Rudolf Volkmer
- Institut für Medizinische Immunologie, Charité-Universitätsmedizin Berlin, 10115 Berlin, Germany; Leibniz-Institut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Siewert J Marrink
- Molecular Dynamics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Chris Williams
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Manuel N Melo
- Molecular Dynamics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
19
|
Abstract
A large amount of ultrastructural, biochemical and molecular analysis indicates that peroxisomes and mitochondria not only share the same subcellular space but also maintain considerable overlap in their proteins, responses and functions. Recent approaches using imaging of fluorescent proteins targeted to both organelles in living plant cells are beginning to show the dynamic nature of their interactivity. Based on the observations of living cells, mitochondria respond rapidly to stress by undergoing fission. Mitochondrial fission is suggested to release key membrane-interacting members of the FISSION1 and DYNAMIN RELATED PROTEIN3 families and appears to be followed by the formation of thin peroxisomal extensions called peroxules. In a model we present the peroxules as an intermediate state prior to the formation of tubular peroxisomes, which, in turn are acted upon by the constriction-related proteins released by mitochondria and undergo rapid constriction and fission to increase the number of peroxisomes in a cell. The fluorescent protein aided imaging of peroxisome-mitochondria interaction provides visual evidence for their cooperation in maintenance of cellular homeostasis in plants.
Collapse
Affiliation(s)
- Jaideep Mathur
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road, Guelph, ON, N1G2W1, Canada.
| | - Aymen Shaikh
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road, Guelph, ON, N1G2W1, Canada
| | - Neeta Mathur
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road, Guelph, ON, N1G2W1, Canada
| |
Collapse
|
20
|
Helle SCJ, Feng Q, Aebersold MJ, Hirt L, Grüter RR, Vahid A, Sirianni A, Mostowy S, Snedeker JG, Šarić A, Idema T, Zambelli T, Kornmann B. Mechanical force induces mitochondrial fission. eLife 2017; 6. [PMID: 29119945 PMCID: PMC5679753 DOI: 10.7554/elife.30292] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 10/28/2017] [Indexed: 12/17/2022] Open
Abstract
Eukaryotic cells are densely packed with macromolecular complexes and intertwining organelles, continually transported and reshaped. Intriguingly, organelles avoid clashing and entangling with each other in such limited space. Mitochondria form extensive networks constantly remodeled by fission and fusion. Here, we show that mitochondrial fission is triggered by mechanical forces. Mechano-stimulation of mitochondria – via encounter with motile intracellular pathogens, via external pressure applied by an atomic force microscope, or via cell migration across uneven microsurfaces – results in the recruitment of the mitochondrial fission machinery, and subsequent division. We propose that MFF, owing to affinity for narrow mitochondria, acts as a membrane-bound force sensor to recruit the fission machinery to mechanically strained sites. Thus, mitochondria adapt to the environment by sensing and responding to biomechanical cues. Our findings that mechanical triggers can be coupled to biochemical responses in membrane dynamics may explain how organelles orderly cohabit in the crowded cytoplasm.
Collapse
Affiliation(s)
| | - Qian Feng
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Mathias J Aebersold
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland
| | - Luca Hirt
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland
| | - Raphael R Grüter
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland
| | - Afshin Vahid
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
| | - Andrea Sirianni
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Serge Mostowy
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Jess G Snedeker
- Balgrist University Hospital, University of Zurich, Zurich, Switzerland.,Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Anđela Šarić
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, United Kingdom
| | - Timon Idema
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
| | - Tomaso Zambelli
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
21
|
Song J, Kang YH, Yoon S, Chun CH, Jin EJ. HIF-1α:CRAT:miR-144-3p axis dysregulation promotes osteoarthritis chondrocyte apoptosis and VLCFA accumulation. Oncotarget 2017; 8:69351-69361. [PMID: 29050208 PMCID: PMC5642483 DOI: 10.18632/oncotarget.20615] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/14/2017] [Indexed: 11/25/2022] Open
Abstract
The functional role(s) of peroxisomes in osteoarthritis remains unclear. We demonstrated that peroxisomal dysfunction in osteoarthritis is responsible for very-long-chain fatty acid (VLCFA) accumulation. Through gene-profiling analyses, we identified CRAT as the gene responsible for this event. CRAT expression was suppressed in osteoarthritis chondrocytes, and its knockdown yielded pathological osteoarthritic characteristics, including VLCFA accumulation, apoptosis, autophagic inhibition, and mitochondrial dysfunction. Subsequent miRNA profiling revealed that peroxisomal dysfunction upregulates miR-144-3p, which overlapped with the osteoarthritis pathological characteristics observed upon CRAT knockdown. Moreover, knocking down HIF-1α in normal chondrocytes suppressed CRAT expression while stimulating miR-144-3p. Our data indicate that deregulation of a HIF-1a:CRAT:miR-144-3p axis impairs peroxisomal function during the pathogenesis of osteoarthritis.
Collapse
Affiliation(s)
- Jinsoo Song
- Department of Biological Sciences, College of Natural Sciences, Wonkwang University, Iksan, Chunbuk, Korea
| | - Yeon-Ho Kang
- Department of Biological Sciences, College of Natural Sciences, Wonkwang University, Iksan, Chunbuk, Korea
| | - Sik Yoon
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, Korea
| | - Churl-Hong Chun
- Department of Orthopedic Surgery, Wonkwang University School of Medicine, Iksan, Chunbuk, Korea
| | - Eun-Jung Jin
- Department of Biological Sciences, College of Natural Sciences, Wonkwang University, Iksan, Chunbuk, Korea
| |
Collapse
|
22
|
Passmore JB, Pinho S, Gomez-Lazaro M, Schrader M. The respiratory chain inhibitor rotenone affects peroxisomal dynamics via its microtubule-destabilising activity. Histochem Cell Biol 2017; 148:331-341. [PMID: 28523458 PMCID: PMC5539279 DOI: 10.1007/s00418-017-1577-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2017] [Indexed: 12/21/2022]
Abstract
Peroxisomes and mitochondria in mammalian cells are closely linked subcellular organelles, which maintain a redox-sensitive relationship. Their interplay and role in ROS signalling are supposed to impact on age-related and degenerative disorders. Whereas the generation of peroxisome-derived oxidative stress can affect mitochondrial morphology and function, little is known about the impact of mitochondria-derived oxidative stress on peroxisomes. Here, we investigated the effect of the mitochondrial complex I inhibitor rotenone on peroxisomal and mitochondrial membrane dynamics. We show that rotenone treatment of COS-7 cells alters peroxisome morphology and distribution. However, this effect is related to its microtubule-destabilising activity rather than to the generation of oxidative stress. Rotenone also induced alterations in mitochondrial morphology, which-in contrast to its effect on peroxisomes-were dependent on the generation of ROS but independent of its microtubule-active properties. The importance of our findings for the peroxisome-mitochondria redox relationship and the interpretation of in cellulo and in vivo studies with rotenone, which is widely used to study Parkinson's disease, are discussed.
Collapse
Affiliation(s)
- Josiah B Passmore
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Sonia Pinho
- Centre for Cell Biology & Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Maria Gomez-Lazaro
- Centre for Cell Biology & Department of Biology, University of Aveiro, Aveiro, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Instituto de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal
| | - Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK.
- Centre for Cell Biology & Department of Biology, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
23
|
Cryo-Immuno Electron Microscopy of Peroxisomal Marker Proteins. Methods Mol Biol 2017. [PMID: 28409456 DOI: 10.1007/978-1-4939-6937-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Electron microscopy samples processed for cryo-immunogold-labeling need to be gently fixed to keep their antigenicity. Biological material like cultured cells or tissue can be prepared according to the standard Tokuyasu fixation or in a further developed rehydration method based on high-pressure freezing. We will describe here the variant and common steps of both methods in detail and illustrate their potency in the ultrastructural imaging of peroxisomes.
Collapse
|
24
|
Schrader TA, Schrader M. siRNA-mediated Silencing of Peroxisomal Genes in Mammalian Cells. Methods Mol Biol 2017; 1595:69-79. [PMID: 28409453 DOI: 10.1007/978-1-4939-6937-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
RNAi technologies are a valuable tool in the identification and investigation of proteins that are involved in peroxisome biogenesis and function. Small interfering RNA (siRNA) has developed into the most commonly used RNAi tool for the induction of transient, short-term silencing of protein coding genes. Although siRNA can induce gene knockdown in a variety of mammalian cell lines, their utility is limited by efficient uptake of synthetic oligonucleotides into the cells. Here, we describe different transfection methods that have been successfully used by us to silence peroxisomal genes in a variety of cell lines, including primary human skin fibroblasts, which are usually difficult to transfect.
Collapse
Affiliation(s)
- Tina A Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, Devon, UK
| | - Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, Devon, UK.
| |
Collapse
|
25
|
Abstract
Peroxisomes are essential organelles in mammals which contribute to cellular lipid metabolism and redox homeostasis. The spectrum of their functions in human health and disease is far from being complete, and unexpected and novel roles of peroxisomes are being discovered. To date, those include novel biological roles in antiviral defence, as intracellular signaling platforms and as protective organelles in sensory cells. Furthermore, peroxisomes are part of a complex network of interacting subcellular compartments which involves metabolic cooperation, cross-talk and membrane contacts. As potentially novel peroxisomal proteins are continuously discovered, there is great interest in the verification of their peroxisomal localization. Here, we present protocols used successfully in our laboratory for the detection and immunolabeling of peroxisomal proteins in cultured mammalian cells. We present immunofluorescence and fluorescence-based techniques as well as reagents to determine peroxisome-specific targeting and localization of candidate proteins.
Collapse
Affiliation(s)
- Tina A Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, United Kingdom
| | - Markus Islinger
- Center for Biomedicine and Medical Technology Mannheim, Institute of Neuroanatomy, University of Heidelberg, Ludolf-Krehl Str. 13-17, 68137, Mannheim, Germany
| | - Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, United Kingdom.
| |
Collapse
|
26
|
Boll A, Schrader M. Elongation of Peroxisomes as an Indicator for Efficient Dynamin-like Protein 1 Knock Down in Mammalian Cells. J Histochem Cytochem 2016; 53:1037-40. [PMID: 15923357 DOI: 10.1369/jhc.5b6681.2005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RNA interference has become a valuable tool to identify and investigate proteins involved in the formation of peroxisomes. We demonstrate that the elongation of peroxisomes serves as an excellent indicator for efficient knock down of dynamin-like protein 1 (DLP1) in mammalian cells. We took advantage of the silencing-dependent morphological changes of peroxisomes to compare different transfection methods and show that a single transfection of DLP1 siRNA by electroporation is sufficient to effectively silence DLP1. We present a fast, easy, and convenient protocol for efficient gene silencing in a large number of cells, which can be used for quantitative and biochemical studies.
Collapse
Affiliation(s)
- Antje Boll
- Department of Cell Biology and Cell Pathology, University of Marburg, Marburg, Germany
| | | |
Collapse
|
27
|
Galiani S, Waithe D, Reglinski K, Cruz-Zaragoza LD, Garcia E, Clausen MP, Schliebs W, Erdmann R, Eggeling C. Super-resolution Microscopy Reveals Compartmentalization of Peroxisomal Membrane Proteins. J Biol Chem 2016; 291:16948-62. [PMID: 27311714 PMCID: PMC5016101 DOI: 10.1074/jbc.m116.734038] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Indexed: 11/25/2022] Open
Abstract
Membrane-associated events during peroxisomal protein import processes play an essential role in peroxisome functionality. Many details of these processes are not known due to missing spatial resolution of technologies capable of investigating peroxisomes directly in the cell. Here, we present the use of super-resolution optical stimulated emission depletion microscopy to investigate with sub-60-nm resolution the heterogeneous spatial organization of the peroxisomal proteins PEX5, PEX14, and PEX11 around actively importing peroxisomes, showing distinct differences between these peroxins. Moreover, imported protein sterol carrier protein 2 (SCP2) occupies only a subregion of larger peroxisomes, highlighting the heterogeneous distribution of proteins even within the peroxisome. Finally, our data reveal subpopulations of peroxisomes showing only weak colocalization between PEX14 and PEX5 or PEX11 but at the same time a clear compartmentalized organization. This compartmentalization, which was less evident in cases of strong colocalization, indicates dynamic protein reorganization linked to changes occurring in the peroxisomes. Through the use of multicolor stimulated emission depletion microscopy, we have been able to characterize peroxisomes and their constituents to a yet unseen level of detail while maintaining a highly statistical approach, paving the way for equally complex biological studies in the future.
Collapse
Affiliation(s)
- Silvia Galiani
- From the Medical Research Council Human Immunology Unit and
| | - Dominic Waithe
- Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, United Kingdom
| | | | - Luis Daniel Cruz-Zaragoza
- Institute of Physiological Chemistry, Systemic Biochemistry, Ruhr University Bochum, Universitätsstrasse 150, 44801 Bochum, Germany, and
| | - Esther Garcia
- Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, United Kingdom
| | - Mathias P Clausen
- From the Medical Research Council Human Immunology Unit and MEMPHYS-Center for Biomembrane Physics, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Wolfgang Schliebs
- Institute of Physiological Chemistry, Systemic Biochemistry, Ruhr University Bochum, Universitätsstrasse 150, 44801 Bochum, Germany, and
| | - Ralf Erdmann
- Institute of Physiological Chemistry, Systemic Biochemistry, Ruhr University Bochum, Universitätsstrasse 150, 44801 Bochum, Germany, and
| | - Christian Eggeling
- From the Medical Research Council Human Immunology Unit and Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, United Kingdom,
| |
Collapse
|
28
|
Lin C, Schuster M, Guimaraes SC, Ashwin P, Schrader M, Metz J, Hacker C, Gurr SJ, Steinberg G. Active diffusion and microtubule-based transport oppose myosin forces to position organelles in cells. Nat Commun 2016; 7:11814. [PMID: 27251117 PMCID: PMC4895713 DOI: 10.1038/ncomms11814] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 05/03/2016] [Indexed: 11/26/2022] Open
Abstract
Even distribution of peroxisomes (POs) and lipid droplets (LDs) is critical to their role in lipid and reactive oxygen species homeostasis. How even distribution is achieved remains elusive, but diffusive motion and directed motility may play a role. Here we show that in the fungus Ustilago maydis ∼95% of POs and LDs undergo diffusive motions. These movements require ATP and involve bidirectional early endosome motility, indicating that microtubule-associated membrane trafficking enhances diffusion of organelles. When early endosome transport is abolished, POs and LDs drift slowly towards the growing cell end. This pole-ward drift is facilitated by anterograde delivery of secretory cargo to the cell tip by myosin-5. Modelling reveals that microtubule-based directed transport and active diffusion support distribution, mobility and mixing of POs. In mammalian COS-7 cells, microtubules and F-actin also counteract each other to distribute POs. This highlights the importance of opposing cytoskeletal forces in organelle positioning in eukaryotes. The mechanisms underlying the positioning of eukaryotic organelles remain elusive. Here Lin et al. use imaging and a mathematical model to show that microtubule-based transport and active diffusion and actin-based polar drift act together to facilitate even distribution of peroxisomes in filamentous fungi.
Collapse
Affiliation(s)
- Congping Lin
- School of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.,Mathematics, University of Exeter, North Park Road, Exeter EX4 4QF, UK
| | - Martin Schuster
- School of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | | | - Peter Ashwin
- Mathematics, University of Exeter, North Park Road, Exeter EX4 4QF, UK
| | - Michael Schrader
- School of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Jeremy Metz
- School of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Christian Hacker
- School of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Sarah Jane Gurr
- School of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Gero Steinberg
- School of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
29
|
Human disorders of peroxisome metabolism and biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:922-33. [DOI: 10.1016/j.bbamcr.2015.11.015] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 12/22/2022]
|
30
|
Takano-Rojas H, Zickler D, Peraza-Reyes L. Peroxisome dynamics during development of the fungus Podospora anserina. Mycologia 2016; 108:590-602. [PMID: 26908647 DOI: 10.3852/15-112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 07/07/2015] [Indexed: 11/10/2022]
Abstract
Peroxisomes are versatile and dynamic organelles that are required for the development of diverse eukaryotic organisms. We demonstrated previously that in the fungus Podospora anserina different peroxisomal functions are required at distinct stages of sexual development, including the initiation and progression of meiocyte (ascus) development and the differentiation and germination of sexual spores (ascospores). Peroxisome assembly during these processes relies on the differential activity of the protein machinery that drives the import of proteins into the organelle, indicating a complex developmental regulation of peroxisome formation and activity. Here we demonstrate that peroxisome dynamics is also highly regulated during development. We show that peroxisomes in P. anserina are highly dynamic and respond to metabolic and environmental cues by undergoing changes in size, morphology and number. In addition, peroxisomes of vegetative and sexual cell types are structurally different. During sexual development peroxisome number increases at two stages: at early ascus differentiation and during ascospore formation. These processes are accompanied by changes in peroxisome structure and distribution, which include a cell-polarized concentration of peroxisomes at the beginning of ascus development, as well as a morphological transition from predominantly spherical to elongated shapes at the end of the first meiotic division. Further, the mostly tubular peroxisomes present from second meiotic division to early ascospore formation again become rounded during ascospore differentiation. Ultimately the number of peroxisomes dramatically decreases upon ascospore maturation. Our results reveal a precise regulation of peroxisome dynamics during sexual development and suggest that peroxisome constitution and function during development is defined by the coordinated regulation of the proteins that control peroxisome assembly and dynamics.
Collapse
Affiliation(s)
- Harumi Takano-Rojas
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México DF, Mexico
| | - Denise Zickler
- Univ. Paris-Sud, CNRS UMR8621, Institut de Génétique et Microbiologie, 91405 Orsay, France
| | - Leonardo Peraza-Reyes
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México DF, Mexico
| |
Collapse
|
31
|
Jaipargas EA, Mathur N, Bou Daher F, Wasteneys GO, Mathur J. High Light Intensity Leads to Increased Peroxule-Mitochondria Interactions in Plants. Front Cell Dev Biol 2016; 4:6. [PMID: 26870732 PMCID: PMC4740372 DOI: 10.3389/fcell.2016.00006] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 01/18/2016] [Indexed: 11/28/2022] Open
Abstract
Peroxules are thin protrusions from spherical peroxisomes produced under low levels of reactive oxygen species (ROS) stress. Whereas, stress mitigation favors peroxule retraction, prolongation of the ROS stress leads to the elongation of the peroxisome into a tubular form. Subsequently, the elongated form becomes constricted through the binding of proteins such as dynamin related proteins 3A and 3B and eventually undergoes fission to increase the peroxisomal population within a cell. The events that occur in the short time window between peroxule initiation and the tubulation of the entire peroxisome have not been observed in living plant cells. Here, using fluorescent protein aided live-imaging, we show that peroxules are formed after only 4 min of high light (HL) irradiation during which there is a perceptible increase in the cytosolic levels of hydrogen peroxide. Using a stable, double transgenic line of Arabidopsis thaliana expressing a peroxisome targeted YFP and a mitochondrial targeted GFP probe, we observed sustained interactions between peroxules and small, spherical mitochondria. Further, it was observed that the frequency of HL-induced interactions between peroxules and mitochondria increased in the Arabidopsis anisotropy1 mutant that has reduced cell wall crystallinity and where we show accumulation of higher H2O2 levels than wild type plants. Our observations suggest a testable model whereby peroxules act as interaction platforms for ROS-distressed mitochondria that may release membrane proteins and fission factors. These proteins might thus become easily available to peroxisomes and facilitate their proliferation for enhancing the ROS-combating capability of a plant cell.
Collapse
Affiliation(s)
- Erica-Ashley Jaipargas
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
| | - Neeta Mathur
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
| | - Firas Bou Daher
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
| | | | - Jaideep Mathur
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
| |
Collapse
|
32
|
Schrader M, Costello JL, Godinho LF, Azadi AS, Islinger M. Proliferation and fission of peroxisomes - An update. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:971-83. [PMID: 26409486 DOI: 10.1016/j.bbamcr.2015.09.024] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/16/2015] [Accepted: 09/21/2015] [Indexed: 12/23/2022]
Abstract
In mammals, peroxisomes perform crucial functions in cellular metabolism, signalling and viral defense which are essential to the health and viability of the organism. In order to achieve this functional versatility peroxisomes dynamically respond to molecular cues triggered by changes in the cellular environment. Such changes elicit a corresponding response in peroxisomes, which manifests itself as a change in peroxisome number, altered enzyme levels and adaptations to the peroxisomal structure. In mammals the generation of new peroxisomes is a complex process which has clear analogies to mitochondria, with both sharing the same division machinery and undergoing a similar division process. How the regulation of this division process is integrated into the cell's response to different stimuli, the signalling pathways and factors involved, remains somewhat unclear. Here, we discuss the mechanism of peroxisomal fission, the contributions of the various division factors and examine the potential impact of post-translational modifications, such as phosphorylation, on the proliferation process. We also summarize the signalling process and highlight the most recent data linking signalling pathways with peroxisome proliferation.
Collapse
Affiliation(s)
- Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, EX4 4QJ, Exeter Devon, UK; Centre for Cell Biology, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Joseph L Costello
- College of Life and Environmental Sciences, Biosciences, University of Exeter, EX4 4QJ, Exeter Devon, UK
| | - Luis F Godinho
- Centre for Cell Biology, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Afsoon S Azadi
- College of Life and Environmental Sciences, Biosciences, University of Exeter, EX4 4QJ, Exeter Devon, UK
| | - Markus Islinger
- Neuroanatomy, Center for Biomedicine and Medical Technology Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
33
|
Schrader M, Costello J, Godinho LF, Islinger M. Peroxisome-mitochondria interplay and disease. J Inherit Metab Dis 2015; 38:681-702. [PMID: 25687155 DOI: 10.1007/s10545-015-9819-7] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/21/2015] [Accepted: 01/26/2015] [Indexed: 12/16/2022]
Abstract
Peroxisomes and mitochondria are ubiquitous, highly dynamic organelles with an oxidative type of metabolism in eukaryotic cells. Over the years, substantial evidence has been provided that peroxisomes and mitochondria exhibit a close functional interplay which impacts on human health and development. The so-called "peroxisome-mitochondria connection" includes metabolic cooperation in the degradation of fatty acids, a redox-sensitive relationship, an overlap in key components of the membrane fission machineries and cooperation in anti-viral signalling and defence. Furthermore, combined peroxisome-mitochondria disorders with defects in organelle division have been revealed. In this review, we present the latest progress in the emerging field of peroxisomal and mitochondrial interplay in mammals with a particular emphasis on cooperative fatty acid β-oxidation, redox interplay, organelle dynamics, cooperation in anti-viral signalling and the resulting implications for disease.
Collapse
Affiliation(s)
- Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK,
| | | | | | | |
Collapse
|
34
|
The membrane remodeling protein Pex11p activates the GTPase Dnm1p during peroxisomal fission. Proc Natl Acad Sci U S A 2015; 112:6377-82. [PMID: 25941407 DOI: 10.1073/pnas.1418736112] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The initial phase of peroxisomal fission requires the peroxisomal membrane protein Peroxin 11 (Pex11p), which remodels the membrane, resulting in organelle elongation. Here, we identify an additional function for Pex11p, demonstrating that Pex11p also plays a crucial role in the final step of peroxisomal fission: dynamin-like protein (DLP)-mediated membrane scission. First, we demonstrate that yeast Pex11p is necessary for the function of the GTPase Dynamin-related 1 (Dnm1p) in vivo. In addition, our data indicate that Pex11p physically interacts with Dnm1p and that inhibiting this interaction compromises peroxisomal fission. Finally, we demonstrate that Pex11p functions as a GTPase activating protein (GAP) for Dnm1p in vitro. Similar observations were made for mammalian Pex11β and the corresponding DLP Drp1, indicating that DLP activation by Pex11p is conserved. Our work identifies a previously unknown requirement for a GAP in DLP function.
Collapse
|
35
|
Yoshida Y, Niwa H, Honsho M, Itoyama A, Fujiki Y. Pex11mediates peroxisomal proliferation by promoting deformation of the lipid membrane. Biol Open 2015; 4:710-21. [PMID: 25910939 PMCID: PMC4467191 DOI: 10.1242/bio.201410801] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pex11p family proteins are key players in peroxisomal fission, but their molecular mechanisms remains mostly unknown. In the present study, overexpression of Pex11pβ caused substantial vesiculation of peroxisomes in mammalian cells. This vesicle formation was dependent on dynamin-like protein 1 (DLP1) and mitochondrial fission factor (Mff), as knockdown of these proteins diminished peroxisomal fission after Pex11pβ overexpression. The fission-deficient peroxisomes exhibited an elongated morphology, and peroxisomal marker proteins, such as Pex14p or matrix proteins harboring peroxisomal targeting signal 1, were discernible in a segmented staining pattern, like beads on a string. Endogenous Pex11pβ was also distributed a striped pattern, but which was not coincide with Pex14p and PTS1 matrix proteins. Altered morphology of the lipid membrane was observed when recombinant Pex11p proteins were introduced into proteo-liposomes. Constriction of proteo-liposomes was observed under confocal microscopy and electron microscopy, and the reconstituted Pex11pβ protein localized to the membrane constriction site. Introducing point mutations into the N-terminal amphiphathic helix of Pex11pβ strongly reduced peroxisomal fission, and decreased the oligomer formation. These results suggest that Pex11p contributes to the morphogenesis of the peroxisomal membrane, which is required for subsequent fission by DLP1.
Collapse
Affiliation(s)
- Yumi Yoshida
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Hajime Niwa
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Masanori Honsho
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Akinori Itoyama
- Graduate School of Systems Life Sciences, Kyushu University Graduate School, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Yukio Fujiki
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan Graduate School of Systems Life Sciences, Kyushu University Graduate School, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan International Institute for Carbon-Neutral Energy Research (ICNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
36
|
Fransen M. HaloTag as a tool to investigate peroxisome dynamics in cultured mammalian cells. Methods Mol Biol 2015; 1174:157-70. [PMID: 24947380 DOI: 10.1007/978-1-4939-0944-5_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Peroxisomes are multifunctional organelles that can rapidly modulate their morphology, number, and function in response to changing environmental stimuli. Defects in any of these processes can lead to organelle dysfunction and have been associated with various inherited and age-related disorders. Progress in this field continues to be driven by advances in live-cell imaging techniques. This chapter provides detailed protocols for the use of HaloTag to fluorescently pulse-label peroxisomes in cultured mammalian cells. In contrast to the use of classical fluorescent proteins, this technology allows researchers to optically distinguish pools of peroxisomal proteins that are synthesized at different time points. The protocols can be easily adapted to image the dynamics of other macromolecular protein assemblies in mammalian cells.
Collapse
Affiliation(s)
- Marc Fransen
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, Faculty of Medicine, Katholieke Universiteit Leuven, Campus Gasthuisberg, Herestraat 49, 601, 3000, Leuven, Belgium,
| |
Collapse
|
37
|
Camões F, Islinger M, Guimarães SC, Kilaru S, Schuster M, Godinho LF, Steinberg G, Schrader M. New insights into the peroxisomal protein inventory: Acyl-CoA oxidases and -dehydrogenases are an ancient feature of peroxisomes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:111-25. [DOI: 10.1016/j.bbamcr.2014.10.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/29/2014] [Accepted: 10/01/2014] [Indexed: 12/22/2022]
|
38
|
Delille HK, Dodt G, Schrader M. Pex11pβ-mediated maturation of peroxisomes. Commun Integr Biol 2014. [DOI: 10.4161/cib.13647] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
39
|
Hatch AL, Gurel PS, Higgs HN. Novel roles for actin in mitochondrial fission. J Cell Sci 2014; 127:4549-60. [PMID: 25217628 DOI: 10.1242/jcs.153791] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial dynamics, including fusion, fission and translocation, are crucial to cellular homeostasis, with roles in cellular polarity, stress response and apoptosis. Mitochondrial fission has received particular attention, owing to links with several neurodegenerative diseases. A central player in fission is the cytoplasmic dynamin-related GTPase Drp1, which oligomerizes at the fission site and hydrolyzes GTP to drive membrane ingression. Drp1 recruitment to the outer mitochondrial membrane (OMM) is a key regulatory event, which appears to require a pre-constriction step in which the endoplasmic reticulum (ER) and mitochondrion interact extensively, a process termed ERMD (ER-associated mitochondrial division). It is unclear how ER-mitochondrial contact generates the force required for pre-constriction or why pre-constriction leads to Drp1 recruitment. Recent results, however, show that ERMD might be an actin-based process in mammals that requires the ER-associated formin INF2 upstream of Drp1, and that myosin II and other actin-binding proteins might be involved. In this Commentary, we present a mechanistic model for mitochondrial fission in which actin and myosin contribute in two ways; firstly, by supplying the force for pre-constriction and secondly, by serving as a coincidence detector for Drp1 binding. In addition, we discuss the possibility that multiple fission mechanisms exist in mammals.
Collapse
Affiliation(s)
- Anna L Hatch
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Pinar S Gurel
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Henry N Higgs
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
40
|
Williams M, Kim K. From membranes to organelles: emerging roles for dynamin-like proteins in diverse cellular processes. Eur J Cell Biol 2014; 93:267-77. [PMID: 24954468 DOI: 10.1016/j.ejcb.2014.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/12/2014] [Accepted: 05/14/2014] [Indexed: 11/18/2022] Open
Abstract
Dynamin is a GTPase mechanoenzyme most noted for its role in vesicle scission during endocytosis, and belongs to the dynamin family proteins. The dynamin family consists of classical dynamins and dynamin-like proteins (DLPs). Due to structural and functional similarities DLPs are thought to carry out membrane tubulation and scission in a similar manner to dynamin. Here, we discuss the newly emerging roles for DLPs, which include vacuole fission and fusion, peroxisome maintenance, endocytosis and intracellular trafficking. Specific focus is given to the role of DLPs in the budding yeast Saccharomyces cerevisiae because the diverse function of DLPs has been well characterized in this organism. Recent insights into DLPs may provide a better understanding of mammalian dynamin and its associated diseases.
Collapse
Affiliation(s)
- Michelle Williams
- Department of Biology, Missouri State University, 901 South National, Springfield, MO 65897, United States
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 South National, Springfield, MO 65897, United States.
| |
Collapse
|
41
|
Mohanty A, McBride HM. Emerging roles of mitochondria in the evolution, biogenesis, and function of peroxisomes. Front Physiol 2013; 4:268. [PMID: 24133452 PMCID: PMC3783979 DOI: 10.3389/fphys.2013.00268] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/10/2013] [Indexed: 12/19/2022] Open
Abstract
In the last century peroxisomes were thought to have an endosymbiotic origin. Along with mitochondria and chloroplasts, peroxisomes primarily regulate their numbers through the growth and division of pre-existing organelles, and they house specific machinery for protein import. These features were considered unique to endosymbiotic organelles, prompting the idea that peroxisomes were key cellular elements that helped facilitate the evolution of multicellular organisms. The functional similarities to mitochondria within mammalian systems expanded these ideas, as both organelles scavenge peroxide and reactive oxygen species, both organelles oxidize fatty acids, and at least in higher eukaryotes, the biogenesis of both organelles is controlled by common nuclear transcription factors of the PPAR family. Over the last decade it has been demonstrated that the fission machinery of both organelles is also shared, and that both organelles act as critical signaling platforms for innate immunity and other pathways. Taken together it is clear that the mitochondria and peroxisomes are functionally coupled, regulating cellular metabolism and signaling through a number of common mechanisms. However, recent work has focused primarily on the role of the ER in the biogenesis of peroxisomes, potentially overshadowing the critical importance of the mitochondria as a functional partner. In this review, we explore the mechanisms of functional coupling of the peroxisomes to the mitochondria/ER networks, providing some new perspectives on the potential contribution of the mitochondria to peroxisomal biogenesis.
Collapse
Affiliation(s)
- Abhishek Mohanty
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University Montreal, QC, Canada
| | | |
Collapse
|
42
|
Palmer CS, Elgass KD, Parton RG, Osellame LD, Stojanovski D, Ryan MT. Adaptor proteins MiD49 and MiD51 can act independently of Mff and Fis1 in Drp1 recruitment and are specific for mitochondrial fission. J Biol Chem 2013; 288:27584-27593. [PMID: 23921378 DOI: 10.1074/jbc.m113.479873] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Drp1 (dynamin-related protein 1) is recruited to both mitochondrial and peroxisomal membranes to execute fission. Fis1 and Mff are Drp1 receptor/effector proteins of mitochondria and peroxisomes. Recently, MiD49 and MiD51 were also shown to recruit Drp1 to the mitochondrial surface; however, different reports have ascribed opposing roles in fission and fusion. Here, we show that MiD49 or MiD51 overexpression blocked fission by acting in a dominant-negative manner by sequestering Drp1 specifically at mitochondria, causing unopposed fusion events at mitochondria along with elongation of peroxisomes. Mitochondrial elongation caused by MiD49/51 overexpression required the action of fusion mediators mitofusins 1 and 2. Furthermore, at low level overexpression when MiD49 and MiD51 form discrete foci at mitochondria, mitochondrial fission events still occurred. Unlike Fis1 and Mff, MiD49 and MiD51 were not targeted to the peroxisomal surface, suggesting that they specifically act to facilitate Drp1-directed fission at mitochondria. Moreover, when MiD49 or MiD51 was targeted to the surface of peroxisomes or lysosomes, Drp1 was specifically recruited to these organelles. Moreover, the Drp1 recruitment activity of MiD49/51 appeared stronger than that of Mff or Fis1. We conclude that MiD49 and MiD51 can act independently of Mff and Fis1 in Drp1 recruitment and suggest that they provide specificity to the division of mitochondria.
Collapse
Affiliation(s)
- Catherine S Palmer
- Department of Biochemistry, La Trobe Institute for Molecular Science; ARC Centre of Excellence for Coherent X-ray Science, La Trobe University, Melbourne, Victoria 3086
| | - Kirstin D Elgass
- Department of Biochemistry, La Trobe Institute for Molecular Science; ARC Centre of Excellence for Coherent X-ray Science, La Trobe University, Melbourne, Victoria 3086
| | - Robert G Parton
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Laura D Osellame
- Department of Biochemistry, La Trobe Institute for Molecular Science
| | - Diana Stojanovski
- Department of Biochemistry, La Trobe Institute for Molecular Science; ARC Centre of Excellence for Coherent X-ray Science, La Trobe University, Melbourne, Victoria 3086
| | - Michael T Ryan
- Department of Biochemistry, La Trobe Institute for Molecular Science; ARC Centre of Excellence for Coherent X-ray Science, La Trobe University, Melbourne, Victoria 3086.
| |
Collapse
|
43
|
Maruyama JI, Kitamoto K. Expanding functional repertoires of fungal peroxisomes: contribution to growth and survival processes. Front Physiol 2013; 4:177. [PMID: 23882222 PMCID: PMC3713238 DOI: 10.3389/fphys.2013.00177] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 06/23/2013] [Indexed: 11/14/2022] Open
Abstract
It has long been regarded that the primary function of fungal peroxisomes is limited to the β-oxidation of fatty acids, as mutants lacking peroxisomal function fail to grow in minimal medium containing fatty acids as the sole carbon source. However, studies in filamentous fungi have revealed that peroxisomes have diverse functional repertoires. This review describes the essential roles of peroxisomes in the growth and survival processes of filamentous fungi. One such survival mechanism involves the Woronin body, a Pezizomycotina-specific organelle that plugs the septal pore upon hyphal lysis to prevent excessive cytoplasmic loss. A number of reports have demonstrated that Woronin bodies are derived from peroxisomes. Specifically, the Woronin body protein Hex1 is targeted to peroxisomes by peroxisomal targeting sequence 1 (PTS1) and forms a self-assembled structure that buds from peroxisomes to form the Woronin body. Peroxisomal deficiency reduces the ability of filamentous fungi to prevent excessive cytoplasmic loss upon hyphal lysis, indicating that peroxisomes contribute to the survival of these multicellular organisms. Peroxisomes were also recently found to play a vital role in the biosynthesis of biotin, which is an essential cofactor for various carboxylation and decarboxylation reactions. In biotin-prototrophic fungi, peroxisome-deficient mutants exhibit growth defects when grown on glucose as a carbon source due to biotin auxotrophy. The biotin biosynthetic enzyme BioF (7-keto-8-aminopelargonic acid synthase) contains a PTS1 motif that is required for both peroxisomal targeting and biotin biosynthesis. In plants, the BioF protein contains a conserved PTS1 motif and is also localized in peroxisomes. These findings indicate that the involvement of peroxisomes in biotin biosynthesis is evolutionarily conserved between fungi and plants, and that peroxisomes play a key role in fungal growth.
Collapse
|
44
|
Imoto Y, Kuroiwa H, Yoshida Y, Ohnuma M, Fujiwara T, Yoshida M, Nishida K, Yagisawa F, Hirooka S, Miyagishima SY, Misumi O, Kawano S, Kuroiwa T. Single-membrane-bounded peroxisome division revealed by isolation of dynamin-based machinery. Proc Natl Acad Sci U S A 2013; 110:9583-8. [PMID: 23696667 PMCID: PMC3677435 DOI: 10.1073/pnas.1303483110] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Peroxisomes (microbodies) are ubiquitous single-membrane-bounded organelles and fulfill essential roles in the cellular metabolism. They are found in virtually all eukaryotic cells and basically multiply by division. However, the mechanochemical machinery involved in peroxisome division remains elusive. Here, we first identified the peroxisome-dividing (POD) machinery. We isolated the POD machinery from Cyanidioschyzon merolae, a unicellular red alga containing a single peroxisome. Peroxisomal division in C. merolae can be highly synchronized by light/dark cycles and the microtubule-disrupting agent oryzalin. By proteomic analysis based on the complete genome sequence of C. merolae, we identified a dynamin-related protein 3 (DRP3) ortholog, CmDnm1 (Dnm1), that predominantly accumulated with catalase in the dividing-peroxisome fraction. Immunofluorescence microscopy demonstrated that Dnm1 formed a ring at the division site of the peroxisome. The outlines of the isolated dynamin rings were dimly observed by phase-contrast microscopy and clearly stained for Dnm1. Electron microscopy revealed that the POD machinery was formed at the cytoplasmic side of the equator. Immunoelectron microscopy showed that the POD machinery consisted of an outer dynamin-based ring and an inner filamentous ring. Down-regulation of Dnm1 impaired peroxisomal division. Surprisingly, the same Dnm1 serially controlled peroxisomal division after mitochondrial division. Because genetic deficiencies of Dnm1 orthologs in multiperoxisomal organisms inhibited both mitochondrial and peroxisomal proliferation, it is thought that peroxisomal division by contraction of a dynamin-based machinery is universal among eukaryotes. These findings are useful for understanding the fundamental systems in eukaryotic cells.
Collapse
Affiliation(s)
- Yuuta Imoto
- Initiative Research Unit, College of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
- Department of Integrated Bioscience, Graduate School of Frontier Science, University of Tokyo, Tokyo 277-8562, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Haruko Kuroiwa
- Initiative Research Unit, College of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Yamato Yoshida
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824-1312
| | - Mio Ohnuma
- Initiative Research Unit, College of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Takayuki Fujiwara
- Chromosome Dynamics Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masaki Yoshida
- Integrative Environmental Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Keiji Nishida
- Department of Systems Biology, Harvard Medical School and Wyss Institute of Biological Inspired Engineering, Harvard University, Boston, MA
| | - Fumi Yagisawa
- Division of Biological Sciences, University of California, San Diego, CA 92093-0377
| | - Shunsuke Hirooka
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
- Symbiosis and Cell Evolution Laboratory, Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan; and
| | - Shin-ya Miyagishima
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
- Symbiosis and Cell Evolution Laboratory, Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan; and
| | - Osami Misumi
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
- Department of Biological Science and Chemistry, Faculty of Science, Graduate School of Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8512, Japan
| | - Shigeyuki Kawano
- Department of Integrated Bioscience, Graduate School of Frontier Science, University of Tokyo, Tokyo 277-8562, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Tsuneyoshi Kuroiwa
- Initiative Research Unit, College of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| |
Collapse
|
45
|
Charcot-Marie-Tooth disease-associated mutants of GDAP1 dissociate its roles in peroxisomal and mitochondrial fission. EMBO Rep 2013; 14:545-52. [PMID: 23628762 DOI: 10.1038/embor.2013.56] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 03/13/2013] [Accepted: 04/11/2013] [Indexed: 11/08/2022] Open
Abstract
Mitochondria and peroxisomes can be fragmented by the process of fission. The fission machineries of both organelles share a set of proteins. GDAP1 is a tail-anchored protein of mitochondria and induces mitochondrial fragmentation. Mutations in GDAP1 lead to Charcot-Marie-Tooth disease (CMT), an inherited peripheral neuropathy, and affect mitochondrial dynamics. Here, we show that GDAP1 is also targeted to peroxisomes mediated by the import receptor Pex19. Knockdown of GDAP1 leads to peroxisomal elongation that can be rescued by re-expressing GDAP1 and by missense mutated forms found in CMT patients. GDAP1-induced peroxisomal fission is dependent on the integrity of its hydrophobic domain 1, and on Drp1 and Mff, as is mitochondrial fission. Thus, GDAP1 regulates mitochondrial and peroxisomal fission by a similar mechanism. However, our results reveal also a more critical role of the amino-terminal GDAP1 domains, carrying most CMT-causing mutations, in the regulation of mitochondrial compared to peroxisomal fission.
Collapse
|
46
|
Bonekamp NA, Grille S, Cardoso MJ, Almeida M, Aroso M, Gomes S, Magalhaes AC, Ribeiro D, Islinger M, Schrader M. Self-interaction of human Pex11pβ during peroxisomal growth and division. PLoS One 2013; 8:e53424. [PMID: 23308220 PMCID: PMC3538539 DOI: 10.1371/journal.pone.0053424] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/28/2012] [Indexed: 12/15/2022] Open
Abstract
Pex11 proteins are involved in membrane elongation and division processes associated with the multiplication of peroxisomes. Human Pex11pβ has recently been linked to a new disorder affecting peroxisome morphology and dynamics. Here, we have analyzed the exact membrane topology of Pex11pβ. Studies with an epitope-specific antibody and protease protection assays show that Pex11pβ is an integral membrane protein with two transmembrane domains flanking an internal region exposed to the peroxisomal matrix and N- and C-termini facing the cytosol. A glycine-rich internal region within Pex11pβ is dispensable for peroxisome membrane elongation and division. However, we demonstrate that an amphipathic helix (Helix 2) within the first N-terminal 40 amino acids is crucial for membrane elongation and self-interaction of Pex11pβ. Interestingly, we find that Pex11pβ self-interaction strongly depends on the detergent used for solubilization. We also show that N-terminal cysteines are not essential for membrane elongation, and that putative N-terminal phosphorylation sites are dispensable for Pex11pβ function. We propose that self-interaction of Pex11pβ regulates its membrane deforming activity in conjunction with membrane lipids.
Collapse
Affiliation(s)
- Nina A. Bonekamp
- Centre for Cell Biology and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Sandra Grille
- Centre for Cell Biology and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Maria Joao Cardoso
- Centre for Cell Biology and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Monica Almeida
- Centre for Cell Biology and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Miguel Aroso
- Centre for Cell Biology and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Silvia Gomes
- Centre for Cell Biology and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Ana Cristina Magalhaes
- Centre for Cell Biology and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Daniela Ribeiro
- Centre for Cell Biology and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Markus Islinger
- Centre for Cell Biology and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Michael Schrader
- Centre for Cell Biology and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, Devon, United Kingdom
- * E-mail:
| |
Collapse
|
47
|
Castro LFC, Lobo-da-Cunha A, Rocha MJ, Urbatzka R, Rocha E. Pex11α in brown trout (Salmo trutta f. fario): Expression dynamics during the reproductive cycle reveals sex-specific seasonal patterns. Comp Biochem Physiol A Mol Integr Physiol 2013; 164:207-14. [DOI: 10.1016/j.cbpa.2012.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 09/08/2012] [Accepted: 09/10/2012] [Indexed: 11/28/2022]
|
48
|
Abstract
Peroxisomes are remarkably versatile cell organelles whose size, shape, number, and protein content can vary greatly depending on the organism, the developmental stage of the organism’s life cycle, and the environment in which the organism lives. The main functions usually associated with peroxisomes include the metabolism of lipids and reactive oxygen species. However, in recent years, it has become clear that these organelles may also act as intracellular signaling platforms that mediate developmental decisions by modulating extraperoxisomal concentrations of several second messengers. To fulfill their functions, peroxisomes physically and functionally interact with other cell organelles, including mitochondria and the endoplasmic reticulum. Defects in peroxisome dynamics can lead to organelle dysfunction and have been associated with various human disorders. The purpose of this paper is to thoroughly summarize and discuss the current concepts underlying peroxisome formation, multiplication, and degradation. In addition, this paper will briefly highlight what is known about the interplay between peroxisomes and other cell organelles and explore the physiological and pathological implications of this interorganellar crosstalk.
Collapse
Affiliation(s)
- Marc Fransen
- Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, P.O. Box 601, 3000 Leuven, Belgium
| |
Collapse
|
49
|
Itoyama A, Honsho M, Abe Y, Moser A, Yoshida Y, Fujiki Y. Docosahexaenoic acid mediates peroxisomal elongation, a prerequisite for peroxisome division. J Cell Sci 2012; 125:589-602. [PMID: 22389399 DOI: 10.1242/jcs.087452] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Peroxisome division is regulated by several factors, termed fission factors, as well as the conditions of the cellular environment. Over the past decade, the idea of metabolic control of peroxisomal morphogenesis has been postulated, but remains largely undefined to date. In the current study, docosahexaenoic acid (DHA, C22:6n-3) was identified as an inducer of peroxisome division. In fibroblasts isolated from patients that carry defects in peroxisomal fatty acid β-oxidation, peroxisomes are much less abundant than normal cells. Treatment of these patient fibroblasts with DHA induced the proliferation of peroxisomes to the level seen in normal fibroblasts. DHA-induced peroxisomal proliferation was abrogated by treatment with a small inhibitory RNA (siRNA) targeting dynamin-like protein 1 and with dynasore, an inhibitor of dynamin-like protein 1, which suggested that DHA stimulates peroxisome division. DHA augmented the hyper-oligomerization of Pex11pβ and the formation of Pex11pβ-enriched regions on elongated peroxisomes. Time-lapse imaging analysis of peroxisomal morphogenesis revealed a sequence of steps involved in peroxisome division, including elongation in one direction followed by peroxisomal fission. DHA enhanced peroxisomal division in a microtubule-independent manner. These results suggest that DHA is a crucial signal for peroxisomal elongation, a prerequisite for subsequent fission and peroxisome division.
Collapse
Affiliation(s)
- Akinori Itoyama
- Graduate School of Systems Life Sciences, Faculty of Sciences, Kyushu University Graduate School, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Postfixation detergent treatment liberates the membrane modelling protein Pex11β from peroxisomal membranes. Histochem Cell Biol 2012; 138:541-7. [PMID: 22875152 DOI: 10.1007/s00418-012-1010-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2012] [Indexed: 10/28/2022]
Abstract
Pex11 proteins are involved in membrane remodelling processes of peroxisomes, and are key components of peroxisomal division and proliferation. In mammals, three Pex11 isoforms, Pex11α, Pex11β, and Pex11γ exist. Here we demonstrate that Pex11β, but not Pex11α or Pex11γ, is almost exclusively extracted from peroxisomal membranes of paraformaldehyde-fixed cells by permeabilisation with the non-ionic detergent Triton X-100. This results in diminished detection of Myc-Pex11β in immunofluorescence preparations and appearance of the protein in the Triton X-100 extract. To our knowledge, Pex11β is the first peroxisomal membrane protein showing such a peculiar behaviour. Loss of Pex11β can be avoided by permeabilisation with digitonin, the addition of glutaraldehyde to the fixative, or the expression of a Pex11 fusion protein with a larger protein tag (e.g. YFP). Our observations further point to different functions and biochemical properties of the Pex11 isoforms within the peroxisomal membrane and during peroxisome proliferation.
Collapse
|