1
|
Kloss FR, Kau T, Heimes D, Kämmerer PW, Kloss-Brandstätter A. Enhanced alveolar ridge preservation with hyaluronic acid-enriched allografts: a comparative study of granular allografts with and without hyaluronic acid addition. Int J Implant Dent 2024; 10:42. [PMID: 39382763 PMCID: PMC11465134 DOI: 10.1186/s40729-024-00559-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024] Open
Abstract
PURPOSE Ridge preservation is essential to restore alveolar ridge volume and to enhance esthetic and functional outcomes for dental implants. The addition of hyaluronic acid to allogeneic bone substitute materials might enhance these outcomes. This clinical study evaluated the efficacy of ridge preservation after tooth extraction using granular allografts with and without hyaluronic acid addition. METHODS In this retrospective study, 40 patients with compromised extraction sockets were enrolled. Among them, 19 received particulate allogeneic bone substitutes (Allo), 21 received allogeneic bone substitutes with hyaluronic acid (AlloHya). Vertical and horizontal graft stability, graft shrinkage rate, and bone mineral density were assessed using radiographic measurements on CBCT scans conducted before tooth extraction, directly after ridge preservation and after four months. Patients were followed up 12 months post-implantation. RESULTS Vertical height loss after 4 months was significantly greater in the Allo group (-0.82 ± 0.95 mm) compared to the AlloHya group (-0.19 ± 0.51 mm; p = 0.011). Graft shrinkage rate was 16.9 ± 11.5% (Allo) and 10.3 ± 7.7% (AlloHya) (p = 0.038). After four months, average bone density was significantly higher in the AlloHya compared to the Allo group (p = 0.004). Nearly all implants (39 out of 40) were classified as "Success" according to the ICOI scheme, with no differences in implant quality between the two study groups. CONCLUSIONS Improved graft stability, reduced resorption, and increased bone density were observed in hyaluronic acid-enriched allografts compared to pure allografts. Adding hyaluronic acid to allogeneic bone grafts significantly enhanced outcomes in ridge preservation.
Collapse
Affiliation(s)
- Frank R Kloss
- Private Clinic for Oral, Maxillofacial and Plastic Facial Surgery, Kärntnerstraße 62, Lienz, 9900, Austria
| | - Thomas Kau
- Department of Radiology, Landeskrankenhaus Villach, Nikolaigasse 43, Villach, 9500, Austria
| | - Diana Heimes
- Department of Oral and Maxillofacial Surgery/Plastic Surgery, University of Mainz, Augustusplatz 2, Mainz, 55131, Germany
| | - Peer W Kämmerer
- Department of Oral and Maxillofacial Surgery/Plastic Surgery, University of Mainz, Augustusplatz 2, Mainz, 55131, Germany
| | - Anita Kloss-Brandstätter
- Department of Engineering & IT, Carinthia University of Applied Sciences, Europastraße 4, Villach, 9524, Austria.
| |
Collapse
|
2
|
Chan DD, Guilak F, Sah RL, Calve S. Mechanobiology of Hyaluronan: Connecting Biomechanics and Bioactivity in Musculoskeletal Tissues. Annu Rev Biomed Eng 2024; 26:25-47. [PMID: 38166186 DOI: 10.1146/annurev-bioeng-073123-120541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Hyaluronan (HA) plays well-recognized mechanical and biological roles in articular cartilage and synovial fluid, where it contributes to tissue structure and lubrication. An understanding of how HA contributes to the structure of other musculoskeletal tissues, including muscle, bone, tendon, and intervertebral discs, is growing. In addition, the use of HA-based therapies to restore damaged tissue is becoming more prevalent. Nevertheless, the relationship between biomechanical stimuli and HA synthesis, degradation, and signaling in musculoskeletal tissues remains understudied, limiting the utility of HA in regenerative medicine. In this review, we discuss the various roles and significance of endogenous HA in musculoskeletal tissues. We use what is known and unknown to motivate new lines of inquiry into HA biology within musculoskeletal tissues and in the mechanobiology governing HA metabolism by suggesting questions that remain regarding the relationship and interaction between biological and mechanical roles of HA in musculoskeletal health and disease.
Collapse
Affiliation(s)
- Deva D Chan
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA;
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, Missouri, USA
| | - Robert L Sah
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Sarah Calve
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
3
|
Kikuchi T, Udagawa K, Sasazaki Y. High-molecular-weight Hyaluronan Administration Inhibits Bone Resorption and Promotes Bone Formation in Young-age Osteoporosis Rats. J Histochem Cytochem 2024; 72:373-385. [PMID: 38804525 PMCID: PMC11179592 DOI: 10.1369/00221554241255724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Osteoporosis poses a significant global health concern, affecting both the elderly and young individuals, including athletes. Despite the development of numerous antiosteoporotic drugs, addressing the unique needs of young osteoporosis patients remains challenging. This study focuses on young rats subjected to ovariectomy (OVX) to explore the impact of high-molecular-weight hyaluronan (HA) on preventing OVX-induced osteoporosis. Twenty-four rats underwent OVX, while 12 underwent sham procedures (sham control group). Among the OVX rats, half received subcutaneous injections of HA (MW: 2700 kDa) at 10 mg/kg/week into their backs (OVX-HA group), whereas the other half received saline injections (0.5 ml/week) at the same site (OVX-saline group). OVX-HA group exhibited significantly higher percentages of osteoclast surface (Oc. S/BS), osteoblast surface per bone surface (Ob. S/BS), and bone volume/tissue volume (BV/TV) compared with OVX-saline group at the same age. The proportions of Ob. S/BS and BV/TV in the OVX-HA group closely resembled those of the sham control group, whereas the proportion of Oc. S/BS in the OVX-HA group was notably higher than that in the sham control group. In summary, the administration of HA significantly mitigated bone resorption and enhanced bone formation, suggesting a crucial role for HA in the treatment of young adult osteoporosis.
Collapse
Affiliation(s)
- Toshiyuki Kikuchi
- National Hospital Organization Murayama Medical Center, Tokyo, Japan
| | - Kazuhiko Udagawa
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
4
|
Seki Y, Ohkuma RC, Miyakawa Y, Karakida T, Yamamoto R, Yamakoshi Y. Hyaluronan and chondroitin sulfate in chicken-vegetable bone broth delay osteoporosis progression. J Food Sci 2024; 89:1791-1803. [PMID: 38317402 DOI: 10.1111/1750-3841.16962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Bone broth has recently gained worldwide recognition as a superfood that supplements several nutrients lacking in modern human diets; however, little is known of its efficacy on osteoporosis. Therefore, we aimed to identify the components of chicken-vegetable bone broth (CVBB) that are associated with osteoporosis prevention and verified the efficacy of these components using in vivo studies. In biochemical and cell biological experiments, CVBB was fractionated using ion exchange chromatography (IEC), and the effect of each IEC fraction on osteoclast differentiation was evaluated based on tartrate-resistant acid phosphatase (TRAP) activity, TRAP staining, and quantitative polymerase chain reaction analysis using mouse macrophage-like cells (RAW264 cell). In animal experiments, an ovariectomized (OVX) rat model was generated, followed by whole bone broth (OVX/CVBB) or IEC fraction (OVX/CVBB-Ext) administration and bone structural parameter characterization of OVX rat tibia based on micro-CT. Four CVBB fractions were obtained using IEC, and the fraction containing both hyaluronan and chondroitin sulfate (CVBB-Ext) led to the maximum inhibition of RAW264 cell differentiation. CVBB-Ext downregulated the expression of osteoclast differentiation marker genes. In animal experiments, the OVX group showed a clear decrease in bone density compared to that in the Sham operation group. The OVX/CVBB and OVX/CVBB-Ext groups showed increased bone mineral density and bone volume/tissue volume values compared to those in the OVX/control group. These results suggested that CVBB and CVBB-Ext slowed osteoporosis progression. Therefore, we conclude that hyaluronan and chondroitin sulfate in CVBB are key substances that impede osteoporosis progression. PRACTICAL APPLICATION: This study provides practical information on the effects of bone broth ingredients on osteoporosis to expand the current knowledge on the efficacy of bone broth, which is a widely consumed food. These results may help in the future development of bone broth as a dietary supplement for managing osteoporosis.
Collapse
Affiliation(s)
- Yuka Seki
- Fourth Undergraduate Student, School of Dental Medicine, Tsurumi University, Tsurumi-ku, Yokohama, Japan
| | - Risako Chiba Ohkuma
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, Tsurumi-ku, Yokohama, Japan
| | - Yuri Miyakawa
- Department of Pediatric Dentistry, School of Dental Medicine, Tsurumi University, Tsurumi-ku, Yokohama, Japan
| | - Takeo Karakida
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, Tsurumi-ku, Yokohama, Japan
| | - Ryuji Yamamoto
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, Tsurumi-ku, Yokohama, Japan
| | - Yasuo Yamakoshi
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, Tsurumi-ku, Yokohama, Japan
| |
Collapse
|
5
|
Mannino F, Irrera N, Pallio G, Bitto A. Steady state plasma and tissue distribution of low molecular weight hyaluronic acid after oral administration in mice. Nat Prod Res 2024; 38:773-780. [PMID: 37081790 DOI: 10.1080/14786419.2023.2197598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/27/2023] [Indexed: 04/22/2023]
Abstract
The oral administration is probably the most used and largely applicable method, even if absorption across the intestinal epithelium is a limiting factor that can invalidate the achievement of a therapy. The aim of this study was to assess the steady state bioavailability of very low molecular weight hyaluronic acid (vLMW-HA) and its distribution in different districts of mice. Adult female C57BL6/J mice (n = 26) were divided in three groups and orally treated for 7 days with: saline solution (SHAM-HA), high dose of vLMW-HA (5 kDa; 500 mg/kg/day; HD-vLMW-HA), and low dose of vLMW-HA (5 kDa; 100 mg/kg/day; LD-vLMW-HA). HA content was quantified in plasma, skin, bladder, gut, rectum, vagina, and eyes with ELISA assay at the end of treatment. HA level significantly increased after treatment with HD-vLMW-HA in all analyzed tissues and plasma. Therefore, vLMW-HA easy absorption and distribution after the oral intake opens new possibilities for future biomedical applications.
Collapse
Affiliation(s)
- Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
- SunNutraPharm s.r.l., Spin-Off Company of University of Messina, Messina, Italy
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
- SunNutraPharm s.r.l., Spin-Off Company of University of Messina, Messina, Italy
| |
Collapse
|
6
|
Timkovich AE, Holling GA, Afzali MF, Kisiday J, Santangelo KS. TLR4 antagonism provides short-term but not long-term clinical benefit in a full-depth cartilage defect mouse model. Connect Tissue Res 2024; 65:26-40. [PMID: 37898909 PMCID: PMC11271750 DOI: 10.1080/03008207.2023.2269257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 10/05/2023] [Indexed: 10/31/2023]
Abstract
PURPOSE/AIM Cartilage injury and subsequent osteoarthritis (OA) are debilitating conditions affecting millions worldwide. As there are no cures for these ailments, novel therapies are needed to suppress disease pathogenesis. Given that joint injuries are known to produce damage-associated molecular patterns (DAMPs), our central premise is that the Toll-like receptor 4 (TLR4) pathway is a principal driver in the early response to cartilage damage and subsequent pathology. We postulate that TLR4 activation is initiated/perpetuated by DAMPs released following joint damage. Thus, antagonism of the TLR4 pathway immediately after injury may suppress the development of joint surface defects. MATERIALS AND METHODS Two groups were utilized: (1) 8-week-old, male C57BL6 mice treated systemically with a known TLR4 antagonist and (2) mice injected with vehicle control. A full-depth cartilage lesion on the midline of the patellofemoral groove was created in the right knee of each mouse. The left knee was used as a sham surgery control. Gait changes were evaluated over 4 weeks using a quantitative gait analysis system. At harvest, knee joints were processed for pathologic assessment, Nanostring® transcript expression, and immunohistochemistry (IHC). RESULTS Short-term treatment with a TLR4 antagonist at 14-days significantly improved relevant gait parameters; improved cartilage metrics and modified Mankin scores were also seen. Additionally, mRNA expression and IHC showed reduced expression of inflammatory mediators in animals treated with the TLR4 antagonist. CONCLUSIONS Collectively, this work demonstrates that systemic treatment with a TLR4 antagonist is protective to further cartilage damage 14-days post-injury in a murine model of induced disease.
Collapse
Affiliation(s)
- Ariel E. Timkovich
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - G. Aaron Holling
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Maryam F. Afzali
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - John Kisiday
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Kelly S. Santangelo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
7
|
Babayev E, Suebthawinkul C, Gokyer D, Parkes WS, Rivas F, Pavone ME, Hall AR, Pritchard MT, Duncan FE. Cumulus expansion is impaired with advanced reproductive age due to loss of matrix integrity and reduced hyaluronan. Aging Cell 2023; 22:e14004. [PMID: 37850336 PMCID: PMC10652338 DOI: 10.1111/acel.14004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 10/19/2023] Open
Abstract
Reproductive aging is associated with ovulatory defects. Age-related ovarian fibrosis partially contributes to this phenotype as short-term treatment with anti-fibrotic compounds improves ovulation in reproductively old mice. However, age-dependent changes that are intrinsic to the follicle may also be relevant. In this study, we used a mouse model to demonstrate that reproductive aging is associated with impaired cumulus expansion which is accompanied by altered morphokinetic behavior of cumulus cells as assessed by time-lapse microscopy. The extracellular matrix integrity of expanded cumulus-oocyte complexes is compromised with advanced age as evidenced by increased penetration of fluorescent nanoparticles in a particle exclusion assay and larger open spaces on scanning electron microscopy. Reduced hyaluronan (HA) levels, decreased expression of genes encoding HA-associated proteins (e.g., Ptx3 and Tnfaip6), and increased expression of inflammatory genes and matrix metalloproteinases underlie this loss of matrix integrity. Importantly, HA levels are decreased with age in follicular fluid of women, indicative of conserved reproductive aging mechanisms. These findings provide novel mechanistic insights into how defects in cumulus expansion contribute to age-related infertility and may serve as a target to extend reproductive longevity.
Collapse
Affiliation(s)
- Elnur Babayev
- Department of Obstetrics and Gynecology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Chanakarn Suebthawinkul
- Department of Obstetrics and Gynecology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
- Department of Obstetrics and Gynecology, Faculty of MedicineChulalongkorn UniversityBangkokThailand
| | - Dilan Gokyer
- Department of Obstetrics and Gynecology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Wendena S. Parkes
- Department of Pharmacology, Toxicology, & Therapeutics, Institute for Reproductive and Developmental SciencesUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Felipe Rivas
- Virginia Tech‐Wake Forest University School of Biomedical Engineering and SciencesWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Mary Ellen Pavone
- Department of Obstetrics and Gynecology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Adam R. Hall
- Virginia Tech‐Wake Forest University School of Biomedical Engineering and SciencesWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Michele T. Pritchard
- Department of Pharmacology, Toxicology, & Therapeutics, Institute for Reproductive and Developmental SciencesUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Francesca E. Duncan
- Department of Obstetrics and Gynecology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| |
Collapse
|
8
|
Yang S, He Z, Wu T, Wang S, Dai H. Glycobiology in osteoclast differentiation and function. Bone Res 2023; 11:55. [PMID: 37884496 PMCID: PMC10603120 DOI: 10.1038/s41413-023-00293-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 08/20/2023] [Accepted: 09/07/2023] [Indexed: 10/28/2023] Open
Abstract
Glycans, either alone or in complex with glycan-binding proteins, are essential structures that can regulate cell biology by mediating protein stability or receptor dimerization under physiological and pathological conditions. Certain glycans are ligands for lectins, which are carbohydrate-specific receptors. Bone is a complex tissue that provides mechanical support for muscles and joints, and the regulation of bone mass in mammals is governed by complex interplay between bone-forming cells, called osteoblasts, and bone-resorbing cells, called osteoclasts. Bone erosion occurs when bone resorption notably exceeds bone formation. Osteoclasts may be activated during cancer, leading to a range of symptoms, including bone pain, fracture, and spinal cord compression. Our understanding of the role of protein glycosylation in cells and tissues involved in osteoclastogenesis suggests that glycosylation-based treatments can be used in the management of diseases. The aims of this review are to clarify the process of bone resorption and investigate the signaling pathways mediated by glycosylation and their roles in osteoclast biology. Moreover, we aim to outline how the lessons learned about these approaches are paving the way for future glycobiology-focused therapeutics.
Collapse
Affiliation(s)
- Shufa Yang
- Prenatal Diagnostic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Ziyi He
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
| | - Tuo Wu
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
| | - Shunlei Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
| | - Hui Dai
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China.
| |
Collapse
|
9
|
Menezes R, Vincent R, Osorno L, Hu P, Arinzeh TL. Biomaterials and tissue engineering approaches using glycosaminoglycans for tissue repair: Lessons learned from the native extracellular matrix. Acta Biomater 2023; 163:210-227. [PMID: 36182056 PMCID: PMC10043054 DOI: 10.1016/j.actbio.2022.09.064] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 01/30/2023]
Abstract
Glycosaminoglycans (GAGs) are an important component of the extracellular matrix as they influence cell behavior and have been sought for tissue regeneration, biomaterials, and drug delivery applications. GAGs are known to interact with growth factors and other bioactive molecules and impact tissue mechanics. This review provides an overview of native GAGs, their structure, and properties, specifically their interaction with proteins, their effect on cell behavior, and their mechanical role in the ECM. GAGs' function in the extracellular environment is still being understood however, promising studies have led to the development of medical devices and therapies. Native GAGs, including hyaluronic acid, chondroitin sulfate, and heparin, have been widely explored in tissue engineering and biomaterial approaches for tissue repair or replacement. This review focuses on orthopaedic and wound healing applications. The use of GAGs in these applications have had significant advances leading to clinical use. Promising studies using GAG mimetics and future directions are also discussed. STATEMENT OF SIGNIFICANCE: Glycosaminoglycans (GAGs) are an important component of the native extracellular matrix and have shown promise in medical devices and therapies. This review emphasizes the structure and properties of native GAGs, their role in the ECM providing biochemical and mechanical cues that influence cell behavior, and their use in tissue regeneration and biomaterial approaches for orthopaedic and wound healing applications.
Collapse
Affiliation(s)
- Roseline Menezes
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Richard Vincent
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Laura Osorno
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Phillip Hu
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Treena Livingston Arinzeh
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States; Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States.
| |
Collapse
|
10
|
Pendyala M, Stephen SJ, Vashishth D, Blaber EA, Chan DD. Loss of hyaluronan synthases impacts bone morphology, quality, and mechanical properties. Bone 2023; 172:116779. [PMID: 37100359 DOI: 10.1016/j.bone.2023.116779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 04/28/2023]
Abstract
Hyaluronan, a glycosaminoglycan synthesized by three isoenzymes (Has1, Has2, Has3), is known to play a role in regulating bone turnover, remodeling, and mineralization, which in turn can affect bone quality and strength. The goal of this study is to characterize how the loss of Has1 or Has3 affects the morphology, matrix properties, and overall strength of murine bone. Femora were isolated from Has1-/-,Has3-/-, and wildtype (WT) C57Bl/6 J female mice and were analyzed using microcomputed-tomography, confocal Raman spectroscopy, three-point bending, and nanoindentation. Of the three genotypes tested, Has1-/- bones demonstrated significantly lower cross-sectional area (p = 0.0002), reduced hardness (p = 0.033), and lower mineral-to-matrix ratio (p < 0.0001). Has3-/- bones had significantly higher stiffness (p < 0.0001) and higher mineral-to-matrix ratio (p < 0.0001) but lower strength (p = 0.0014) and bone mineral density (p < 0.0001) than WT. Interestingly, loss of Has3 was also associated with significantly lower accumulation of advanced glycation end-products than WT (p = 0.0478). Taken together, these results demonstrate, for the first time, the impact of the loss of hyaluronan synthase isoforms on cortical bone structure, content, and biomechanics. Loss of Has1 impacted morphology, mineralization, and micron-level hardness, while loss of Has3 reduced bone mineral density and affected organic matrix composition, impacting whole bone mechanics. This is the first study to characterize the effect of loss of hyaluronan synthases on bone quality, suggesting an essential role hyaluronan plays during the development and regulation of bone.
Collapse
Affiliation(s)
- Meghana Pendyala
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8(th) St. Troy, NY 12180, United States of America; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8(th) St. Troy, NY 12180, United States of America
| | - Samuel J Stephen
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8(th) St. Troy, NY 12180, United States of America; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8(th) St. Troy, NY 12180, United States of America
| | - Deepak Vashishth
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8(th) St. Troy, NY 12180, United States of America; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8(th) St. Troy, NY 12180, United States of America
| | - Elizabeth A Blaber
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8(th) St. Troy, NY 12180, United States of America; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8(th) St. Troy, NY 12180, United States of America; Blue Marble Space Institute of Science at NASA Ames Research Center, PO Box 1, Moffett Field, CA 94035, United States of America
| | - Deva D Chan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8(th) St. Troy, NY 12180, United States of America; Weldon School of Biomedical Engineering, 206 S. Martin Jischke Drive, Purdue University, West Lafayette, IN, United States of America.
| |
Collapse
|
11
|
Deng H, Wang J, An R. Hyaluronic acid-based hydrogels: As an exosome delivery system in bone regeneration. Front Pharmacol 2023; 14:1131001. [PMID: 37007032 PMCID: PMC10063825 DOI: 10.3389/fphar.2023.1131001] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/03/2023] [Indexed: 03/19/2023] Open
Abstract
Exosomes are extracellular vesicles (EVs) containing various ingredients such as DNA, RNA, lipids and proteins, which play a significant role in intercellular communication. Numerous studies have demonstrated the important role of exosomes in bone regeneration through promoting the expression of osteogenic-related genes and proteins in mesenchymal stem cells. However, the low targeting ability and short circulating half-life of exosomes limited their clinical application. In order to solve those problems, different delivery systems and biological scaffolds have been developed. Hydrogel is a kind of absorbable biological scaffold composed of three-dimensional hydrophilic polymers. It not only has excellent biocompatibility and superior mechanical strength but can also provide a suitable nutrient environment for the growth of the endogenous cells. Thus, the combination between exosomes and hydrogels can improve the stability and maintain the biological activity of exosomes while achieving the sustained release of exosomes in the bone defect sites. As an important component of the extracellular matrix (ECM), hyaluronic acid (HA) plays a critical role in various physiological and pathological processes such as cell differentiation, proliferation, migration, inflammation, angiogenesis, tissue regeneration, wound healing and cancer. In recent years, hyaluronic acid-based hydrogels have been used as an exosome delivery system for bone regeneration and have displayed positive effects. This review mainly summarized the potential mechanism of HA and exosomes in promoting bone regeneration and the application prospects and challenges of hyaluronic acid-based hydrogels as exosome delivery devices in bone regeneration.
Collapse
Affiliation(s)
| | | | - Ran An
- *Correspondence: Jiecong Wang, ; Ran An,
| |
Collapse
|
12
|
The Impact of Hyaluronic Acid on Tendon Physiology and Its Clinical Application in Tendinopathies. Cells 2021; 10:cells10113081. [PMID: 34831304 PMCID: PMC8625461 DOI: 10.3390/cells10113081] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 01/17/2023] Open
Abstract
The physical-chemical, structural, hydrodynamic, and biological properties of hyaluronic acid within tendons are still poorly investigated. Medical history and clinical applications of hyaluronic acid for tendinopathies are still debated. In general, the properties of hyaluronic acid depend on several factors including molecular weight. Several preclinical and clinical experiences show a good efficacy and safety profile of hyaluronic acid, despite the absence of consensus in the literature regarding the classification according to molecular weight. In in vitro and preclinical studies, hyaluronic acid has shown physical-chemical properties, such as biocompatibility, mucoadhesivity, hygroscopicity, and viscoelasticity, useful to contribute to tendon healing. Additionally, in clinical studies, hyaluronic acid has been used with promising results in different tendinopathies. In this narrative review, findings encourage the clinical application of HA in tendinopathies such as rotator cuff, epicondylitis, Achilles, and patellar tendinopathy.
Collapse
|
13
|
Salbach-Hirsch J, Rauner M, Hofbauer C, Hofbauer LC. New insights into the role of glycosaminoglycans in the endosteal bone microenvironment. Biol Chem 2021; 402:1415-1425. [PMID: 34323057 DOI: 10.1515/hsz-2021-0174] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 07/14/2021] [Indexed: 12/19/2022]
Abstract
The bone microenvironment is a complex tissue in which heterogeneous cell populations of hematopoietic and mesenchymal origin interact with environmental cues to maintain tissue integrity. Both cellular and matrix components are subject to physiologic challenges and can dynamically respond by modifying cell/matrix interactions. When either component is impaired, the physiologic balance is lost. Here, we review the current state of knowledge of how glycosaminoglycans - organic components of the bone extracellular matrix - influence the bone micromilieu. We point out how they interact with mediators of distinct signaling pathways such as the RANKL/OPG axis, BMP and WNT signaling, and affect the activity of bone remodeling cells within the endosteal niche summarizing their potential for therapeutic intervention.
Collapse
Affiliation(s)
- Juliane Salbach-Hirsch
- Division of Endocrinology, Diabetes, and Metabolic Bone Diseases, Department of Medicine III, Medical Center, Technische Universität Dresden, D-01307 Dresden, Germany
- Center for Healthy Aging, Medical Center, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Martina Rauner
- Division of Endocrinology, Diabetes, and Metabolic Bone Diseases, Department of Medicine III, Medical Center, Technische Universität Dresden, D-01307 Dresden, Germany
- Center for Healthy Aging, Medical Center, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Christine Hofbauer
- NCT Dresden and University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Lorenz C Hofbauer
- Division of Endocrinology, Diabetes, and Metabolic Bone Diseases, Department of Medicine III, Medical Center, Technische Universität Dresden, D-01307 Dresden, Germany
- Center for Healthy Aging, Medical Center, Technische Universität Dresden, D-01307 Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), D-01307 Dresden, Germany
| |
Collapse
|
14
|
Vasvani S, Kulkarni P, Rawtani D. Hyaluronic acid: A review on its biology, aspects of drug delivery, route of administrations and a special emphasis on its approved marketed products and recent clinical studies. Int J Biol Macromol 2020; 151:1012-1029. [DOI: 10.1016/j.ijbiomac.2019.11.066] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/25/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022]
|
15
|
Liang JY, Wu WL, Chen YX, Liu H. The efficacy and potential mechanism of cnidium lactone to inhibit osteoclast differentiation. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:3087-3093. [PMID: 31343277 DOI: 10.1080/21691401.2019.1637881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cnidium lactone is effective in the maintenance of bone mass in various osteoporosis models; however, the precise molecular mechanisms are not understood. In this study, we investigated the effects and underlying mechanisms of action of cnidium lactone on receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis. Cnidium lactone dose-dependently inhibited osteoclast differentiation and formation, decreased the bone-resorbing activity of osteoclasts, and downregulated the expression of osteoclast differentiation marker genes. Cnidium lactone treatment considerably reduced RANKL-induced p38 MAPK and PI3K-Akt signal activity in RAW264.7 cells. The cnidium lactone-induced osteoclastogenesis was significantly attenuated by inhibition of p38 and PI3K through pretreatment with SB203580 and LY294002, respectively. Furthermore, cnidium lactone inhibited the expression of c-Fos and NFATc-1 with dose-dependently and enhanced by SB203580 and LY294002. In conclusion, cnidium lactone inhibits osteoclast differentiation through p38 MAPK and PI3K-Akt signalling pathway/c-Fos/NFATc1 signalling pathway.
Collapse
Affiliation(s)
- Jun-Yang Liang
- a Department of Second Area of Spinal Surgery, Weihaiwei People's Hospital , Weihai , China
| | - Wen-Liang Wu
- b Department of Orthopedics, Qilu Hospital of Shandong University , Jinan , China
| | - Yun-Xia Chen
- b Department of Orthopedics, Qilu Hospital of Shandong University , Jinan , China
| | - Haichun Liu
- b Department of Orthopedics, Qilu Hospital of Shandong University , Jinan , China
| |
Collapse
|
16
|
Gupta RC, Lall R, Srivastava A, Sinha A. Hyaluronic Acid: Molecular Mechanisms and Therapeutic Trajectory. Front Vet Sci 2019; 6:192. [PMID: 31294035 PMCID: PMC6603175 DOI: 10.3389/fvets.2019.00192] [Citation(s) in RCA: 350] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/30/2019] [Indexed: 01/06/2023] Open
Abstract
Hyaluronic acid (also known as hyaluronan or hyaluronate) is naturally found in many tissues and fluids, but more abundantly in articular cartilage and synovial fluid (SF). Hyaluronic acid (HA) content varies widely in different joints and species. HA is a non-sulfated, naturally occurring non-protein glycosaminoglycan (GAG), with distinct physico-chemical properties, produced by synoviocytes, fibroblasts, and chondrocytes. HA has an important role in the biomechanics of normal SF, where it is partially responsible for lubrication and viscoelasticity of the SF. The concentration of HA and its molecular weight (MW) decline as osteoarthritis (OA) progresses with aging. For that reason, HA has been used for more than four decades in the treatment of OA in dogs, horses and humans. HA produces anti-arthritic effects via multiple mechanisms involving receptors, enzymes and other metabolic pathways. HA is also used in the treatment of ophthalmic, dermal, burns, wound repair, and other health conditions. The MW of HA appears to play a critical role in the formulation of the products used in the treatment of diseases. This review provides a mechanism-based rationale for the use of HA in some disease conditions with special reference to OA.
Collapse
Affiliation(s)
- Ramesh C Gupta
- Toxicology Department, Breathitt Veterinary Center, Murray State University, Hopkinsville, KY, United States
| | - Rajiv Lall
- Vets Plus, Inc., Menomonie, WI, United States
| | | | - Anita Sinha
- Vets Plus, Inc., Menomonie, WI, United States
| |
Collapse
|
17
|
Taz M, Makkar P, Imran KM, Jang D, Kim YS, Lee BT. Bone regeneration of multichannel biphasic calcium phosphate granules supplemented with hyaluronic acid. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:1058-1066. [DOI: 10.1016/j.msec.2019.02.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/31/2019] [Accepted: 02/15/2019] [Indexed: 10/27/2022]
|
18
|
Hyaluronan as tunable drug delivery system. Adv Drug Deliv Rev 2019; 146:83-96. [PMID: 31421148 DOI: 10.1016/j.addr.2019.08.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 12/15/2022]
Abstract
The hyaluronan (HA) polymer is an important macromolecule of extracellular matrix with remarkable structure and functions: it is a linear and unbranched polymer without sulphate or phosphate groups and has key role in several biological processes in mammals. It is ubiquitous in mammalian tissues with several and specific functions, influencing cell proliferation and migration as well as angiogenesis and inflammation. To exert these important functions in tissues HA modifies the concentration and size. Considering this HA content in tissues is carefully controlled by different mechanisms including covalent modification of the synthetic enzymes and epigenetic control of their gene expression. The function of HA is also critical in several pathologies including cancer, diabetes and chronic inflammation. Among these biological roles, the structural properties of HA allow to use this polymer in regenerative medicine including cosmetics and drug delivery. HA takes advantage from its capacity to form gels even at concentration of 1% producing scaffolds with very intriguing mechanical properties. These hydrogels are useful in regenerative medicine as biocompatible material for advanced therapeutic uses. In this review we highlight the biological aspects of HA addressing the mechanisms controlling the HA content in tissues and its role as drug delivery system.
Collapse
|
19
|
Ren X, Zhou Q, Foulad D, Dewey MJ, Bischoff D, Miller TA, Yamaguchi DT, Harley BAC, Lee JC. Nanoparticulate mineralized collagen glycosaminoglycan materials directly and indirectly inhibit osteoclastogenesis and osteoclast activation. J Tissue Eng Regen Med 2019; 13:823-834. [PMID: 30803152 DOI: 10.1002/term.2834] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/20/2018] [Accepted: 02/13/2019] [Indexed: 12/16/2022]
Abstract
The ability of the extracellular matrix (ECM) to direct cell fate has generated the potential for developing a materials-only strategy for tissue regeneration. Previously, we described a nanoparticulate mineralized collagen glycosaminoglycan (MC-GAG) material that efficiently induced osteogenic differentiation of human mesenchymal stem cells (hMSCs) and calvarial bone healing without exogenous growth factors or progenitor cell expansion. In this work, we evaluated the interactions between MC-GAG and primary human osteoclasts (hOCs). In the absence of hMSCs, mineralized Col-GAG materials directly inhibited hOC viability, proliferation, and resorption in contrast to nonmineralized Col-GAG, which demonstrated a modest inhibition of resorptive activity only. Cocultures containing differentiating hMSCs with hOCs demonstrated increased hOC-mediated resorption only on Col-GAG while MC-GAG cocultures continued to inhibit resorption. Unlike Col-GAG, hMSCs on MC-GAG expressed increased amounts of osteoprotegerin (OPG) protein, the major endogenous osteoclast inhibitor. Interestingly, OPG expression was found to be antagonized by small mothers against decapentaplegic1/5 (Smad1/5) phosphorylation, an obligate pathway for osteogenic differentiation of hMSCs on MC-GAG, and potentiated by extracellular signal-regulated kinase (ERK1/2) phosphorylation. Collectively, these results suggested that the MC-GAG material both directly inhibited the osteoclast viability, proliferation, and resorptive activity as well as induced hMSCs to secrete osteoprotegerin, an antiosteoclastogenic factor, via a signalling pathway distinct from osteogenic differentiation.
Collapse
Affiliation(s)
- Xiaoyan Ren
- Division of Plastic and Reconstructive Surgery, UCLA David Geffen School of Medicine, Los Angeles, California.,Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, California.,UCLA Molecular Biology Institute, Los Angeles, California
| | - Qi Zhou
- Division of Plastic and Reconstructive Surgery, UCLA David Geffen School of Medicine, Los Angeles, California.,Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, California.,UCLA Molecular Biology Institute, Los Angeles, California
| | - David Foulad
- Division of Plastic and Reconstructive Surgery, UCLA David Geffen School of Medicine, Los Angeles, California.,Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, California.,UCLA Molecular Biology Institute, Los Angeles, California
| | - Marley J Dewey
- Department of Materials Science and Engineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - David Bischoff
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, California
| | - Timothy A Miller
- Division of Plastic and Reconstructive Surgery, UCLA David Geffen School of Medicine, Los Angeles, California.,Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, California
| | - Dean T Yamaguchi
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, California
| | - Brendan A C Harley
- Department of Chemical and Biomolecular Engineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Justine C Lee
- Division of Plastic and Reconstructive Surgery, UCLA David Geffen School of Medicine, Los Angeles, California.,Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, California.,UCLA Molecular Biology Institute, Los Angeles, California
| |
Collapse
|
20
|
Delia P, Sansotta G, Pontoriero A, Iati G, De Salvo S, Pisana M, Potami A, Lopes S, Messina G, Pergolizzi S. Clinical Evaluation of Low-Molecular-Weight Hyaluronic Acid-Based Treatment on Onset of Acute Side Effects in Women Receiving Adjuvant Radiotherapy after Cervical Surgery: A Randomized Clinical Trial. Oncol Res Treat 2019; 42:217-223. [DOI: 10.1159/000496036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/05/2018] [Indexed: 11/19/2022]
|
21
|
Black Rice ( Oryza sativa L.) Fermented with Lactobacillus casei Attenuates Osteoclastogenesis and Ovariectomy-Induced Osteoporosis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5073085. [PMID: 30911544 PMCID: PMC6399567 DOI: 10.1155/2019/5073085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/16/2018] [Accepted: 01/31/2019] [Indexed: 02/04/2023]
Abstract
The aim of the present study was to investigate the antiosteoclastogenic effects of black rice (Oryza sativa L.) fermented with Lactobacillus casei (LAB) in RANKL-induced RAW macrophage cells and its antiosteoporosis activity against ovariectomy-induced osteoporosis in rats. LAB extract (LABE) treatment attenuated receptor activator of nuclear factor-kappa B (NF-κB) ligand-induced osteoclastic differentiation in RAW cells by inhibiting intercellular reactive oxygen species generation and downregulating the activation of mitogen-activated protein kinases and NF-κB, leading to the downregulation of c-Fos and expression of nuclear factor of activated T cells c1. This consequently suppressed the expression of osteoclast-specific genes including those for cathepsin K, tartrate-resistant acid phosphatase, calcitonin receptor, and integrin β3. Oral administration of LABE protected against ovariectomy-induced bone loss by significantly inhibiting bone architecture alterations and improving serum bone turnover markers in ovariectomized rats. The findings suggest that the antiosteoporotic activity of LABE may be derived from its antiosteoclastic and anti-bone-resorptive activities. LABE has potential as a promising functional material or substrate to prepare protective agents for osteoporosis and osteoclast-mediated bone diseases.
Collapse
|
22
|
Hyaluronan: Structure, Metabolism, and Biological Properties. BIOLOGICALLY-INSPIRED SYSTEMS 2019. [DOI: 10.1007/978-3-030-12919-4_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Hyaluronan negatively regulates vascular calcification involving BMP2 signaling. J Transl Med 2018; 98:1320-1332. [PMID: 29785051 DOI: 10.1038/s41374-018-0076-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/21/2018] [Accepted: 04/16/2018] [Indexed: 01/10/2023] Open
Abstract
Vascular calcification is a highly regulated biological process similar to bone formation involving osteogenic differentiation of vascular smooth muscle cells (VSMCs). Hyaluronan (HA), a major structural component of the extracellular matrix in cartilage, has been shown to inhibit osteoblast differentiation. However, whether HA affects osteogenic differentiation and calcification of VSMCs remains unclear. In the present study, we used in vitro and ex vivo models of vascular calcification to investigate the role of HA in vascular calcification. Both high and low molecular weight HA treatment significantly reduced calcification of rat VSMCs in a dose-dependent manner, as detected by alizarin red staining and calcium content assay. Ex vivo study further confirmed the inhibitory effect of HA on vascular calcification. Similarly, HA treatment decreased ALP activity and expression of bone-related molecules including Runx2, BMP2 and Msx2. By contrast, inhibition of HA synthesis by 4-methylumbelliferone (4MU) promoted calcification of rat VSMCs. In addition, adenovirus-mediated overexpression of HA synthase 2 (HAS2), a major HA synthase in VSMCs, also inhibited calcification of VSMCs, whereas CRISPR/Cas9-mediated HAS2 knockout promoted calcification of rat A10 cells. Furthermore, we found that BMP2 signaling was inhibited in VSMCs after HA treatment. Recombinant BMP2 enhanced high calcium and phosphate-induced VSMC calcification, which can be blocked by HA treatment. Taken together, these findings suggest that HA inhibits vascular calcification involving BMP2 signaling.
Collapse
|
24
|
Fei CM, Guo J, Zhao YS, Zhao SD, Zhen QQ, Shi L, Li X, Chang CK. Clinical significance of hyaluronan levels and its pro-osteogenic effect on mesenchymal stromal cells in myelodysplastic syndromes. J Transl Med 2018; 16:234. [PMID: 30143008 PMCID: PMC6109310 DOI: 10.1186/s12967-018-1614-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/21/2018] [Indexed: 12/12/2022] Open
Abstract
Background Hyaluronan (HA), a major component of the extracellular matrix, has been proven to play a crucial role in tumor progression. However, it remains unknown whether HA exerts any effects in myelodysplastic syndromes (MDS). Methods A total of 82 patients with MDS and 28 healthy donors were investigated in this study. We firstly examined the bone marrow (BM) serum levels of HA in MDS by radioimmunoassay. Then we determined HA production and hyaluronan synthase (HAS) gene expression in BM mesenchymal stromal cells (MSC) and mononuclear cells derived from MDS patients. Finally, we investigated the effects of HA on osteogenic differentiation of MSC. Results The BM serum levels of HA was increased in higher-risk MDS patients compared to normal controls. Meanwhile, patients with high BM serum HA levels had significantly shorter median survival than those with low HA levels. Moreover, the HA levels secreted by MSC was elevated in MDS, especially in higher-risk MDS. In addition, HAS-2 mRNA expression was also up-regulated in higher-risk MDS-MSC. Furthermore, we found that MSC derived from MDS patients with high BM serum HA levels had better osteogenic differentiation potential. Moreover, MSC cultured in HA-coated surface presented enhanced osteogenic differentiation ability. Conclusions Our results show that elevated levels of BM serum HA are related to adverse clinical outcome in MDS. Better osteogenic differentiation of MSC induced by HA may be implicated in the pathogenesis of MDS.
Collapse
Affiliation(s)
- Cheng-Ming Fei
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi Shan Road, Shanghai, 200233, China
| | - Juan Guo
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi Shan Road, Shanghai, 200233, China
| | - You-Shan Zhao
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi Shan Road, Shanghai, 200233, China
| | - Si-Da Zhao
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi Shan Road, Shanghai, 200233, China
| | - Qing-Qing Zhen
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi Shan Road, Shanghai, 200233, China
| | - Lei Shi
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi Shan Road, Shanghai, 200233, China
| | - Xiao Li
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi Shan Road, Shanghai, 200233, China
| | - Chun-Kang Chang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi Shan Road, Shanghai, 200233, China.
| |
Collapse
|
25
|
Lu CH, Lin CH, Li KJ, Shen CY, Wu CH, Kuo YM, Lin TS, Yu CL, Hsieh SC. Intermediate Molecular Mass Hyaluronan and CD44 Receptor Interactions Enhance Neutrophil Phagocytosis and IL-8 Production via p38- and ERK1/2-MAPK Signalling Pathways. Inflammation 2018; 40:1782-1793. [PMID: 28730511 DOI: 10.1007/s10753-017-0622-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
CD44 is a common leukocyte adhesion molecule expressed on the surface of various cells. Hyaluronan (HA), the natural ligand of CD44, is a simple repeated disaccharide with variable molecular mass that is widely distributed on cell surfaces and the connective tissue matrix. The binding of small molecular mass HA (SMM-HA, MW < 80 kDa) to CD44 on immune-related cells elicits cell proliferation, differentiation, and cytokine production. However, the effects and molecular basis of intermediate molecular mass HA (IMM-HA, MW ≈ 500 kDa)-CD44 interactions on polymorphonuclear neutrophil (PMN) functions have not been elucidated. We hypothesised that IMM-HA would potentiate immune functions as well as SMM-HA. In the present study, we demonstrated IMM-HA and CD44 interactions enhanced normal PMN phagocytosis and IL-8 production compared to those with LPS or anti-CD45 treatment via F-actin cytoskeleton polymerization and subsequent ERK1/2- and p38-MAPK phosphorylation. Antibody-based inhibition of CD44 did not affect PMN function; however, F-actin aggregation was induced without MAPK phosphorylation. Enhanced PMN function via IMM-HA was determined to be CD44-dependent since this effect was abolished in DMSO-induced CD44(-) PMN-like cells obtained from HL-60 cells. In conclusion, we demonstrated that IMM-HA and CD44 interactions on PMNs potently elicit F-actin cytoskeleton polymerization and p38- and ERK1/2-MAPK phosphorylation to enhance PMN function.
Collapse
Affiliation(s)
- Cheng-Hsun Lu
- Institute of Clinical Medicine, National Taiwan University College of Medicine, No. 7 Chung-San South Road, Taipei, 10002, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital-Yunlin Branch, No. 95 Xuefu Rd, Huwei Township, Yunlin County, 632, Taiwan
| | - Chia-Huei Lin
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, No. 7, Chung-San South Road, Taipei, 10002, Taiwan
| | - Ko-Jen Li
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, No. 7, Chung-San South Road, Taipei, 10002, Taiwan
| | - Chieh-Yu Shen
- Institute of Clinical Medicine, National Taiwan University College of Medicine, No. 7 Chung-San South Road, Taipei, 10002, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, No. 7, Chung-San South Road, Taipei, 10002, Taiwan
| | - Cheng-Han Wu
- Institute of Clinical Medicine, National Taiwan University College of Medicine, No. 7 Chung-San South Road, Taipei, 10002, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, No. 7, Chung-San South Road, Taipei, 10002, Taiwan
| | - Yu-Min Kuo
- Institute of Clinical Medicine, National Taiwan University College of Medicine, No. 7 Chung-San South Road, Taipei, 10002, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, No. 7, Chung-San South Road, Taipei, 10002, Taiwan
| | - Ting-Syuan Lin
- Department of Internal Medicine, National Taiwan University Hospital-Yunlin Branch, No. 95 Xuefu Rd, Huwei Township, Yunlin County, 632, Taiwan
| | - Chia-Li Yu
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, No. 7, Chung-San South Road, Taipei, 10002, Taiwan.,Institute of Molecular Medicine, National Taiwan University College of Medicine, No. 7 Chung-San South Road, Taipei, 10002, Taiwan
| | - Song-Chou Hsieh
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, No. 7, Chung-San South Road, Taipei, 10002, Taiwan.
| |
Collapse
|
26
|
Li M, Chen X, Yan J, Zhou L, Wang Y, He F, Lin J, Zhu C, Pan G, Yu J, Pei M, Yang H, Liu T. Inhibition of osteoclastogenesis by stem cell-derived extracellular matrix through modulation of intracellular reactive oxygen species. Acta Biomater 2018. [PMID: 29526830 DOI: 10.1016/j.actbio.2018.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Decellularized extracellular matrix (ECM) derived from stem cells has been shown as a promising biomaterial for bone regeneration because of the promotion effect on osteogenesis in mesenchymal stem cells (MSCs). However, bone regeneration is also influenced by bone resorption and little is known about the effect of cell-derived ECM on osteoclast differentiation. In this study, ECM was deposited by MSCs and, after decellularization, the effect of ECM on osteoclastogenesis of bone marrow monocytes (BMMs) was investigated in comparison to standard tissue culture polystyrene. Our results showed that cell-derived ECM improved BMM proliferation but potently inhibited osteoclast differentiation, evidenced by down-regulation of multinucleated tartrate-resistant acid phosphatase (TRAP)-positive cells, areas of actin rings, and osteoclast-specific gene expression. ECM-mediated attenuation of intracellular reactive oxygen species (ROS) was suggested to play a rival role in the inhibition of osteoclastogenesis, because exogenous hydrogen peroxide supplementation partially rescued the ECM-inhibited osteoclastogenesis. Furthermore, rather than collagen type I, fibronectin in the ECM contributed to ECM-mediated anti-osteoclastogenesis. In conclusion, stem cell-derived decellularized ECM significantly suppressed osteoclastogenesis via the attenuation of intracellular ROS. The anti-osteoclastogenic property of cell-derived ECM may benefit its clinical use for modulating bone remodeling and promoting bone tissue engineering. STATEMENT OF SIGNIFICANCE Decellularized extracellular matrix (ECM) derived from stem cells has been shown as a promising biomaterial for bone regeneration; however, bone remodeling is influenced by bone resorption and little is known about the effect of cell-derived ECM on osteoclast differentiation. Cell-derived ECM improved BMM proliferation but potently inhibited osteoclast differentiation. ECM-mediated attenuation of intracellular reactive oxygen species was suggested to play a rival role in osteoclastogenesis. Fibronectin in cell-derived ECM also contributed to ECM-mediated anti-osteoclastogenesis. The anti-osteoclastogenic property of cell-derived ECM may benefit clinically for modulating bone remodeling and promoting bone tissue engineering.
Collapse
|
27
|
Ghosh M, Kim IS, Lee YM, Hong SM, Lee TH, Lim JH, Debnath T, Lim BO. The Effects of Aronia melanocarpa 'Viking' Extracts in Attenuating RANKL-Induced Osteoclastic Differentiation by Inhibiting ROS Generation and c-FOS/NFATc1 Signaling. Molecules 2018. [PMID: 29518052 PMCID: PMC6017336 DOI: 10.3390/molecules23030615] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This study aimed to determine the anti-osteoclastogenic effects of extracts from Aronia melanocarpa ‘Viking’ (AM) and identify the underlying mechanisms in vitro. Reactive oxygen species (ROS) are signal mediators in osteoclast differentiation. AM extracts inhibited ROS production in RAW 264.7 cells in a dose-dependent manner and exhibited strong radical scavenging activity. The extracts also attenuated the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclasts. To attain molecular insights, the effect of the extracts on the signaling pathways induced by receptor activator of nuclear factor kappa B ligand (RANKL) were also investigated. RANKL triggers many transcription factors through the activation of mitogen-activated protein kinase (MAPK) and ROS, leading to the induction of osteoclast-specific genes. The extracts significantly suppressed RANKL-induced activation of MAPKs, such as extracellular signal-regulated kinase (ERK), c-Jun-N-terminal kinase (JNK) and p38 and consequently led to the downregulation of c-Fos and nuclear factor of activated T cells 1 (NFATc1) protein expression which ultimately suppress the activation of the osteoclast-specific genes, cathepsin K, TRAP, calcitonin receptor and integrin β3. In conclusion, our findings suggest that AM extracts inhibited RANKL-induced osteoclast differentiation by downregulating ROS generation and inactivating JNK/ERK/p38, nuclear factor kappa B (NF-κB)-mediated c-Fos and NFATc1 signaling pathway.
Collapse
Affiliation(s)
- Mithun Ghosh
- Department of Applied Life Science, College of Biomedical & Health Science, Konkuk University, Chungju-si, Chungcheongbuk-do 27478, Korea.
| | - In Sook Kim
- Department of Applied Life Science, College of Biomedical & Health Science, Konkuk University, Chungju-si, Chungcheongbuk-do 27478, Korea.
| | - Young Min Lee
- Department of Applied Life Science, College of Biomedical & Health Science, Konkuk University, Chungju-si, Chungcheongbuk-do 27478, Korea.
| | - Seong Min Hong
- Department of Applied Life Science, College of Biomedical & Health Science, Konkuk University, Chungju-si, Chungcheongbuk-do 27478, Korea.
| | - Taek Hwan Lee
- Department of Applied Life Science, College of Biomedical & Health Science, Konkuk University, Chungju-si, Chungcheongbuk-do 27478, Korea.
- Ahn-Gook Health, LTD, Seoul 07445, Korea.
| | - Ji Hong Lim
- Department of Applied Life Science, College of Biomedical & Health Science, Konkuk University, Chungju-si, Chungcheongbuk-do 27478, Korea.
| | - Trishna Debnath
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyang-si, Gyeonggi-do 10326, Korea.
| | - Beong Ou Lim
- Department of Applied Life Science, College of Biomedical & Health Science, Konkuk University, Chungju-si, Chungcheongbuk-do 27478, Korea.
| |
Collapse
|
28
|
Chen F, Xie L, Kang R, Deng R, Xi Z, Sun D, Zhu J, Wang L. Gentiopicroside inhibits RANKL-induced osteoclastogenesis by regulating NF-κB and JNK signaling pathways. Biomed Pharmacother 2018; 100:142-146. [PMID: 29428661 DOI: 10.1016/j.biopha.2018.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 12/20/2022] Open
Abstract
Gentiopicroside, a main active component from the traditional Chinese herb medicine Gentiana manshurica Kitag, has been shown to possess anti-arthritis effect. However, the molecular mechanism of gentiopicroside on the osteoclast formation remains unclear. The present study was designed to investigate the effects and mechanisms of gentiopicroside on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis. The results showed that pre-treatment with gentiopicroside significantly inhibited RANKL-induced osteoclast formation from mouse bone marrow macrophages (BMMs). In addition, we observed that gentiopicroside efficiently suppressed osteoclastogenesis-related marker genes expression in RANKL-stimulated BMMs. Mechanistically, gentiopicroside suppressed RANKL-induced the activation of JNK and NF-κB signaling pathways in BMMs. Taken together, the present study demonstrated that gentiopicroside inhibits RANKL-induced osteoclastogenesis through the inactivation of JNK and NF-κB signaling pathways. Thus, gentiopicroside may be a promising agent for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Fangqing Chen
- The Third Clinical Medical College, Nanjing Medical University, Nanjing 210029, China; Department of Orthopedics, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Lin Xie
- Department of Orthopedics, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Ran Kang
- Department of Orthopedics, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Rongrong Deng
- Department of Orthopedics, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Zhipeng Xi
- Department of Orthopedics, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Daoxi Sun
- Department of Orthopedics, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Jin Zhu
- School of Basic Medicine, Nanjing Medical University, Nanjing 210029, China.
| | - Liming Wang
- The Third Clinical Medical College, Nanjing Medical University, Nanjing 210029, China; Department of Orthopedics, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing 210006, China.
| |
Collapse
|
29
|
Chang AR, Cho TH, Hwang SJ. Receptor Activator of Nuclear Factor Kappa-B Ligand-Induced Local Osteoporotic Canine Mandible Model for the Evaluation of Peri-Implant Bone Regeneration. Tissue Eng Part C Methods 2017; 23:781-794. [DOI: 10.1089/ten.tec.2017.0196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Ah Ryum Chang
- Department of Oral and Maxillofacial Surgery, BK 21 Plus, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Tae Hyung Cho
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Soon Jung Hwang
- Department of Oral and Maxillofacial Surgery, BK 21 Plus, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
30
|
Nastase MV, Janicova A, Wygrecka M, Schaefer L. Signaling at the Crossroads: Matrix-Derived Proteoglycan and Reactive Oxygen Species Signaling. Antioxid Redox Signal 2017; 27:855-873. [PMID: 28510506 DOI: 10.1089/ars.2017.7165] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Proteoglycans (PGs), besides their structural contribution, have emerged as dynamic components that mediate a multitude of cellular events. The various roles of PGs are attributed to their structure, spatial localization, and ability to act as ligands and receptors. Reactive oxygen species (ROS) are small mediators that are generated in physiological and pathological conditions. Besides their reactivity and ability to induce oxidative stress, a growing body of data suggests that ROS signaling is more relevant than direct radical damage in development of human pathologies. Recent Advances: Cell surface transmembrane PGs (syndecans, cluster of differentiation 44) represent receptors in diverse and complex transduction networks, which involve redox signaling with implications in cancer, fibrosis, renal dysfunction, or Alzheimer's disease. Through NADPH oxidase (NOX)-dependent ROS, the extracellular PG, hyaluronan is involved in osteoclastogenesis and cancer. The ROS sources, NOX1 and NOX4, increase biglycan-induced inflammation, while NOX2 is a negative regulator. CRITICAL ISSUES The complexity of the mechanisms that bring ROS into the light of PG biology might be the foundation of a new research area with significant promise for understanding health and disease. Important aspects need to be investigated in PG/ROS signaling: the discovery of specific targets of ROS, the precise ROS-induced chemical modifications of these targets, and the study of their pathological relevance. FUTURE DIRECTIONS As we become more and more aware of the interactions between PG and ROS signaling underlying intracellular communication and cell fate decisions, it is quite conceivable that this field will allow to identify new therapeutic targets.-Antioxid. Redox Signal. 27, 855-873.
Collapse
Affiliation(s)
- Madalina-Viviana Nastase
- 1 Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe Universität , Frankfurt am Main, Germany .,2 National Institute for Chemical-Pharmaceutical Research and Development , Bucharest, Romania
| | - Andrea Janicova
- 1 Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe Universität , Frankfurt am Main, Germany
| | - Malgorzata Wygrecka
- 3 Department of Biochemistry, Faculty of Medicine, Justus Liebig University , Giessen, Germany
| | - Liliana Schaefer
- 1 Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe Universität , Frankfurt am Main, Germany
| |
Collapse
|
31
|
Hyaluronic Acid Promotes the Osteogenesis of BMP-2 in an Absorbable Collagen Sponge. Polymers (Basel) 2017; 9:polym9080339. [PMID: 30971019 PMCID: PMC6418576 DOI: 10.3390/polym9080339] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 07/24/2017] [Accepted: 07/31/2017] [Indexed: 11/20/2022] Open
Abstract
(1) Background: We tested the hypothesis that hyaluronic acid (HA) can significantly promote the osteogenic potential of BMP-2/ACS (absorbable collagen sponge), an efficacious product to heal large oral bone defects, thereby allowing its use at lower dosages and, thus, reducing its side-effects due to the unphysiologically-high doses of BMP-2; (2) Methods: In a subcutaneous bone induction model in rats, we first sorted out the optimal HA-polymer size and concentration with micro CT. Thereafter, we histomorphometrically quantified the effect of HA on new bone formation, total construct volume, and densities of blood vessels and macrophages in ACS with 5, 10, and 20 μg of BMP-2; (3) Results: The screening experiments revealed that the 100 µg/mL HA polymer of 48 kDa molecular weight could yield the highest new bone formation. Eighteen days post-surgery, HA could significantly enhance the total volume of newly-formed bone by approximately 100%, and also the total construct volume in the 10 μg BMP-2 group. HA could also significantly enhance the numerical area density of blood vessels in 5 μg BMP-2 and 10 μg BMP-2 groups. HA did not influence the numerical density of macrophages; and (4) Conclusions: An optimal combined administration of HA could significantly promote osteogenic and angiogenic activity of BMP-2/ACS, thus potentially minimizing its potential side-effects.
Collapse
|
32
|
Shimoda M, Yoshida H, Mizuno S, Hirozane T, Horiuchi K, Yoshino Y, Hara H, Kanai Y, Inoue S, Ishijima M, Okada Y. Hyaluronan-Binding Protein Involved in Hyaluronan Depolymerization Controls Endochondral Ossification through Hyaluronan Metabolism. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1162-1176. [PMID: 28284715 DOI: 10.1016/j.ajpath.2017.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/25/2016] [Accepted: 01/11/2017] [Indexed: 11/18/2022]
Abstract
Hyaluronan (HA) plays an important role in the development and maintenance of tissues, and its degradation is implicated in many pathologic conditions. We recently reported that HA-binding protein involved in HA depolymerization (CEMIP; alias HYBID/KIAA1199) is a key molecule in HA depolymerization, but its developmental and pathologic functions remain elusive. We generated Hybid-deficient mice using the Cre/locus of crossover in P1 (loxP) system and analyzed their phenotypes. Hybid-deficient mice were viable and fertile, but their adult long bones were shorter than those of wild-type animals. Hybid-deficient mice showed lengthening of hypertrophic zone in the growth plate until 4 weeks after birth. There were fewer capillaries and osteoclasts at the chondroosseous junction in the Hybid-deficient mice compared with the wild-type mice. In situ hybridization demonstrated that Hybid was expressed by hypertrophic chondrocytes at the chondroosseous junction. Cultured primary chondrocytes expressed higher levels of Hybid than did osteoblasts or osteoclasts, and the Hybid expression in the chondrocytes was up-regulated after maturation to hypertrophic chondrocytes. High-molecular-weight HA was accumulated in the lengthened hypertrophic zone in Hybid-deficient mice. In addition, high-molecular-weight HA significantly reduced cell growth and tube formation in vascular endothelial growth factor-stimulated or -nonstimulated endothelial cells. HA metabolism by HYBID is involved in endochondral ossification during postnatal development by modulation of angiogenesis and osteoclast recruitment at the chondroosseous junction.
Collapse
Affiliation(s)
- Masayuki Shimoda
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan.
| | | | - Sakiko Mizuno
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Toru Hirozane
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Keisuke Horiuchi
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yuta Yoshino
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Shintaro Inoue
- Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan
| | - Muneaki Ishijima
- Department of Orthopaedic Surgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasunori Okada
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan; Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
33
|
Kang JH, Lim H, Jeong JE, Yim M. Attenuation of RANKL-induced Osteoclast Formation via p38-mediated NFATc1 Signaling Pathways by Extract of Euphorbia Lathyris L. J Bone Metab 2016; 23:207-214. [PMID: 27965942 PMCID: PMC5153377 DOI: 10.11005/jbm.2016.23.4.207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/03/2016] [Accepted: 11/03/2016] [Indexed: 01/10/2023] Open
Abstract
Background Osteoclasts are the only cell type capable of breaking down bone matrix, and its excessive activation is responsible for the development of bone-destructive diseases. Euphorbia lathyris L. (ELL) is an herbal plant that belongs to the Euphorbiaceae family. This study investigated the effects of the methanol extract of the aerial part of ELL on receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclast formation and signaling pathways. Methods Osteoclasts were formed by co-culturing mouse bone marrow with osteoblasts or by culturing mouse bone marrow-derived macrophages (BMMs) with macrophage colony-stimulating factor (M-CSF) and RANKL. Bone resorption assays were performed using dentine slices. The expression level of mRNA was analyzed by real-time polymerase chain reaction (PCR) or reverse transcription (RT)-PCR. Western blotting assays were performed to detect the expression or activation level of proteins. Results ELL inhibited RANKL-induced osteoclast formation without cytotoxicity. Furthermore, the RANKL-stimulated bone resorption was diminished by ELL. Mechanistically, ELL blocked the RANKL-triggered p38 mitogen-activated protein kinase (MAPK) phosphorylation, which resulted in the suppression of the expression of c-Fos and nuclear factor of activated T cells (NFATc1). In osteoblasts, ELL had little effect on the mRNA expression of RANKL and osteoprotegerin (OPG). Conclusions The present data suggest that ELL has an inhibitory effect on osteoclast differentiation and function via downregulation of the p38/c-Fos/NFATc1 signaling pathways. Thus, ELL could be useful for the treatment of bone diseases associated with excessive bone resorption.
Collapse
Affiliation(s)
- Ju-Hee Kang
- College of Pharmacy, Sookmyung Women's University, Seoul, Korea
| | - Hyojung Lim
- College of Pharmacy, Sookmyung Women's University, Seoul, Korea
| | - Ji-Eun Jeong
- College of Pharmacy, Sookmyung Women's University, Seoul, Korea
| | - Mijung Yim
- College of Pharmacy, Sookmyung Women's University, Seoul, Korea
| |
Collapse
|
34
|
Puissant E, Boonen M. Monocytes/Macrophages Upregulate the Hyaluronidase HYAL1 and Adapt Its Subcellular Trafficking to Promote Extracellular Residency upon Differentiation into Osteoclasts. PLoS One 2016; 11:e0165004. [PMID: 27755597 PMCID: PMC5068775 DOI: 10.1371/journal.pone.0165004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/04/2016] [Indexed: 11/18/2022] Open
Abstract
Osteoclasts are giant bone-resorbing cells originating from monocytes/macrophages. During their differentiation, they overexpress two lysosomal enzymes, cathepsin K and TRAP, which are secreted into the resorption lacuna, an acidified sealed area in contact with bone matrix where bone degradation takes place. Here we report that the acid hydrolase HYAL1, a hyaluronidase able to degrade the glycosaminoglycans hyaluronic acid (HA) and chondroitin sulfate, is also upregulated upon osteoclastogenesis. The mRNA expression and protein level of HYAL1 are markedly increased in osteoclasts differentiated from RAW264.7 mouse macrophages or primary mouse bone marrow monocytes compared to these precursor cells. As a result, the HYAL1-mediated HA hydrolysis ability of osteoclasts is strongly enhanced. Using subcellular fractionation, we demonstrate that HYAL1 proteins are sorted to the osteoclast lysosomes even though, in contrast to cathepsin K and TRAP, HYAL1 is poorly mannose 6-phosphorylated. We reported previously that macrophages secrete HYAL1 proforms by constitutive secretion, and that these are recaptured by the cell surface mannose receptor, processed in endosomes and sorted to lysosomes. Present work highlights that osteoclasts secrete HYAL1 in two ways, through lysosomal exocytosis and constitutive secretion, and that these cells promote the extracellular residency of HYAL1 through downregulation of the mannose receptor. Interestingly, the expression of the other main hyaluronidase, HYAL2, and of lysosomal exoglycosidases involved in HA degradation, does not increase similarly to HYAL1 upon osteoclastogenesis. Taken together, these findings point out the predominant involvement of HYAL1 in bone HA metabolism and perhaps bone remodeling via the resorption lacuna.
Collapse
Affiliation(s)
- Emeline Puissant
- Laboratoire de Chimie Physiologique - URPhyM, University of Namur, Namur, Belgium
| | - Marielle Boonen
- Laboratoire de Chimie Physiologique - URPhyM, University of Namur, Namur, Belgium
- * E-mail:
| |
Collapse
|
35
|
Sondag GR, Mbimba TS, Moussa FM, Novak K, Yu B, Jaber FA, Abdelmagid SM, Geldenhuys WJ, Safadi FF. Osteoactivin inhibition of osteoclastogenesis is mediated through CD44-ERK signaling. Exp Mol Med 2016; 48:e257. [PMID: 27585719 PMCID: PMC5050297 DOI: 10.1038/emm.2016.78] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/24/2016] [Accepted: 04/14/2016] [Indexed: 12/17/2022] Open
Abstract
Osteoactivin is a heavily glycosylated protein shown to have a role in bone remodeling. Previous studies from our lab have shown that mutation in Osteoactivin enhances osteoclast differentiation but inhibits their function. To date, a classical receptor and a signaling pathway for Osteoactivin-mediated osteoclast inhibition has not yet been characterized. In this study, we examined the role of Osteoactivin treatment on osteoclastogenesis using bone marrow-derived osteoclast progenitor cells and identify a signaling pathway relating to Osteoactivin function. We reveal that recombinant Osteoactivin treatment inhibited osteoclast differentiation in a dose-dependent manner shown by qPCR, TRAP staining, activity and count. Using several approaches, we show that Osteoactivin binds CD44 in osteoclasts. Furthermore, recombinant Osteoactivin treatment inhibited ERK phosphorylation in a CD44-dependent manner. Finally, we examined the role of Osteoactivin on receptor activator of nuclear factor-κ B ligand (RANKL)-induced osteolysis in vivo. Our data indicate that recombinant Osteoactivin inhibits RANKL-induced osteolysis in vivo and this effect is CD44-dependent. Overall, our data indicate that Osteoactivin is a negative regulator of osteoclastogenesis in vitro and in vivo and that this process is regulated through CD44 and ERK activation.
Collapse
Affiliation(s)
- Gregory R Sondag
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), College of Medicine, Rootstown, OH, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Thomas S Mbimba
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), College of Medicine, Rootstown, OH, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Fouad M Moussa
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), College of Medicine, Rootstown, OH, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Kimberly Novak
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), College of Medicine, Rootstown, OH, USA.,Department of Pharmaceutical Sciences, Northeast Ohio Medical University (NEOMED), College of Pharmacy, Rootstown, OH, USA
| | - Bing Yu
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Fatima A Jaber
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), College of Medicine, Rootstown, OH, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, USA.,Department of Biology, King Abdulaziz University, Jeddah, KSA
| | - Samir M Abdelmagid
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), College of Medicine, Rootstown, OH, USA
| | - Werner J Geldenhuys
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV, USA
| | - Fayez F Safadi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), College of Medicine, Rootstown, OH, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, USA.,Department of Pharmaceutical Sciences, Northeast Ohio Medical University (NEOMED), College of Pharmacy, Rootstown, OH, USA.,Department of Orthopedics, Summa Health Systems, Akron, OH, USA
| |
Collapse
|
36
|
He L, Sheng Y, Huang C, Huang G. Identification of Differentially Expressed Genes in Kawasaki Disease Patients as Potential Biomarkers for IVIG Sensitivity by Bioinformatics Analysis. Pediatr Cardiol 2016; 37:1003-12. [PMID: 27160104 DOI: 10.1007/s00246-016-1381-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 03/21/2016] [Indexed: 12/19/2022]
Abstract
Kawasaki disease (KD) is a leading cause of acquired heart disease predominantly affecting infants and young children. Intravenous immunoglobulin (IVIG) is applied as the most favorable treatment against KD, but IVIG resistant remains exist. Although several clinical scoring systems have been developed to identify children at highest risk of IVIG resistance, there is a need to identify sufficiently sensitive biomarkers for IVIG treatment. Some differentially expressed genes (DEGs) could be the promising potential biomarkers for IVIG-related sensitivity diagnosis. We employed a systematic and integrative bioinformatics framework to identify such kind of genes. The performance of the candidate genes was evaluated by hierarchical clustering, ROC analysis and literature mining. By analyzing three datasets of KD patients, 34 DEGs of the three groups have been found to be associated with IVIG-related sensitivity. A module of 12 genes could predict resistant group patients with high accuracy, and a module of ten genes could predict responsive group patients effectively with accuracy of 96 %. And three of them are most likely to serve as drug targets or diagnostic biomarkers in the future. Compared with unsupervised hierarchical clustering analysis, our modules could distinct IVIG-resistant patients efficiently. Two groups of DEGs could predict IVIG-related sensitivity with high accuracy, which are potential biomarkers for the clinical diagnosis and prediction of IVIG treatment response in KD patients, improving the prognosis of patients.
Collapse
Affiliation(s)
- Lan He
- Pediatric Heart Center, Children's Hospital, Fudan University, Shanghai, China
| | - Youyu Sheng
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chunyun Huang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Guoying Huang
- Pediatric Heart Center, Children's Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
37
|
Wang X, Zheng T, Kang JH, Li H, Cho H, Jeon R, Ryu JH, Yim M. Decursin from Angelica gigas suppresses RANKL-induced osteoclast formation and bone loss. Eur J Pharmacol 2016; 774:34-42. [PMID: 26825541 DOI: 10.1016/j.ejphar.2016.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 01/20/2016] [Accepted: 01/25/2016] [Indexed: 10/22/2022]
Abstract
Osteoclasts are the only cells capable of breaking down bone matrix, and excessive activation of osteoclasts is responsible for bone-destructive diseases. In this study, we investigated the effects of decursin from extract of Angelica gigas root on receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclast formation using mouse bone marrow-derived macrophages (BMMs). Decursin inhibited RANKL-induced osteoclast formation without cytotoxicity. In particular, decursin maintains the characteristics of macrophages by blocking osteoclast differentiation by RANKL. Furthermore, the RANKL-stimulated bone resorption was diminished by decursin. Mechanistically, decursin blocked the RANKL-triggered ERK mitogen-activated protein kinases (MAPK) phosphorylation, which results in suppression of c-Fos and the nuclear factor of activated T cells (NFATc1) expression. In accordance with the in vitro study, decursin reduced lipopolysaccharide (LPS)- or ovariectomy (OVX)-induced bone loss in vivo. Therefore, decursin exerted an inhibitory effect on osteoclast formation and bone loss in vitro and in vivo. Decursin could be useful for the treatment of bone diseases associated with excessive bone resorption.
Collapse
Affiliation(s)
- Xin Wang
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Ting Zheng
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Ju-Hee Kang
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Hua Li
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea; Research Center for Cell Fate Control, Sookmyung Women's University, Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Hyewon Cho
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea; Research Center for Cell Fate Control, Sookmyung Women's University, Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Raok Jeon
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea; Research Center for Cell Fate Control, Sookmyung Women's University, Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Jae-Ha Ryu
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea; Research Center for Cell Fate Control, Sookmyung Women's University, Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea.
| | - Mijung Yim
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea.
| |
Collapse
|
38
|
CD44 deficiency inhibits unloading-induced cortical bone loss through downregulation of osteoclast activity. Sci Rep 2015; 5:16124. [PMID: 26530337 PMCID: PMC4632082 DOI: 10.1038/srep16124] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/09/2015] [Indexed: 12/13/2022] Open
Abstract
The CD44 is cellular surface adhesion molecule that is involved in physiological processes such as hematopoiesis, lymphocyte homing and limb development. It plays an important role in a variety of cellular functions including adhesion, migration, invasion and survival. In bone tissue, CD44 is widely expressed in osteoblasts, osteoclasts and osteocytes. However, the mechanisms underlying its role in bone metabolism remain unclear. We found that CD44 expression was upregulated during osteoclastogenesis. CD44 deficiency in vitro significantly inhibited osteoclast activity and function by regulating the NF-κB/NFATc1-mediated pathway. In vivo, CD44 mRNA levels were significantly upregulated in osteoclasts isolated from the hindlimb of tail-suspended mice. CD44 deficiency can reduce osteoclast activity and counteract cortical bone loss in the hindlimb of unloaded mice. These results suggest that therapeutic inhibition of CD44 may protect from unloading induced bone loss by inhibiting osteoclast activity.
Collapse
|
39
|
Ha J, Hwang JH, Kwon SG, Park DH, Kim TW, Kang DG, Kang KH, Kim IS, Kim CW. MSK1 regulates RANKL-induced NFATc1 expression through CREB and c-Fos. J Biomed Res 2015. [DOI: 10.12729/jbr.2015.16.2.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
40
|
Biology and biotechnology of hyaluronan. Glycoconj J 2015; 32:93-103. [PMID: 25971701 DOI: 10.1007/s10719-015-9586-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/13/2015] [Accepted: 03/25/2015] [Indexed: 10/23/2022]
Abstract
The hyaluronan (HA) polymer is a critical component of extracellular matrix with a remarkable structure: is a linear and unbranched polymer without sulphate or phosphate groups. It is ubiquitous in mammals showing several biological functions, ranging from cell proliferation and migration to angiogenesis and inflammation. For its critical biological functions the amount of HA in tissues is carefully controlled by different mechanisms including covalent modification of the synthetic enzymes and epigenetic control of their gene expression. The concentration of HA is also critical in several pathologies including cancer, diabetes and inflammation. Beside these biological roles, the structural properties of HA allow it to take advantage of its capacity to form gels even at concentration of 1 % producing scaffolds with very promising applications in regenerative medicine as biocompatible material for advanced therapeutic uses. In this review we highlight the biological aspects of HA addressing the mechanisms controlling the HA content in tissues as well as its role in important human pathologies. In the second part of the review we highlight the different use of HA polymers in the modern biotechnology.
Collapse
|
41
|
Abstract
The fate of both endogenous and transplanted stem cells is dependent on the functional status of the regulatory local microenvironment, which is compromised by disease and therapeutic intervention. The glycosaminoglycan hyaluronan (HA) is a critical component of the hematopoietic microenvironment. We summarize recent advances in our understanding of the role of HA in regulating mesenchymal stem cells, osteoblasts, fibroblasts, macrophages, and endothelium in bone marrow (BM) and their crosstalk within the hematopoietic microenvironment. HA not only determines the volume, hydration, and microfluidics of the BM interstitial space, but also, via interactions with specific receptors, regulates multiple cell functions including differentiation, migration, and production of regulatory factors. The effects of HA are dependent on the polymer size and are influenced by the formation of complexes with other molecules. In healthy BM, HA synthases and hyaluronidases form a molecular network that maintains extracellular HA levels within a discrete physiological window, but HA homeostasis is often perturbed in pathological conditions, including hematological malignancies. Recent studies have suggested that HA synthases may have functions beyond HA production and contribute to the intracellular regulatory machinery. We discuss a possible role for HA synthases, intracellular and extracellular HA in the malignant BM microenvironment, and resistance to therapy.
Collapse
|
42
|
Wang Y, Dong G, Jeon HH, Elazizi M, La LB, Hameedaldeen A, Xiao E, Tian C, Alsadun S, Choi Y, Graves DT. FOXO1 mediates RANKL-induced osteoclast formation and activity. THE JOURNAL OF IMMUNOLOGY 2015; 194:2878-87. [PMID: 25694609 DOI: 10.4049/jimmunol.1402211] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have previously shown that the transcription factor FOXO1 is elevated in conditions with high levels of bone resorption. To investigate the role of FOXO1 in the formation of osteoclasts, we examined mice with lineage-specific deletion of FOXO1 in osteoclast precursors and by knockdown of FOXO1 with small interfering RNA. The receptor activator for NF-κB ligand (RANKL), a principal bone-resorbing factor, induced FOXO1 expression and nuclear localization 2 d after stimulation in bone marrow macrophages and RAW264.7 osteoclast precursors. RANKL-induced osteoclast formation and osteoclast activity was reduced in half in vivo and in vitro with lineage-specific FOXO1 deletion (LyzM.Cre(+)FOXO1(L/L)) compared with matched controls (LyzM.Cre(-)FOXO1(L/L)). Similar results were obtained by knockdown of FOXO1 in RAW264.7 cells. Moreover, FOXO1-mediated osteoclast formation was linked to regulation of NFATc1 nuclear localization and expression as well as a number of downstream factors, including dendritic cell-specific transmembrane protein, ATP6vod2, cathepsin K, and integrin αv. Lastly, FOXO1 deletion reduced M-CSF-induced RANK expression and migration of osteoclast precursors. In the present study, we provide evidence that FOXO1 plays a direct role in osteoclast formation by mediating the effect of RANKL on NFATc1 and several downstream effectors. This is likely to be significant because FOXO1 and RANKL are elevated in osteolytic conditions.
Collapse
Affiliation(s)
- Yu Wang
- Department of Implantology, School of Stomatology, Jilin University, Changchun 130021, China; Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Guangyu Dong
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Hyeran Helen Jeon
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Mohamad Elazizi
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Lan B La
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Alhassan Hameedaldeen
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - E Xiao
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104; School and Hospital of Stomatology, Peking University, Beijing 100081, China; and
| | - Chen Tian
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Sarah Alsadun
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104;
| |
Collapse
|
43
|
Kaneko K, Higuchi C, Kunugiza Y, Yoshida K, Sakai T, Yoshikawa H, Nakata K. Hyaluronan inhibits BMP-induced osteoblast differentiation. FEBS Lett 2015; 589:447-54. [PMID: 25592835 DOI: 10.1016/j.febslet.2014.12.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/22/2014] [Accepted: 12/30/2014] [Indexed: 12/28/2022]
Abstract
Hyaluronan (HA), one of the major structural extracellular components in cartilage, regulates cellular responses via receptors such as CD44. However, the direct effects of HA on osteoblastic differentiation has not been studied in detail. Here, we investigated the effects of HA (molecular weight: 900-1200 kDa) on osteoblastic differentiation that was induced by bone morphogenetic protein (BMP) in C2C12 cells (mouse myoblastic cells) and ST2 cells (mouse bone marrow cells). BMP-induced osteoblastic differentiation and Smad1/Smad5/Smad8 phosphorylation were downregulated by HA. Use of the CD44-blocking antibody restored HA-induced inhibition of osteoblastic differentiation and Smad1/Smad5/Smad8 phosphorylation. Our results indicate that HA inhibits BMP-induced osteoblastic differentiation through the CD44 receptor.
Collapse
Affiliation(s)
- Keiko Kaneko
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Chikahisa Higuchi
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yasuo Kunugiza
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kiyoshi Yoshida
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Takashi Sakai
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hideki Yoshikawa
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Ken Nakata
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan; Medicine for Sports and Performing Arts, Department of Health and Sport Sciences, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
44
|
Gómez R, Villalvilla A, Largo R, Gualillo O, Herrero-Beaumont G. TLR4 signalling in osteoarthritis—finding targets for candidate DMOADs. Nat Rev Rheumatol 2014; 11:159-70. [DOI: 10.1038/nrrheum.2014.209] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
45
|
Interleukin-1β promotes the LC3-mediated secretory function of osteoclast precursors by stimulating the Ca2+-dependent activation of ERK. Int J Biochem Cell Biol 2014; 54:198-207. [DOI: 10.1016/j.biocel.2014.07.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/02/2014] [Accepted: 07/25/2014] [Indexed: 11/24/2022]
|
46
|
Vigetti D, Karousou E, Viola M, Deleonibus S, De Luca G, Passi A. Hyaluronan: Biosynthesis and signaling. Biochim Biophys Acta Gen Subj 2014; 1840:2452-9. [DOI: 10.1016/j.bbagen.2014.02.001] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 01/30/2014] [Accepted: 02/01/2014] [Indexed: 12/28/2022]
|
47
|
Ariyoshi W, Okinaga T, Knudson CB, Knudson W, Nishihara T. High molecular weight hyaluronic acid regulates osteoclast formation by inhibiting receptor activator of NF-κB ligand through Rho kinase. Osteoarthritis Cartilage 2014; 22:111-20. [PMID: 24185105 DOI: 10.1016/j.joca.2013.10.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 10/07/2013] [Accepted: 10/22/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine the effects of high molecular weight hyaluronic acid (HMW-HA) on osteoclast differentiation by monocytes co-cultured with stromal cells. METHODS Mouse bone marrow stromal cell line ST2 cells were incubated with HMW-HA or 4-methylunbeliferone (4-MU) for various times. In some experiments, cells were pre-treated with the anti-CD44 monoclonal antibody (CD44 mAb) or Rho kinase pathway inhibitors (simvastatin or Y27632), then treated with HMW-HA. The expression of receptor activator of NF-κB ligand (RANKL) was determined using real-time reverse transcription polymerase chain reaction (RT-PCR), western blotting, and immunofluorescence microscopy, while the amount of active RhoA was measured by a pull-down assay. To further clarify the role of HMW-HA in osteoclastogenesis, mouse monocyte RAW 264.7 cells were co-cultured with ST2 cells pre-stimulated with 1,25(OH)2D3. Osteoclast-like cells were detected by staining with tartrate-resistant acid phosphatase (TRAP). RESULTS HMW-HA decreased RANKL mRNA and protein expressions, whereas inhibition of hyaluronic acid (HA) synthesis by 4-MU enhanced RANKL expression. Blockage of HA-CD44 binding by CD44 mAb suppressed HMW-HA-mediated inhibition of RANKL. Pull-down assay findings also revealed that HMW-HA transiently activated RhoA in ST2 cells and pre-treatment with CD44 mAb inhibited the activation of RhoA protein mediated by HMW-HA. Moreover pre-treatment with Rho kinase pathway inhibitors also blocked the inhibition of RANKL by HMW-HA. Co-culture system results showed that HMW-HA down-regulated differentiation into osteoclast-like cells by RAW 264.7 cells induced by 1,25(OH)2D3-stimulated ST2 cells. CONCLUSIONS These results indicated that HA-CD44 interactions down-regulate RANKL expression and osteoclastogenesis via activation of the Rho kinase pathway.
Collapse
Affiliation(s)
- W Ariyoshi
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, Japan.
| | - T Okinaga
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, Japan.
| | - C B Knudson
- Department of Anatomy and Cell Biology, The Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| | - W Knudson
- Department of Anatomy and Cell Biology, The Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| | - T Nishihara
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, Japan.
| |
Collapse
|
48
|
Agis H, Schröckmair S, Skorianz C, Fischer MB, Watzek G, Gruber R. Platelets increase while serum reduces the differentiation and activity of osteoclasts in vitro. J Orthop Res 2013; 31:1561-9. [PMID: 23703957 DOI: 10.1002/jor.22386] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 04/17/2013] [Indexed: 02/04/2023]
Abstract
Platelets modulate formation of osteoclasts and osteoblasts, but research with different preparations of platelets remains inconclusive. Here, we assessed whether serum components modulate the effect of platelet preparations. In murine bone marrow cultures, osteoclastogenesis was investigated in the presence of platelet-released supernatant (PRS), serum containing PRS (SC-PRS), and serum. Osteoclastogenesis was quantified by the numbers of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells, TRAP activity and resorption assays. Also human osteoclastogenesis assays were performed. Viability and proliferation were tested by MTT and (3) [H]thymidine incorporation assays, respectively. Osteoblastogenesis was assessed by histochemical staining for alkaline phosphatase-of murine bone marrow cultures and human MG63 cells. We found PRS to increase the number of TRAP(+) multinucleated cells in the early phase and TRAP activity in the later phase of osteoclastogenesis. SC-PRS and serum decreased the number and activity of TRAP(+) multinucleated cells. Both serum containing preparations reduced viability and proliferation of hematopoietic progenitors. PRS decreased the numbers of alkaline phosphatase-positive colonies while SC-PRS and serum increased osteoblastmarkers in MG63. Proliferation of MG63 was stimulated by all preparations. These results show that activated platelets support osteoclastogenesis, while platelet preparations that contain serum components decrease osteoclastogenesis and increase osteoblastogenesis in vitro, suggesting that serum components modulate the effects of platelets on osteoclastogenesis and osteoblastogenesis.
Collapse
Affiliation(s)
- Hermann Agis
- Department of Conservative Dentistry and Periodontology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
49
|
Hoshino A, Hanada S, Yamada H, Mii S, Takahashi M, Mitarai S, Yamamoto K, Manome Y. Mycobacterium tuberculosis escapes from the phagosomes of infected human osteoclasts reprograms osteoclast development via dysregulation of cytokines and chemokines. Pathog Dis 2013; 70:28-39. [PMID: 23929604 DOI: 10.1111/2049-632x.12082] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 07/03/2013] [Accepted: 07/30/2013] [Indexed: 12/31/2022] Open
Abstract
Spinal tuberculosis is a condition characterized by massive resorption of the spinal vertebrae due to the infection with Mycobacterium tuberculosis (Mtb). However, the pathogenesis of spinal tuberculosis has not been established because it was almost completely eradicated by the establishment of antibiotic treatment in the mid-20th century. In this study, we investigated the inflammatory responses of human multinucleated osteoclasts infected with virulent Mtb strain. We found that the intracellular Mtb infection of multinuclear osteoclasts resulted in the rapid growth of Mtb and an osteolytic response, rather than inflammation. In response to Mtb infection, the mononuclear osteoclast precursors produced proinflammatory cytokines including tumor necrosis factor (TNF)-α, an intrinsic characteristic they share with macrophages. In contrast, highly fused multinucleated osteoclasts incapacitated the production of these cytokines. Instead, the intracellular Mtb inside multinuclear osteoclasts escaped from the endosome/phagosome, leading to a different pattern of osteoclast activation, with the production of chemokines such as CCL5, CCL17, CCL20, CCL22, CCL24, and CCL25. Moreover, intracellular infection with an avirulent Mtb strain resulted in diminished production of these chemokines. These findings indicate that intracellular Mtb infection in multinuclear osteoclasts reprograms osteoclast development via the dysregulation of cytokines and chemokines.
Collapse
Affiliation(s)
- Akiyoshi Hoshino
- Department of Molecular Cell Biology, Institute of DNA Medicine, Jikei University School of Medicine, Tokyo, Japan; Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Vice Director's Lab, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Moghimpour Bijani F, Vallejo JG, Rezaei N. Toll-like receptor signaling pathways in cardiovascular diseases: challenges and opportunities. Int Rev Immunol 2013; 31:379-95. [PMID: 23083347 DOI: 10.3109/08830185.2012.706761] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Toll-like receptors (TLRs), a family of surface molecules, are involved in innate immune responses. Recent studies indicated that TLRs play a critical role in inflammatory responses to exogenous and endogenous triggers. This article focuses on probable effects of TLRs in the morbidity of cardiovascular events, e.g., ischemic reperfusion (I/R) injury and atherosclerosis. TLR2 and TLR4 have been shown to have the most fundamental role in promoting cytokine production and subsequent inflammatory damages in these states. Blockade of these receptors may be beneficial in both preventing the occurrence and decreasing the complications in cardiovascular events. However, controversies exist on the certainty of this beneficial effect; therefore, additional studies are needed.
Collapse
Affiliation(s)
- Faezeh Moghimpour Bijani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|