1
|
Cell Surface Proteins for Enrichment and In Vitro Characterization of Human Pluripotent Stem Cell-Derived Myogenic Progenitors. Stem Cells Int 2022; 2022:2735414. [PMID: 35251185 PMCID: PMC8894063 DOI: 10.1155/2022/2735414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 11/17/2022] Open
Abstract
Human myogenic progenitors can be derived from pluripotent stem cells (PSCs) for use in modeling natural and pathological myogenesis, as well as treating muscle diseases. Transgene-free methods of deriving myogenic progenitors from different PSC lines often produce mixed populations that are heterogeneous in myogenic differentiation potential, yet detailed and accurate characterization of human PSC-derived myogenic progenitors remains elusive in the field. The isolation and purification of human PSC-derived myogenic progenitors is thus an important methodological consideration when we investigate the properties and behaviors of these cells in culture. We previously reported a transgene-free, serum-free floating sphere culture method for the derivation of myogenic progenitors from human PSCs. In this study, we first performed comprehensive cell surface protein profiling of the sphere culture cells through the screening of 255 antibodies. Next, we used magnetic activated cell sorting and enriched the cells according to the expression of specific surface markers. The ability of muscle differentiation in the resulting cells was characterized by immunofluorescent labeling and quantification of positively stained cells. Our results revealed that myotube-forming cells resided in the differentiated cultures of CD29+, CD56+, CD271+, and CD15– fractions, while thick and multinucleated myotubes were identified in the differentiated cultures from CD9+ and CD146+ fractions. We found that PAX7 localization to the nucleus correlates with myotube-forming ability in these sorted populations. We also demonstrated that cells in unsorted, CD271+, and CD15– fractions responded differently to cryopreservation and prolonged culture expansion. Lastly, we showed that CD271 expression is essential for terminal differentiation of human PSC-derived myogenic progenitors. Taken together, these cell surface proteins are not only useful markers to identify unique cellular populations in human PSC-derived myogenic progenitors but also functionally important molecules that can provide valuable insight into human myogenesis.
Collapse
|
2
|
Lee W, Lee JY, Lee HS, Yoo Y, Shin H, Kim H, Min DS, Bae JS, Seo YK. Thermosensitive Hydrogel Harboring CD146/IGF-1 Nanoparticles for Skeletal-Muscle Regeneration. ACS APPLIED BIO MATERIALS 2021; 4:7070-7080. [PMID: 35006939 DOI: 10.1021/acsabm.1c00688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In skeletal-muscle regeneration, it is critical to promote efferocytosis of immune cells and differentiation of satellite cells/postnatal muscle stem cells at the damaged sites. With the optimized poloxamer 407 composition gelled at body temperature, the drugs can be delivered locally. The purpose of this study is to develop a topical injection therapeutic agent for muscle regeneration, sarcopenia, and cachexia. Herein, we construct an injectable, in situ hydrogel system consisting of CD146, IGF-1, collagen I/III, and poloxamer 407, termed CIC gel. The secreted CD146 then binds to VEGFR2 on the muscle surface and effectively induces efferocytosis of neutrophils and macrophages. IGF-1 promotes satellite cell differentiation, and biocompatible collagen evades immune responses of the CIC gel. Consequently, these combined molecules activate muscle regeneration via autophagy and suppress muscle inflammation and apoptosis. Conclusively, we provide an applicable concept of the myogenesis-activating protein formulation, broadening the thermoreversible hydrogel to protein therapeutics for damaged muscle recovery.
Collapse
Affiliation(s)
- Wonhwa Lee
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.,College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jae-Young Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Han Sol Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Youngbum Yoo
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Hyosoo Shin
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Hyelim Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Do Sik Min
- College of Pharmacy, Yonsei University, Incheon 21983, South Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Young-Kyo Seo
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| |
Collapse
|
3
|
Lieber RL, Domenighetti AA. Commentary: Muscle Microbiopsy to Delineate Stem Cell Involvement in Young Patients: A Novel Approach for Children With Cerebral Palsy. Front Physiol 2021; 12:642366. [PMID: 33633592 PMCID: PMC7901879 DOI: 10.3389/fphys.2021.642366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/14/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Richard L Lieber
- Shirley Ryan AbilityLab, Chicago, IL, United States.,Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, United States.,Hines VA Medical Center, Maywood, IL, United States
| | - Andrea A Domenighetti
- Shirley Ryan AbilityLab, Chicago, IL, United States.,Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, United States
| |
Collapse
|
4
|
Etienne J, Joanne P, Catelain C, Riveron S, Bayer AC, Lafable J, Punzon I, Blot S, Agbulut O, Vilquin JT. Aldehyde dehydrogenases contribute to skeletal muscle homeostasis in healthy, aging, and Duchenne muscular dystrophy patients. J Cachexia Sarcopenia Muscle 2020; 11:1047-1069. [PMID: 32157826 PMCID: PMC7432589 DOI: 10.1002/jcsm.12557] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 12/12/2019] [Accepted: 01/30/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Aldehyde dehydrogenases (ALDHs) are key players in cell survival, protection, and differentiation via the metabolism and detoxification of aldehydes. ALDH activity is also a marker of stem cells. The skeletal muscle contains populations of ALDH-positive cells amenable to use in cell therapy, whose distribution, persistence in aging, and modifications in myopathic context have not been investigated yet. METHODS The Aldefluor® (ALDEF) reagent was used to assess the ALDH activity of muscle cell populations, whose phenotypic characterizations were deepened by flow cytometry. The nature of ALDH isoenzymes expressed by the muscle cell populations was identified in complementary ways by flow cytometry, immunohistology, and real-time PCR ex vivo and in vitro. These populations were compared in healthy, aging, or Duchenne muscular dystrophy (DMD) patients, healthy non-human primates, and Golden Retriever dogs (healthy vs. muscular dystrophic model, Golden retriever muscular dystrophy [GRMD]). RESULTS ALDEF+ cells persisted through muscle aging in humans and were equally represented in several anatomical localizations in healthy non-human primates. ALDEF+ cells were increased in dystrophic individuals in humans (nine patients with DMD vs. five controls: 14.9 ± 1.63% vs. 3.6 ± 0.39%, P = 0.0002) and dogs (three GRMD dogs vs. three controls: 10.9 ± 2.54% vs. 3.7 ± 0.45%, P = 0.049). In DMD patients, such increase was due to the adipogenic ALDEF+ /CD34+ populations (11.74 ± 1.5 vs. 2.8 ± 0.4, P = 0.0003), while in GRMD dogs, it was due to the myogenic ALDEF+ /CD34- cells (3.6 ± 0.6% vs. 1.03 ± 0.23%, P = 0.0165). Phenotypic characterization associated the ALDEF+ /CD34- cells with CD9, CD36, CD49a, CD49c, CD49f, CD106, CD146, and CD184, some being associated with myogenic capacities. Cytological and histological analyses distinguished several ALDH isoenzymes (ALDH1A1, 1A2, 1A3, 1B1, 1L1, 2, 3A1, 3A2, 3B1, 3B2, 4A1, 7A1, 8A1, and 9A1) expressed by different cell populations in the skeletal muscle tissue belonging to multinucleated fibres, or myogenic, endothelial, interstitial, and neural lineages, designing them as potential new markers of cell type or of metabolic activity. Important modifications were noted in isoenzyme expression between healthy and DMD muscle tissues. The level of gene expression of some isoenzymes (ALDH1A1, 1A3, 1B1, 2, 3A2, 7A1, 8A1, and 9A1) suggested their specific involvement in muscle stability or regeneration in situ or in vitro. CONCLUSIONS This study unveils the importance of the ALDH family of isoenzymes in the skeletal muscle physiology and homeostasis, suggesting their roles in tissue remodelling in the context of muscular dystrophies.
Collapse
Affiliation(s)
- Jessy Etienne
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France.,Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA, USA
| | - Pierre Joanne
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine, IBPS, UMR 8256 Biological Adaptation and Ageing, Paris, France
| | - Cyril Catelain
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Stéphanie Riveron
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Alexandra Clarissa Bayer
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Jérémy Lafable
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Isabel Punzon
- Université Paris-Est Créteil, INSERM, Institut Mondor de Recherche Biomédicale, IMRB, École Nationale Vétérinaire d'Alfort, ENVA, U955-E10, Maisons-Alfort, France
| | - Stéphane Blot
- Université Paris-Est Créteil, INSERM, Institut Mondor de Recherche Biomédicale, IMRB, École Nationale Vétérinaire d'Alfort, ENVA, U955-E10, Maisons-Alfort, France
| | - Onnik Agbulut
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine, IBPS, UMR 8256 Biological Adaptation and Ageing, Paris, France
| | - Jean-Thomas Vilquin
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| |
Collapse
|
5
|
Langendorf EK, Rommens PM, Drees P, Mattyasovszky SG, Ritz U. Detecting the Effects of the Glucocorticoid Dexamethasone on Primary Human Skeletal Muscle Cells-Differences to the Murine Cell Line. Int J Mol Sci 2020; 21:E2497. [PMID: 32260276 PMCID: PMC7177793 DOI: 10.3390/ijms21072497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle atrophy is characterized by a decrease in muscle fiber size as a result of a decreased protein synthesis, which leads to degradation of contractile muscle fibers. It can occur after denervation and immobilization, and glucocorticoids (GCs) may also increase protein breakdown contributing to the loss of muscle mass and myofibrillar proteins. GCs are already used in vitro to induce atrophic conditions, but until now no studies with primary human skeletal muscle existed. Therefore, this study deals with the effects of the GC dexamethasone (dex) on primary human myoblasts and myotubes. After incubation with 1, 10, and 100 µM dex for 48 and 72 h, gene and protein expression analyses were performed by qPCR and Western blot. Foxo, MuRF-1, and MAFbx were significantly upregulated by dex, and there was increased gene expression of myogenic markers. However, prolonged incubation periods demonstrated no Myosin protein degradation, but an increase of MuRF-1 expression. In conclusion, applying dex did not only differently affect primary human myoblasts and myotubes, as differences were also observed when compared to murine cells. Based on our findings, studies using cell lines or animal cells should be interpreted with caution as signaling transduction and functional behavior might differ in diverse species.
Collapse
Affiliation(s)
| | | | | | | | - Ulrike Ritz
- Department of Orthopedics and Traumatology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (E.K.L.); (P.M.R.); (P.D.); (S.G.M.)
| |
Collapse
|
6
|
Tey SR, Robertson S, Lynch E, Suzuki M. Coding Cell Identity of Human Skeletal Muscle Progenitor Cells Using Cell Surface Markers: Current Status and Remaining Challenges for Characterization and Isolation. Front Cell Dev Biol 2019; 7:284. [PMID: 31828070 PMCID: PMC6890603 DOI: 10.3389/fcell.2019.00284] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/01/2019] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle progenitor cells (SMPCs), also called myogenic progenitors, have been studied extensively in recent years because of their promising therapeutic potential to preserve and recover skeletal muscle mass and function in patients with cachexia, sarcopenia, and neuromuscular diseases. SMPCs can be utilized to investigate the mechanisms of natural and pathological myogenesis via in vitro modeling and in vivo experimentation. While various types of SMPCs are currently available from several sources, human pluripotent stem cells (PSCs) offer an efficient and cost-effective method to derive SMPCs. As human PSC-derived cells often display varying heterogeneity in cell types, cell enrichment using cell surface markers remains a critical step in current procedures to establish a pure population of SMPCs. Here we summarize the cell surface markers currently being used to detect human SMPCs, describing their potential application for characterizing, identifying and isolating human PSC-derived SMPCs. To date, several positive and negative markers have been used to enrich human SMPCs from differentiated PSCs by cell sorting. A careful analysis of current findings can broaden our understanding and reveal potential uses for these surface markers with SMPCs.
Collapse
Affiliation(s)
- Sin-Ruow Tey
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, United States
| | - Samantha Robertson
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, United States
| | - Eileen Lynch
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, United States
| | - Masatoshi Suzuki
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, United States.,The Stem Cell and Regenerative Medicine Center, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
7
|
Gene expression profiling of skeletal myogenesis in human embryonic stem cells reveals a potential cascade of transcription factors regulating stages of myogenesis, including quiescent/activated satellite cell-like gene expression. PLoS One 2019; 14:e0222946. [PMID: 31560727 PMCID: PMC6764674 DOI: 10.1371/journal.pone.0222946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/10/2019] [Indexed: 01/05/2023] Open
Abstract
Human embryonic stem cell (hESC)-derived skeletal muscle progenitors (SMP)—defined as PAX7-expressing cells with myogenic potential—can provide an abundant source of donor material for muscle stem cell therapy. As in vitro myogenesis is decoupled from in vivo timing and 3D-embryo structure, it is important to characterize what stage or type of muscle is modeled in culture. Here, gene expression profiling is analyzed in hESCs over a 50 day skeletal myogenesis protocol and compared to datasets of other hESC-derived skeletal muscle and adult murine satellite cells. Furthermore, day 2 cultures differentiated with high or lower concentrations of CHIR99021, a GSK3A/GSK3B inhibitor, were contrasted. Expression profiling of the 50 day time course identified successively expressed gene subsets involved in mesoderm/paraxial mesoderm induction, somitogenesis, and skeletal muscle commitment/formation which could be regulated by a putative cascade of transcription factors. Initiating differentiation with higher CHIR99021 concentrations significantly increased expression of MSGN1 and TGFB-superfamily genes, notably NODAL, resulting in enhanced paraxial mesoderm and reduced ectoderm/neuronal gene expression. Comparison to adult satellite cells revealed that genes expressed in 50-day cultures correlated better with those expressed by quiescent or early activated satellite cells, which have the greatest therapeutic potential. Day 50 cultures were similar to other hESC-derived skeletal muscle and both expressed known and novel SMP surface proteins. Overall, a putative cascade of transcription factors has been identified which regulates four stages of myogenesis. Subsets of these factors were upregulated by high CHIR99021 or their binding sites were significantly over-represented during SMP activation, ranging from quiescent to late-activated stages. This analysis serves as a resource to further study the progression of in vitro skeletal myogenesis and could be mined to identify novel markers of pluripotent-derived SMPs or regulatory transcription/growth factors. Finally, 50-day hESC-derived SMPs appear similar to quiescent/early activated satellite cells, suggesting they possess therapeutic potential.
Collapse
|
8
|
Ferguson GB, Van Handel B, Bay M, Fiziev P, Org T, Lee S, Shkhyan R, Banks NW, Scheinberg M, Wu L, Saitta B, Elphingstone J, Larson AN, Riester SM, Pyle AD, Bernthal NM, Mikkola HK, Ernst J, van Wijnen AJ, Bonaguidi M, Evseenko D. Mapping molecular landmarks of human skeletal ontogeny and pluripotent stem cell-derived articular chondrocytes. Nat Commun 2018; 9:3634. [PMID: 30194383 PMCID: PMC6128860 DOI: 10.1038/s41467-018-05573-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 07/04/2018] [Indexed: 11/09/2022] Open
Abstract
Tissue-specific gene expression defines cellular identity and function, but knowledge of early human development is limited, hampering application of cell-based therapies. Here we profiled 5 distinct cell types at a single fetal stage, as well as chondrocytes at 4 stages in vivo and 2 stages during in vitro differentiation. Network analysis delineated five tissue-specific gene modules; these modules and chromatin state analysis defined broad similarities in gene expression during cartilage specification and maturation in vitro and in vivo, including early expression and progressive silencing of muscle- and bone-specific genes. Finally, ontogenetic analysis of freshly isolated and pluripotent stem cell-derived articular chondrocytes identified that integrin alpha 4 defines 2 subsets of functionally and molecularly distinct chondrocytes characterized by their gene expression, osteochondral potential in vitro and proliferative signature in vivo. These analyses provide new insight into human musculoskeletal development and provide an essential comparative resource for disease modeling and regenerative medicine.
Collapse
Affiliation(s)
- Gabriel B Ferguson
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - Ben Van Handel
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - Maxwell Bay
- Department of Stem Cell Research and Regenerative Medicine, USC, Los Angeles, CA, 90033, USA
| | - Petko Fiziev
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, 90095, USA.,Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, Los Angeles, CA, 90095, USA
| | - Tonis Org
- Department of Molecular, Cell and Developmental Biology, UCLA, Los Angeles, CA, 90095, USA.,Institute of Molecular and Cell Biology, University of Tartu, Tartu, 51010, Estonia
| | - Siyoung Lee
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - Ruzanna Shkhyan
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - Nicholas W Banks
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - Mila Scheinberg
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - Ling Wu
- InVitro Cell Research, LLC, Cockeysville, MD, 21030, USA
| | - Biagio Saitta
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - Joseph Elphingstone
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - A Noelle Larson
- Departments of Orthopedic Surgery & Biochemistry and Molecular Biology, Center of Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Scott M Riester
- Departments of Orthopedic Surgery & Biochemistry and Molecular Biology, Center of Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - April D Pyle
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, Los Angeles, CA, 90095, USA
| | - Nicholas M Bernthal
- Department of Orthopaedic Surgery, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Hanna Ka Mikkola
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, Los Angeles, CA, 90095, USA.,Department of Molecular, Cell and Developmental Biology, UCLA, Los Angeles, CA, 90095, USA
| | - Jason Ernst
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, Los Angeles, CA, 90095, USA.,Computer Science Department, University of California, Los Angeles, CA, 90095, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, 90095, USA.,Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Andre J van Wijnen
- Departments of Orthopedic Surgery & Biochemistry and Molecular Biology, Center of Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Michael Bonaguidi
- Department of Stem Cell Research and Regenerative Medicine, USC, Los Angeles, CA, 90033, USA
| | - Denis Evseenko
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA. .,Department of Stem Cell Research and Regenerative Medicine, USC, Los Angeles, CA, 90033, USA. .,Department of Orthopaedic Surgery, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
9
|
Persichini T, Funari A, Colasanti M, Sacchetti B. Clonogenic, myogenic progenitors expressing MCAM/CD146 are incorporated as adventitial reticular cells in the microvascular compartment of human post-natal skeletal muscle. PLoS One 2017; 12:e0188844. [PMID: 29186180 PMCID: PMC5706678 DOI: 10.1371/journal.pone.0188844] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/14/2017] [Indexed: 12/13/2022] Open
Abstract
Recent observation identifies subendothelial (mural) cells expressing MCAM, a specific system of clonogenic, self-renewing, osteoprogenitors (a.k.a, "mesenchymal stem cells") in the microvascular compartment of post-natal human bone marrow (BM). In this study, we used MCAM/CD146, as a marker to localize, isolate and assay subendothelial clonogenic cells from the microvasculature of postnatal human skeletal muscle. We show here that these cells share with their BM counterpart, anatomic position (subendothelial/adventitial) and ex vivo clonogenicity (CFU-Fs). When assayed under the stringent conditions, these cells display a high spontaneous myogenic potential (independent of co-culture with myoblasts or of in vivo fusion with local myoblasts), which is otherwise only attained in cultures of satellite cells. These muscle-derived mural cells activated a myogenic program in culture. Cultured CD146+ cells expressed the myogenic factors (Pax7, Pax3 and Myf5), NCAM/CD56, desmin as well as proteins characteristic of more advanced myogenic differentiation, such as myosin heavy chain. In vivo, these cells spontaneously generate myotubes and myofibrils. These data identify the anatomy and phenotype of a novel class of committed myogenic progenitor in human post-natal skeletal muscle of subendothelial cells associated with the abluminal surface of microvascular compartment distinct from satellite cells.
Collapse
Affiliation(s)
| | - Alessia Funari
- Department of Molecular Medicine, University “Sapienza”, Rome, Italy
| | | | - Benedetto Sacchetti
- Department of Science, University ROMA TRE, Rome, Italy
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
10
|
Tian X, Brookes O, Battaglia G. Pericytes from Mesenchymal Stem Cells as a model for the blood-brain barrier. Sci Rep 2017; 7:39676. [PMID: 28098158 PMCID: PMC5241806 DOI: 10.1038/srep39676] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/25/2016] [Indexed: 12/15/2022] Open
Abstract
Blood brain-barrier (BBB) in vitro models have been widely reported in studies of the BBB phenotype. However, established co-culture systems involve brain endothelial cells, astrocytes, neurons and pericytes, and therefore are often consuming and technically challenging. Here we use mesenchymal system cells (MSC) as a potential substitute for pericytes in a BBB model. Both MSC and pericyte markers in 2D culture environment were evaluated on different extracellular matrix compositions. Further experiments indicated that MSC contributed in a similar manner to pericytes in a co-cultured 3D model on increasing trans-endothelial electric resistance (TEER) and decreasing permeability against macromolecules.
Collapse
Affiliation(s)
- Xiaohe Tian
- School of Life Science, Anhui University, Hefei, China.,Department of Chemistry, University College London, London, UK
| | - Oliver Brookes
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | | |
Collapse
|
11
|
Grassot V, Da Silva A, Saliba J, Maftah A, Dupuy F, Petit JM. Highlights of glycosylation and adhesion related genes involved in myogenesis. BMC Genomics 2014; 15:621. [PMID: 25051993 PMCID: PMC4223822 DOI: 10.1186/1471-2164-15-621] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Myogenesis is initiated by myoblast differentiation and fusion to form myotubes and muscle fibres. A population of myoblasts, known as satellite cells, is responsible for post-natal growth of muscle and for its regeneration. This differentiation requires many changes in cell behaviour and its surrounding environment. These modifications are tightly regulated over time and can be characterized through the study of changes in gene expression associated with this process. During the initial myogenesis steps, using the myoblast cell line C2C12 as a model, Janot et al. (2009) showed significant variations in expression for genes involved in pathways of glycolipid synthesis. In this study we used murine satellite cells (MSC) and their ability to differentiate into myotubes or early fat storage cells to select glycosylation related genes whose variation of expression is myogenesis specific. RESULTS The comparison of variant genes in both MSC differentiation pathways identified 67 genes associated with myogenesis. Comparison with data obtained for C2C12 revealed that only 14 genes had similar expression profiles in both cell types and that 17 genes were specifically regulated in MSC. Results were validated statistically by without a priori clustering. Classification according to protein function encoded by these 31 genes showed that the main regulated cellular processes during this differentiation were (i) remodeling of the extracellular matrix, particularly, sulfated structures, (ii) down-regulation of O-mannosyl glycan biosynthesis, and (iii) an increase in adhesion protein expression. A functional study was performed on Itga11 and Chst5 encoding two highly up-regulated proteins. The inactivation of Chst5 by specific shRNA delayed the fusion of MSC. By contrast, the inactivation of Itga11 by specific shRNA dramatically decreased the fusion ability of MSC. This result was confirmed by neutralization of Itga11 product by specific antibodies. CONCLUSIONS Our screening method detected 31 genes specific for myogenic differentiation out of the 383 genes studied. According to their function, interaction networks of the products of these selected genes converged to cell fusion. Functional studies on Itga11 and Chst5 demonstrated the robustness of this screening.
Collapse
Affiliation(s)
- Vincent Grassot
- INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, Faculté des Sciences et Techniques, 123 Avenue A. Thomas, Limoges 87060, France
| | - Anne Da Silva
- INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, Faculté des Sciences et Techniques, 123 Avenue A. Thomas, Limoges 87060, France
| | - James Saliba
- INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, Faculté des Sciences et Techniques, 123 Avenue A. Thomas, Limoges 87060, France
| | - Abderrahman Maftah
- INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, Faculté des Sciences et Techniques, 123 Avenue A. Thomas, Limoges 87060, France
| | - Fabrice Dupuy
- INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, Faculté des Sciences et Techniques, 123 Avenue A. Thomas, Limoges 87060, France
| | - Jean-Michel Petit
- INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, Faculté des Sciences et Techniques, 123 Avenue A. Thomas, Limoges 87060, France
| |
Collapse
|
12
|
Zyryanova T, Schneider R, Adams V, Sittig D, Kerner C, Gebhardt C, Ruffert H, Glasmacher S, Hepp P, Punkt K, Neuhaus J, Hamann J, Aust G. Skeletal muscle expression of the adhesion-GPCR CD97: CD97 deletion induces an abnormal structure of the sarcoplasmatic reticulum but does not impair skeletal muscle function. PLoS One 2014; 9:e100513. [PMID: 24949957 PMCID: PMC4065095 DOI: 10.1371/journal.pone.0100513] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/24/2014] [Indexed: 01/09/2023] Open
Abstract
CD97 is a widely expressed adhesion class G-protein-coupled receptor (aGPCR). Here, we investigated the presence of CD97 in normal and malignant human skeletal muscle as well as the ultrastructural and functional consequences of CD97 deficiency in mice. In normal human skeletal muscle, CD97 was expressed at the peripheral sarcolemma of all myofibers, as revealed by immunostaining of tissue sections and surface labeling of single myocytes using flow cytometry. In muscle cross-sections, an intracellular polygonal, honeycomb-like CD97-staining pattern, typical for molecules located in the T-tubule or sarcoplasmatic reticulum (SR), was additionally found. CD97 co-localized with SR Ca2+-ATPase (SERCA), a constituent of the longitudinal SR, but not with the receptors for dihydropyridine (DHPR) or ryanodine (RYR), located in the T-tubule and terminal SR, respectively. Intracellular expression of CD97 was higher in slow-twitch compared to most fast-twitch myofibers. In rhabdomyosarcomas, CD97 was strongly upregulated and in part more N-glycosylated compared to normal skeletal muscle. All tumors were strongly CD97-positive, independent of the underlying histological subtype, suggesting high sensitivity of CD97 for this tumor. Ultrastructural analysis of murine skeletal myofibers confirmed the location of CD97 in the SR. CD97 knock-out mice had a dilated SR, resulting in a partial increase in triad diameter yet not affecting the T-tubule, sarcomeric, and mitochondrial structure. Despite these obvious ultrastructural changes, intracellular Ca2+ release from single myofibers, force generation and fatigability of isolated soleus muscles, and wheel-running capacity of mice were not affected by the lack of CD97. We conclude that CD97 is located in the SR and at the peripheral sarcolemma of human and murine skeletal muscle, where its absence affects the structure of the SR without impairing skeletal muscle function.
Collapse
Affiliation(s)
- Tatiana Zyryanova
- Department of Surgery, Research Laboratories, University of Leipzig, Leipzig, Germany
| | - Rick Schneider
- Department of Surgery, Research Laboratories, University of Leipzig, Leipzig, Germany
| | - Volker Adams
- Heart Center Leipzig, University of Leipzig, Leipzig, Germany
| | - Doreen Sittig
- Department of Surgery, Research Laboratories, University of Leipzig, Leipzig, Germany
| | - Christiane Kerner
- Department of Surgery, Research Laboratories, University of Leipzig, Leipzig, Germany
| | - Claudia Gebhardt
- Department of Surgery, Research Laboratories, University of Leipzig, Leipzig, Germany
| | - Henrik Ruffert
- Department of Anaesthesiology and Intensive Care Medicine, University of Leipzig, Leipzig, Germany
| | - Stefan Glasmacher
- Clinic for Trauma and Reconstructive Surgery, University of Leipzig, Leipzig, Germany
| | - Pierre Hepp
- Clinic for Trauma and Reconstructive Surgery, University of Leipzig, Leipzig, Germany
| | - Karla Punkt
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Jochen Neuhaus
- Clinic of Urology, Research Laboratories, University of Leipzig, Leipzig, Germany
| | - Jörg Hamann
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Gabriela Aust
- Department of Surgery, Research Laboratories, University of Leipzig, Leipzig, Germany
- * E-mail:
| |
Collapse
|
13
|
Balasubramanian A, Kawahara G, Gupta VA, Rozkalne A, Beauvais A, Kunkel LM, Gussoni E. Fam65b is important for formation of the HDAC6-dysferlin protein complex during myogenic cell differentiation. FASEB J 2014; 28:2955-69. [PMID: 24687993 DOI: 10.1096/fj.13-246470] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Previously, we identified family with sequence similarity 65, member B (Fam65b), as a protein transiently up-regulated during differentiation and fusion of human myogenic cells. Silencing of Fam65b expression results in severe reduction of myogenin expression and consequent lack of myoblast fusion. The molecular function of Fam65b and whether misregulation of its expression could be causative of muscle diseases are unknown. Protein pulldowns were used to identify Fam65b-interacting proteins in differentiating human muscle cells and regenerating muscle tissue. In vitro, human muscle cells were treated with histone-deacetylase (HDAC) inhibitors, and expression of Fam65b and interacting proteins was studied. Nontreated cells were used as controls. In vivo, expression of Fam65b was down-regulated in developing zebrafish to determine the effects on muscle development. Fam65b binds to HDAC6 and dysferlin, the protein mutated in limb girdle muscular dystrophy 2B. The tricomplex Fam65b-HDAC6-dysferlin is transient, and Fam65b expression is necessary for the complex to form. Treatment of myogenic cells with pan-HDAC or HDAC6-specific inhibitors alters Fam65b expression, while dysferlin expression does not change. Inhibition of Fam65b expression in developing zebrafish results in abnormal muscle, with low birefringence, tears at the myosepta, and increased embryo lethality. Fam65b is an essential component of the HDAC6-dysferlin complex. Down-regulation of Fam65b in developing muscle causes changes consistent with muscle disease.-Balasubramanian, A., Kawahara, G., Gupta, V. A., Rozkalne, A., Beauvais, A., Kunkel, L. M., Gussoni, E. Fam65b is important for formation of the HDAC6-dysferlin protein complex during myogenic cell differentiation.
Collapse
Affiliation(s)
| | | | | | | | - Ariane Beauvais
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; and
| | - Louis M Kunkel
- Program in Genomics, Division of Genetics and Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Emanuela Gussoni
- Program in Genomics, Division of Genetics and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Wu MP, Doyle JR, Barry B, Beauvais A, Rozkalne A, Piao X, Lawlor MW, Kopin AS, Walsh CA, Gussoni E. G-protein coupled receptor 56 promotes myoblast fusion through serum response factor- and nuclear factor of activated T-cell-mediated signalling but is not essential for muscle development in vivo. FEBS J 2013; 280:6097-113. [PMID: 24102982 PMCID: PMC3877849 DOI: 10.1111/febs.12529] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/24/2013] [Accepted: 09/04/2013] [Indexed: 12/28/2022]
Abstract
Mammalian muscle cell differentiation is a complex process of multiple steps for which many of the factors involved have not yet been defined. In a screen to identify the regulators of myogenic cell fusion, we found that the gene for G-protein coupled receptor 56 (GPR56) was transiently up-regulated during the early fusion of human myoblasts. Human mutations in the gene for GPR56 cause the disease bilateral frontoparietal polymicrogyria; however, the consequences of receptor dysfunction on muscle development have not been explored. Using knockout mice, we defined the role of GPR56 in skeletal muscle. GPR56(-/-) myoblasts have decreased fusion and smaller myotube sizes in culture. In addition, a loss of GPR56 expression in muscle cells results in decreases or delays in the expression of myogenic differentiation 1, myogenin and nuclear factor of activated T-cell (NFAT)c2. Our data suggest that these abnormalities result from decreased GPR56-mediated serum response element and NFAT signalling. Despite these changes, no overt differences in phenotype were identified in the muscle of GPR56 knockout mice, which presented only a mild but statistically significant elevation of serum creatine kinase compared to wild-type. In agreement with these findings, clinical data from 13 bilateral frontoparietal polymicrogyria patients revealed mild serum creatine kinase increase in only two patients. In summary, targeted disruption of GPR56 in mice results in myoblast abnormalities. The absence of a severe muscle phenotype in GPR56 knockout mice and human patients suggests that other factors may compensate for the lack of this G-protein coupled receptor during muscle development and that the motor delay observed in these patients is likely not a result of primary muscle abnormalities.
Collapse
Affiliation(s)
- Melissa P. Wu
- Biological and Biomedical Sciences, Harvard Medical School, Boston MA 02115, USA
- Division of Genetics, Boston Children’s Hospital, Boston MA 02115, USA
| | - Jamie R. Doyle
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Brenda Barry
- Division of Genetics, Boston Children’s Hospital, Boston MA 02115, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston MA 02115, USA
| | - Ariane Beauvais
- Division of Genetics, Boston Children’s Hospital, Boston MA 02115, USA
| | - Anete Rozkalne
- Division of Genetics, Boston Children’s Hospital, Boston MA 02115, USA
| | - Xianhua Piao
- Division of Newborn Medicine, Boston Children’s Hospital, Boston MA 02115, USA
| | - Michael W. Lawlor
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Wisconsin and Medical College of Wisconsin, Milwaukee WI 53226, USA
| | - Alan S. Kopin
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Christopher A. Walsh
- Division of Genetics, Boston Children’s Hospital, Boston MA 02115, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston MA 02115, USA
| | - Emanuela Gussoni
- Division of Genetics, Boston Children’s Hospital, Boston MA 02115, USA
| |
Collapse
|
15
|
Lapan AD, Rozkalne A, Gussoni E. Human fetal skeletal muscle contains a myogenic side population that expresses the melanoma cell-adhesion molecule. Hum Mol Genet 2012; 21:3668-80. [PMID: 22634225 DOI: 10.1093/hmg/dds196] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Muscle side population (SP) cells are rare myogenic progenitors distinct from satellite cells, the known tissue-specific stem cells of skeletal muscle. Studies in mice demonstrated that muscle SP cells give rise to satellite cells in vivo. Given that muscle SP cells are heterogeneous, it has been difficult to prospectively enrich for myogenic progenitors within the SP fraction, particularly from human tissue. Further, conditions that favor the expansion of human muscle SP cells while retaining their myogenic potential have yet to be reported. In this study, human fetal muscle SP and main population (MP) cells were purified based on the expression of melanoma cell adhesion molecule (MCAM), a marker we previously reported to enrich for cells with myogenic potential. To define the relationship between MCAM expression and the degree of myogenic commitment, single cells were analyzed for the expression of myogenic-specific markers. Myogenic factors strongly associated with MCAM expression in single cells, particularly Myf5. Different MCAM+ populations, including SP cells, were expanded and assayed for fusion potential in vitro and engraftment potential in vivo. All MCAM+ subpopulations fused robustly into myotubes in vitro, whereas the MCAM- subpopulations did not. Further, MCAM+ SP cells exhibited the highest fusion potential in vitro and were the only fraction to engraft in vivo, although at low levels, following propagation. Thus, MCAM can be used to prospectively enrich for myogenic muscle SP cells in human fetal muscle. Moreover, we provide evidence that human MCAM+ SP cells have intrinsic myogenic activity that is retained after propagation.
Collapse
Affiliation(s)
- Ariya D Lapan
- Program in Genomics and Division of Genetics, Boston Children’s Hospital, Boston, MA 02115, USA
| | | | | |
Collapse
|
16
|
Abstract
Dissociated human fetal skeletal muscle contains myogenic cells, as well as non-myogenic cells such as adipocytes, fibroblasts, and lymphocytes. It is therefore important to determine an efficient and reliable isolation method to obtain a purer population of myoblasts. Toward this end, fluorescence-activated cell sorting in conjunction with robust myogenic cell surface markers can be utilized to enrich for myoblasts in dissociated muscle. In this chapter, we describe a method to significantly enrich for myoblasts using -melanoma cell adhesion molecule (MCAM), which we have determined to be an excellent marker of human fetal myoblasts. The myoblasts resulting from this isolation method can then be expanded in vitro and still retain significant myogenic activity as shown by an in vitro fusion assay. The ability to isolate a highly myogenic population from dissociated muscle facilitates the in vitro study of skeletal muscle development and muscle diseases. Furthermore, robust expansion of these cells will lead to new insights in the development of cell-based therapies for human muscle disorders.
Collapse
Affiliation(s)
- Ariya D Lapan
- Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
17
|
Vella JB, Thompson SD, Bucsek MJ, Song M, Huard J. Murine and human myogenic cells identified by elevated aldehyde dehydrogenase activity: implications for muscle regeneration and repair. PLoS One 2011; 6:e29226. [PMID: 22195027 PMCID: PMC3240661 DOI: 10.1371/journal.pone.0029226] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 11/22/2011] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Despite the initial promise of myoblast transfer therapy to restore dystrophin in Duchenne muscular dystrophy patients, clinical efficacy has been limited, primarily by poor cell survival post-transplantation. Murine muscle derived stem cells (MDSCs) isolated from slowly adhering cells (SACs) via the preplate technique, induce greater muscle regeneration than murine myoblasts, primarily due to improved post-transplantation survival, which is conferred by their increased stress resistance capacity. Aldehyde dehydrogenase (ALDH) represents a family of enzymes with important morphogenic as well as oxidative damage mitigating roles and has been found to be a marker of stem cells in both normal and malignant tissue. In this study, we hypothesized that elevated ALDH levels could identify murine and human muscle derived cell (hMDC) progenitors, endowed with enhanced stress resistance and muscle regeneration capacity. METHODOLOGY/PRINCIPAL FINDINGS Skeletal muscle progenitors were isolated from murine and human skeletal muscle by a modified preplate technique and unfractionated enzymatic digestion, respectively. ALDH(hi) subpopulations isolated by fluorescence activate cell sorting demonstrated increased proliferation and myogenic differentiation capacities compared to their ALDH(lo) counterparts when cultivated in oxidative and inflammatory stress media conditions. This behavior correlated with increased intracellular levels of reduced glutathione and superoxide dismutase. ALDH(hi) murine myoblasts were observed to exhibit an increased muscle regenerative potential compared to ALDH(lo) myoblasts, undergo multipotent differentiation (osteogenic and chondrogenic), and were found predominately in the SAC fraction, characteristics that are also observed in murine MDSCs. Likewise, human ALDH(hi) hMDCs demonstrated superior muscle regenerative capacity compared to ALDH(lo) hMDCs. CONCLUSIONS The methodology of isolating myogenic cells on the basis of elevated ALDH activity yielded cells with increased stress resistance, a behavior that conferred increased regenerative capacity of dystrophic murine skeletal muscle. This result demonstrates the critical role of stress resistance in myogenic cell therapy as well as confirms the role of ALDH as a marker for rapid isolation of murine and human myogenic progenitors for cell therapy.
Collapse
Affiliation(s)
- Joseph B. Vella
- Department of Orthopedic Surgery, Stem Cell Research Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Seth D. Thompson
- Department of Orthopedic Surgery, Stem Cell Research Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Mark J. Bucsek
- Department of Orthopedic Surgery, Stem Cell Research Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Minjung Song
- Department of Orthopedic Surgery, Stem Cell Research Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Johnny Huard
- Department of Orthopedic Surgery, Stem Cell Research Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- McGowen Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
18
|
|
19
|
Kohane IS, Szolovits P. Marco Ramoni: an appreciation of academic achievement. J Am Med Inform Assoc 2011; 18:367-9. [PMID: 21474623 PMCID: PMC3128413 DOI: 10.1136/amiajnl-2011-000218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 03/22/2011] [Indexed: 01/28/2023] Open
Abstract
We review the scholarly career of our colleague, Marco Ramoni, who died unexpectedly in the summer of 2010. His work mainly explored the development and application of Bayesian techniques to model clinical, public health, and bioinformatics questions. His contributions have led to improvements in our ability to model behavior that evolves in time, to explore systematic relationships among large sets of covariates, and to tease out the meaning of data on the role of genetic variation in the genesis of important diseases.
Collapse
Affiliation(s)
- Isaac S Kohane
- Harvard Medical School, Children's Hospital Informatics Program, Boston, Massachusetts, USA
| | - Peter Szolovits
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, Massachusetts, USA
| |
Collapse
|
20
|
Tallone T, Realini C, Böhmler A, Kornfeld C, Vassalli G, Moccetti T, Bardelli S, Soldati G. Adult human adipose tissue contains several types of multipotent cells. J Cardiovasc Transl Res 2011; 4:200-10. [PMID: 21327755 DOI: 10.1007/s12265-011-9257-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 01/18/2011] [Indexed: 12/12/2022]
Abstract
Multipotent mesenchymal stromal cells (MSCs) are a type of adult stem cells that can be easily isolated from various tissues and expanded in vitro. Many reports on their pluripotency and possible clinical applications have raised hopes and interest in MSCs. In an attempt to unify the terminology and the criteria to label a cell as MSC, in 2006 the International Society for Cellular Therapy (ISCT) proposed a standard set of rules to define the identity of these cells. However, MSCs are still extracted from different tissues, by diverse isolation protocols, are cultured and expanded in different media and conditions. All these variables may have profound effects on the selection of cell types and the composition of heterogeneous subpopulations, on the selective expansion of specific cell populations with totally different potentials and ergo, on the long-term fate of the cells upon in vitro culture. Therefore, specific molecular and cellular markers that identify MSCs subsets as well as standardization of expansion protocols for these cells are urgently needed. Here, we briefly discuss new useful markers and recent data supporting the rapidly emerging concept that many different types of progenitor cells are found in close association with blood vessels. This knowledge may promote the necessary technical improvements required to reduce variability and promote higher efficacy and safety when isolating and expanding these cells for therapeutic use. In the light of the discussed data, particularly the identification of new markers, and advances in the understanding of fundamental MSC biology, we also suggest a revision of the 2006 ISCT criteria.
Collapse
Affiliation(s)
- Tiziano Tallone
- Swiss Stem Cell Foundation, Via Tesserete 48, Lugano, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Rzhaninova AA, Kulikov AV, Spirova IA, Kirienko EE, Volkov AV, Goldshtein DV. Preparation and Characterization of Culture of CD146+ Cells from Human Adipose Tissue. Bull Exp Biol Med 2010; 149:113-8. [DOI: 10.1007/s10517-010-0888-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Lecourt S, Marolleau JP, Fromigué O, Vauchez K, Andriamanalijaona R, Ternaux B, Lacassagne MN, Robert I, Boumédiene K, Chéreau F, Marie P, Larghéro J, Fiszman M, Vilquin JT. Characterization of distinct mesenchymal-like cell populations from human skeletal muscle in situ and in vitro. Exp Cell Res 2010; 316:2513-26. [PMID: 20430024 DOI: 10.1016/j.yexcr.2010.04.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 04/14/2010] [Accepted: 04/17/2010] [Indexed: 12/25/2022]
Abstract
Human skeletal muscle is an essential source of various cellular progenitors with potential therapeutic perspectives. We first used extracellular markers to identify in situ the main cell types located in a satellite position or in the endomysium of the skeletal muscle. Immunohistology revealed labeling of cells by markers of mesenchymal (CD13, CD29, CD44, CD47, CD49, CD62, CD73, CD90, CD105, CD146, and CD15 in this study), myogenic (CD56), angiogenic (CD31, CD34, CD106, CD146), hematopoietic (CD10, CD15, CD34) lineages. We then analysed cell phenotypes and fates in short- and long-term cultures of dissociated muscle biopsies in a proliferation medium favouring the expansion of myogenic cells. While CD56(+) cells grew rapidly, a population of CD15(+) cells emerged, partly from CD56(+) cells, and became individualized. Both populations expressed mesenchymal markers similar to that harboured by human bone marrow-derived mesenchymal stem cells. In differentiation media, both CD56(+) and CD15(+) cells shared osteogenic and chondrogenic abilities, while CD56(+) cells presented a myogenic capacity and CD15(+) cells presented an adipogenic capacity. An important proportion of cells expressed the CD34 antigen in situ and immediately after muscle dissociation. However, CD34 antigen did not persist in culture and this initial population gave rise to adipogenic cells. These results underline the diversity of human muscle cells, and the shared or restricted commitment abilities of the main lineages under defined conditions.
Collapse
Affiliation(s)
- Séverine Lecourt
- UPMC/AIM UMR S 974, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Aldehyde dehydrogenase activity identifies a population of human skeletal muscle cells with high myogenic capacities. Mol Ther 2009; 17:1948-58. [PMID: 19738599 DOI: 10.1038/mt.2009.204] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aldehyde dehydrogenase 1A1 (ALDH) activity is one hallmark of human bone marrow (BM), umbilical cord blood (UCB), and peripheral blood (PB) primitive progenitors presenting high reconstitution capacities in vivo. In this study, we have identified ALDH(+) cells within human skeletal muscles, and have analyzed their phenotypical and functional characteristics. Immunohistofluorescence analysis of human muscle tissue sections revealed rare endomysial cells. Flow cytometry analysis using the fluorescent substrate of ALDH, Aldefluor, identified brightly stained (ALDH(br)) cells with low side scatter (SSC(lo)), in enzymatically dissociated muscle biopsies, thereafter abbreviated as SMALD(+) (for skeletal muscle ALDH(+)) cells. Phenotypical analysis discriminated two sub-populations according to CD34 expression: SMALD(+)/CD34(-) and SMALD(+)/CD34(+) cells. These sub-populations did not initially express endothelial (CD31), hematopoietic (CD45), and myogenic (CD56) markers. Upon sorting, however, whereas SMALD(+)/CD34(+) cells developed in vitro as a heterogeneous population of CD56(-) cells able to differentiate in adipoblasts, the SMALD(+)/CD34(-) fraction developed in vitro as a highly enriched population of CD56(+) myoblasts able to form myotubes. Moreover, only the SMALD(+)/CD34(-) population maintained a strong myogenic potential in vivo upon intramuscular transplantation. Our results suggest that ALDH activity is a novel marker for a population of new human skeletal muscle progenitors presenting a potential for cell biology and cell therapy.
Collapse
|
24
|
Salvador B, Zhou Y, Michault A, Muench MO, Simmons G. Characterization of Chikungunya pseudotyped viruses: Identification of refractory cell lines and demonstration of cellular tropism differences mediated by mutations in E1 glycoprotein. Virology 2009; 393:33-41. [PMID: 19692105 DOI: 10.1016/j.virol.2009.07.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 04/28/2009] [Accepted: 07/15/2009] [Indexed: 10/20/2022]
Abstract
Chikungunya virus (CHIKV) is an alphavirus responsible for a number of large outbreaks. Here we describe the efficient incorporation of CHIKV envelope glycoproteins into lentiviral and rhabdoviral particles. Vectors pseudotyped with CHIKV envelope proteins efficiently transduced many cell types from different species. However, hematopoietic cell types were either partially or completely refractory. A mutation in E1 (A226V) has been linked with expansion of tropism for mosquito species, although differences in in vitro infection of mosquito cell lines have not been noted. However, pseudovirion infectivity assays detected subtle differences in infection of mosquito cells, suggesting an explanation for the changes in mosquito tropism. The presence of C-type lectins increased CHIKV pseudotyped vector infectivity, but not infection of refractory cells, suggesting that they act as attachment factors rather than primary receptors. CHIKV pseudotypes will serve as an important tool for the study of neutralizing antibodies and the analysis of envelope glycoprotein functions.
Collapse
|
25
|
Quach NL, Biressi S, Reichardt LF, Keller C, Rando TA. Focal adhesion kinase signaling regulates the expression of caveolin 3 and beta1 integrin, genes essential for normal myoblast fusion. Mol Biol Cell 2009; 20:3422-35. [PMID: 19458188 DOI: 10.1091/mbc.e09-02-0175] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
An essential phase of skeletal myogenesis is the fusion of mononucleated myoblasts to form multinucleated myotubes. Many cell adhesion proteins, including integrins, have been shown to be important for myoblast fusion in vertebrates, but the mechanisms by which these proteins regulate cell fusion remain mostly unknown. Here, we focused on the role of focal adhesion kinase (FAK), an important nonreceptor protein tyrosine kinase involved in integrin signaling, as a potential mediator by which integrins may regulate myoblast fusion. To test this hypothesis in vivo, we generated mice in which the Fak gene was disrupted specifically in muscle stem cells ("satellite cells") and we found that this resulted in impaired myotube formation during muscle regeneration after injury. To examine the role of FAK in the fusion of myogenic cells, we examined the expression of FAK and the effects of FAK deletion on the differentiation of myoblasts in vitro. Differentiation of mouse primary myoblasts was accompanied by a rapid and transient increase of phosphorylated FAK. To investigate the requirement of FAK in myoblast fusion, we used two loss-of-function approaches (a dominant-negative inhibitor of FAK and FAK small interfering RNA [siRNA]). Inhibition of FAK resulted in markedly impaired fusion but did not inhibit other biochemical measures of myogenic differentiation, suggesting a specific role of FAK in the morphological changes of cell fusion as part of the differentiation program. To examine the mechanisms by which FAK may be regulating fusion, we used microarray analysis to identify the genes that failed to be normally regulated in cells that were fusion defective due to FAK inhibition. Several genes that have been implicated in myoblast fusion were aberrantly regulated during differentiation when FAK was inhibited. Intriguingly, the normal increases in the transcript of caveolin 3 as well as an integrin subunit, the beta1D isoform, were suppressed by FAK inhibition. We confirmed this also at the protein level and show that direct inhibition of beta1D subunit expression by siRNA inhibited myotube formation with a prominent effect on secondary fusion. These data suggest that FAK regulation of profusion genes, including caveolin 3 and the beta1D integrin subunit, is essential for morphological muscle differentiation.
Collapse
Affiliation(s)
- Navaline L Quach
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
26
|
Neuropilin2 expressed in gastric cancer endothelial cells increases the proliferation and migration of endothelial cells in response to VEGF. Exp Cell Res 2009; 315:2154-64. [PMID: 19409892 DOI: 10.1016/j.yexcr.2009.04.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Revised: 04/03/2009] [Accepted: 04/23/2009] [Indexed: 01/09/2023]
Abstract
The structure and characteristics of the tumor vasculature are known to be different from those of normal vessels. Neuropilin2 (Nrp2), which is expressed in non-endothelial cell types, such as neuronal or cancer cells, functions as a receptor for both semaphorin and vascular endothelial growth factor (VEGF). After isolating tumor and normal endothelial cells from advanced gastric cancer tissue and normal gastric mucosa tissues, respectively, we identified genes that were differentially expressed in gastric tumor endothelial (TEC) and normal endothelial cells (NEC) using DNA oligomer chips. Using reverse transcriptase-PCR, we confirmed the chip results by showing that Nrp2 gene expression is significantly up-regulated in TEC. Genes that were found to be up-regulated in TEC were also observed to be up-regulated in human umbilical vein endothelial cells (HUVECs) that were co-cultured with gastric cancer cells. In addition, HUVECs co-cultured with gastric cancer cells showed an increased reactivity to VEGF-induced proliferation and migration. Moreover, overexpression of Nrp2 in HUVECs significantly enhanced the proliferation and migration induced by VEGF. Observation of an immunohistochemical analysis of various human tumor tissue arrays revealed that Nrp2 is highly expressed in the tumor vessel lining and to a lesser extent in normal tissue microvessels. From these results, we suggest that Nrp2 may function to increase the response to VEGF, which is more significant in TEC than in NEC given the differential expression, leading to gastric TEC with aggressive angiogenesis phenotypes.
Collapse
|
27
|
Andriamanalijaona R, Duval E, Raoudi M, Lecourt S, Vilquin JT, Marolleau JP, Pujol JP, Galera P, Boumediene K. Differentiation potential of human muscle-derived cells towards chondrogenic phenotype in alginate beads culture. Osteoarthritis Cartilage 2008; 16:1509-18. [PMID: 18554936 DOI: 10.1016/j.joca.2008.04.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 04/19/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The aim of this study was to evaluate the differentiation potential of two populations of muscle-derived cells (CD56- and CD56+) towards chondrogenic phenotype in alginate beads culture and to compare the effect of transforming growth factor beta 1 (TGFbeta1) on the differentiation process in these populations. METHODS Muscle CD56- and CD56+ cells were cultured in alginate beads, in a chondrogenic medium, containing or not TGFbeta1 (10 ng/ml). Cultures were maintained for 3, 7, 14 or 21 days in a humidified culture incubator. At harvest, one culture of each set was fixed for alcian blue staining and aggrecan detection. The steady-state level of matrix macromolecules mRNA was assessed by real-time polymerase chain reaction (PCR). Protein detection was performed by western-blot analysis. The binding activity of nuclear extracts to Cbfa1 DNA sequence was also evaluated by electrophoretic mobility shift assays (EMSA). RESULTS Chondrogenic differentiation of both CD56+ and CD56- muscle-derived cells was improved in alginate scaffold, even without growth factor, as suggested by increased chondrogenesis markers expression during the culture. Furthermore, TGFbeta1 enhanced the differentiation process and allowed to maintain a high expression of markers of mature chondrocytes. Of importance, the combination of alginate and TGFbeta1 treatment resulted in a further down-regulation of collagen type I and type X, as well as Cbfa1 both expression and binding activity. CONCLUSIONS Thus, alginate scaffold and chondrogenic medium are sufficient to lead both populations CD56+ and CD56- towards chondrogenic differentiation. Moreover, TGFbeta1 enhances this process and allows to maintain the chondrogenic phenotype by inhibiting terminal differentiation, particularly for CD56- cells.
Collapse
Affiliation(s)
- R Andriamanalijaona
- Laboratory of Extracellular Matrix and Pathology, EA 3214, IFR 146 ICORE, University of Caen Basse-Normandie, Caen Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Péault B. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 2008; 3:301-13. [PMID: 18786417 DOI: 10.1016/j.stem.2008.07.003] [Citation(s) in RCA: 2819] [Impact Index Per Article: 176.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 06/04/2008] [Accepted: 07/07/2008] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs), the archetypal multipotent progenitor cells derived in cultures of developed organs, are of unknown identity and native distribution. We have prospectively identified perivascular cells, principally pericytes, in multiple human organs including skeletal muscle, pancreas, adipose tissue, and placenta, on CD146, NG2, and PDGF-Rbeta expression and absence of hematopoietic, endothelial, and myogenic cell markers. Perivascular cells purified from skeletal muscle or nonmuscle tissues were myogenic in culture and in vivo. Irrespective of their tissue origin, long-term cultured perivascular cells retained myogenicity; exhibited at the clonal level osteogenic, chondrogenic, and adipogenic potentials; expressed MSC markers; and migrated in a culture model of chemotaxis. Expression of MSC markers was also detected at the surface of native, noncultured perivascular cells. Thus, blood vessel walls harbor a reserve of progenitor cells that may be integral to the origin of the elusive MSCs and other related adult stem cells.
Collapse
Affiliation(s)
- Mihaela Crisan
- Department of Pediatrics, Stem Cell Research Center, Children's Hospital of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Acute appendicitis is characterized by a uniform and highly selective pattern of inflammatory gene expression. Mucosal Immunol 2008; 1:297-308. [PMID: 19079191 PMCID: PMC2725926 DOI: 10.1038/mi.2008.13] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Acute appendicitis (AA) is the most common life-threatening surgical emergency in pediatrics. To characterize the nature of the inflammatory response in AA, gene expression profiles were generated. We found remarkable uniformity in the genes that were differentially expressed between patients with appendicitis and control groups. Sixty-four probe sets were differentially expressed in samples from patients with both severe and mild appendicitis compared to control samples, and within this group we were able to identify four dominant clusters. Interestingly, expression levels of interleukin (IL)-8 significantly correlated with histologic score, and expression of IL-8 protein was observed within both neutrophils and mononuclear cells by immunohistochemistry, suggesting a possible role in the etiology of appendicitis. Although there was some overlap between genes reported to be differentially expressed in Crohn's disease (CD) and those observed in AA, differential expression of genes involved in interferon responses that characterize CD was not observed.
Collapse
|
30
|
Richardson BE, Nowak SJ, Baylies MK. Myoblast fusion in fly and vertebrates: new genes, new processes and new perspectives. Traffic 2008; 9:1050-9. [PMID: 18435820 DOI: 10.1111/j.1600-0854.2008.00756.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Muscle formation and repair depends critically on the fusion of myoblasts. Despite the importance of this process, little is known about the cellular and molecular mechanisms regulating fusion. Forward genetic screens in Drosophila melanogaster have uncovered genes that, when mutated, prevent myoblast fusion. Analyses of these gene products have indicated that the actin cytoskeleton and its regulation play a central role in the fusion process. In this review, we discuss recent advances in the field, including new imaging approaches to analyze fusion as well as a description of novel genes required for fusion. In particular, we highlight what has been learned about the requirement of a specific actin structure at the site of fusion. We also place these findings from Drosophila within the context of myoblast fusion in vertebrates.
Collapse
Affiliation(s)
- Brian E Richardson
- Sloan-Kettering Institute, Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10021, USA
| | | | | |
Collapse
|
31
|
Kirillova I, Gussoni E, Goldhamer DJ, Yablonka-Reuveni Z. Myogenic reprogramming of retina-derived cells following their spontaneous fusion with myotubes. Dev Biol 2007; 311:449-63. [PMID: 17919536 DOI: 10.1016/j.ydbio.2007.08.056] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2007] [Revised: 08/03/2007] [Accepted: 08/28/2007] [Indexed: 02/06/2023]
Abstract
Satellite cells are recognized as the main source for myoblasts in postnatal muscle. The possible participation of other cell types in myofiber maintenance remains a subject of debate. Here, we investigated the potential of vascular preparations from mouse retina to undergo myogenesis when cultured alone or with differentiated primary myogenic cultures. The choice of retina, an organ richly supplied with capillary network and anatomically separated from skeletal muscles, ensures that the vasculature preparation is devoid of satellite cells. We demonstrate that retina-derived cells spontaneously fuse with preexisting myotubes and contribute additional myonuclei, some of which initiate expression of muscle-specific genes after fusion. Myogenic differentiation of retinal cells prior to their fusion with preexisting myotubes was not detected. Although originating from vasculature preparations, nuclei undergoing myogenic reprogramming were contributed by cells that were neither endothelial nor blood borne. Our results suggest smooth muscle/pericytes as the possible source, and that myogenic reprogramming depends on the muscle specific transcription factor MyoD. Our studies provide insights into a novel avenue for myofiber maintenance, relying on nuclei of non-myogenic origin that undergo fusion and subsequent myogenic conversion within host myofibers. This process may support ongoing myofiber maintenance throughout life.
Collapse
Affiliation(s)
- Irina Kirillova
- Department of Biological Structure, University of Washington School of Medicine, Magnuson Health Sciences Center, Box 357420, Room I-146, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
32
|
Day K, Shefer G, Richardson JB, Enikolopov G, Yablonka-Reuveni Z. Nestin-GFP reporter expression defines the quiescent state of skeletal muscle satellite cells. Dev Biol 2006; 304:246-59. [PMID: 17239845 PMCID: PMC1888564 DOI: 10.1016/j.ydbio.2006.12.026] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 11/07/2006] [Accepted: 12/12/2006] [Indexed: 01/09/2023]
Abstract
Repair of adult skeletal muscle depends on satellite cells, quiescent myogenic stem cells located beneath the myofiber basal lamina. Satellite cell numbers and performance decline with age and disease, yet the intrinsic molecular changes accompanying these conditions are unknown. We identified expression of GFP driven by regulatory elements of the nestin (NES) gene within mouse satellite cells, which permitted characterization of these cells in their niche. Sorted NES-GFP+ cells exclusively acquired a myogenic fate, even when supplemented with media supporting non-myogenic development. Mutual and unique gene expression by NES-GFP+ cells from hindlimb and diaphragm muscles demonstrated intra- and inter-muscular heterogeneity of satellite cells. NES-GFP expression declined following satellite cell activation and was reacquired in late stage myogenic cultures by non-proliferating Pax7+ progeny. The dynamics of this expression pattern reflect the cycle of satellite cell self-renewal. The NES-GFP model reveals unique transcriptional activity within quiescent satellite cells and permits novel insight into the heterogeneity of their molecular signatures.
Collapse
Affiliation(s)
- Kenneth Day
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA 98195
| | - Gabi Shefer
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA 98195
| | - Joshua B. Richardson
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA 98195
| | | | - Zipora Yablonka-Reuveni
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA 98195
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98195
- Corresponding author: Zipora Yablonka-Reuveni, Ph.D., Department of Biological Structure, Box 357420, Magnuson Health Sciences Center, room G514, University of Washington School of Medicine, Seattle, WA 98195, Tel: 206-685-2708; Fax: 206-543-1524, E-mail:
| |
Collapse
|
33
|
Yoon S, Molloy MJ, Wu MP, Cowan DB, Gussoni E. C6ORF32 is upregulated during muscle cell differentiation and induces the formation of cellular filopodia. Dev Biol 2006; 301:70-81. [PMID: 17150207 PMCID: PMC1779902 DOI: 10.1016/j.ydbio.2006.11.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 10/12/2006] [Accepted: 11/01/2006] [Indexed: 02/03/2023]
Abstract
We have identified a gene by microarray analysis that is located on chromosome 6 (c6orf32), whose expression is increased during human fetal myoblast differentiation. The protein encoded by c6orf32 is expressed both in myogenic and non-myogenic primary cells isolated from 18-week old human fetal skeletal muscle. Immunofluorescent staining indicated that C6ORF32 localizes to the cellular cytoskeleton and filopodia, and often displays polarized expression within the cell. mRNA knockdown experiments in the C2C12 murine myoblast cell line demonstrated that cells lacking c6orf32 exhibit a myogenic differentiation defect, characterized by a decrease in the expression of myogenin and myosin heavy chain (MHC) proteins, whereas MyoD1 was unaltered. In contrast, overexpression of c6orf32 in C2C12 or HEK293 cells (a non-muscle cell line) promoted formation of long membrane protrusions (filopodia). Analysis of serial deletion mutants demonstrated that amino acids 55-113 of C6ORF32 are likely involved in filopodia formation. These results indicate that C6ORF32 is a novel protein likely to play multiple functions, including promoting myogenic cell differentiation, cytoskeletal rearrangement and filopodia formation.
Collapse
Affiliation(s)
- Soonsang Yoon
- Division of Genetics and Program in Genomics, Children’s Hospital Boston
| | - Michael J. Molloy
- Division of Genetics and Program in Genomics, Children’s Hospital Boston
| | - Melissa P. Wu
- Division of Genetics and Program in Genomics, Children’s Hospital Boston
| | | | - Emanuela Gussoni
- Division of Genetics and Program in Genomics, Children’s Hospital Boston
- *Corresponding author mailing address: Children’s Hospital Boston, Enders 554 320 Longwood Ave Boston, MA 02115 Telephone (617) 919-2152 FAX (617) 730-0253 e-mail:
| |
Collapse
|