1
|
Hornigold K, Baker MJ, Machin PA, Chetwynd SA, Johnsson AK, Pantarelli C, Islam P, Stammers M, Crossland L, Oxley D, Okkenhaug H, Walker S, Walker R, Segonds-Pichon A, Fukui Y, Malliri A, Welch HCE. The Rac-GEF Tiam1 controls integrin-dependent neutrophil responses. Front Immunol 2023; 14:1223653. [PMID: 38077328 PMCID: PMC10703174 DOI: 10.3389/fimmu.2023.1223653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/20/2023] [Indexed: 12/18/2023] Open
Abstract
Rac GTPases are required for neutrophil adhesion and migration, and for the neutrophil effector responses that kill pathogens. These Rac-dependent functions are impaired when neutrophils lack the activators of Rac, Rac-GEFs from the Prex, Vav, and Dock families. In this study, we demonstrate that Tiam1 is also expressed in neutrophils, governing focal complexes, actin cytoskeletal dynamics, polarisation, and migration, in a manner depending on the integrin ligand to which the cells adhere. Tiam1 is dispensable for the generation of reactive oxygen species but mediates degranulation and NETs release in adherent neutrophils, as well as the killing of bacteria. In vivo, Tiam1 is required for neutrophil recruitment during aseptic peritonitis and for the clearance of Streptococcus pneumoniae during pulmonary infection. However, Tiam1 functions differently to other Rac-GEFs. Instead of promoting neutrophil adhesion to ICAM1 and stimulating β2 integrin activity as could be expected, Tiam1 restricts these processes. In accordance with these paradoxical inhibitory roles, Tiam1 limits the fMLP-stimulated activation of Rac1 and Rac2 in adherent neutrophils, rather than activating Rac as expected. Tiam1 promotes the expression of several regulators of small GTPases and cytoskeletal dynamics, including αPix, Psd4, Rasa3, and Tiam2. It also controls the association of Rasa3, and potentially αPix, Git2, Psd4, and 14-3-3ζ/δ, with Rac. We propose these latter roles of Tiam1 underlie its effects on Rac and β2 integrin activity and on cell responses. Hence, Tiam1 is a novel regulator of Rac-dependent neutrophil responses that functions differently to other known neutrophil Rac-GEFs.
Collapse
Affiliation(s)
- Kirsti Hornigold
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
| | - Martin J. Baker
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
- Cell Signalling Group, Cancer Research UK Manchester Institute, University of Manchester, Macclesfield, United Kingdom
| | - Polly A. Machin
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
| | | | | | | | - Priota Islam
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
| | | | | | - David Oxley
- Mass Spectrometry Facility, Babraham Institute, Cambridge, United Kingdom
| | | | - Simon Walker
- Imaging Facility, Babraham Institute, Cambridge, United Kingdom
| | - Rachael Walker
- Flow Cytometry Facility, Babraham Institute, Cambridge, United Kingdom
| | | | - Yoshinori Fukui
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Angeliki Malliri
- Cell Signalling Group, Cancer Research UK Manchester Institute, University of Manchester, Macclesfield, United Kingdom
| | | |
Collapse
|
2
|
Pal DS, Lin Y, Zhan H, Banerjee T, Kuhn J, Providence S, Devreotes PN. Optogenetic modulation of guanine nucleotide exchange factors of Ras superfamily proteins directly controls cell shape and movement. Front Cell Dev Biol 2023; 11:1195806. [PMID: 37492221 PMCID: PMC10363612 DOI: 10.3389/fcell.2023.1195806] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023] Open
Abstract
In this article, we provide detailed protocols on using optogenetic dimerizers to acutely perturb activities of guanine nucleotide exchange factors (GEFs) specific to Ras, Rac or Rho small GTPases of the migratory networks in various mammalian and amoeba cell lines. These GEFs are crucial components of signal transduction networks which link upstream G-protein coupled receptors to downstream cytoskeletal components and help cells migrate through their dynamic microenvironment. Conventional approaches to perturb and examine these signaling and cytoskeletal networks, such as gene knockout or overexpression, are protracted which allows networks to readjust through gene expression changes. Moreover, these tools lack spatial resolution to probe the effects of local network activations. To overcome these challenges, blue light-inducible cryptochrome- and LOV domain-based dimerization systems have been recently developed to control signaling or cytoskeletal events in a spatiotemporally precise manner. We illustrate that, within minutes of global membrane recruitment of full-length GEFs or their catalytic domains only, widespread increases or decreases in F-actin rich protrusions and cell size occur, depending on the particular node in the networks targeted. Additionally, we demonstrate localized GEF recruitment as a robust assay system to study local network activation-driven changes in polarity and directed migration. Altogether, these optical tools confirmed GEFs of Ras superfamily GTPases as regulators of cell shape, actin dynamics, and polarity. Furthermore, this optogenetic toolbox may be exploited in perturbing complex signaling interactions in varied physiological contexts including mammalian embryogenesis.
Collapse
Affiliation(s)
- Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Yiyan Lin
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Huiwang Zhan
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Tatsat Banerjee
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Jonathan Kuhn
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Stephenie Providence
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- Ingenuity Research Program, Baltimore Polytechnic Institute, Baltimore, MD, United States
| | - Peter N. Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
3
|
Wongviriya A, Shelton RM, Cooper PR, Milward MR, Landini G. The relationship between sphingosine-1-phosphate receptor 2 and epidermal growth factor in migration and invasion of oral squamous cell carcinoma. Cancer Cell Int 2023; 23:65. [PMID: 37038210 PMCID: PMC10088162 DOI: 10.1186/s12935-023-02906-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/27/2023] [Indexed: 04/12/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a lipid mediator and its binding to the S1P receptor 2 (S1PR2) is reported to regulate cytoskeletal organization. Epidermal growth factor (EGF) has been shown to induce migration and invasion in tumour cells. Since binding of S1P to S1PR2 and EGF to the EGF receptors exhibit some overlapping functionality, this study aimed to determine whether S1PR2 was involved in EGF-induced migration and invasion of oral squamous cell carcinoma (OSCC) lines and to identify any potential crosstalk between the two pathways. Migration was investigated using the scratch wound assay while invasion was studied using the transwell invasion and multicellular tumour spheroid (MCTS) assays. Activity of Rac1, a RhoGTPase, was measured using G-LISA (small GTPase activation assays) while S1P production was indirectly measured via the expression of sphingosine kinase (Sphk). S1PR2 inhibition with 10 µM JTE013 reduced EGF-induced migration, invasion and Rac1 activity, however, stimulation of S1PR2 with 10 µM CYM5478 did not enhance the effect of EGF on migration, invasion or Rac1 activity. The data demonstrated a crosstalk between EGF/EGFR and S1P/S1PR2 pathways at the metabolic level. S1PR2 was not involved in EGF production, but EGF promoted S1P production through the upregulation of Sphk1. In conclusion, OSCC lines could not migrate and invade without S1PR2 regulation, even with EGF stimulation. EGF also activated S1PR2 by stimulating S1P production via Sphk1. The potential for S1PR2 to control cellular motility may lead to promising treatments for OSCC patients and potentially prevent or reduce metastasis.
Collapse
Affiliation(s)
- Adjabhak Wongviriya
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Richard M Shelton
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Paul R Cooper
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Michael R Milward
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Gabriel Landini
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK.
| |
Collapse
|
4
|
de Assis LVM, Lacerda JT, Moraes MN, Domínguez-Amorocho OA, Kinker GS, Mendes D, Silva MM, Menck CFM, Câmara NOS, Castrucci AMDL. Melanopsin (Opn4) is an oncogene in cutaneous melanoma. Commun Biol 2022; 5:461. [PMID: 35562405 PMCID: PMC9106662 DOI: 10.1038/s42003-022-03425-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/27/2022] [Indexed: 02/08/2023] Open
Abstract
The search for new therapeutical targets for cutaneous melanoma and other cancers is an ongoing task. We expanded this knowledge by evaluating whether opsins, light- and thermo-sensing proteins, could display tumor-modulatory effects on melanoma cancer. Using different experimental approaches, we show that melanoma cell proliferation is slower in the absence of Opn4, compared to Opn4WT due to an impaired cell cycle progression and reduced melanocyte inducing transcription factor (Mitf) expression. In vivo tumor progression of Opn4KO cells is remarkably reduced due to slower proliferation, and higher immune system response in Opn4KO tumors. Using pharmacological assays, we demonstrate that guanylyl cyclase activity is impaired in Opn4KO cells. Evaluation of Tumor Cancer Genome Atlas (TCGA) database confirms our experimental data as reduced MITF and OPN4 expression in human melanoma correlates with slower cell cycle progression and presence of immune cells in the tumor microenvironment (TME). Proteomic analyses of tumor bulk show that the reduced growth of Opn4KO tumors is associated with reduced Mitf signaling, higher translation of G2/M proteins, and impaired guanylyl cyclase activity. Conversely, in Opn4WT tumors increased small GTPase and an immune-suppressive TME are found. Such evidence points to OPN4 as an oncogene in melanoma, which could be pharmacologically targeted.
Collapse
Affiliation(s)
- Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil.
- Institute of Neurobiology, Center for Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany.
| | - José Thalles Lacerda
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Maria Nathália Moraes
- Laboratory of Neurobiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Gabriela Sarti Kinker
- Laboratory of Translational Immuno-Oncology A. C. Camargo Cancer Center - International Research Center, São Paulo, Brazil
| | - Davi Mendes
- DNA Repair Lab, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Matheus Molina Silva
- DNA Repair Lab, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Carlos Frederico Martins Menck
- DNA Repair Lab, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana Maria de Lauro Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
5
|
Jobe NP, Åsberg L, Andersson T. Reduced WNT5A signaling in melanoma cells favors an amoeboid mode of invasion. Mol Oncol 2021; 15:1835-1848. [PMID: 33969605 PMCID: PMC8253101 DOI: 10.1002/1878-0261.12974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 02/25/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Tumor cells invade and spread via either a mesenchymal or an amoeboid mode of migration. Amoeboid tumor cells have a rounded morphology and pronounced RhoA activity. Here, we investigate how WNT5A signaling, a tumor promotor in melanoma, relates to Rho GTPase activity and amoeboid migration. We compared melanoma cells with low (HTB63 cells) and high (WM852 cells) WNT5A expression. HTB63 cells exhibited an amoeboid morphology and had higher RhoA activity but lower invasiveness than WM852 cells in a three‐dimensional (3D) collagen matrix. We next explored the relationships between WNT5A, morphology, and invasive behavior. WNT5A knockdown impaired Rho GTPase Cdc42 activity, resulting in reduced invasion of amoeboid and mesenchymal melanoma cells. Interestingly, knockdown of WNT5A or inhibition of its secretion in WM852 cells expressing wild‐type BRAF also led to increased RhoA activity via decreased RND3 expression, resulting in predominantly amoeboid morphology. In contrast, such treatments had the opposite effects on RND3 expression and RhoA activity in HTB63 cells expressing the active BRAFV600 mutation. However, treatment of HTB63 cells with a BRAF inhibitor made them respond to WNT5A knockdown in a similar manner as WM852 cells expressing wild‐type BRAF. We next found that dual targeting of WNT5A and RhoA more effectively reduced melanoma cell invasion than targeting either protein individually. Taken together, our results suggest that low WNT5A signaling in melanoma cells promotes a rounded amoeboid type of invasion, which quite likely serves as a compensatory response to decreased WNT5A/Cdc42‐driven invasion. This phenomenon partially explains the enduring melanoma cell invasion observed after impaired WNT5A signaling and has therapeutic implications. Our results suggest that dual targeting of WNT5A and RhoA signaling is a more effective strategy for controlling the invasion of BRAF wild‐type and BRAFV600 mutated melanomas treated with a BRAF inhibitor than targeting either of the proteins individually.
Collapse
Affiliation(s)
- Njainday Pulo Jobe
- Experimental Pathology, Department of Translational Medicine, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Lisa Åsberg
- Experimental Pathology, Department of Translational Medicine, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Tommy Andersson
- Experimental Pathology, Department of Translational Medicine, Skåne University Hospital, Lund University, Malmö, Sweden
| |
Collapse
|
6
|
Vav proteins maintain epithelial traits in breast cancer cells using miR-200c-dependent and independent mechanisms. Oncogene 2018; 38:209-227. [PMID: 30087437 PMCID: PMC6230471 DOI: 10.1038/s41388-018-0433-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/04/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022]
Abstract
The bidirectional regulation of epithelial-mesenchymal transitions (EMT) is key in tumorigenesis. Rho GTPases regulate this process via canonical pathways that impinge on the stability of cell-to-cell contacts, cytoskeletal dynamics, and cell invasiveness. Here, we report that the Rho GTPase activators Vav2 and Vav3 utilize a new Rac1-dependent and miR-200c-dependent mechanism that maintains the epithelial state by limiting the abundance of the Zeb2 transcriptional repressor in breast cancer cells. In parallel, Vav proteins engage a mir-200c-independent expression prometastatic program that maintains epithelial cell traits only under 3D culture conditions. Consistent with this, the depletion of endogenous Vav proteins triggers mesenchymal features in epithelioid breast cancer cells. Conversely, the ectopic expression of an active version of Vav2 promotes mesenchymal-epithelial transitions using E-cadherin-dependent and independent mechanisms depending on the mesenchymal breast cancer cell line used. In silico analyses suggest that the negative Vav anti-EMT pathway is operative in luminal breast tumors. Gene signatures from the Vav-associated proepithelial and prometastatic programs have prognostic value in breast cancer patients.
Collapse
|
7
|
Bustelo XR. RHO GTPases in cancer: known facts, open questions, and therapeutic challenges. Biochem Soc Trans 2018; 46:741-760. [PMID: 29871878 PMCID: PMC7615761 DOI: 10.1042/bst20170531] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/17/2018] [Accepted: 05/03/2018] [Indexed: 02/06/2023]
Abstract
RHO GTPases have been traditionally associated with protumorigenic functions. While this paradigm is still valid in many cases, recent data have unexpectedly revealed that RHO proteins can also play tumor suppressor roles. RHO signaling elements can also promote both pro- and antitumorigenic effects using GTPase-independent mechanisms, thus giving an extra layer of complexity to the role of these proteins in cancer. Consistent with these variegated roles, both gain- and loss-of-function mutations in RHO pathway genes have been found in cancer patients. Collectively, these observations challenge long-held functional archetypes for RHO proteins in both normal and cancer cells. In this review, I will summarize these data and discuss new questions arising from them such as the functional and clinical relevance of the mutations found in patients, the mechanistic orchestration of those antagonistic functions in tumors, and the pros and cons that these results represent for the development of RHO-based anticancer drugs.
Collapse
Affiliation(s)
- Xosé R Bustelo
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, and Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
8
|
Robles-Valero J, Lorenzo-Martín LF, Fernández-Pisonero I, Bustelo XR. Rho guanosine nucleotide exchange factors are not such bad guys after all in cancer a. Small GTPases 2018; 11:233-239. [PMID: 29313423 DOI: 10.1080/21541248.2018.1423851] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Rho GDP/GTP exchange factors (GEFs), the enzymes that trigger the stimulation of Rho GTPases during cell signaling, are widely deemed as potential therapeutic targets owing to their protumorigenic functions. However, the sparse use of animal models has precluded a full understanding of their pathophysiological roles at the organismal level. In a recent article in Cancer Cell, we have reported that the Vav1 GEF unexpectedly acts as a tumor suppressor by mediating the noncatalytic nucleation of cytoplasmic complexes between the E3 ubiquitin ligase Cbl-b and the active Notch1 intracellular domain (ICN1). These complexes favor the ubiquitinylation-mediated degradation of ICN1 in the proteosome and, therefore, the dampening of ICN1 signals in cells. The elimination of Vav1 in mice exacerbates ICN1 signaling in specific thymocyte subpopulations and, in collaboration with ancillary mutations, prompts the development of ICN1-driven T cell acute lymphoblastic leukemia (T-ALL). This new Vav1-dependent pathway antagonizes the fitness of T-ALL of the TLX+ clinical subtype in humans. As a result, VAV1 is found recurrently silenced in both TLX+ T-ALL cell lines and patients. These results call for an overall reevaluation of Rho GEF function in cancer.
Collapse
Affiliation(s)
- Javier Robles-Valero
- Centro de Investigación del Cáncer, CSIC-University of Salamanca , Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca , Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca , Salamanca, Spain
| | - L Francisco Lorenzo-Martín
- Centro de Investigación del Cáncer, CSIC-University of Salamanca , Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca , Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca , Salamanca, Spain
| | - Isabel Fernández-Pisonero
- Centro de Investigación del Cáncer, CSIC-University of Salamanca , Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca , Salamanca, Spain
| | - Xosé R Bustelo
- Centro de Investigación del Cáncer, CSIC-University of Salamanca , Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca , Salamanca, Spain
| |
Collapse
|
9
|
Bracalente C, Ibañez IL, Berenstein A, Notcovich C, Cerda MB, Klamt F, Chernomoretz A, Durán H. Reprogramming human A375 amelanotic melanoma cells by catalase overexpression: Upregulation of antioxidant genes correlates with regression of melanoma malignancy and with malignant progression when downregulated. Oncotarget 2018; 7:41154-41171. [PMID: 27206673 PMCID: PMC5173049 DOI: 10.18632/oncotarget.9273] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 04/02/2016] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen species (ROS) are implicated in tumor transformation. The antioxidant system (AOS) protects cells from ROS damage. However, it is also hijacked by cancers cells to proliferate within the tumor. Thus, identifying proteins altered by redox imbalance in cancer cells is an attractive prognostic and therapeutic tool. Gene expression microarrays in A375 melanoma cells with different ROS levels after overexpressing catalase were performed. Dissimilar phenotypes by differential compensation to hydrogen peroxide scavenging were generated. The melanotic A375-A7 (A7) upregulated TYRP1, CNTN1 and UCHL1 promoting melanogenesis. The metastatic A375-G10 (G10) downregulated MTSS1 and TIAM1, proteins absent in metastasis. Moreover, differential coexpression of AOS genes (EPHX2, GSTM3, MGST1, MSRA, TXNRD3, MGST3 and GSR) was found in A7 and G10. Their increase in A7 improved its AOS ability and therefore, oxidative stress response, resembling less aggressive tumor cells. Meanwhile, their decrease in G10 revealed a disruption in the AOS and therefore, enhanced its metastatic capacity. These gene signatures, not only bring new insights into the physiopathology of melanoma, but also could be relevant in clinical prognostic to classify between non aggressive and metastatic melanomas.
Collapse
Affiliation(s)
- Candelaria Bracalente
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Irene L Ibañez
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Ariel Berenstein
- Fundación Instituto Leloir and Departamento de Física, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cintia Notcovich
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina
| | - María B Cerda
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina
| | - Fabio Klamt
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Ariel Chernomoretz
- Fundación Instituto Leloir and Departamento de Física, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Hebe Durán
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina.,Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| |
Collapse
|
10
|
Marei H, Malliri A. GEFs: Dual regulation of Rac1 signaling. Small GTPases 2017; 8:90-99. [PMID: 27314616 PMCID: PMC5464116 DOI: 10.1080/21541248.2016.1202635] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/10/2016] [Accepted: 06/10/2016] [Indexed: 12/15/2022] Open
Abstract
GEFs play a critical role in regulating Rac1 signaling. They serve as signaling nodes converting upstream signals into downstream Rac1-driven cellular responses. Through associating with membrane-bound Rac1, GEFs facilitate the exchange of GDP for GTP, thereby activating Rac1. As a result, Rac1 undergoes conformational changes that mediate its interaction with downstream effectors, linking Rac1 to a multitude of physiological and pathological processes. Interestingly, there are at least 20 GEFs involved in Rac1 activation, suggesting a more complex role of GEFs in regulating Rac1 signaling apart from promoting the exchange of GDP for GTP. Indeed, accumulating evidence implicates GEFs in directing the specificity of Rac1-driven signaling cascades, although the underlying mechanisms were poorly defined. Recently, through conducting a comparative study, we highlighted the role of 2 Rac-specific GEFs, Tiam1 and P-Rex1, in dictating the biological outcome downstream of Rac1. Importantly, further proteomic analysis uncovered a GEF activity-independent function for both GEFs in modulating the Rac1 interactome, which results in the stimulation of GEF-specific signaling cascades. Here, we provide an overview of our recent findings and discuss the role of GEFs as master regulators of Rac1 signaling with a particular focus on GEF-mediated modulation of cell migration following Rac1 activation.
Collapse
Affiliation(s)
- Hadir Marei
- Cell Signaling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Angeliki Malliri
- Cell Signaling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| |
Collapse
|
11
|
Hofschröer V, Koch KA, Ludwig FT, Friedl P, Oberleithner H, Stock C, Schwab A. Extracellular protonation modulates cell-cell interaction mechanics and tissue invasion in human melanoma cells. Sci Rep 2017; 7:42369. [PMID: 28205573 PMCID: PMC5304230 DOI: 10.1038/srep42369] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/10/2017] [Indexed: 12/25/2022] Open
Abstract
Detachment of cells from the primary tumour precedes metastatic progression by
facilitating cell release into the tissue. Solid tumours exhibit altered pH
homeostasis with extracellular acidification. In human melanoma, the
Na+/H+ exchanger NHE1 is an important modifier of
the tumour nanoenvironment. Here we tested the modulation of cell-cell-adhesion by
extracellular pH and NHE1. MV3 tumour spheroids embedded in a collagen matrix
unravelled the efficacy of cell-cell contact loosening and 3D emigration into an
environment mimicking physiological confinement. Adhesive interaction strength
between individual MV3 cells was quantified using atomic force microscopy and
validated by multicellular aggregation assays. Extracellular acidification from
pHe7.4 to 6.4 decreases cell migration and invasion but increases
single cell detachment from the spheroids. Acidification and NHE1 overexpression
both reduce cell-cell adhesion strength, indicated by reduced maximum pulling forces
and adhesion energies. Multicellular aggregation and spheroid formation are strongly
impaired under acidification or NHE1 overexpression. We show a clear dependence of
melanoma cell-cell adhesion on pHe and NHE1 as a modulator. These effects
are opposite to cell-matrix interactions that are strengthened by protons extruded
via NHE1. We conclude that these opposite effects of NHE1 act synergistically during
the metastatic cascade.
Collapse
Affiliation(s)
| | | | | | - Peter Friedl
- Radboud University Medical Centre, Radboud Institute for Molecular Life Sciences, Department of Cell Biology, Nijmegen, The Netherlands.,David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States.,Cancer Genomics Center, CG Utrecht, The Netherlands
| | | | - Christian Stock
- Department of Gastroenterology, Hannover Medical School, Hannover, Germany
| | - Albrecht Schwab
- Institute of Physiology II, University of Münster, Münster, Germany
| |
Collapse
|
12
|
Marei H, Carpy A, Macek B, Malliri A. Proteomic analysis of Rac1 signaling regulation by guanine nucleotide exchange factors. Cell Cycle 2016; 15:1961-74. [PMID: 27152953 PMCID: PMC4968972 DOI: 10.1080/15384101.2016.1183852] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/13/2016] [Accepted: 04/22/2016] [Indexed: 10/30/2022] Open
Abstract
The small GTPase Rac1 is implicated in various cellular processes that are essential for normal cell function. Deregulation of Rac1 signaling has also been linked to a number of diseases, including cancer. The diversity of Rac1 functioning in cells is mainly attributed to its ability to bind to a multitude of downstream effectors following activation by Guanine nucleotide Exchange Factors (GEFs). Despite the identification of a large number of Rac1 binding partners, factors influencing downstream specificity are poorly defined, thus hindering the detailed understanding of both Rac1's normal and pathological functions. In a recent study, we demonstrated a role for 2 Rac-specific GEFs, Tiam1 and P-Rex1, in mediating Rac1 anti- versus pro-migratory effects, respectively. Importantly, via conducting a quantitative proteomic screen, we identified distinct changes in the Rac1 interactome following activation by either GEF, indicating that these opposing effects are mediated through GEF modulation of the Rac1 interactome. Here, we present the full list of identified Rac1 interactors together with functional annotation of the differentially regulated Rac1 binding partners. In light of this data, we also provide additional insights into known and novel signaling cascades that might account for the GEF-mediated Rac1-driven cellular effects.
Collapse
Affiliation(s)
- Hadir Marei
- Cell Signaling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Alejandro Carpy
- Proteome Center Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - Boris Macek
- Proteome Center Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - Angeliki Malliri
- Cell Signaling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| |
Collapse
|
13
|
Ryan MB, Finn AJ, Pedone KH, Thomas NE, Der CJ, Cox AD. ERK/MAPK Signaling Drives Overexpression of the Rac-GEF, PREX1, in BRAF- and NRAS-Mutant Melanoma. Mol Cancer Res 2016; 14:1009-1018. [PMID: 27418645 DOI: 10.1158/1541-7786.mcr-16-0184] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/01/2016] [Indexed: 12/14/2022]
Abstract
Recently, we identified that PREX1 overexpression is critical for metastatic but not tumorigenic growth in a mouse model of NRAS-driven melanoma. In addition, a PREX1 gene signature correlated with and was dependent on ERK MAPK activation in human melanoma cell lines. In the current study, the underlying mechanism of PREX1 overexpression in human melanoma was assessed. PREX1 protein levels were increased in melanoma tumor tissues and cell lines compared with benign nevi and normal melanocytes, respectively. Suppression of PREX1 by siRNA impaired invasion but not proliferation in vitro PREX1-dependent invasion was attributable to PREX1-mediated activation of the small GTPase RAC1 but not the related small GTPase CDC42. Pharmacologic inhibition of ERK signaling reduced PREX1 gene transcription and additionally regulated PREX1 protein stability. This ERK-dependent upregulation of PREX1 in melanoma, due to both increased gene transcription and protein stability, contrasts with the mechanisms identified in breast and prostate cancers, in which PREX1 overexpression was driven by gene amplification and HDAC-mediated gene transcription, respectively. Thus, although PREX1 expression is aberrantly upregulated and regulates RAC1 activity and invasion in these three different tumor types, the mechanisms of its upregulation are distinct and context dependent. IMPLICATIONS This study identifies an ERK-dependent mechanism that drives PREX1 upregulation and subsequent RAC1-dependent invasion in BRAF- and NRAS-mutant melanoma. Mol Cancer Res; 14(10); 1009-18. ©2016 AACR.
Collapse
Affiliation(s)
- Meagan B Ryan
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alexander J Finn
- Department of Dermatology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Katherine H Pedone
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nancy E Thomas
- Department of Dermatology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Channing J Der
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| | - Adrienne D Cox
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Department of Radiation Oncology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
14
|
Marei H, Carpy A, Woroniuk A, Vennin C, White G, Timpson P, Macek B, Malliri A. Differential Rac1 signalling by guanine nucleotide exchange factors implicates FLII in regulating Rac1-driven cell migration. Nat Commun 2016; 7:10664. [PMID: 26887924 PMCID: PMC4759627 DOI: 10.1038/ncomms10664] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 01/08/2016] [Indexed: 01/22/2023] Open
Abstract
The small GTPase Rac1 has been implicated in the formation and dissemination of tumours. Upon activation by guanine nucleotide exchange factors (GEFs), Rac1 associates with a variety of proteins in the cell thereby regulating various functions, including cell migration. However, activation of Rac1 can lead to opposing migratory phenotypes raising the possibility of exacerbating tumour progression when targeting Rac1 in a clinical setting. This calls for the identification of factors that influence Rac1-driven cell motility. Here we show that Tiam1 and P-Rex1, two Rac GEFs, promote Rac1 anti- and pro-migratory signalling cascades, respectively, through regulating the Rac1 interactome. In particular, we demonstrate that P-Rex1 stimulates migration through enhancing the interaction between Rac1 and the actin-remodelling protein flightless-1 homologue, to modulate cell contraction in a RhoA-ROCK-independent manner.
Collapse
Affiliation(s)
- Hadir Marei
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M204BX, UK
| | - Alejandro Carpy
- Proteome Center Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Tuebingen 72026, Germany
| | - Anna Woroniuk
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M204BX, UK
| | - Claire Vennin
- Invasion and Metastasis Group, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales 2010, Australia
| | - Gavin White
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M204BX, UK
| | - Paul Timpson
- Invasion and Metastasis Group, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales 2010, Australia
| | - Boris Macek
- Proteome Center Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Tuebingen 72026, Germany
| | - Angeliki Malliri
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M204BX, UK
| |
Collapse
|
15
|
Xu K, Tian X, Oh SY, Movassaghi M, Naber SP, Kuperwasser C, Buchsbaum RJ. The fibroblast Tiam1-osteopontin pathway modulates breast cancer invasion and metastasis. Breast Cancer Res 2016; 18:14. [PMID: 26821678 PMCID: PMC4730665 DOI: 10.1186/s13058-016-0674-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 12/30/2015] [Indexed: 12/21/2022] Open
Abstract
Background The tumor microenvironment has complex effects in cancer pathophysiology that are not fully understood. Most cancer therapies are directed against malignant cells specifically, leaving pro-malignant signals from the microenvironment unaddressed. Defining specific mechanisms by which the tumor microenvironment contributes to breast cancer metastasis may lead to new therapeutic approaches against advanced breast cancer. Methods We use a novel method for manipulating three-dimensional mixed cell co-cultures, along with studies in mouse xenograft models of human breast cancer and a histologic study of human breast cancer samples, to investigate how breast cancer-associated fibroblasts affect the malignant behaviors of breast cancer cells. Results Altering fibroblast Tiam1 expression induces changes in invasion, migration, epithelial-mesenchymal transition, and cancer stem cell characteristics in associated breast cancer cells. These changes are both dependent on fibroblast secretion of osteopontin and also long-lasting even after cancer cell dissociation from the fibroblasts, indicating a novel Tiam1-osteopontin pathway in breast cancer-associated fibroblasts. Notably, inhibition of fibroblast osteopontin with low doses of a novel small molecule prevents lung metastasis in a mouse model of human breast cancer metastasis. Moreover, fibroblast expression patterns of Tiam1 and osteopontin in human breast cancers show converse changes correlating with invasion, supporting the hypothesis that this pathway in tumor-associated fibroblasts regulates breast cancer invasiveness in human disease and is thus clinically relevant. Conclusions These findings suggest a new therapeutic paradigm for preventing breast cancer metastasis. Pro-malignant signals from the tumor microenvironment with long-lasting effects on associated cancer cells may perpetuate the metastatic potential of developing cancers. Inhibition of these microenvironment signals represents a new therapeutic strategy against cancer metastasis that enables targeting of stromal cells with less genetic plasticity than associated cancer cells and opens new avenues for investigation of novel therapeutic targets and agents. Electronic supplementary material The online version of this article (doi:10.1186/s13058-016-0674-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kun Xu
- Molecular Oncology Research Institute, Tufts Medical Center, 75 Kneeland Street, Boston, MA, 02111, USA.
| | - Xuejun Tian
- Department of Pathology, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA.
| | - Sun Y Oh
- Molecular Oncology Research Institute, Tufts Medical Center, 75 Kneeland Street, Boston, MA, 02111, USA. .,Department of Medicine, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA.
| | - Mohammad Movassaghi
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| | - Stephen P Naber
- Department of Pathology, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA.
| | - Charlotte Kuperwasser
- Molecular Oncology Research Institute, Tufts Medical Center, 75 Kneeland Street, Boston, MA, 02111, USA. .,Developmental, Molecular, and Chemical Biology Department, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, 02111, USA.
| | - Rachel J Buchsbaum
- Molecular Oncology Research Institute, Tufts Medical Center, 75 Kneeland Street, Boston, MA, 02111, USA. .,Department of Medicine, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA.
| |
Collapse
|
16
|
Cell Adhesion Molecules and Ubiquitination-Functions and Significance. BIOLOGY 2015; 5:biology5010001. [PMID: 26703751 PMCID: PMC4810158 DOI: 10.3390/biology5010001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/02/2015] [Accepted: 12/15/2015] [Indexed: 12/11/2022]
Abstract
Cell adhesion molecules of the immunoglobulin (Ig) superfamily represent the biggest group of cell adhesion molecules. They have been analyzed since approximately 40 years ago and most of them have been shown to play a role in tumor progression and in the nervous system. All members of the Ig superfamily are intensively posttranslationally modified. However, many aspects of their cellular functions are not yet known. Since a few years ago it is known that some of the Ig superfamily members are modified by ubiquitin. Ubiquitination has classically been described as a proteasomal degradation signal but during the last years it became obvious that it can regulate many other processes including internalization of cell surface molecules and lysosomal sorting. The purpose of this review is to summarize the current knowledge about the ubiquitination of cell adhesion molecules of the Ig superfamily and to discuss its potential physiological roles in tumorigenesis and in the nervous system.
Collapse
|
17
|
Abstract
INTRODUCTION Rho GTPases are master regulators of actomyosin structure and dynamics and play pivotal roles in a variety of cellular processes including cell morphology, gene transcription, cell cycle progression, and cell adhesion. Because aberrant Rho GTPase signaling activities are widely associated with human cancer, key components of Rho GTPase signaling pathways have attracted increasing interest as potential therapeutic targets. Similar to Ras, Rho GTPases themselves were, until recently, deemed "undruggable" because of structure-function considerations. Several approaches to interfere with Rho GTPase signaling have been explored and show promise as new ways for tackling cancer cells. AREAS COVERED This review focuses on the recent progress in targeting the signaling activities of three prototypical Rho GTPases, that is, RhoA, Rac1, and Cdc42. The authors describe the involvement of these Rho GTPases, their key regulators and effectors in cancer. Furthermore, the authors discuss the current approaches for rationally targeting aberrant Rho GTPases along their signaling cascades, upstream and downstream of Rho GTPases, and posttranslational modifications at a molecular level. EXPERT OPINION To date, while no clinically effective drugs targeting Rho GTPase signaling for cancer treatment are available, tool compounds and lead drugs that pharmacologically inhibit Rho GTPase pathways have shown promise. Small-molecule inhibitors targeting Rho GTPase signaling may add new treatment options for future precision cancer therapy, particularly in combination with other anti-cancer agents.
Collapse
Affiliation(s)
- Yuan Lin
- Division of Experimental Hematology and Cancer Biology, Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229, USA
| |
Collapse
|
18
|
Ma HL, Gong F, Tang Y, Li X, Li X, Yang X, Lu G. Inhibition of Endometrial Tiam1/Rac1 Signals Induced by miR-22 Up-Regulation Leads to the Failure of Embryo Implantation During the Implantation Window in Pregnant Mice. Biol Reprod 2015; 92:152. [PMID: 25926441 DOI: 10.1095/biolreprod.115.128603] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/14/2015] [Indexed: 11/01/2022] Open
Abstract
This study assessed first the impact of endometrial Tiam1/Rac1 signals and microRNA-22 (miR-22) on embryo implantation in mice, and then the expression of the above three genes in the endometrium during the embryo implantation window in the natural menstrual cycle in women with repeated implantation failure (RIF) after in vitro fertilization treatment. Four hundred fifty-two Kun-ming female mice and 200 women (70 infertility patients with RIF, 130 women as controls) were entered into this study. Endometrial Tiam1/Rac1 signals and miR-22 expression were studied in clinical and mouse samples and serum estrogen (E2) and progesterone (P) were analyzed in clinical subjects. A pregnant mouse model based on an endometrial miR-22 and Tiam1 mRNA expression trend of patients with RIF was constructed and then the embryo implantation numbers were analyzed, and an ovariectomized mouse model was used to assess correlations of expression of these three genes with E2 and P. The results showed that during the embryo implantation window in the natural menstrual cycle, endometrial miR-22 was significantly higher whereas Tiam1/Rac1 signals were notably lower in patients with RIF than in controls, and the P:E2 ratio was statistically lower in the RIF group. Tiam1/Rac1 signal down-regulation and miR-22 up-regulation contributed to the inhibition of embryo implantation in mice. We also found a suppressive effect of miR-22 up-regulation on Tiam1/Rac1 signal expression, and reciprocal regulation of E2 and P for these three genes' expression in mice. In conclusion, miR-22 up-regulation and Tiam1/Rac1 signal down-regulation inhibited embryo implantation in mice; this mechanism may be partially due to the suppressive effect of miR-22 on Tiam1 expression, and is regulated to some extent by serum E2 and P. Our findings provide evidence that endometrial Tiam1/Rac1 signal down-regulation along with miR-22 up-regulation during embryo implantation window in the natural menstrual cycle may be one of the reasons for the failure of embryo implantation in patients with RIF.
Collapse
Affiliation(s)
- Hai-Lan Ma
- Institute of Reproductive & Stem Cell Engineering, Central South University, Changsha, Hunan, P.R. China
| | - Fei Gong
- Institute of Reproductive & Stem Cell Engineering, Central South University, Changsha, Hunan, P.R. China Reproductive & Genetic Hospital of Citic-Xiangya, Changsha, Hunan, P.R. China
| | - Yi Tang
- Institute of Reproductive & Stem Cell Engineering, Central South University, Changsha, Hunan, P.R. China Reproductive & Genetic Hospital of Citic-Xiangya, Changsha, Hunan, P.R. China
| | - Xihong Li
- Reproductive & Genetic Hospital of Citic-Xiangya, Changsha, Hunan, P.R. China
| | - Xiaofeng Li
- Reproductive & Genetic Hospital of Citic-Xiangya, Changsha, Hunan, P.R. China
| | - Xiaoyi Yang
- Reproductive & Genetic Hospital of Citic-Xiangya, Changsha, Hunan, P.R. China
| | - Guangxiu Lu
- Institute of Reproductive & Stem Cell Engineering, Central South University, Changsha, Hunan, P.R. China Reproductive & Genetic Hospital of Citic-Xiangya, Changsha, Hunan, P.R. China
| |
Collapse
|
19
|
Bhattacharya S, Ahir M, Patra P, Mukherjee S, Ghosh S, Mazumdar M, Chattopadhyay S, Das T, Chattopadhyay D, Adhikary A. PEGylated-thymoquinone-nanoparticle mediated retardation of breast cancer cell migration by deregulation of cytoskeletal actin polymerization through miR-34a. Biomaterials 2015; 51:91-107. [PMID: 25771001 DOI: 10.1016/j.biomaterials.2015.01.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/23/2014] [Accepted: 01/20/2015] [Indexed: 01/09/2023]
Abstract
Thymoquinone (TQ), a major active constituent of black seeds of Nigella sativa, has potential medical applications including spectrum of therapeutic properties against different cancers. However, little is known about their effect on breast cancer cell migration, which is the cause of over 90% of deaths worldwide. Herein, we have synthesized TQ-encapsulated nanoparticles using biodegradable, hydrophilic polymers like polyvinylpyrrolidone (PVP) and polyethyleneglycol (PEG) to overcome TQ's poor aqueous solubility, thermal and light sensitivity as well as consequently, minimal systemic bioavailability which can greatly improve the cancer treatment efficiency. Sizes of synthesized TQ-Nps were found to be below 50 nm and they were mostly spherical in shape with smooth surface texture. Estimation of the zeta potential also revealed that all the three TQ-Nps were negatively charged which also facilitated their cellular uptake. In the present investigation, we provide direct evidence that TQ-Nps showed more efficiency in killing cancer cells as well as proved to be less toxic to normal cells at a significantly lower dose than TQ. Interestingly, evaluation of the anti-migratory effect of the TQ-Nps, revealed that PEG4000-TQ-Nps showed much potent anti-migratory properties than the other types. Further studies indicated that PEG4000-TQ-Nps could significantly increase the expression of miR-34a through p53. Moreover, NPs mediated miR-34a up-regulation directly down-regulated Rac1 expression followed by actin depolymerisation thereby disrupting the actin cytoskeleton which leads to significant reduction in the lamellipodia and filopodia formation on cell surfaces thus retarding cell migration. Considering the biodegradability, non-toxicity and effectivity of PEG4000-TQ-Nps against cancer cell migration, TQ-Nps may provide new insights into specific therapeutic approach for cancer treatment.
Collapse
Affiliation(s)
- Saurav Bhattacharya
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, JD-2, Sector III, Salt Lake, Kolkata 700098, West Bengal, India
| | - Manisha Ahir
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, JD-2, Sector III, Salt Lake, Kolkata 700098, West Bengal, India
| | - Prasun Patra
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, JD-2, Sector III, Salt Lake, Kolkata 700098, West Bengal, India
| | - Sudeshna Mukherjee
- Department of Physiology, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009, West Bengal, India
| | - Swatilekha Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, West Bengal, India
| | - Minakshi Mazumdar
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, West Bengal, India
| | - Sreya Chattopadhyay
- Department of Physiology, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009, West Bengal, India
| | - Tanya Das
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, West Bengal, India
| | - Dhrubajyoti Chattopadhyay
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, JD-2, Sector III, Salt Lake, Kolkata 700098, West Bengal, India
| | - Arghya Adhikary
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, JD-2, Sector III, Salt Lake, Kolkata 700098, West Bengal, India.
| |
Collapse
|
20
|
Dirat B, Ader I, Golzio M, Massa F, Mettouchi A, Laurent K, Larbret F, Malavaud B, Cormont M, Lemichez E, Cuvillier O, Tanti JF, Bost F. Inhibition of the GTPase Rac1 mediates the antimigratory effects of metformin in prostate cancer cells. Mol Cancer Ther 2014; 14:586-96. [PMID: 25527635 DOI: 10.1158/1535-7163.mct-14-0102] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell migration is a critical step in the progression of prostate cancer to the metastatic state, the lethal form of the disease. The antidiabetic drug metformin has been shown to display antitumoral properties in prostate cancer cell and animal models; however, its role in the formation of metastases remains poorly documented. Here, we show that metformin reduces the formation of metastases to fewer solid organs in an orthotopic metastatic prostate cancer cell model established in nude mice. As predicted, metformin hampers cell motility in PC3 and DU145 prostate cancer cells and triggers a radical reorganization of the cell cytoskeleton. The small GTPase Rac1 is a master regulator of cytoskeleton organization and cell migration. We report that metformin leads to a major inhibition of Rac1 GTPase activity by interfering with some of its multiple upstream signaling pathways, namely P-Rex1 (a Guanine nucleotide exchange factor and activator of Rac1), cAMP, and CXCL12/CXCR4, resulting in decreased migration of prostate cancer cells. Importantly, overexpression of a constitutively active form of Rac1, or P-Rex, as well as the inhibition of the adenylate cyclase, was able to reverse the antimigratory effects of metformin. These results establish a novel mechanism of action for metformin and highlight its potential antimetastatic properties in prostate cancer.
Collapse
Affiliation(s)
- Béatrice Dirat
- INSERM, C3M, U1065, Team Cellular and Molecular Physiopathology of Obesity and Diabetes, Nice, France. Univ. Nice Sophia Antipolis, C3M, U1065, Nice, France
| | - Isabelle Ader
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France. Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Muriel Golzio
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France. Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Fabienne Massa
- INSERM, C3M, U1065, Team Cellular and Molecular Physiopathology of Obesity and Diabetes, Nice, France. Univ. Nice Sophia Antipolis, C3M, U1065, Nice, France
| | - Amel Mettouchi
- Univ. Nice Sophia Antipolis, C3M, U1065, Nice, France. INSERM, C3M, U1065, Equipe Labellisée Ligue Contre le Cancer, Team Microtoxins in Host Pathogens Interactions, Nice, France
| | - Kathiane Laurent
- INSERM, C3M, U1065, Team Cellular and Molecular Physiopathology of Obesity and Diabetes, Nice, France. Univ. Nice Sophia Antipolis, C3M, U1065, Nice, France
| | - Frédéric Larbret
- University of Nice Sophia Antipolis, EA6302, Flow Cytometry Facility, Hôpital l'Archet 1, Nice, France
| | - Bernard Malavaud
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France. Université de Toulouse, UPS, IPBS, Toulouse, France. Hôpital Rangueil, Service d'Urologie et de Transplantation Rénale, Toulouse, France
| | - Mireille Cormont
- INSERM, C3M, U1065, Team Cellular and Molecular Physiopathology of Obesity and Diabetes, Nice, France. Univ. Nice Sophia Antipolis, C3M, U1065, Nice, France
| | - Emmanuel Lemichez
- Univ. Nice Sophia Antipolis, C3M, U1065, Nice, France. INSERM, C3M, U1065, Equipe Labellisée Ligue Contre le Cancer, Team Microtoxins in Host Pathogens Interactions, Nice, France
| | - Olivier Cuvillier
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France. Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Jean François Tanti
- INSERM, C3M, U1065, Team Cellular and Molecular Physiopathology of Obesity and Diabetes, Nice, France. Univ. Nice Sophia Antipolis, C3M, U1065, Nice, France
| | - Frédéric Bost
- INSERM, C3M, U1065, Team Cellular and Molecular Physiopathology of Obesity and Diabetes, Nice, France. Univ. Nice Sophia Antipolis, C3M, U1065, Nice, France.
| |
Collapse
|
21
|
Clauditz TS, von Rheinbaben K, Lebok P, Minner S, Tachezy M, Borgmann K, Knecht R, Sauter G, Wilczak W, Blessmann M, Münscher A. Activated leukocyte cell adhesion molecule (ALCAM/CD166) expression in head and neck squamous cell carcinoma (HNSSC). Pathol Res Pract 2014; 210:649-55. [DOI: 10.1016/j.prp.2014.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 05/22/2014] [Accepted: 06/19/2014] [Indexed: 10/25/2022]
|
22
|
Ding Y, Chen B, Huang J, Zhang W, Yang H, Deng Y, Lin J, Wang S, Zhang X. Overexpression of Tiam1 is associated with malignant phenotypes of nasopharyngeal carcinoma. Oncol Rep 2014; 32:607-18. [PMID: 24912585 DOI: 10.3892/or.2014.3241] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/20/2014] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to analyze the roles of T lymphoma invasion and metastasis 1 (Tiam1) in nasopharyngeal carcinoma (NPC) progression and its correlation with clinicopathological features, including the survival of patients with NPC. Tiam1 protein expression in NPC tissues was examined using immunohistochemistry. Reverse transcription-polymerase chain reaction (RT-PCR) and immunofluorescence staining were performed to detect the expression of Tiam1 in 6 NPC cell lines. Stable Tiam1-overexpressing NPC cells using a transfection technique and Tiam1-silencing NPC cells using short hairpin RNA were constructed. Subsequently, MTT assay, plate and soft agar colony formation assays, cell adhesion, migration, invasion assays and experimental animal models were carried out to detect the biological functions of Tiam1 in vitro and in vivo. Immunohistochemical analysis revealed that Tiam1 had high expression in 96 of 140 (68.6%) paraffin-embedded archival NPC biopsies. Tiam1 overexpression was significantly associated with N classification (P=0.004), distant metastasis (P=0.042) and clinical stage (P=0.042). Patients with higher levels of Tiam1 expression had poorer overall survival (P=0.002). Multivariate analysis revealed that Tiam1 expression is an independent prognostic indicator for the overall survival of NPC patients. Using the approaches of exogenous overexpression and the knockdown of Tiam1 expression, respectively, it was confirmed that Tiam1 promoted cell proliferation, adhesion, invasion and migration in vitro and in vivo. These data support the notion that Tiam1 plays an important role in the progression of NPC, and the overexpression of Tiam1 is associated with malignant phenotypes of NPC.
Collapse
Affiliation(s)
- Yi Ding
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Bin Chen
- Department of Academic Research and Medical Training, General Hospital of Guangzhou Military Command of PLA, Guangzhou, Guangdong 510515, P.R. China
| | - Jing Huang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Wenli Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hongjun Yang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yongjian Deng
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jie Lin
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Shuang Wang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xiangmei Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
23
|
Wawrzyniak JA, Bianchi-Smiraglia A, Bshara W, Mannava S, Ackroyd J, Bagati A, Omilian AR, Im M, Fedtsova N, Miecznikowski JC, Moparthy KC, Zucker SN, Zhu Q, Kozlova NI, Berman AE, Hoek KS, Gudkov AV, Shewach DS, Morrison CD, Nikiforov MA. A purine nucleotide biosynthesis enzyme guanosine monophosphate reductase is a suppressor of melanoma invasion. Cell Rep 2013; 5:493-507. [PMID: 24139804 DOI: 10.1016/j.celrep.2013.09.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/20/2013] [Accepted: 09/11/2013] [Indexed: 01/02/2023] Open
Abstract
Melanoma is one of the most aggressive types of human cancers, and the mechanisms underlying melanoma invasive phenotype are not completely understood. Here, we report that expression of guanosine monophosphate reductase (GMPR), an enzyme involved in de novo biosynthesis of purine nucleotides, was downregulated in the invasive stages of human melanoma. Loss- and gain-of-function experiments revealed that GMPR downregulates the amounts of several GTP-bound (active) Rho-GTPases and suppresses the ability of melanoma cells to form invadopodia, degrade extracellular matrix, invade in vitro, and grow as tumor xenografts in vivo. Mechanistically, we demonstrated that GMPR partially depletes intracellular GTP pools. Pharmacological inhibition of de novo GTP biosynthesis suppressed whereas addition of exogenous guanosine increased invasion of melanoma cells as well as cells from other cancer types. Our data identify GMPR as a melanoma invasion suppressor and establish a link between guanosine metabolism and Rho-GTPase-dependent melanoma cell invasion.
Collapse
Affiliation(s)
- Joseph A Wawrzyniak
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Cook DR, Rossman KL, Der CJ. Rho guanine nucleotide exchange factors: regulators of Rho GTPase activity in development and disease. Oncogene 2013; 33:4021-35. [PMID: 24037532 DOI: 10.1038/onc.2013.362] [Citation(s) in RCA: 286] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/25/2013] [Accepted: 06/26/2013] [Indexed: 12/16/2022]
Abstract
The aberrant activity of Ras homologous (Rho) family small GTPases (20 human members) has been implicated in cancer and other human diseases. However, in contrast to the direct mutational activation of Ras found in cancer and developmental disorders, Rho GTPases are activated most commonly in disease by indirect mechanisms. One prevalent mechanism involves aberrant Rho activation via the deregulated expression and/or activity of Rho family guanine nucleotide exchange factors (RhoGEFs). RhoGEFs promote formation of the active GTP-bound state of Rho GTPases. The largest family of RhoGEFs is comprised of the Dbl family RhoGEFs with 70 human members. The multitude of RhoGEFs that activate a single Rho GTPase reflects the very specific role of each RhoGEF in controlling distinct signaling mechanisms involved in Rho activation. In this review, we summarize the role of Dbl RhoGEFs in development and disease, with a focus on Ect2 (epithelial cell transforming squence 2), Tiam1 (T-cell lymphoma invasion and metastasis 1), Vav and P-Rex1/2 (PtdIns(3,4,5)P3 (phosphatidylinositol (3,4,5)-triphosphate)-dependent Rac exchanger).
Collapse
Affiliation(s)
- D R Cook
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - K L Rossman
- 1] Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA [2] Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - C J Der
- 1] Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA [2] Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA [3] Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| |
Collapse
|
25
|
Yu LN, Zhang QL, Li X, Hua X, Cui YM, Zhang NJ, Liao WT, Ding YQ. Tiam1 transgenic mice display increased tumor invasive and metastatic potential of colorectal cancer after 1,2-dimethylhydrazine treatment. PLoS One 2013; 8:e73077. [PMID: 24069171 PMCID: PMC3771986 DOI: 10.1371/journal.pone.0073077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 07/14/2013] [Indexed: 11/28/2022] Open
Abstract
Background T lymphoma invasion and metastasis 1 (Tiam1) is a potential modifier of tumor development and progression. Our previous study in vitro and in nude mice suggested a promotion role of Tiam1 on invasion and metastasis of colorectal cancer (CRC). In the present study, we generated Tiam1/C1199-CopGFP transgenic mice to investigate the tumorigenetic, invasive and metastatic alterations in the colon and rectum of wild-type and Tiam1 transgenic mice under 1,2-dimethylhydrazine (DMH) treatment. Methods Transgenic mice were produced by the method of pronuclear microinlectlon. Whole-body fluorescence imaging (Lighttools, Edmonton, Alberta, Canada), PCR, and immunohistochemical techniques (IHC) were applied sequentially to identify the transgenic mice. The carcinogen DMH (20 mg/kg) was used to induce colorectal tumors though intraperitoneal (i.p.) injections once a week for 24 weeks from the age of 4 weeks on Tiam1 transgenic or non-transgenic mice. Results We successfully generated Tiam1/C1199-CopGFP transgenic mice and induced primary tumors in the intestine of both wild type and Tiam1 transgenic mice by DMH treatment. In addition, Tiam1 transgenic mice developed larger and more aggressive neoplasm than wild-type mice. Moreover, immunohistochemical staining revealed that upregulation of Tiam1 was correlated with increased expression of β-Catenin and Vimentin, and downregulation of E-Cadherin in these mice. Conclusions Our study has provided in vivo evidence supporting that Tiam1 promotes invasion and metastasis of CRC, most probably through activation of Wnt/β-catenin signaling pathway, in a Tiam1 transgenic mouse model.
Collapse
Affiliation(s)
- Li-Na Yu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Qing-Ling Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Xin Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Xing Hua
- Department of Pathology, the Forth Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Department of Pathology, Guangzhou Red Cross Hospital, Guangzhou, Guangdong, China
| | - Yan-Mei Cui
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Nian-Jie Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Wen-Ting Liao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
- * E-mail: (WTL); (YQD)
| | - Yan-Qing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
- * E-mail: (WTL); (YQD)
| |
Collapse
|
26
|
Niebel B, Wosnitza CI, Famulok M. RNA-aptamers that modulate the RhoGEF activity of Tiam1. Bioorg Med Chem 2013; 21:6239-46. [PMID: 23757206 DOI: 10.1016/j.bmc.2013.05.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/26/2013] [Accepted: 05/14/2013] [Indexed: 11/25/2022]
Abstract
Rho GTPases regulate the actin cytoskeleton and thereby control cell migration, cell morphology, cell motility, and other cellular functions. The gene product of the oncogene Tiam1 acts as a guanine nucleotide exchange factor (GEF) for the Rho GTPase Rac. Like other RhoGEFs, Tiam1 is involved in cancer progression, but it also counteracts invasion in different cancer cell types. Hence, further investigations are required to unravel the functions of Tiam1 in the context of cancer initiation and progression, which appear to be cell specific. Although RhoGEFs in general seem to be attractive therapeutic targets, not many inhibitors have been described, yet. Here we report the identification and characterization of inhibitory RNA aptamers that specifically target Tiam1. After 16 selection rounds three aptamers sharing a 15 nucleotides consensus motif were identified. The clones K91 and K11 inhibited the Tiam1-mediated activation of the GTPase Rac2 in vitro. The tightest binder K91 neither bound the Rho GEF Vav1 nor the Arf GEF Cytohesin-2. In the presence of Rac1, the binding of K91 to Tiam1 was impaired indicating that the binding motif on Tiam1 overlaps with the GTPase binding site. K91 and K11 are the first reported inhibitory molecules targeting the GEF function of Tiam1. Due to their specificity over related GEF proteins they may represent promising tools for further elucidation of the biological functions of Tiam1. We anticipated that these aptamers will prove useful in validating the ambiguous roles of Tiam1 in cancer biology.
Collapse
Affiliation(s)
- Björn Niebel
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Gerhard-Domagk-Str 1, 53121 Bonn, Germany
| | | | | |
Collapse
|
27
|
Huang YH, Lin YH, Chi HC, Liao CH, Liao CJ, Wu SM, Chen CY, Tseng YH, Tsai CY, Lin SY, Hung YT, Wang CJ, Lin CD, Lin KH. Thyroid hormone regulation of miR-21 enhances migration and invasion of hepatoma. Cancer Res 2013; 73:2505-17. [PMID: 23442323 DOI: 10.1158/0008-5472.can-12-2218] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thyroid hormone (T(3)) signaling through the thyroid hormone receptor (TRα1) regulates hepatoma cell growth and pathophysiology, but the underlying mechanisms are unclear at present. Here, we have shown that the oncomir microRNA-21 (miR-21) is activated by T(3) through a native T(3) response element in the primary miR-21 promoter. Overexpression of miR-21 promoted hepatoma cell migration and invasion, similar to that observed with T(3) stimulation in hepatoma cells. In addition, anti-miR-21-induced suppression of cell migration was rescued by T(3). The Rac-controlled regulator of invasion and metastasis, T-cell lymphoma invasion and metastasis 1 (TIAM1), was identified as a miR-21 target additionally downregulated by T(3). Attenuation and overexpression of miR-21 induced upregulation and downregulation of TIAM1, respectively. TIAM1 attenuation, in turn, enhanced migration and invasion via the upregulation of β-catenin, vimentin, and matrix metalloproteinase-2 in hepatoma cells. Notably, correlations between TRα1, miR-21, and TIAM1 expression patterns in animal models paralleled those observed in vitro. In the clinic, we observed a positive correlation (P = 0.005) between the tumor/nontumor ratios of TRα1 and miR-21 expression, whereas a negative correlation (P = 0.019) was seen between miR-21 and TIAM1 expression in patients with hepatoma. Our findings collectively indicate that miR-21 stimulation by T(3) and subsequent TIAM1 suppression promotes hepatoma cell migration and invasion.
Collapse
Affiliation(s)
- Ya-Hui Huang
- Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Gilsanz A, Sánchez-Martín L, Gutiérrez-López MD, Ovalle S, Machado-Pineda Y, Reyes R, Swart GW, Figdor CG, Lafuente EM, Cabañas C. ALCAM/CD166 adhesive function is regulated by the tetraspanin CD9. Cell Mol Life Sci 2013; 70:475-93. [PMID: 23052204 PMCID: PMC11113661 DOI: 10.1007/s00018-012-1132-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 07/20/2012] [Accepted: 08/13/2012] [Indexed: 10/27/2022]
Abstract
ALCAM/CD166 is a member of the immunoglobulin superfamily of cell adhesion molecules (Ig-CAMs) which mediates intercellular adhesion through either homophilic (ALCAM-ALCAM) or heterophilic (ALCAM-CD6) interactions. ALCAM-mediated adhesion is crucial in different physiological and pathological phenomena, with particular relevance in leukocyte extravasation, stabilization of the immunological synapse, T cell activation and proliferation and tumor growth and metastasis. Although the functional implications of ALCAM in these processes is well established, the mechanisms regulating its adhesive capacity remain obscure. Using confocal microscopy colocalization, and biochemical and functional analyses, we found that ALCAM directly associates with the tetraspanin CD9 on the leukocyte surface in protein complexes that also include the metalloproteinase ADAM17/TACE. The functional relevance of these interactions is evidenced by the CD9-induced upregulation of both homophilic and heterophilic ALCAM interactions, as reflected by increased ALCAM-mediated cell adhesion and T cell migration, activation and proliferation. The enhancement of ALCAM function induced by CD9 is mediated by a dual mechanism involving (1) augmented clustering of ALCAM molecules, and (2) upregulation of ALCAM surface expression due to inhibition of ADAM17 sheddase activity.
Collapse
Affiliation(s)
- Alvaro Gilsanz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Lorena Sánchez-Martín
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | - Susana Ovalle
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Yesenia Machado-Pineda
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Raquel Reyes
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Guido W. Swart
- Department of Biomolecular Chemistry, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Carl G. Figdor
- Department of Tumor Immunology, University Medical Centre, Radboud University, Nijmegen, The Netherlands
| | - Esther M. Lafuente
- Departamento de Microbiología I (Inmunología), Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Carlos Cabañas
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain
- Departamento de Microbiología I (Inmunología), Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
29
|
P-Rex1 cooperates with PDGFRβ to drive cellular migration in 3D microenvironments. PLoS One 2013; 8:e53982. [PMID: 23382862 PMCID: PMC3559689 DOI: 10.1371/journal.pone.0053982] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 12/05/2012] [Indexed: 01/11/2023] Open
Abstract
Expression of the Rac-guanine nucleotide exchange factor (RacGEF), P-Rex1 is a key determinant of progression to metastasis in a number of human cancers. In accordance with this proposed role in cancer cell invasion and metastasis, we find that ectopic expression of P-Rex1 in an immortalised human fibroblast cell line is sufficient to drive multiple migratory and invasive phenotypes. The invasive phenotype is greatly enhanced by the presence of a gradient of serum or platelet-derived growth factor, and is dependent upon the expression of functional PDGF receptor β. Consistently, the invasiveness of WM852 melanoma cells, which endogenously express P-Rex1 and PDGFRβ, is opposed by siRNA of either of these proteins. Furthermore, the current model of P-Rex1 activation is advanced through demonstration of P-Rex1 and PDGFRβ as components of the same macromolecular complex. These data suggest that P-Rex1 has an influence on physiological migratory processes, such as invasion of cancer cells, both through effects upon classical Rac1-driven motility and a novel association with RTK signalling complexes.
Collapse
|
30
|
Abstract
The ability of cells to invade into the dermis is a critical event in the development of cutaneous melanoma and ultimately an indicator of poor prognosis. However, the molecular events surrounding the acquisition of this invasive phenotype remain incompletely understood. Mutations in B-RAF are frequent in melanoma and are known to regulate the invasive phenotype. In this study, we sought to determine the molecular mechanisms controlling melanoma invasion. We found that mutant B-RAF signaling regulates a cadherin switch. In melanoma cells expressing mutant B-RAF we observed high levels of N-cadherin and low levels of E-cadherin. Depletion of mutant B-RAF, by siRNA, caused a decrease in the levels of N-cadherin and an increase in the levels of E-cadherin. Mechanistically, we found that this cadherin switch required the activity of Rac1 and its GEF, Tiam1, both of which show suppressed activity in the presence of mutant B-RAF. Consistent with the work of others, we found that depletion of mutant B-RAF decreased the invasive capacity of the melanoma cells. However, simultaneous depletion of B-RAF and Rac or Tiam1 resulted in invasive capacity similar to that of control cells. Taken together, our results suggest that mutant B-RAF signaling downregulates Tiam1/Rac activity resulting in an increase in N-cadherin levels and a decrease in E-cadherin levels and ultimately enhanced invasion.
Collapse
|
31
|
MiR-29c suppresses invasion and metastasis by targeting TIAM1 in nasopharyngeal carcinoma. Cancer Lett 2012; 329:181-8. [PMID: 23142282 DOI: 10.1016/j.canlet.2012.10.032] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/22/2012] [Accepted: 10/29/2012] [Indexed: 12/19/2022]
Abstract
Based on microarray analysis, we previously reported that miR-29c is significantly downregulated in nasopharyngeal carcinoma (NPC). However, little is known about the effect and molecular mechanisms of action of miR-29c deregulation during the development and progression of NPC. Quantitative RT-PCR demonstrated that miR-29c was significantly downregulated in NPC cell lines and clinical specimens. Wound healing, Transwell migration and lung metastasis assays demonstrated that ectopic expression of miR-29c inhibited NPC cell migration and invasion in vitro and suppressed the formation of lung metastases in vivo. T cell lymphoma invasion and metastasis 1 (TIAM1) was confirmed as a miR-29c target gene using luciferase reporter assays, quantitative RT-PCR and Western blotting. Ectopic expression of TIAM1 significantly promoted the migration and invasion of SUNE-1 cell line stably overexpressing miR-29c. The prognostic value of TIAM1 was analyzed in 217 NPC patients using immunohistochemistry. Strikingly, patients with high TIAM1 expression had poorer overall, disease-free and distant metastasis-free survival than patients with low TIAM1 expression. Furthermore, multivariate Cox regression analysis revealed that TIAM1 could serve as an independent prognostic factor in NPC. The newly identified miR-29c/TIAM1 pathway further elucidates the molecular mechanisms regulating invasion and metastasis in NPC, and may provide novel prognostic and treatment strategies for NPC patients.
Collapse
|
32
|
Citterio C, Menacho-Márquez M, García-Escudero R, Larive RM, Barreiro O, Sánchez-Madrid F, Paramio JM, Bustelo XR. The rho exchange factors vav2 and vav3 control a lung metastasis-specific transcriptional program in breast cancer cells. Sci Signal 2012; 5:ra71. [PMID: 23033540 DOI: 10.1126/scisignal.2002962] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The guanosine triphosphatases of the Rho and Rac subfamilies regulate protumorigenic pathways and are activated by guanine nucleotide exchange factors (Rho GEFs), which could be potential targets for anticancer therapies. We report that two Rho GEFs, Vav2 and Vav3, play synergistic roles in breast cancer by sustaining tumor growth, neoangiogenesis, and many of the steps involved in lung-specific metastasis. The involvement of Vav proteins in these processes did not correlate with Rac1 and RhoA activity or cell migration, implying the presence of additional biological programs. Microarray analyses revealed that Vav2 and Vav3 controlled a vast transcriptional program in breast cancer cells through mechanisms that were shared between the two proteins, isoform-specific or synergistic. Furthermore, the abundance of Vav-regulated transcripts was modulated by Rac1-dependent and Rac1-independent pathways. This transcriptome encoded therapeutically targetable proteins that played nonredundant roles in primary tumorigenesis and lung-specific metastasis, such as integrin-linked kinase (Ilk), the transforming growth factor-β family ligand inhibin βA, cyclooxygenase-2, and the epithelial cell adhesion molecule Tacstd2. It also contained gene signatures that predicted disease outcome in breast cancer patients. These results identify possible targets for treating breast cancer and lung metastases and provide a potential diagnostic tool for clinical use.
Collapse
Affiliation(s)
- Carmen Citterio
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Jannie KM, Stipp CS, Weiner JA. ALCAM regulates motility, invasiveness, and adherens junction formation in uveal melanoma cells. PLoS One 2012; 7:e39330. [PMID: 22745734 PMCID: PMC3383762 DOI: 10.1371/journal.pone.0039330] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 05/23/2012] [Indexed: 01/19/2023] Open
Abstract
ALCAM, a member of the immunoglobulin superfamily, has been implicated in numerous developmental events and has been repeatedly identified as a marker for cancer metastasis. Previous studies addressing ALCAM's role in cancer have, however, yielded conflicting results. Depending on the tumor cell type, ALCAM expression has been reported to be both positively and negatively correlated with cancer progression and metastasis in the literature. To better understand how ALCAM might regulate cancer cell behavior, we utilized a panel of defined uveal melanoma cell lines with high or low ALCAM levels, and directly tested the effects of manipulating these levels on cell motility, invasiveness, and adhesion using multiple assays. ALCAM expression was stably silenced by shRNA knockdown in a high-ALCAM cell line (MUM-2B); the resulting cells displayed reduced motility in gap-closure assays and a reduction in invasiveness as measured by a transwell migration assay. Immunostaining revealed that the silenced cells were defective in the formation of adherens junctions, at which ALCAM colocalizes with N-cadherin and ß-catenin in native cells. Additionally, we stably overexpressed ALCAM in a low-ALCAM cell line (MUM-2C); intriguingly, these cells did not exhibit any increase in motility or invasiveness, indicating that ALCAM is necessary but not sufficient to promote metastasis-associated cell behaviors. In these ALCAM-overexpressing cells, however, recruitment of ß-catenin and N-cadherin to adherens junctions was enhanced. These data confirm a previously suggested role for ALCAM in the regulation of adherens junctions, and also suggest a mechanism by which ALCAM might differentially enhance or decrease invasiveness, depending on the type of cadherin adhesion complexes present in tissues surrounding the primary tumor, and on the cadherin status of the tumor cells themselves.
Collapse
Affiliation(s)
- Karry M. Jannie
- Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Christopher S. Stipp
- Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Joshua A. Weiner
- Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
34
|
Dawson JC, Timpson P, Kalna G, Machesky LM. Mtss1 regulates epidermal growth factor signaling in head and neck squamous carcinoma cells. Oncogene 2012; 31:1781-93. [PMID: 21927027 PMCID: PMC3245856 DOI: 10.1038/onc.2011.376] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 07/13/2011] [Accepted: 07/22/2011] [Indexed: 12/11/2022]
Abstract
Mtss1 is located within chromosomal region 8q23-24, which is one of the three most commonly amplified regions in head and neck squamous cell carcinoma (HNSCC). Mtss1 is lost in metastatic cells, but confusingly is commonly overexpressed in primary tumors. Here we address possible reasons why Mtss1 is positively selected for in primary tumors. We find that Mtss1 enhances the localization of the epidermal growth factor (EGF) receptor to the plasma membrane, prolonging EGF signaling and resulting in enhanced proliferation in HNSCC. Depletion of Mtss1 results in decreased EGF receptor levels and decreased phosphorylation of Erk1/2 and Akt. However, when cells are at high density and adherent to each other, analogous to conditions in a solid tumor, Mtss1 does not confer any growth advantage, either in basal conditions or following EGF stimulation. This could indicate why Mtss1 might be lost in metastases, but preserved in early primary tumors. This is supported by an organotypic assay showing that Mtss1-expressing cells display a less proliferative more epithelial-like morphology on top of a collagen matrix. Furthermore, xenograft tumors expressing Mtss1 initially grow more rapidly, but later show less proliferation and more differentiation. Mtss1 positively modulates EGF signaling at low cell densities to promote proliferation and, therefore, may be beneficial for the early stages of primary HNSCC tumor growth. However, at high cell densities, Mtss1 impacts negatively on EGF signaling and this suggests why it inhibits metastasis.
Collapse
Affiliation(s)
- John C. Dawson
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, Scotland, UK
| | - Paul Timpson
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, Scotland, UK
| | - Gabriela Kalna
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, Scotland, UK
| | - Laura M. Machesky
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, Scotland, UK
| |
Collapse
|
35
|
Dawson JC, Bruche S, Spence HJ, Braga VMM, Machesky LM. Mtss1 promotes cell-cell junction assembly and stability through the small GTPase Rac1. PLoS One 2012; 7:e31141. [PMID: 22479308 PMCID: PMC3313965 DOI: 10.1371/journal.pone.0031141] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 01/03/2012] [Indexed: 11/19/2022] Open
Abstract
Cell-cell junctions are an integral part of epithelia and are often disrupted in cancer cells during epithelial-to-mesenchymal transition (EMT), which is a main driver of metastatic spread. We show here that Metastasis suppressor-1 (Mtss1; Missing in Metastasis, MIM), a member of the IMD-family of proteins, inhibits cell-cell junction disassembly in wound healing or HGF-induced scatter assays by enhancing cell-cell junction strength. Mtss1 not only makes cells more resistant to cell-cell junction disassembly, but also accelerates the kinetics of adherens junction assembly. Mtss1 drives enhanced junction formation specifically by elevating Rac-GTP. Lastly, we show that Mtss1 depletion reduces recruitment of F-actin at cell-cell junctions. We thus propose that Mtss1 promotes Rac1 activation and actin recruitment driving junction maintenance. We suggest that the observed loss of Mtss1 in cancers may compromise junction stability and thus promote EMT and metastasis.
Collapse
Affiliation(s)
- John C. Dawson
- Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | - Susann Bruche
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - Vania M. M. Braga
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | |
Collapse
|
36
|
Minner S, Kraetzig F, Tachezy M, Kilic E, Graefen M, Wilczak W, Bokemeyer C, Huland H, Sauter G, Schlomm T. Low activated leukocyte cell adhesion molecule expression is associated with advanced tumor stage and early prostate-specific antigen relapse in prostate cancer. Hum Pathol 2011; 42:1946-52. [DOI: 10.1016/j.humpath.2011.02.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 02/08/2011] [Accepted: 02/16/2011] [Indexed: 10/18/2022]
|
37
|
Lindsay CR, Lawn S, Campbell AD, Faller WJ, Rambow F, Mort RL, Timpson P, Li A, Cammareri P, Ridgway RA, Morton JP, Doyle B, Hegarty S, Rafferty M, Murphy IG, McDermott EW, Sheahan K, Pedone K, Finn AJ, Groben PA, Thomas NE, Hao H, Carson C, Norman JC, Machesky LM, Gallagher WM, Jackson IJ, Van Kempen L, Beermann F, Der C, Larue L, Welch HC, Ozanne BW, Sansom OJ. P-Rex1 is required for efficient melanoblast migration and melanoma metastasis. Nat Commun 2011; 2:555. [PMID: 22109529 PMCID: PMC3400057 DOI: 10.1038/ncomms1560] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 10/20/2011] [Indexed: 12/15/2022] Open
Abstract
Metastases are the major cause of death from melanoma, a skin cancer that has the fastest rising incidence of any malignancy in the Western world. Molecular pathways that drive melanoblast migration in development are believed to underpin the movement and ultimately the metastasis of melanoma. Here we show that mice lacking P-Rex1, a Rac-specific Rho GTPase guanine nucleotide exchange factor, have a melanoblast migration defect during development evidenced by a white belly. Moreover, these P-Rex1(-/-) mice are resistant to metastasis when crossed to a murine model of melanoma. Mechanistically, this is associated with P-Rex1 driving invasion in a Rac-dependent manner. P-Rex1 is elevated in the majority of human melanoma cell lines and tumour tissue. We conclude that P-Rex1 has an important role in melanoblast migration and cancer progression to metastasis in mice and humans.
Collapse
Affiliation(s)
| | - Samuel Lawn
- The Beatson Institute for Cancer Research, Glasgow, UK, G61 1BD
| | | | | | - Florian Rambow
- Centre de Recherche, U1021 INSERM, Institut Curie, Paris, France
| | | | - Paul Timpson
- The Beatson Institute for Cancer Research, Glasgow, UK, G61 1BD
| | - Ang Li
- The Beatson Institute for Cancer Research, Glasgow, UK, G61 1BD
| | | | | | | | - Brendan Doyle
- The Beatson Institute for Cancer Research, Glasgow, UK, G61 1BD
| | - Shauna Hegarty
- School of Medicine Dentistry & Biomedical Science, Queen’s University, Belfast, UK
| | - Mairin Rafferty
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College, Dublin 4, Ireland
| | - Ian G. Murphy
- Department of Surgery, St. Vincent's University Hospital, Dublin, Ireland
| | - Enda W. McDermott
- Department of Surgery, St. Vincent's University Hospital, Dublin, Ireland
| | - Kieran Sheahan
- Department of Surgery, St. Vincent's University Hospital, Dublin, Ireland
| | - Katherine Pedone
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, USA
| | - Alexander J. Finn
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, USA
| | - Pamela A. Groben
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, USA
| | - Nancy E. Thomas
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, USA
| | - Honglin Hao
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, USA
| | - Craig Carson
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, USA
| | - Jim C Norman
- The Beatson Institute for Cancer Research, Glasgow, UK, G61 1BD
| | | | - William M. Gallagher
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College, Dublin 4, Ireland
| | | | - Leon Van Kempen
- McGill University/Jewish General Hospital, Dept of Pathology, Montreal, Quebec, Canada, H3A 2B4
| | | | - Channing Der
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, USA
| | - Lionel Larue
- Centre de Recherche, U1021 INSERM, Institut Curie, Paris, France
| | | | - Brad W. Ozanne
- The Beatson Institute for Cancer Research, Glasgow, UK, G61 1BD
| | - Owen J. Sansom
- The Beatson Institute for Cancer Research, Glasgow, UK, G61 1BD
| |
Collapse
|
38
|
Halpert M, Abu-Abied M, Avisar D, Moskovitz Y, Altshuler O, Cohen A, Weissberg M, Riov J, Gottlieb HE, Perl A, Sadot E. Rac-dependent doubling of HeLa cell area and impairment of cell migration and cell cycle by compounds from Iris germanica. PROTOPLASMA 2011; 248:785-797. [PMID: 21207085 DOI: 10.1007/s00709-010-0254-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 12/06/2010] [Indexed: 05/30/2023]
Abstract
Plants are an infinite source of bioactive compounds. We screened the Israeli flora for compounds that interfere with the organization of the actin cytoskeleton. We found an activity in lipidic extract from Iris germanica that was able to increase HeLa cell area and adhesion and augment the formation of actin stress fibers. This effect was not observed when Ref52 fibroblasts were tested and was not the result of disruption of microtubules. Further, the increase in cell area was Rac1-dependent, and the iris extract led to slight Rac activation. Inhibitor of RhoA kinase did not interfere with the ability of the iris extract to increase HeLa cell area. The increase in HeLa cell area in the presence of iris extract was accompanied by impairment of cell migration and arrest of the cell cycle at G1 although the involvement of Rac1 in these processes is not clear. Biochemical verification of the extract based on activity-mediated fractionation and nuclear magnetic resonance analysis revealed that the active compounds belong to the group of iridals, a known group of triterpenoid. Purified iripallidal was able to increase cell area of both HeLa and SW480 cells.
Collapse
Affiliation(s)
- Michal Halpert
- The Institute of Plant Sciences, Volcani Center, P.O. Box 6, Bet-Dagan, 50250, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sanders AJ, Jiang DG, Jiang WG, Harding KG, Patel GK. Activated leukocyte cell adhesion molecule impacts on clinical wound healing and inhibits HaCaT migration. Int Wound J 2011; 8:500-7. [PMID: 21816001 DOI: 10.1111/j.1742-481x.2011.00823.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Activated leukocyte cell adhesion molecule (ALCAM) is a glycoprotein of the immunoglobulin superfamily that has been implicated in the processes of cell adhesion and migration. The current study examines the importance of ALCAM in regulating HaCaT cell growth and migration and its potential to impact on wound healing. ALCAM levels were examined in a range of clinical wound and normal skin samples using Q-PCR and immunohistochemistry. ALCAM expression was targeted in HaCaT keratinocyte cells using a hammerhead ribozyme transgene system. Subsequently, the impact of ALCAM suppression on HaCaT migration and growth was assessed. ALCAM protein was detected mainly in keratinocytes. ALCAM transcript levels were found to be significantly higher in the non-healed chronic wound samples compared with healed samples (P = 0·026). In addition, targeting of ALCAM in HaCaT cells brought about a substantial increase in cellular migration and growth compared with HaCaT control cells.Our results suggest that ALCAM plays an important role in the migration of HaCaT keratinocyte cells. The data also suggests that higher levels of ALCAM may impair healing in chronic wounds. The impact of ALCAM in wound healing may thus be somewhat due to its impact on cell migration and growth.
Collapse
Affiliation(s)
- Andrew J Sanders
- Metastasis and Angiogenesis Research Group, Cardiff University School of Medicine, Cardiff, UK.
| | | | | | | | | |
Collapse
|
40
|
Chen JS, Su IJ, Leu YW, Young KC, Sun HS. Expression of T-cell lymphoma invasion and metastasis 2 (TIAM2) promotes proliferation and invasion of liver cancer. Int J Cancer 2011; 130:1302-13. [PMID: 21469146 DOI: 10.1002/ijc.26117] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 03/22/2011] [Indexed: 01/04/2023]
Abstract
The T-cell lymphoma invasion and metastasis 2 (TIAM2) gene is the homolog of human TIAM1, a Rac-specific guanine nucleotide exchange factor that plays important roles in neuron development and human malignancies. Although the role of TIAM1 is well characterized, the physiological and pathological functions of TIAM2 remain unknown. In our study, human cDNA and protein panels were evaluated for endogenous expression of TIAM2. Four hepatocellular carcinoma (HCC) cell lines and 91 HCC samples were used to demonstrate expression of TIAM2S (the short form of TIAM2) in cancer cells. In addition, HepG2 cells stably expressing TIAM2S were used for tumorigenic assays in both cellular and mouse models. We demonstrate that endogenous TIAM2S was induced in several human cancers including HCC. TIAM2S expression was undetectable in normal human liver but was induced in all HCC cell lines and in 86% (78/91) of HCC biopsies. TIAM2S expression was positively associated with TIAM1 expression, hepatitis B virus (HBV) infection and metastatic phenotype. Expression of recombinant TIAM2S in HepG2 cells promoted growth and invasiveness. In vivo study using a xenografted mouse model demonstrated that induced endogenous expression of TIAM2S converted non-invasive human HCC cells into highly aggressive vascular tumors. Further examination revealed that TIAM2S expression resulted in up-regulation of N-cadherin and vimentin, and in redistribution of E-cadherin. These findings show, for the first time, that human TIAM2S is involved in HCC pathogenesis, and that increased expression of TIAM2S promotes epithelial-to-mesenchymal transition and results in proliferation and invasion in liver cancer cells.
Collapse
Affiliation(s)
- Jia-Shing Chen
- The Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
41
|
Greenwood J, Heasman SJ, Alvarez JI, Prat A, Lyck R, Engelhardt B. Review: leucocyte-endothelial cell crosstalk at the blood-brain barrier: a prerequisite for successful immune cell entry to the brain. Neuropathol Appl Neurobiol 2011; 37:24-39. [PMID: 20946472 DOI: 10.1111/j.1365-2990.2010.01140.x] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Leucocyte migration into the central nervous system is a key stage in the development of multiple sclerosis. While much has been learnt regarding the sequential steps of leucocyte capture, adhesion and migration across the vasculature, the molecular basis of leucocyte extravasation is only just being unravelled. It is now recognized that bidirectional crosstalk between the immune cell and endothelium is an essential element in mediating diapedesis during both normal immune surveillance and under inflammatory conditions. The induction of various signalling networks, through engagement of cell surface molecules such as integrins on the leucocyte and immunoglobulin superfamily cell adhesion molecules on the endothelial cell, play a major role in determining the pattern and route of leucocyte emigration. In this review we discuss the extent of our knowledge regarding leucocyte migration across the blood-brain barrier and in particular the endothelial cell signalling pathways contributing to this process.
Collapse
Affiliation(s)
- J Greenwood
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, London, UK.
| | | | | | | | | | | |
Collapse
|
42
|
Hurst DR, Welch DR. Metastasis suppressor genes at the interface between the environment and tumor cell growth. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 286:107-80. [PMID: 21199781 DOI: 10.1016/b978-0-12-385859-7.00003-3] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The molecular mechanisms and genetic programs required for cancer metastasis are sometimes overlapping, but components are clearly distinct from those promoting growth of a primary tumor. Every sequential, rate-limiting step in the sequence of events leading to metastasis requires coordinated expression of multiple genes, necessary signaling events, and favorable environmental conditions or the ability to escape negative selection pressures. Metastasis suppressors are molecules that inhibit the process of metastasis without preventing growth of the primary tumor. The cellular processes regulated by metastasis suppressors are diverse and function at every step in the metastatic cascade. As we gain knowledge into the molecular mechanisms of metastasis suppressors and cofactors with which they interact, we learn more about the process, including appreciation that some are potential targets for therapy of metastasis, the most lethal aspect of cancer. Until now, metastasis suppressors have been described largely by their function. With greater appreciation of their biochemical mechanisms of action, the importance of context is increasingly recognized especially since tumor cells exist in myriad microenvironments. In this chapter, we assemble the evidence that selected molecules are indeed suppressors of metastasis, collate the data defining the biochemical mechanisms of action, and glean insights regarding how metastasis suppressors regulate tumor cell communication to-from microenvironments.
Collapse
Affiliation(s)
- Douglas R Hurst
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
43
|
Methylation status of T-lymphoma invasion and metastasis 1 promoter and its overexpression in colorectal cancer. Hum Pathol 2011; 42:541-51. [DOI: 10.1016/j.humpath.2010.08.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Revised: 07/24/2010] [Accepted: 08/25/2010] [Indexed: 12/31/2022]
|
44
|
Zhou P, Du LF, Lv GQ, Yu XM, Gu YL, Li JP, Zhang C. Functional polymorphisms in CD166/ALCAM gene associated with increased risk for breast cancer in a Chinese population. Breast Cancer Res Treat 2011; 128:527-34. [PMID: 21293922 DOI: 10.1007/s10549-011-1365-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 01/22/2011] [Indexed: 11/25/2022]
Abstract
Activated Leukocyte Cell Adhesion Molecules (ALCAM, also called CD166, MEMD) are cell surface immunoglobulins that are considered to be prognostic markers for breast cancer. CD166/ALCAM has gained increasing attention because of its significant association with tumor progression and the metastatic spread of breast cancer. Two polymorphisms have been identified in the CD166/ALCAM gene: 5'UTR C/T (rs6437585) and 3'UTR A/G (rs11559013). We analyzed the genotypes of 1033 individuals with breast cancer, and 1116 controls; odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using logistic regression. The effects and functions of polymorphisms were examined using luciferase gene expression assays and real-time PCR analyses. Our data demonstrated that individuals with the rs6437585 CT + TT genotype had an OR of 1.38 (95% CI, 1.11-1.72) for developing breast cancer, compared to those with the CC genotype. The T allele increased the risk of breast cancer in a dose-dependent manner (P (trend) < 0.001). However, there were no significant differences found between cases and controls at the rs11559013 A/G site. Additional experiments that we performed, which focused on reporter gene expression driven by CD166/ALCAM promoters, demonstrated that the presence of an rs6437585 T allele led to greater transcriptional activity than the rs6437585 C allele. This was consistent with the increased cancer risk that we observed in our case-control analysis.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antigens, CD/genetics
- Asian People/genetics
- Biomarkers, Tumor/genetics
- Breast Neoplasms/epidemiology
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/epidemiology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/secondary
- Case-Control Studies
- Cell Adhesion Molecules, Neuronal/genetics
- China/epidemiology
- DNA, Neoplasm/genetics
- Female
- Fetal Proteins/genetics
- Genotype
- Humans
- Luciferases/metabolism
- Middle Aged
- Odds Ratio
- Polymerase Chain Reaction
- Polymorphism, Genetic/genetics
- Prognosis
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Neoplasm/genetics
- Risk Factors
- Young Adult
Collapse
Affiliation(s)
- Ping Zhou
- Department of Intensive Care Unite, The Third Affiliated Hospital to Nantong University, 585 Xing Yuan North Road, 214041 Wuxi, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
45
|
Sorek N, Gutman O, Bar E, Abu-Abied M, Feng X, Running MP, Lewinsohn E, Ori N, Sadot E, Henis YI, Yalovsky S. Differential effects of prenylation and s-acylation on type I and II ROPS membrane interaction and function. PLANT PHYSIOLOGY 2011; 155:706-20. [PMID: 21139084 PMCID: PMC3032461 DOI: 10.1104/pp.110.166850] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 11/30/2010] [Indexed: 05/21/2023]
Abstract
Prenylation primarily by geranylgeranylation is required for membrane attachment and function of type I Rho of Plants (ROPs) and Gγ proteins, while type II ROPs are attached to the plasma membrane by S-acylation. Yet, it is not known how prenylation affects ROP membrane interaction dynamics and what are the functional redundancy and specificity of type I and type II ROPs. Here, we have used the expression of ROPs in mammalian cells together with geranylgeranylation and CaaX prenylation-deficient mutants to answer these questions. Our results show that the mechanism of type II ROP S-acylation and membrane attachment is unique to plants and likely responsible for the viability of plants in the absence of CaaX prenylation activity. The prenylation of ROPs determines their steady-state distribution between the plasma membrane and the cytosol but has little effect on membrane interaction dynamics. In addition, the prenyl group type has only minor effects on ROP function. Phenotypic analysis of the CaaX prenylation-deficient pluripetala mutant epidermal cells revealed that type I ROPs affect cell structure primarily on the adaxial side, while type II ROPs are functional and induce a novel cell division phenotype in this genetic background. Taken together, our studies show how prenyl and S-acyl lipid modifications affect ROP subcellular distribution, membrane interaction dynamics, and function.
Collapse
|
46
|
Yoshida T, Zhang Y, Rivera Rosado LA, Chen J, Khan T, Moon SY, Zhang B. Blockade of Rac1 activity induces G1 cell cycle arrest or apoptosis in breast cancer cells through downregulation of cyclin D1, survivin, and X-linked inhibitor of apoptosis protein. Mol Cancer Ther 2010; 9:1657-68. [PMID: 20515940 DOI: 10.1158/1535-7163.mct-09-0906] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Rac1 GTPase regulates a variety of signaling pathways that are implicated in malignant phenotypes. Here, we show that selective inhibition of Rac1 activity by the pharmacologic inhibitor NSC23766 suppressed cell growth in a panel of human breast cancer cell lines, whereas it had little toxicity to normal mammary epithelial cells. NSC23766 elicits its cytotoxicity via two distinct mechanisms in a cell line-dependent manner: induction of G(1) cell cycle arrest in cell lines (MDA-MB-231, MCF7, and T47D) that express retinoblastoma (Rb) protein or apoptosis in Rb-deficient MDA-MB-468 cells. In MDA-MB-231 cells, Rac1 inhibition induced G(1) cell cycle arrest through downregulation of cyclin D1 and subsequent dephosphorylation/inactivation of Rb. By contrast, MDA-MB-468 cells underwent substantial apoptosis that was associated with loss of antiapoptotic proteins survivin and X-linked inhibitor of apoptosis protein (XIAP). Rac1 knockdown by RNAi interference confirmed the specificity of NSC23766 and requirement for Rac1 in the regulation of cyclin D1, survivin, and XIAP in breast cancer cells. Further, NF-kappaB, but not c-Jun NH(2)-terminal kinase or p38 pathways, mediates the survival signal from Rac1. Overall, our results indicate that Rac1 plays a central role in breast cancer cell survival through regulation of NF-kappaB-dependent gene products.
Collapse
Affiliation(s)
- Tatsushi Yoshida
- Division of Therapeutic Proteins, Office of Biotechnology Products, Center for Drug, Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Despite the recent advances in the diagnosis of bladder cancer, recurrence after surgical intervention for muscle invasive disease is still problematic as nearly half of the patients harbor occult distant metastases and this, in turn, is associated with poor 5-year survival rate. We have recently identified Rho family GDP dissociation inhibitor 2 (RhoGDI2) protein as functional metastasis suppressor and a prognostic marker in patients after cystectomy. In identifying the mechanisms underlying metastasis suppression by RhoGDI2, we found this protein to be associated with the c-Src kinase in human tumors, where the expression of both is diminished as a function of stage. Interestingly, c-Src bound to and phosphorylated RhoGDI2 resulting in enhanced metastasis suppressive potency. In this review, we will discuss the established roles of c-Src and RhoGDI2 in bladder cancer and speculate on their therapeutic relevance.
Collapse
Affiliation(s)
- Neveen Said
- Department of Urology, University of Virginia, Box 800422, Charlottesville, VA 22908, USA
| | | |
Collapse
|
48
|
Adenosine A(3) receptor suppresses prostate cancer metastasis by inhibiting NADPH oxidase activity. Neoplasia 2010; 11:1132-45. [PMID: 19881949 DOI: 10.1593/neo.09744] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 07/11/2009] [Accepted: 07/13/2009] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer is the most commonly diagnosed and second most lethal malignancy in men, due mainly to a lack of effective treatment for the metastatic disease. A number of recent studies have shown that activation of the purine nucleoside receptor, adenosine A(3) receptor (A(3)AR), attenuates proliferation of melanoma, colon, and prostate cancer cells. In the present study, we determined whether activation of the A(3)AR reduces the ability of prostate cancer cells to migrate in vitro and metastasize in vivo. Using severe combined immunodeficient mice, we show that proliferation and metastasis of AT6.1 rat prostate cancer cells were decreased by the administration of A(3)AR agonist N(6)-(3-iodobenzyl) adenosine-5'-N-methyluronamide. In vitro studies show that activation of A(3)AR decreased high basal nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity present in these cells, along with the expression of Rac1 and p47(phox) subunits of this enzyme. Inhibition of NADPH oxidase activity by the dominant-negative RacN17 or short interfering (si)RNA against p47(phox) reduced both the generation of reactive oxygen species and the invasion of these cells on Matrigel. In addition, we show that membrane association of p47(phox) and activation of NADPH oxidase is dependent on the activity of the extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein kinase pathway. We also provide evidence that A(3)AR inhibits ERK1/2 activity in prostate cancer cells through inhibition of adenylyl cyclase and protein kinase A. We conclude that activation of the A(3)AR in prostate cancer cells reduces protein kinase A-mediated stimulation of ERK1/2, leading to reduced NADPH oxidase activity and cancer cell invasiveness.
Collapse
|
49
|
Moissoglu K, McRoberts KS, Meier JA, Theodorescu D, Schwartz MA. Rho GDP dissociation inhibitor 2 suppresses metastasis via unconventional regulation of RhoGTPases. Cancer Res 2009; 69:2838-44. [PMID: 19276387 DOI: 10.1158/0008-5472.can-08-1397] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rho GDP dissociation inhibitor 2 (RhoGDI2) has been identified as a metastasis suppressor in bladder and possibly other cancers. This protein is a member of a family of proteins that maintain Rho GTPases in the cytoplasm and inhibit their activation and function. To understand the mechanism of metastasis suppression, we compared effects of RhoGDI1 and RhoGDI2. Despite showing much stronger inhibition of metastasis, RhoGDI2 is a weak inhibitor of Rho GTPase membrane targeting and function. However, point mutants that increase or decrease the affinity of RhoGDI2 for GTPases abolished its ability to inhibit metastasis. Surprisingly, metastasis suppression correlates with increased rather than decreased Rac1 activity. These data show that RhoGDI2 metastasis inhibition works through Rho GTPases but via a mechanism distinct from inhibition of membrane association.
Collapse
Affiliation(s)
- Konstadinos Moissoglu
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
50
|
Ma HL, Zhang T, Meng J, Qin ZY, Du F, Wang QY, Wei SL. The role of T-lymphoma invasion and metastasis inducing protein 1 in early pregnancy in mice. Mol Hum Reprod 2008; 14:589-94. [DOI: 10.1093/molehr/gan050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|