1
|
Hoisington ZW, Salvi A, Laguesse S, Ehinger Y, Shukla C, Phamluong K, Ron D. The Small G-Protein Rac1 in the Dorsomedial Striatum Promotes Alcohol-Dependent Structural Plasticity and Goal-Directed Learning in Mice. J Neurosci 2024; 44:e1644232024. [PMID: 38886056 PMCID: PMC11255432 DOI: 10.1523/jneurosci.1644-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 06/20/2024] Open
Abstract
The small G-protein Ras-related C3 botulinum toxin substrate 1 (Rac1) promotes the formation of filamentous actin (F-actin). Actin is a major component of dendritic spines, and we previously found that alcohol alters actin composition and dendritic spine structure in the nucleus accumbens (NAc) and the dorsomedial striatum (DMS). To examine if Rac1 contributes to these alcohol-mediated adaptations, we measured the level of GTP-bound active Rac1 in the striatum of mice following 7 weeks of intermittent access to 20% alcohol. We found that chronic alcohol intake activates Rac1 in the DMS of male mice. In contrast, Rac1 is not activated by alcohol in the NAc and DLS of male mice or in the DMS of female mice. Similarly, closely related small G-proteins are not activated by alcohol in the DMS, and Rac1 activity is not increased in the DMS by moderate alcohol or natural reward. To determine the consequences of alcohol-dependent Rac1 activation in the DMS of male mice, we inhibited endogenous Rac1 by infecting the DMS of mice with an adeno-associated virus (AAV) expressing a dominant negative form of the small G-protein (Rac1-DN). We found that overexpression of AAV-Rac1-DN in the DMS inhibits alcohol-mediated Rac1 signaling and attenuates alcohol-mediated F-actin polymerization, which corresponded with a decrease in dendritic arborization and spine maturation. Finally, we provide evidence to suggest that Rac1 in the DMS plays a role in alcohol-associated goal-directed learning. Together, our data suggest that Rac1 in the DMS plays an important role in alcohol-dependent structural plasticity and aberrant learning.
Collapse
Affiliation(s)
- Zachary W Hoisington
- Alcohol and Addiction Research Group, Department of Neurology, University of California San Francisco, San Francisco, California 94107
| | - Alexandra Salvi
- Alcohol and Addiction Research Group, Department of Neurology, University of California San Francisco, San Francisco, California 94107
| | - Sophie Laguesse
- GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, Liège 4000, Belgium
| | - Yann Ehinger
- Alcohol and Addiction Research Group, Department of Neurology, University of California San Francisco, San Francisco, California 94107
| | - Chhavi Shukla
- Alcohol and Addiction Research Group, Department of Neurology, University of California San Francisco, San Francisco, California 94107
| | - Khanhky Phamluong
- Alcohol and Addiction Research Group, Department of Neurology, University of California San Francisco, San Francisco, California 94107
| | - Dorit Ron
- Alcohol and Addiction Research Group, Department of Neurology, University of California San Francisco, San Francisco, California 94107
| |
Collapse
|
2
|
Hoisington ZW, Salvi A, Laguesse S, Ehinger Y, Shukla C, Phamluong K, Ron D. The small G-protein Rac1 in the dorsomedial striatum promotes alcohol-dependent structural plasticity and goal-directed learning in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.30.555562. [PMID: 37693512 PMCID: PMC10491244 DOI: 10.1101/2023.08.30.555562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The small G-protein Rac1 promotes the formation of filamentous actin (F-Actin). Actin is a major component of dendritic spines, and we previously found that alcohol alters actin composition and dendritic spine structure in the nucleus accumbens (NAc) and the dorsomedial striatum (DMS). To examine if Rac1 contributes to these alcohol-mediated adaptations, we measured the level of GTP-bound active Rac1 in the striatum of mice following 7 weeks of intermittent access to 20% alcohol. We found that chronic alcohol intake activates Rac1 in the DMS of male mice. In contrast, Rac1 is not activated by alcohol in the NAc and DLS of male mice, or in the DMS of female mice. Similarly, closely related small G-proteins are not activated by alcohol in the DMS, and Rac1 activity is not increased in the DMS by moderate alcohol or natural reward. To determine the consequences of alcohol-dependent Rac1 activation in the DMS of male mice, we inhibited endogenous Rac1 by infecting the DMS of mice with an AAV expressing a dominant negative form of the small G-protein (Rac1-DN). We found that overexpression of AAV-Rac1-DN in the DMS inhibits alcohol-mediated Rac1 signaling and attenuates alcohol-mediated F-actin polymerization, which corresponded with a decrease in dendritic arborization and spine maturation. Finally, we provide evidence to suggest that Rac1 in the DMS plays a role in alcohol-associated goal-directed learning. Together, our data suggest that Rac1 in the DMS plays an important role in alcohol-dependent structural plasticity and aberrant learning. Significance Statement Addiction, including alcohol use disorder, is characterized by molecular and cellular adaptations that promote maladaptive behaviors. We found that Rac1 was activated by alcohol in the dorsomedial striatum (DMS) of male mice. We show that alcohol-mediated Rac1 signaling is responsible for alterations in actin dynamics and neuronal morphology. We also present data to suggest that Rac1 is important for alcohol-associated learning processes. These results suggest that Rac1 in the DMS is an important contributor to adaptations that promote alcohol use disorder.
Collapse
|
3
|
Bao S, Romero JM, Belfort BD, Arenkiel BR. Signaling mechanisms underlying activity-dependent integration of adult-born neurons in the mouse olfactory bulb. Genesis 2024; 62:e23595. [PMID: 38553878 PMCID: PMC10987073 DOI: 10.1002/dvg.23595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
Adult neurogenesis has fascinated the field of neuroscience for decades given the prospects of harnessing mechanisms that facilitate the rewiring and/or replacement of adult brain tissue. The subgranular zone of the hippocampus and the subventricular zone of the lateral ventricle are the two main areas in the brain that exhibit ongoing neurogenesis. Of these, adult-born neurons within the olfactory bulb have proven to be a powerful model for studying circuit plasticity, providing a broad and accessible avenue into neuron development, migration, and continued circuit integration within adult brain tissue. This review focuses on some of the recognized molecular and signaling mechanisms underlying activity-dependent adult-born neuron development. Notably, olfactory activity and behavioral states contribute to adult-born neuron plasticity through sensory and centrifugal inputs, in which calcium-dependent transcriptional programs, local translation, and neuropeptide signaling play important roles. This review also highlights areas of needed continued investigation to better understand the remarkable phenomenon of adult-born neuron integration.
Collapse
Affiliation(s)
- Suyang Bao
- Development, Disease Models, and Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas 77030, USA
| | - Juan M. Romero
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Benjamin D.W. Belfort
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Genetics and Genomics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Benjamin R. Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
4
|
Ignácz A, Nagy-Herczeg D, Hausser A, Schlett K. Dendritic effects of genetically encoded actin-labeling probes in cultured hippocampal neurons. Mol Biol Cell 2023; 34:br8. [PMID: 36989034 PMCID: PMC10295473 DOI: 10.1091/mbc.e22-08-0331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Actin cytoskeleton predominantly regulates the formation and maintenance of synapses by controlling dendritic spine morphology and motility. To visualize actin dynamics, actin molecules can be labeled by genetically fusing fluorescent proteins to actin monomers, actin-binding proteins, or single-chain anti-actin antibodies. In the present study, we compared the dendritic effect of EGFP-actin, LifeAct-TagGFP2 (LifeAct-GFP), and Actin-Chromobody-TagGFP2 (AC-GFP) in mouse cultured hippocampal neurons using unbiased quantitative methods. The actin-binding probes LifeAct-GFP and AC-GFP showed similar affinity to F-actin, but in contrast to EGFP-actin, they did not reveal subtle changes in actin remodeling between mushroom-shaped spines and filopodia. All tested actin probes colocalized with phalloidin similarly; however, the enrichment of LifeAct-GFP in dendritic spines was remarkably lower compared with the other constructs. LifeAct-GFP expression was tolerated at a higher expression level compared with EGFP-actin and AC-GFP with only subtle differences identified in dendritic spine morphology and protrusion density. While EGFP-actin and LifeAct-GFP expression did not alter dendritic arborization, AC-GFP-expressing neurons displayed a reduced dendritic tree. Thus, although all tested actin probes may be suitable for actin imaging studies, certain limitations should be considered before performing experiments with a particular actin-labeling probe in primary neurons.
Collapse
Affiliation(s)
- Attila Ignácz
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Domonkos Nagy-Herczeg
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Angelika Hausser
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Katalin Schlett
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
5
|
Developmental Inhibitory Changes in the Primary Somatosensory Cortex of the Stargazer Mouse Model of Absence Epilepsy. Biomolecules 2023; 13:biom13010186. [PMID: 36671571 PMCID: PMC9856073 DOI: 10.3390/biom13010186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Childhood absence epilepsy seizures arise in the cortico-thalamocortical network due to multiple cellular and molecular mechanisms, which are still under investigation. Understanding the precise mechanisms is imperative given that treatment fails in ~30% of patients while adverse neurological sequelae remain common. Impaired GABAergic neurotransmission is commonly reported in research models investigating these mechanisms. Recently, we reported a region-specific reduction in the whole-tissue and synaptic GABAA receptor (GABAAR) α1 subunit and an increase in whole-tissue GAD65 in the primary somatosensory cortex (SoCx) of the adult epileptic stargazer mouse compared with its non-epileptic (NE) littermate. The current study investigated whether these changes occurred prior to the onset of seizures on postnatal days (PN) 17-18, suggesting a causative role. Synaptic and cytosolic fractions were biochemically isolated from primary SoCx lysates followed by semiquantitative Western blot analyses for GABAAR α1 and GAD65. We found no significant changes in synaptic GABAAR α1 and cytosolic GAD65 in the primary SoCx of the stargazer mice at the critical developmental stages of PN 7-9, 13-15, and 17-18. This indicates that altered levels of GABAAR α1 and GAD65 in adult mice do not directly contribute to the initial onset of absence seizures but are a later consequence of seizure activity.
Collapse
|
6
|
Altered GABA A Receptor Expression in the Primary Somatosensory Cortex of a Mouse Model of Genetic Absence Epilepsy. Int J Mol Sci 2022; 23:ijms232415685. [PMID: 36555327 PMCID: PMC9778655 DOI: 10.3390/ijms232415685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/26/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Absence seizures are hyperexcitations within the cortico-thalamocortical (CTC) network, however the underlying causative mechanisms at the cellular and molecular level are still being elucidated and appear to be multifactorial. Dysfunctional feed-forward inhibition (FFI) is implicated as one cause of absence seizures. Previously, we reported altered excitation onto parvalbumin-positive (PV+) interneurons in the CTC network of the stargazer mouse model of absence epilepsy. In addition, downstream changes in GABAergic neurotransmission have also been identified in this model. Our current study assessed whether dysfunctional FFI affects GABAA receptor (GABAAR) subunit expression in the stargazer primary somatosensory cortex (SoCx). Global tissue expression of GABAAR subunits α1, α3, α4, α5, β2, β3, γ2 and δ were assessed using Western blotting (WB), while biochemically isolated subcellular fractions were assessed for the α and δ subunits. We found significant reductions in tissue and synaptic expression of GABAAR α1, 18% and 12.2%, respectively. However, immunogold-cytochemistry electron microscopy (ICC-EM), conducted to assess GABAAR α1 specifically at synapses between PV+ interneurons and their targets, showed no significant difference. These data demonstrate a loss of phasic GABAAR α1, indicating altered GABAergic inhibition which, coupled with dysfunctional FFI, could be one mechanism contributing to the generation or maintenance of absence seizures.
Collapse
|
7
|
Control of Synapse Structure and Function by Actin and Its Regulators. Cells 2022; 11:cells11040603. [PMID: 35203254 PMCID: PMC8869895 DOI: 10.3390/cells11040603] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/30/2022] [Accepted: 02/06/2022] [Indexed: 02/07/2023] Open
Abstract
Neurons transmit and receive information at specialized junctions called synapses. Excitatory synapses form at the junction between a presynaptic axon terminal and a postsynaptic dendritic spine. Supporting the shape and function of these junctions is a complex network of actin filaments and its regulators. Advances in microscopic techniques have enabled studies of the organization of actin at synapses and its dynamic regulation. In addition to highlighting recent advances in the field, we will provide a brief historical perspective of the understanding of synaptic actin at the synapse. We will also highlight key neuronal functions regulated by actin, including organization of proteins in the pre- and post- synaptic compartments and endocytosis of ion channels. We review the evidence that synapses contain distinct actin pools that differ in their localization and dynamic behaviors and discuss key functions for these actin pools. Finally, whole exome sequencing of humans with neurodevelopmental and psychiatric disorders has identified synaptic actin regulators as key disease risk genes. We briefly summarize how genetic variants in these genes impact neurotransmission via their impact on synaptic actin.
Collapse
|
8
|
Weber AJ, Adamson AB, Greathouse KM, Andrade JP, Freeman CD, Seo JV, Rae RJ, Walker CK, Herskowitz JH. Conditional deletion of ROCK2 induces anxiety-like behaviors and alters dendritic spine density and morphology on CA1 pyramidal neurons. Mol Brain 2021; 14:169. [PMID: 34794469 PMCID: PMC8600782 DOI: 10.1186/s13041-021-00878-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/04/2021] [Indexed: 12/25/2022] Open
Abstract
Rho-associated kinase isoform 2 (ROCK2) is an attractive drug target for several neurologic disorders. A critical barrier to ROCK2-based research and therapeutics is the lack of a mouse model that enables investigation of ROCK2 with spatial and temporal control of gene expression. To overcome this, we generated ROCK2fl/fl mice. Mice expressing Cre recombinase in forebrain excitatory neurons (CaMKII-Cre) were crossed with ROCK2fl/fl mice (Cre/ROCK2fl/fl), and the contribution of ROCK2 in behavior as well as dendritic spine morphology in the hippocampus, medial prefrontal cortex (mPFC), and basolateral amygdala (BLA) was examined. Cre/ROCK2fl/fl mice spent reduced time in the open arms of the elevated plus maze and increased time in the dark of the light-dark box test compared to littermate controls. These results indicated that Cre/ROCK2fl/fl mice exhibited anxiety-like behaviors. To examine dendritic spine morphology, individual pyramidal neurons in CA1 hippocampus, mPFC, and the BLA were targeted for iontophoretic microinjection of fluorescent dye, followed by high-resolution confocal microscopy and neuronal 3D reconstructions for morphometry analysis. In dorsal CA1, Cre/ROCK2fl/fl mice displayed significantly increased thin spine density on basal dendrites and reduced mean spine head volume across all spine types on apical dendrites. In ventral CA1, Cre/ROCK2fl/fl mice exhibited significantly increased spine length on apical dendrites. Spine density and morphology were comparable in the mPFC and BLA between both genotypes. These findings suggest that neuronal ROCK2 mediates spine density and morphology in a compartmentalized manner among CA1 pyramidal cells, and that in the absence of ROCK2 these mechanisms may contribute to anxiety-like behaviors.
Collapse
Affiliation(s)
- Audrey J Weber
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Ashley B Adamson
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Kelsey M Greathouse
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Julia P Andrade
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Cameron D Freeman
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Jung Vin Seo
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Rosaria J Rae
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Courtney K Walker
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Jeremy H Herskowitz
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA.
| |
Collapse
|
9
|
Khanal P, Hotulainen P. Dendritic Spine Initiation in Brain Development, Learning and Diseases and Impact of BAR-Domain Proteins. Cells 2021; 10:cells10092392. [PMID: 34572042 PMCID: PMC8468246 DOI: 10.3390/cells10092392] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023] Open
Abstract
Dendritic spines are small, bulbous protrusions along neuronal dendrites where most of the excitatory synapses are located. Dendritic spine density in normal human brain increases rapidly before and after birth achieving the highest density around 2-8 years. Density decreases during adolescence, reaching a stable level in adulthood. The changes in dendritic spines are considered structural correlates for synaptic plasticity as well as the basis of experience-dependent remodeling of neuronal circuits. Alterations in spine density correspond to aberrant brain function observed in various neurodevelopmental and neuropsychiatric disorders. Dendritic spine initiation affects spine density. In this review, we discuss the importance of spine initiation in brain development, learning, and potential complications resulting from altered spine initiation in neurological diseases. Current literature shows that two Bin Amphiphysin Rvs (BAR) domain-containing proteins, MIM/Mtss1 and SrGAP3, are involved in spine initiation. We review existing literature and open databases to discuss whether other BAR-domain proteins could also take part in spine initiation. Finally, we discuss the potential molecular mechanisms on how BAR-domain proteins could regulate spine initiation.
Collapse
Affiliation(s)
- Pushpa Khanal
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland;
- HiLIFE-Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland
| | - Pirta Hotulainen
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland;
- Correspondence:
| |
Collapse
|
10
|
Abl2:Cortactin Interactions Regulate Dendritic Spine Stability via Control of a Stable Filamentous Actin Pool. J Neurosci 2021; 41:3068-3081. [PMID: 33622779 DOI: 10.1523/jneurosci.2472-20.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/15/2021] [Accepted: 02/16/2021] [Indexed: 11/21/2022] Open
Abstract
Dendritic spines act as the receptive contacts at most excitatory synapses. Spines are enriched in a network of actin filaments comprised of two kinetically distinct pools. The majority of spine actin is highly dynamic and regulates spine size, structural plasticity, and postsynaptic density organization. The remainder of the spine actin network is more stable, but the function of this minor actin population is not well understood, as tools to study it have not been available. Previous work has shown that disruption of the Abl2/Arg nonreceptor tyrosine kinase in mice compromises spine stability and size. Here, using cultured hippocampal neurons pooled from both sexes of mice, we provide evidence that binding to cortactin tethers Abl2 in spines, where Abl2 and cortactin maintain the small pool of stable actin required for dendritic spine stability. Using fluorescence recovery after photobleaching of GFP-actin, we find that disruption of Abl2:cortactin interactions eliminates stable actin filaments in dendritic spines, significantly reducing spine density. A subset of spines remaining after Abl2 depletion retain their stable actin pool and undergo activity-dependent spine enlargement, associated with increased cortactin and GluN2B levels. Finally, tonic increases in synaptic activity rescue spine loss following Abl2 depletion by promoting cortactin enrichment in vulnerable spines. Together, our findings strongly suggest that Abl2:cortactin interactions promote spine stability by maintaining pools of stable actin filaments in spines.SIGNIFICANCE STATEMENT Dendritic spines contain two kinetically distinct pools of actin. The more abundant, highly dynamic pool regulates spine shape, size, and plasticity. The function of the smaller, stable actin network is not well understood, as tools to study it have not been available. We demonstrate here that Abl2 and its substrate and interaction partner, cortactin, are essential to maintain the stable pool in spines. Depletion of the stable actin pool via disruption of Abl2 or cortactin, or interactions between the proteins, significantly reduces spine stability. We also provide evidence that tonic increases in synaptic activity promote spine stability via enrichment of cortactin in spines, suggesting that synaptic activity acts on the stable actin pool to stabilize dendritic spines.
Collapse
|
11
|
Antipsychotic Drugs Reverse MK801-Inhibited Cell Migration and F-actin Condensation by Modulating the Rho Signaling Pathway in B35 Cells. Behav Neurol 2020. [DOI: 10.1155/2020/4163274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Background and Aim. MK801-induced psychotic symptoms and also the Ras homolog family member A (RhoA) expression and cell division control protein 42 (cdc42) mRNA modulation in the rat brain have been investigated. Antipsychotic drugs (APDs) have been reported to induce Rho GDP-dissociation inhibitor (RhoGDI) pathway regulation related to cytoskeleton reorganization in neuronal cells. It will be necessary to clarify the effects of APDs on MK801-induced RhoGDI signaling regulation in neuronal cells. Methods. B35 neuronal cells were treated with MK801 for 7 days then treated with MK801 in combination with haloperidol or clozapine for a further 7 days. Cell migration, F-actin condensation, and RhoGDI signaling regulation were examined to investigate the regulatory effects of MK801, haloperidol, and clozapine in B35 neuronal cells. Results. MK801 reduced B35 cell migration, whereas both haloperidol and clozapine reversed the reduction in cell migration induced by MK801. Haloperidol and clozapine restored F-actin condensation after it was diminished by MK801 in B35 cell nuclei. MK801 increased the RhoGDI1 and RhoA expression, which was diminished by the addition of haloperidol and clozapine. MK801 reduced the CDC42 expression, which was restored by haloperidol and clozapine. MK801 reduced the Rho-associated coiled-coil containing protein kinase 1 (ROCK1), profilin1 (PFN1), and neuronal Wiskott–Aldrich Syndrome protein (N-WASP) expression, which was further reduced by haloperidol and clozapine. MK801 also increased the phosphorylated myosin light chain 2 (p-MLC2), postsynaptic density protein 95 (PSD-95), and c-jun expression, which was decreased by haloperidol and clozapine. p21 (RAC1-) activated kinase 1 (PAK1) expression was not affected by MK801.
Collapse
|
12
|
Abstract
17β-Estradiol (E2) is a potent steroid hormone of both gonadal and neuronal origin that exerts profound effects on neuroplasticity in several brain regions. Dendritic spine and synapse formation and rearrangements are modulated and mediated by estrogens. In this chapter, we highlighted the essential background concerning the effects of E2 on synaptic rearrangements accompanied by synaptic plasticity in E2-sensitive brain regions that mediate learning and memory, i.e., cortex and hippocampus. We also address details of the molecular mechanisms underlying E2 regulation of spine dynamics. The proposed models of action of E2 overlaps with that for well-established synaptic modulators, such as adenosine. Thus, the possible synergistic effects of those two molecules in respect to synaptic rearrangement and plasticity were presented.
Collapse
|
13
|
Costa JF, Dines M, Lamprecht R. The Role of Rac GTPase in Dendritic Spine Morphogenesis and Memory. Front Synaptic Neurosci 2020; 12:12. [PMID: 32362820 PMCID: PMC7182350 DOI: 10.3389/fnsyn.2020.00012] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/04/2020] [Indexed: 11/21/2022] Open
Abstract
The ability to form memories in the brain is needed for daily functions, and its impairment is associated with human mental disorders. Evidence indicates that long-term memory (LTM)-related processes such as its consolidation, extinction and forgetting involve changes of synaptic efficacy produced by alterations in neural transmission and morphology. Modulation of the morphology and number of dendritic spines has been proposed to contribute to changes in neuronal transmission mediating such LTM-related processes. Rac GTPase activity is regulated by synaptic activation and it can affect spine morphology by controlling actin-regulatory proteins. Recent evidence shows that changes in Rac GTPase activity affect memory consolidation, extinction, erasure and forgetting and can affect spine morphology in brain areas that mediate these behaviors. Altered Rac GTPase activity is associated with abnormal spine morphology and brain disorders. By affecting Rac GTPase activity we can further understand the roles of spine morphogenesis in memory. Moreover, manipulation of Rac GTPase activity may serve as a therapeutic tool for the treatment of memory-related brain diseases.
Collapse
Affiliation(s)
| | | | - Raphael Lamprecht
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
14
|
Birefringence Changes of Dendrites in Mouse Hippocampal Slices Revealed with Polarizing Microscopy. Biophys J 2020; 118:2366-2384. [PMID: 32294480 DOI: 10.1016/j.bpj.2020.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/20/2020] [Accepted: 03/06/2020] [Indexed: 11/23/2022] Open
Abstract
Intrinsic optical signal (IOS) imaging has been widely used to map the patterns of brain activity in vivo in a label-free manner. Traditional IOS refers to changes in light transmission, absorption, reflectance, and scattering of the brain tissue. Here, we use polarized light for IOS imaging to monitor structural changes of cellular and subcellular architectures due to their neuronal activity in isolated brain slices. To reveal fast spatiotemporal changes of subcellular structures associated with neuronal activity, we developed the instantaneous polarized light microscope (PolScope), which allows us to observe birefringence changes in neuronal cells and tissues while stimulating neuronal activity. The instantaneous PolScope records changes in transmission, birefringence, and slow axis orientation in tissue at a high spatial and temporal resolution using a single camera exposure. These capabilities enabled us to correlate polarization-sensitive IOS with traditional IOS on the same preparations. We detected reproducible spatiotemporal changes in both IOSs at the stratum radiatum in mouse hippocampal slices evoked by electrical stimulation at Schaffer collaterals. Upon stimulation, changes in traditional IOS signals were broadly uniform across the area, whereas birefringence imaging revealed local variations not seen in traditional IOS. Locations with high resting birefringence produced larger stimulation-evoked birefringence changes than those produced at low resting birefringence. Local application of glutamate to the synaptic region in CA1 induced an increase in both transmittance and birefringence signals. Blocking synaptic transmission with inhibitors CNQX (for AMPA-type glutamate receptor) and D-APV (for NMDA-type glutamate receptor) reduced the peak amplitude of the optical signals. Changes in both IOSs were enhanced by an inhibitor of the membranous glutamate transporter, DL-TBOA. Our results indicate that the detection of activity-induced structural changes of the subcellular architecture in dendrites is possible in a label-free manner.
Collapse
|
15
|
Corrêa MG, Bittencourt LO, Nascimento PC, Ferreira RO, Aragão WAB, Silva MCF, Gomes-Leal W, Fernandes MS, Dionizio A, Buzalaf MR, Crespo-Lopez ME, Lima RR. Spinal cord neurodegeneration after inorganic mercury long-term exposure in adult rats: Ultrastructural, proteomic and biochemical damages associated with reduced neuronal density. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110159. [PMID: 31962214 DOI: 10.1016/j.ecoenv.2019.110159] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/28/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
Mercury chloride (HgCl2) is a chemical pollutant widely found in the environment. This form of mercury is able to promote several damages to the Central Nervous System (CNS), however the effects of HgCl2 on the spinal cord, an important pathway for the communication between the CNS and the periphery, are still poorly understood. The aim of this work was to investigate the effects of HgCl2 exposure on spinal cord of adult rats. For this, animals were exposed to a dose of 0.375 mg/kg/day, for 45 days. Then, they were euthanized, the spinal cord collected and we investigated the mercury concentrations in medullary parenchyma and the effects on oxidative biochemistry, proteomic profile and tissue structures. Our results showed that exposure to this metal promoted increased levels of Hg in the spinal cord, impaired oxidative biochemistry by triggering oxidative stress, mudulated antioxidant system proteins, energy metabolism and myelin structure; as well as caused disruption in the myelin sheath and reduction in neuronal density. Despite the low dose, we conclude that prolonged exposure to HgCl2 triggers biochemical changes and modulates the expression of several proteins, resulting in damage to the myelin sheath and reduced neuronal density in the spinal cord.
Collapse
Affiliation(s)
- Márcio Gonçalves Corrêa
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Priscila Cunha Nascimento
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Railson Oliveira Ferreira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Walessa Alana Bragança Aragão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Marcia Cristina Freitas Silva
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Walace Gomes-Leal
- Laboratory of Experimental Neuroprotection and Neuroregeneration, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Mileni Silva Fernandes
- Department of Biological Sciences, Bauru Dental School, University of São Paulo, Bauru, SP, Brazil
| | - Aline Dionizio
- Department of Biological Sciences, Bauru Dental School, University of São Paulo, Bauru, SP, Brazil
| | - Marília Rabelo Buzalaf
- Department of Biological Sciences, Bauru Dental School, University of São Paulo, Bauru, SP, Brazil
| | - Maria Elena Crespo-Lopez
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil.
| |
Collapse
|
16
|
Zhong S, Wang M, Zhan Y, Zhang J, Yang X, Fu S, Bi D, Gao F, Shen Y, Chen Z. Single-nucleus RNA sequencing reveals transcriptional changes of hippocampal neurons in APP23 mouse model of Alzheimer's disease. Biosci Biotechnol Biochem 2020; 84:919-926. [PMID: 31928331 DOI: 10.1080/09168451.2020.1714420] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that mostly strikes the elderly. However, the exact molecular and cellular pathogenesis of AD, especially the dynamic changes of neurons during disease progression, remains poorly understood. Here we used single-nucleus RNA sequencing (snRNA-seq) to access the transcriptional changes of hippocampal neurons in APP23 mouse model of AD. We performed snRNA-seq using a modified Smart-seq2 technique on 3,280 neuronal nuclei from the hippocampus of young and aged APP23 and control mice and identified four distinct subpopulations. Comparative transcriptional analysis showed multiple changes in different subtypes of hippocampal neurons of APP23 mice in comparison to control mice, as well as the transcriptional changes in these neurons during disease progression. Our findings revealed multiple neuronal subtype-specific transcriptional changes that may lead to targets for future studies of AD.
Collapse
Affiliation(s)
- Shan Zhong
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Mengdi Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yaxi Zhan
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Jie Zhang
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xiaoli Yang
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Shumei Fu
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Danlei Bi
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Feng Gao
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yong Shen
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zuolong Chen
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
17
|
Uzair ID, Flamini MI, Sanchez AM. Rapid Estrogen and Progesterone Signaling to Dendritic Spine Formation via Cortactin/Wave1-Arp2/3 Complex. Neuroendocrinology 2020; 110:535-551. [PMID: 31509830 DOI: 10.1159/000503310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/11/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Synaptic plasticity is the neuronal capacity to modify the function and structure of dendritic spines (DS) in response to neuromodulators. Sex steroids, particularly 17β-estradiol (E2) and progesterone (P4), are key regulators in the control of DS formation through multiprotein complexes including WAVE1 protein, and are thus fundamental for the development of learning and memory. OBJECTIVES The aim of this work was to evaluate the molecular switch Cdk5 kinase/protein phosphatase 2A (PP2A) in the control of WAVE1 protein (phosphorylation/dephosphorylation) and the regulation of WAVE1 and cortactin to the Arp2/3 complex, in response to rapid treatments with E2 and P4 in cortical neuronal cells. RESULTS Rapid treatment with E2 and P4 modified neuronal morphology and significantly increased the number of DS. This effect was reduced by the use of a Cdk5 inhibitor (Roscovitine). In contrast, inhibition of PP2A with PP2A dominant negative construct significantly increased DS formation, evidencing the participation of kinase/phosphatase in the regulation of WAVE1 in DS formation induced by E2 and P4. Cortactin regulates DS formation via Src and PAK1 kinase induced by E2 and P4. Both cortactin and WAVE1 signal to Arp2/3 complex to synergistically promote actin nucleation. CONCLUSION These results suggest that E2 and P4 dynamically regulate neuron morphology through nongenomic signaling via cortactin/WAVE1-Arp2/3 complex. The control of these proteins is tightly orchestrated by phosphorylation, where kinases and phosphatases are essential for actin nucleation and, finally, DS formation. This work provides a deeper understanding of the biological actions of sex steroids in the regulation of DS turnover and neuronal plasticity processes.
Collapse
Affiliation(s)
- Ivonne Denise Uzair
- Laboratory of Signal Transduction and Cell Movement, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), Mendoza, Argentina
| | - Marina Ines Flamini
- Laboratory of Signal Transduction and Cell Movement, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), Mendoza, Argentina
| | - Angel Matias Sanchez
- Laboratory of Signal Transduction and Cell Movement, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), Mendoza, Argentina,
| |
Collapse
|
18
|
Han F, Xu H, Shen JX, Pan C, Yu ZH, Chen JJ, Zhu XL, Cai YF, Lu YP. RhoA/Rock2/Limk1/cofilin1 pathway is involved in attenuation of neuronal dendritic spine loss by paeonol in the frontal cortex of D-galactose and aluminum-induced Alzheimer’s disease-like rat model. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Pennucci R, Gucciardi I, de Curtis I. Rac1 and Rac3 GTPases differently influence the morphological maturation of dendritic spines in hippocampal neurons. PLoS One 2019; 14:e0220496. [PMID: 31369617 PMCID: PMC6675090 DOI: 10.1371/journal.pone.0220496] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/17/2019] [Indexed: 11/24/2022] Open
Abstract
The Rac1 and Rac3 GTPases are co-expressed in the developing nervous system, where they are involved in different aspects of neuronal development, including the formation of synapses. The deletion of both Rac genes determines a stronger reduction of dendritic spines in vitro compared to the knockout of either gene, indicating that Rac1 and Rac3 play a synergistic role in the formation of these structures. Here, we have addressed the role of each GTPase in the formation of dendritic spines by overexpressing either Rac1 or Rac3 in wildtype neurons, or by re-expressing either GTPase in double knockout hippocampal cultures. We show that the Rac3 protein is expressed with Rac1 in developing hippocampal neurons. Overexpression of either GTPase in WT neurons increases the density of dendritic spines, suggesting the involvement of both GTPases in their formation. We also found that the re-expression of either Rac1 or Rac3 in double knockout neurons is sufficient to restore spinogenesis. Rac1 is significantly more efficient than Rac3 in restoring the formation of spines. On the other hand the quantitative analysis in neurons overexpressing or re-expressing either GTPase shows that Rac3 induces a more pronounced increase in the size of the spines compared to Rac1. These enlarged spines form morphological synapses identified by the juxtaposition of postsynaptic and presynaptic markers. Thus, while Rac1 appears more efficient in inducing the formation of mature spines, Rac3 is more efficient in promoting their enlargement. Our study highlights specific roles of Rac1 and Rac3, which may be functionally relevant also to synaptic plasticity.
Collapse
Affiliation(s)
- Roberta Pennucci
- San Raffaele—Vita-Salute University and San Raffaele Scientific institute, Cell Adhesion Unit, Division of Neuroscience, Milano, Italy
| | - Irene Gucciardi
- San Raffaele—Vita-Salute University and San Raffaele Scientific institute, Cell Adhesion Unit, Division of Neuroscience, Milano, Italy
| | - Ivan de Curtis
- San Raffaele—Vita-Salute University and San Raffaele Scientific institute, Cell Adhesion Unit, Division of Neuroscience, Milano, Italy
- * E-mail:
| |
Collapse
|
20
|
Sheppard PAS, Choleris E, Galea LAM. Structural plasticity of the hippocampus in response to estrogens in female rodents. Mol Brain 2019; 12:22. [PMID: 30885239 PMCID: PMC6423800 DOI: 10.1186/s13041-019-0442-7] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/11/2019] [Indexed: 01/05/2023] Open
Abstract
It is well established that estrogens affect neuroplasticity in a number of brain regions. In particular, estrogens modulate and mediate spine and synapse formation as well as neurogenesis in the hippocampal formation. In this review, we discuss current research exploring the effects of estrogens on dendritic spine plasticity and neurogenesis with a focus on the modulating factors of sex, age, and pregnancy. Hormone levels, including those of estrogens, fluctuate widely across the lifespan from early life to puberty, through adulthood and into old age, as well as with pregnancy and parturition. Dendritic spine formation and modulation are altered both by rapid (likely non-genomic) and classical (genomic) actions of estrogens and have been suggested to play a role in the effects of estrogens on learning and memory. Neurogenesis in the hippocampus is influenced by age, the estrous cycle, pregnancy, and parity in female rodents. Furthermore, sex differences exist in hippocampal cellular and molecular responses to estrogens and are briefly discussed throughout. Understanding how structural plasticity in the hippocampus is affected by estrogens and how these effects can influence function and be influenced by other factors, such as experience and sex, is critical and can inform future treatments in conditions involving the hippocampus.
Collapse
Affiliation(s)
- Paul A. S. Sheppard
- Department of Psychology, Graduate Program in Neuroscience, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Elena Choleris
- Department of Psychology & Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Liisa A. M. Galea
- Department of Psychology, Graduate Program in Neuroscience, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| |
Collapse
|
21
|
Basu S, Lamprecht R. The Role of Actin Cytoskeleton in Dendritic Spines in the Maintenance of Long-Term Memory. Front Mol Neurosci 2018; 11:143. [PMID: 29765302 PMCID: PMC5938600 DOI: 10.3389/fnmol.2018.00143] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/09/2018] [Indexed: 11/13/2022] Open
Abstract
Evidence indicates that long-term memory formation involves alterations in synaptic efficacy produced by modifications in neural transmission and morphology. However, it is not clear how such alterations induced by learning, that encode memory, are maintained over long period of time to preserve long-term memory. This is especially intriguing as the half-life of most of the proteins that underlie such changes is usually in the range of hours to days and these proteins may change their location over time. In this review we describe studies that indicate the involvement of dendritic spines in memory formation and its maintenance. These studies show that learning leads to changes in the number and morphology of spines. Disruption in spines morphology or manipulations that lead to alteration in their number after consolidation are associated with impairment in memory maintenance. We further ask how changes in dendritic spines morphology, induced by learning and reputed to encode memory, are maintained to preserve long-term memory. We propose a mechanism, based on studies described in the review, whereby the actin cytoskeleton and its regulatory proteins involved in the initial alteration in spine morphology induced by learning are also essential for spine structural stabilization that maintains long-term memory. In this model glutamate receptors and other synaptic receptors activation during learning leads to the creation of new actin cytoskeletal scaffold leading to changes in spines morphology and memory formation. This new actin cytoskeletal scaffold is preserved beyond actin and its regulatory proteins turnover and dynamics by active stabilization of the level and activity of actin regulatory proteins within these memory spines.
Collapse
Affiliation(s)
- Sreetama Basu
- Sagol Departmant of Neurobiology, Faculty of Natural Sciences, The Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | - Raphael Lamprecht
- Sagol Departmant of Neurobiology, Faculty of Natural Sciences, The Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| |
Collapse
|
22
|
Amyloid-β oligomers synaptotoxicity: The emerging role of EphA4/c-Abl signaling in Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1148-1159. [DOI: 10.1016/j.bbadis.2018.01.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 01/12/2018] [Accepted: 01/23/2018] [Indexed: 12/11/2022]
|
23
|
Adotevi NK, Leitch B. Synaptic Changes in AMPA Receptor Subunit Expression in Cortical Parvalbumin Interneurons in the Stargazer Model of Absence Epilepsy. Front Mol Neurosci 2017; 10:434. [PMID: 29311821 PMCID: PMC5744073 DOI: 10.3389/fnmol.2017.00434] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/15/2017] [Indexed: 11/15/2022] Open
Abstract
Feedforward inhibition is essential to prevent run away excitation within the brain. Recent evidence suggests that a loss of feed-forward inhibition in the corticothalamocortical circuitry may underlie some absence seizures. However, it is unclear if this aberration is specifically linked to loss of synaptic excitation onto local fast-spiking parvalbumin-containing (PV+) inhibitory interneurons, which are responsible for mediating feedforward inhibition within cortical networks. We recently reported a global tissue loss of AMPA receptors (AMPARs), and a specific mistrafficking of these AMPARs in PV+ interneurons in the stargazer somatosensory cortex. The current study was aimed at investigating if cellular changes in AMPAR expression were translated into deficits in receptors at specific synapses in the feedforward inhibitory microcircuit. Using western blot immunolabeling on biochemically isolated synaptic fractions, we demonstrate a loss of AMPAR GluA1–4 subunits in the somatosensory cortex of stargazers compared to non-epileptic control mice. Furthermore, using double post-embedding immunogold-cytochemistry, we show a loss of GluA1–4-AMPARs at excitatory synapses onto cortical PV+ interneurons. Altogether, these data indicate a loss of synaptic AMPAR-mediated excitation of cortical PV+ inhibitory neurons. As the cortex is considered the site of initiation of spike wave discharges (SWDs) within the corticothalamocortical circuitry, loss of AMPARs at cortical PV+ interneurons likely impairs feed-forward inhibitory output, and contributes to the generation of SWDs and absence seizures in stargazers.
Collapse
Affiliation(s)
- Nadia K Adotevi
- Department of Anatomy, Brain Health Research Centre, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Beulah Leitch
- Department of Anatomy, Brain Health Research Centre, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
24
|
Ferreras S, Fernández G, Danelon V, Pisano MV, Masseroni L, Chapleau CA, Krapacher FA, Mlewski EC, Mascó DH, Arias C, Pozzo-Miller L, Paglini MG. Cdk5 Is Essential for Amphetamine to Increase Dendritic Spine Density in Hippocampal Pyramidal Neurons. Front Cell Neurosci 2017; 11:372. [PMID: 29225566 PMCID: PMC5705944 DOI: 10.3389/fncel.2017.00372] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/08/2017] [Indexed: 12/12/2022] Open
Abstract
Psychostimulant drugs of abuse increase dendritic spine density in reward centers of the brain. However, little is known about their effects in the hippocampus, where activity-dependent changes in the density of dendritic spine are associated with learning and memory. Recent reports suggest that Cdk5 plays an important role in drug addiction, but its role in psychostimulant's effects on dendritic spines in hippocampus remain unknown. We used in vivo and in vitro approaches to demonstrate that amphetamine increases dendritic spine density in pyramidal neurons of the hippocampus. Primary cultures and organotypic slice cultures were used for cellular, molecular, pharmacological and biochemical analyses of the role of Cdk5/p25 in amphetamine-induced dendritic spine formation. Amphetamine (two-injection protocol) increased dendritic spine density in hippocampal neurons of thy1-green fluorescent protein (GFP) mice, as well as in hippocampal cultured neurons and organotypic slice cultures. Either genetic or pharmacological inhibition of Cdk5 activity prevented the amphetamine-induced increase in dendritic spine density. Amphetamine also increased spine density in neurons overexpressing the strong Cdk5 activator p25. Finally, inhibition of calpain, the protease necessary for the conversion of p35 to p25, prevented amphetamine's effect on dendritic spine density. We demonstrate, for the first time, that amphetamine increases the density of dendritic spine in hippocampal pyramidal neurons in vivo and in vitro. Moreover, we show that the Cdk5/p25 signaling and calpain activity are both necessary for the effect of amphetamine on dendritic spine density. The identification of molecular mechanisms underlying psychostimulant effects provides novel and promising therapeutic approaches for the treatment of drug addiction.
Collapse
Affiliation(s)
- Soledad Ferreras
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina.,Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Guillermo Fernández
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Víctor Danelon
- Centro de Biología Celular y Molecular, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, IIBYT-CONICET, Córdoba, Argentina
| | - María V Pisano
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Luján Masseroni
- Laboratory of Neurobiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Christopher A Chapleau
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Favio A Krapacher
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Estela C Mlewski
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Daniel H Mascó
- Centro de Biología Celular y Molecular, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, IIBYT-CONICET, Córdoba, Argentina
| | - Carlos Arias
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Lucas Pozzo-Miller
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - María G Paglini
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina.,Virology Institute "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
25
|
Kaplan GB, Leite-Morris KA, Wang L, Rumbika KK, Heinrichs SC, Zeng X, Wu L, Arena DT, Teng YD. Pathophysiological Bases of Comorbidity: Traumatic Brain Injury and Post-Traumatic Stress Disorder. J Neurotrauma 2017; 35:210-225. [PMID: 29017388 DOI: 10.1089/neu.2016.4953] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The high rates of traumatic brain injury (TBI) and post-traumatic stress disorder (PTSD) diagnoses encountered in recent years by the United States Veterans Affairs Healthcare System have increased public awareness and research investigation into these conditions. In this review, we analyze the neural mechanisms underlying the TBI/PTSD comorbidity. TBI and PTSD present with common neuropsychiatric symptoms including anxiety, irritability, insomnia, personality changes, and memory problems, and this overlap complicates diagnostic differentiation. Interestingly, both TBI and PTSD can be produced by overlapping pathophysiological changes that disrupt neural connections termed the "connectome." The neural disruptions shared by PTSD and TBI and the comorbid condition include asymmetrical white matter tract abnormalities and gray matter changes in the basolateral amygdala, hippocampus, and prefrontal cortex. These neural circuitry dysfunctions result in behavioral changes that include executive function and memory impairments, fear retention, fear extinction deficiencies, and other disturbances. Pathophysiological etiologies can be identified using experimental models of TBI, such as fluid percussion or blast injuries, and for PTSD, using models of fear conditioning, retention, and extinction. In both TBI and PTSD, there are discernible signs of neuroinflammation, excitotoxicity, and oxidative damage. These disturbances produce neuronal death and degeneration, axonal injury, and dendritic spine dysregulation and changes in neuronal morphology. In laboratory studies, various forms of pharmacological or psychological treatments are capable of reversing these detrimental processes and promoting axonal repair, dendritic remodeling, and neurocircuitry reorganization, resulting in behavioral and cognitive functional enhancements. Based on these mechanisms, novel neurorestorative therapeutics using anti-inflammatory, antioxidant, and anticonvulsant agents may promote better outcomes for comorbid TBI and PTSD.
Collapse
Affiliation(s)
- Gary B Kaplan
- 1 Mental Health Service , VA Boston Healthcare System, Brockton, Massachusetts.,2 Department of Psychiatry, Boston University School of Medicine , Boston, Massachusetts.,3 Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine , Boston, Massachusetts
| | - Kimberly A Leite-Morris
- 2 Department of Psychiatry, Boston University School of Medicine , Boston, Massachusetts.,3 Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine , Boston, Massachusetts.,4 Research Service, VA Boston Healthcare System , Jamaica Plain, Massachusetts
| | - Lei Wang
- 5 Division of Spinal Cord Injury Research, VA Boston Healthcare System , West Roxbury, Massachusetts.,6 Departments of Physical Medicine and Rehabilitation and Neurosurgery, Harvard Medical School , Boston, Massachusetts
| | - Kendra K Rumbika
- 7 Research Service, VA Boston Healthcare System , West Roxbury, Massachusetts
| | - Stephen C Heinrichs
- 7 Research Service, VA Boston Healthcare System , West Roxbury, Massachusetts
| | - Xiang Zeng
- 5 Division of Spinal Cord Injury Research, VA Boston Healthcare System , West Roxbury, Massachusetts.,6 Departments of Physical Medicine and Rehabilitation and Neurosurgery, Harvard Medical School , Boston, Massachusetts
| | - Liquan Wu
- 5 Division of Spinal Cord Injury Research, VA Boston Healthcare System , West Roxbury, Massachusetts.,6 Departments of Physical Medicine and Rehabilitation and Neurosurgery, Harvard Medical School , Boston, Massachusetts
| | - Danielle T Arena
- 7 Research Service, VA Boston Healthcare System , West Roxbury, Massachusetts
| | - Yang D Teng
- 5 Division of Spinal Cord Injury Research, VA Boston Healthcare System , West Roxbury, Massachusetts.,6 Departments of Physical Medicine and Rehabilitation and Neurosurgery, Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
26
|
Han F, Zhuang TT, Chen JJ, Zhu XL, Cai YF, Lu YP. Novel derivative of Paeonol, Paeononlsilatie sodium, alleviates behavioral damage and hippocampal dendritic injury in Alzheimer's disease concurrent with cofilin1/phosphorylated-cofilin1 and RAC1/CDC42 alterations in rats. PLoS One 2017; 12:e0185102. [PMID: 28934273 PMCID: PMC5608314 DOI: 10.1371/journal.pone.0185102] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/06/2017] [Indexed: 11/29/2022] Open
Abstract
Alzheimer’s disease (AD) is a typical hippocampal amnesia and the most common senile dementia. Many studies suggest that cognitive impairments are more closely correlated with synaptic loss than the burden of amyloid deposits in AD progression. To date, there is no effective treatment for this disease. Paeonol has been widely employed in traditional Chinese medicine. This compound improves learning behavior in an animal model; however, the mechanism remains unclear. In this study, Paeononlsilatie sodium (Pa), a derivative of Paeonol, attenuated D-galactose (D-gal) and AlCl3-induced behavioral damages in rats based on evaluations of the open field test (OFT), elevated plus maze test (EPMT), and Morris water maze test (MWMT). Pa increased the dendritic complexity and the density of dendritic spines. Correlation analysis indicated that morphological changes in neuronal dendrites are closely correlated with behavioral changes. Pa treatment reduced the production of Aβ, affected the phosphorylation and redistribution of cofilin1 and inhibited rod-like formation in hippocampal neurons. The induction of D-gal and AlCl3 promoted the expression of RAC1/CDC42 expression; however, the tendency of gene expression was inhibited by pretreatment with Pa. Taken together, our results suggest that Pa may represent a novel therapeutic agent for the improvement of cognitive and emotional behaviors and dendritic morphology in an AD animal model.
Collapse
Affiliation(s)
- Fei Han
- College of Life Science, Anhui Normal University, Wuhu, China
| | | | - Jing-Jing Chen
- College of Life Science, Anhui Normal University, Wuhu, China
| | - Xiu-Ling Zhu
- College of Life Science, Anhui Normal University, Wuhu, China
- Department of Anatomy, Wannan Medical College, Wuhu, China
| | - Ya-Fei Cai
- College of Life Science, Anhui Normal University, Wuhu, China
| | - Ya-Ping Lu
- College of Life Science, Anhui Normal University, Wuhu, China
- * E-mail:
| |
Collapse
|
27
|
Abstract
Memory is an adaptation to particular temporal properties of past events, such as the frequency of occurrence of a stimulus or the coincidence of multiple stimuli. In neurons, this adaptation can be understood in terms of a hierarchical system of molecular and cellular time windows, which collectively retain information from the past. We propose that this system makes various timescales of past experience simultaneously available for future adjustment of behavior. More generally, we propose that the ability to detect and respond to temporally structured information underlies the nervous system's capacity to encode and store a memory at molecular, cellular, synaptic, and circuit levels.
Collapse
Affiliation(s)
| | - Thomas James Carew
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA.
| |
Collapse
|
28
|
Zafar S, Younas N, Sheikh N, Tahir W, Shafiq M, Schmitz M, Ferrer I, Andréoletti O, Zerr I. Cytoskeleton-Associated Risk Modifiers Involved in Early and Rapid Progression of Sporadic Creutzfeldt-Jakob Disease. Mol Neurobiol 2017; 55:4009-4029. [PMID: 28573459 DOI: 10.1007/s12035-017-0589-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/28/2017] [Indexed: 10/19/2022]
Abstract
A high priority in the prion field is to identify pre-symptomatic events and associated profile of molecular changes. In this study, we demonstrate the pre-symptomatic dysregulation of cytoskeleton assembly and its associated cofilin-1 pathway in strain and brain region-specific manners in MM1 and VV2 subtype-specific Creutzfeldt-Jakob disease at clinical and pre-clinical stage. At physiological level, PrPC interaction with cofilin-1 and phosphorylated form of cofilin (p-cofilin(Ser3)) was investigated in primary cultures of mouse cortex neurons (PCNs) of PrPC wild-type and knockout mice (PrP-/-). Short-interfering RNA downregulation of active form of cofilin-1 resulted in the redistribution/downregulation of PrPC, increase of activated form of microglia, accumulation of dense form of F-actin, and upregulation of p-cofilin(Ser3). This upregulated p-cofilin(Ser3) showed redistribution of expression predominantly in the activated form of microglia in PCNs. At pathological level, cofilin-1 expression was significantly altered in cortex and cerebellum in both humans and mice at pre-clinical stage and at early symptomatic clinical stage of the disease. Further, to better understand the possible mechanism of dysregulation of cofilin-1, we also demonstrated alterations in upstream regulators; LIM kinase isoform 1 (LIMK1), slingshot phosphatase isoform 1 (SSH1), RhoA-associated kinase (Rock2), and amyloid precursor protein (APP) in sporadic Creutzfeldt-Jakob disease MM1 mice and in human MM1 and VV2 frontal cortex and cerebellum samples. In conclusion, our findings demonstrated for the first time a key pre-clinical response of cofilin-1 and the associated pathway in prion disease.
Collapse
Affiliation(s)
- Saima Zafar
- Department of Neurology, Clinical Dementia Center, and DZNE, Georg-August University, University Medical Center Goettingen (UMG), Robert-Koch-Str. 40, 37075, Goettingen, Germany.
| | - Neelam Younas
- Department of Neurology, Clinical Dementia Center, and DZNE, Georg-August University, University Medical Center Goettingen (UMG), Robert-Koch-Str. 40, 37075, Goettingen, Germany
| | - Nadeem Sheikh
- Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Waqas Tahir
- Department of Neurology, Clinical Dementia Center, and DZNE, Georg-August University, University Medical Center Goettingen (UMG), Robert-Koch-Str. 40, 37075, Goettingen, Germany
| | - Mohsin Shafiq
- Department of Neurology, Clinical Dementia Center, and DZNE, Georg-August University, University Medical Center Goettingen (UMG), Robert-Koch-Str. 40, 37075, Goettingen, Germany
| | - Matthias Schmitz
- Department of Neurology, Clinical Dementia Center, and DZNE, Georg-August University, University Medical Center Goettingen (UMG), Robert-Koch-Str. 40, 37075, Goettingen, Germany
| | - Isidre Ferrer
- Institute of Neuropathology, IDIBELL-University Hospital Bellvitge, University of Barcelona, Hospitalet de Llobregat, Spain.,Network Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Ministry of Health, Madrid, Spain
| | - Olivier Andréoletti
- Institut National de la Recherche Agronomique/Ecole Nationale Vétérinaire, Toulouse, France
| | - Inga Zerr
- Department of Neurology, Clinical Dementia Center, and DZNE, Georg-August University, University Medical Center Goettingen (UMG), Robert-Koch-Str. 40, 37075, Goettingen, Germany
| |
Collapse
|
29
|
Lim CS, Alkon DL. Inhibition of coactivator-associated arginine methyltransferase 1 modulates dendritic arborization and spine maturation of cultured hippocampal neurons. J Biol Chem 2017; 292:6402-6413. [PMID: 28264928 DOI: 10.1074/jbc.m117.775619] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/24/2017] [Indexed: 01/11/2023] Open
Abstract
An improved understanding of the molecular mechanisms in synapse formation provides insight into both learning and memory and the etiology of neurodegenerative disorders. Coactivator-associated arginine methyltransferase 1 (CARM1) is a protein methyltransferase that negatively regulates synaptic gene expression and inhibits neuronal differentiation. Despite its regulatory function in neurons, little is known about the CARM1 cellular location and its role in dendritic maturation and synapse formation. Here, we examined the effects of CARM1 inhibition on dendritic spine and synapse morphology in the rat hippocampus. CARM1 was localized in hippocampal post-synapses, with immunocytochemistry and electron microscopy revealing co-localization of CARM1 with post-synaptic density (PSD)-95 protein, a post-synaptic marker. Specific siRNA-mediated suppression of CARM1 expression resulted in precocious dendritic maturation, with increased spine width and density at sites along dendrites and induction of mushroom-type spines. These changes were accompanied by a striking increase in the cluster size and number of key synaptic proteins, including N-methyl-d-aspartate receptor subunit 2B (NR2B) and PSD-95. Similarly, pharmacological inhibition of CARM1 activity with the CARM1-specific inhibitor AMI-1 significantly increased spine width and mushroom-type spines and also increased the cluster size and number of NR2B and cluster size of PSD-95. These results suggest that CARM1 is a post-synaptic protein that plays roles in dendritic maturation and synaptic formation and that spatiotemporal regulation of CARM1 activity modulates neuronal connectivity and improves synaptic dysfunction.
Collapse
Affiliation(s)
- Chol Seung Lim
- From the Blanchette Rockefeller Neurosciences Institute, West Virginia University, Morgantown, West Virginia 26505
| | - Daniel L Alkon
- From the Blanchette Rockefeller Neurosciences Institute, West Virginia University, Morgantown, West Virginia 26505
| |
Collapse
|
30
|
Janssen L, Dubbelaar ML, Holtman IR, de Boer-Bergsma J, Eggen BJL, Boddeke HWGM, De Deyn PP, Van Dam D. Aging, microglia and cytoskeletal regulation are key factors in the pathological evolution of the APP23 mouse model for Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2016; 1863:395-405. [PMID: 27838490 DOI: 10.1016/j.bbadis.2016.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/21/2016] [Accepted: 11/08/2016] [Indexed: 02/01/2023]
Abstract
Aging is the key risk factor for Alzheimer's disease (AD). In addition, the amyloid-beta (Aβ) peptide is considered a critical neurotoxic agent in AD pathology. However, the connection between these factors is unclear. We aimed to provide an extensive characterization of the gene expression profiles of the amyloidosis APP23 model for AD and control mice and to evaluate the effect of aging on these profiles. We also correlated our findings to changes in soluble Aβ-levels and other pathological and symptomatic features of the model. We observed a clear biphasic expression profile. The first phase displayed a maturation profile, which resembled features found in young carriers of familial AD mutations. The second phase reflected aging processes and showed similarities to the progression of human AD pathology. During this phase, the model displayed a clear upregulation of microglial activation and lysosomal pathways and downregulation of neuron differentiation and axon guidance pathways. Interestingly, the changes in expression were all correlated to aging in general, but appeared more extensive/accelerated in APP23 mice.
Collapse
Affiliation(s)
- Leen Janssen
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Marissa L Dubbelaar
- Department of Neuroscience, Medical Physiology Section, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Inge R Holtman
- Department of Neuroscience, Medical Physiology Section, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Jelkje de Boer-Bergsma
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Bart J L Eggen
- Department of Neuroscience, Medical Physiology Section, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Hendrikus W G M Boddeke
- Department of Neuroscience, Medical Physiology Section, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Peter P De Deyn
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium; University of Groningen, University Medical Center Groningen (UMCG), Department of Neurology and Alzheimer Research Center, Groningen, The Netherlands; Biobank, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium.
| |
Collapse
|
31
|
Acute Hyperammonemia Induces NMDA-Mediated Hypophosphorylation of Intermediate Filaments Through PP1 and PP2B in Cerebral Cortex of Young Rats. Neurotox Res 2016; 30:138-49. [PMID: 26936604 DOI: 10.1007/s12640-016-9607-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/20/2016] [Accepted: 02/10/2016] [Indexed: 11/27/2022]
Abstract
In the present work, we studied the effects of toxic ammonia levels on the cytoskeleton of neural cells, with emphasis in the homeostasis of the phosphorylating system associated with the intermediate filaments (IFs). We used in vivo and in vitro models of acute hyperammonemia in 10- and 21-day-old rats. In the in vivo model, animals were intraperitoneally injected with ammonium acetate (7 mmol/Kg), and the phosphorylation level of the cytoskeletal proteins was analyzed in the cerebral cortex and hippocampus 30 and 60 min after injection. The injected ammonia altered the IF phosphorylation of astrocytes (GFAP and vimentin) and neurons (neurofilament subunits of low, middle, and high molecular weight, respectively: NFL, NFM, and NFH) from cerebral cortex of 21-day-old rats. This was a transitory effect observed 30 min after injection, recovering 30 min afterward. Phosphorylation was not altered in the cerebral cortex of 10-day-old pups. The homeostasis of hippocampal IFs was preserved at the studied ages and times. In the in vitro model, cortical slices of 10- and 21-day-old rats were incubated with 0.5, 1, or 5 mM NH4Cl, and the phosphorylation level of the IF proteins was analyzed after 30 min. The IF phosphorylation was not altered in cortical slices of 10-day-old rats; however, in cortical slices of 21-day-old pups, 5 mM NH4Cl induced hypophosphorylation of GFAP and vimentin, preserving neurofilament phosphorylation levels. Hypophosphorylation was mediated by the protein phosphatases 1 (PP1) and 2B (PP2B), and this event was associated with Ca(2+) influx via N-methyl-D-aspartate (NMDA) glutamate receptors. The aim of this study is to show that acute ammonia toxicity targets the phosphorylating system of IFs in the cerebral cortex of rats in a developmentally regulated manner, and NMDA-mediated Ca(2+) signaling plays a central role in this mechanism. We propose that the disruption of cytoskeletal homeostasis could be an endpoint of the acute hyperammonemia in the developing brain. We believe that these results contribute for better understanding the molecular basis of the ammonia toxicity in brain.
Collapse
|
32
|
Inoue Y, Kamikubo Y, Ezure H, Ito J, Kato Y, Moriyama H, Otsuka N. Presynaptic protein Synaptotagmin1 regulates the neuronal polarity and axon differentiation in cultured hippocampal neurons. BMC Neurosci 2015; 16:92. [PMID: 26667128 PMCID: PMC4678605 DOI: 10.1186/s12868-015-0231-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 12/04/2015] [Indexed: 11/26/2022] Open
Abstract
Background Hippocampal neurons in the brain polarize to form multiple dendrites and one long axon. The formation of central synapses remains poorly understood. Although several of the intracellular proteins involved in the clustering of central neurotransmitter receptors and ion channels have been identified, the signals involved in pre- and postsynaptic differentiation remain elusive. Synaptotagmin1 is an abundant and important presynaptic vesicle protein that binds Ca2+ (J Biol Chem 277:7629–7632, 2002) in regulation of synaptic vesicle exocytosis at the synapse. Synapse consists of the formation of synaptic connections and requires precise coordination of Synaptotagmin1. It was reported Synaptotagmin1 plays an important roles in the formation of axonal filopodia and branches in chicken forebrain neurons (Dev Neurobiol 73:27–44, 2013). To determine if Synaptotagmin1 could have a role in formation of axon in hippocampal neurons, we investigated the effects of Synaptotagmin1 overexpression and knockdown using the shRNA on the growth and branching of the axons of primary hippocampal neurons. We showed that overexpression of Synaptotagmin1 leads to abnormal multiple axon formation in cultured rat hippocampal neurons. Results We first examined the effects of Synaptotagmin1 on the numbers of axon and dendrites. We found that the overexpression of Synaptotagmin1 led to the formation of multiple axons and induced an increase in the number of endogenous postsynaptic protein Homer1c clusters in cultured hippocampal neurons. Endogenous initial segment of axon was detected with anti-sodium channel (anti-NaCh) antibody and with anti-Tau1 (J Neurosci 24: 4605–4613, 2004). The endogenous initial segment of axon was stained with anti-NaCh antibodies and with anti-Tau1 antibodies. Then the numbers of prominence dyed positive were counted as axon. We attempted to specifically knockdown the endogenous Synaptotagmin1 with small hairpin RNAs (shRNAs). To further dissect the functions of endogenous Synaptotagmin1 in neuronal polarity, we used the shRNA of Synaptotagmin1 that specifically blocks the existence of endogenous Synaptotagmin1. When the shRNA of Synaptotagmin1 was introduced to the cells, the number of axons and dendrites did not change. Conclusions These results indicate that the accumulation of Synaptotagmin1 may play an important role in axon/dendrite differentiation.
Collapse
Affiliation(s)
- Yuriko Inoue
- Department of Anatomy, Showa University School of Medicine, Tokyo, 142-8555, Japan.
| | - Yuji Kamikubo
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan.
| | - Hiromitsu Ezure
- Department of Anatomy, Showa University School of Medicine, Tokyo, 142-8555, Japan.
| | - Junji Ito
- School of Nursing and Rehabilitation Sciences, Showa University Department of Nursing, Tokyo, 226-8555, Japan.
| | - Yu Kato
- Department of Neurosurgery, Showa University School of Medicine, Tokyo, 142-8555, Japan.
| | - Hiroshi Moriyama
- Department of Anatomy, Showa University School of Medicine, Tokyo, 142-8555, Japan.
| | - Naruhito Otsuka
- Department of Anatomy, Showa University School of Medicine, Tokyo, 142-8555, Japan.
| |
Collapse
|
33
|
Jaehne EJ, Ramshaw H, Xu X, Saleh E, Clark SR, Schubert KO, Lopez A, Schwarz Q, Baune BT. In-vivo administration of clozapine affects behaviour but does not reverse dendritic spine deficits in the 14-3-3ζ KO mouse model of schizophrenia-like disorders. Pharmacol Biochem Behav 2015; 138:1-8. [DOI: 10.1016/j.pbb.2015.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/04/2015] [Accepted: 09/07/2015] [Indexed: 12/12/2022]
|
34
|
Dines M, Lamprecht R. The Role of Ephs and Ephrins in Memory Formation. Int J Neuropsychopharmacol 2015; 19:pyv106. [PMID: 26371183 PMCID: PMC4851260 DOI: 10.1093/ijnp/pyv106] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/10/2015] [Indexed: 12/22/2022] Open
Abstract
The ability to efficiently store memories in the brain is a fundamental process and its impairment is associated with multiple human mental disorders. Evidence indicates that long-term memory formation involves alterations of synaptic efficacy produced by modifications in neural transmission and morphology. The Eph receptors and their cognate ephrin ligands have been shown to be involved in these key neuronal processes by regulating events such as presynaptic transmitter release, postsynaptic glutamate receptor conductance and trafficking, synaptic glutamate reuptake, and dendritic spine morphogenesis. Recent findings show that Ephs and ephrins are needed for memory formation in different organisms. These proteins participate in the formation of various types of memories that are subserved by different neurons and brain regions. Ephs and ephrins are involved in brain disorders and diseases with memory impairment symptoms, including Alzheimer's disease and anxiety. Drugs that agonize or antagonize Ephs/ephrins signaling have been developed and could serve as therapeutic agents to treat such diseases. Ephs and ephrins may therefore induce cellular alterations mandatory for memory formation and serve as a target for pharmacological intervention for treatment of memory-related brain diseases.
Collapse
Affiliation(s)
| | - Raphael Lamprecht
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Israel.
| |
Collapse
|
35
|
Iwasaki Y, Yumoto T, Sakakibara SI. Expression profiles of inka2 in the murine nervous system. Gene Expr Patterns 2015; 19:83-97. [PMID: 26292052 DOI: 10.1016/j.gep.2015.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/07/2015] [Accepted: 08/14/2015] [Indexed: 01/24/2023]
Abstract
Dynamic rearrangement of the actin cytoskeleton impacts many cellular characteristics in both the developing and adult central nervous systems (CNS), including the migration and adhesion of highly motile neural progenitor cells, axon guidance of immature neurons, and reconstruction of synaptic structures in the adult brain. Inka1, a known regulator of actin cytoskeleton reconstruction, is predominantly expressed by the neural crest cell lineage and regulates the migration and differentiation of these cells. In the present study, we identified a novel gene, designated as inka2, which is related to inka1. Inka2/fam212b is an evolutionarily conserved gene found in different vertebrate species and constitutes a novel gene family together with inka1. Northern blot analysis showed that inka2 mRNA was highly enriched in the nervous system. The spatiotemporal propagation cell profiles of those cells that expressed inka2 transcripts were compatible with those of Olig2-positive oligodendrocyte progenitor cells, which originate in the ventral ventricular zone during embryogenesis. Intense expression of inka2 was also noted in the proliferative neuronal progenitors in the developing cerebellum. On the other hand, immature newborn neurons in the embryonic brain showed no expression of inka2, except for the cells residing in the marginal zone of the embryonic telencephalon, which is known to contain transient cells including the non-subplate pioneer neurons and Cajal-Retzius cells. As brain development proceeds during the postnatal stage, inka2 expression emerged in some populations of immature neurons, including the neocortical pyramidal neurons, hippocampal pyramidal neurons, and granule cells migrating in the cerebellar cortex. In the adult brain, the expression of inka2 was interestingly confined in terminally differentiated neurons in the restricted forebrain regions. Taken together, as a novel regulator of actin cytoskeletons in the CNS, inka2 may be involved in multiple actin-driven processes, including cell migration and establishment of neuronal polarity.
Collapse
Affiliation(s)
- Yumi Iwasaki
- Laboratory for Molecular Neurobiology, Graduate School of Human Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
| | - Takahito Yumoto
- Laboratory for Molecular Neurobiology, Graduate School of Human Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
| | - Shin-Ichi Sakakibara
- Laboratory for Molecular Neurobiology, Graduate School of Human Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan; Institute of Applied Brain Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan.
| |
Collapse
|
36
|
Jung G, Kim EJ, Cicvaric A, Sase S, Gröger M, Höger H, Sialana FJ, Berger J, Monje FJ, Lubec G. Drebrin depletion alters neurotransmitter receptor levels in protein complexes, dendritic spine morphogenesis and memory-related synaptic plasticity in the mouse hippocampus. J Neurochem 2015; 134:327-39. [DOI: 10.1111/jnc.13119] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/16/2015] [Accepted: 03/27/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Gangsoo Jung
- Department of Pediatrics; Medical University of Vienna; Vienna Austria
| | - Eun-Jung Kim
- Department of Pediatrics; Medical University of Vienna; Vienna Austria
| | - Ana Cicvaric
- Department of Neurophysiology and Neuropharmacology; Center for Physiology and Pharmacology; Medical University of Vienna; Vienna Austria
| | - Sunetra Sase
- Department of Pediatrics; Medical University of Vienna; Vienna Austria
| | - Marion Gröger
- Core Facility Imaging; Medical University of Vienna; Vienna Austria
| | - Harald Höger
- Core Unit of Biomedical Research; Division of Laboratory Animal Science and Genetics; Medical University of Vienna; Himberg Austria
| | | | - Johannes Berger
- Department of Pathobiology of the Nervous System; Center for Brain Research; Medical University of Vienna; Vienna Austria
| | - Francisco J. Monje
- Department of Neurophysiology and Neuropharmacology; Center for Physiology and Pharmacology; Medical University of Vienna; Vienna Austria
| | - Gert Lubec
- Department of Pediatrics; Medical University of Vienna; Vienna Austria
| |
Collapse
|
37
|
Ma QL, Yang F, Frautschy SA, Cole GM. PAK in Alzheimer disease, Huntington disease and X-linked mental retardation. CELLULAR LOGISTICS 2014; 2:117-125. [PMID: 23162743 PMCID: PMC3490962 DOI: 10.4161/cl.21602] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Developmental cognitive deficits including X-linked mental retardation (XLMR) can be caused by mutations in P21-activated kinase 3 (PAK3) that disrupt actin dynamics in dendritic spines. Neurodegenerative diseases such as Alzheimer disease (AD), where both PAK1 and PAK3 are dysregulated, may share final common pathways with XLMR. Independent of familial mutation, cognitive deficits emerging with aging, notably AD, begin after decades of normal function. This prolonged prodromal period involves the buildup of amyloid-β (Aβ) extracellular plaques and intraneuronal neurofibrillary tangles (NFT). Subsequently region dependent deficits in synapses, dendritic spines and cognition coincide with dysregulation in PAK1 and PAK. Specifically proximal to decline, cytoplasmic levels of actin-regulating Rho GTPase and PAK1 kinase are decreased in moderate to severe AD, while aberrant activation and translocation of PAK1 appears around the onset of cognitive deficits. Downstream to PAK1, LIM kinase inactivates cofilin, contributing to cofilin pathology, while the activation of Rho-dependent kinase ROCK increases Aβ production. Aβ activation of fyn disrupts neuronal PAK1 and ROCK-mediated signaling, resulting in synaptic deficits. Reductions in PAK1 by the anti-amyloid compound curcumin suppress synaptotoxicity. Similarly other neurological disorders, including Huntington disease (HD) show dysregulation of PAKs. PAK1 modulates mutant huntingtin toxicity by enhancing huntingtin aggregation, and inhibition of PAK activity protects HD as well as fragile X syndrome (FXS) symptoms. Since PAK plays critical roles in learning and memory and is disrupted in many cognitive disorders, targeting PAK signaling in AD, HD and XLMR may be a novel common therapeutic target for AD, HD and XLMR.
Collapse
Affiliation(s)
- Qiu-Lan Ma
- Department of Neurology; University of California Los Angeles; Los Angeles, CA USA ; Geriatric Research and Clinical Center; Greater Los Angeles Veterans Affairs Healthcare System; West Los Angeles Medical Center; Los Angeles, CA USA
| | | | | | | |
Collapse
|
38
|
Henriques AG, Oliveira JM, Carvalho LP, da Cruz E Silva OAB. Aβ Influences Cytoskeletal Signaling Cascades with Consequences to Alzheimer's Disease. Mol Neurobiol 2014; 52:1391-1407. [PMID: 25344315 DOI: 10.1007/s12035-014-8913-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/28/2014] [Indexed: 01/16/2023]
Abstract
Abnormal signal transduction events can impact upon the cytoskeleton, affecting the actin and microtubule networks with direct relevance to Alzheimer's disease (AD). Cytoskeletal anomalies, in turn, promote atypical neuronal responses, with consequences for cellular organization and function. Neuronal cytoskeletal modifications in AD include neurofibrillary tangles, which result from aggregates of hyperphosphorylated tau protein. The latter is a microtubule (MT)-binding protein, whose abnormal phosphorylation leads to MT instability and consequently provokes irregularities in the neuronal trafficking pathways. Early stages of AD are also characterized by synaptic dysfunction and loss of dendritic spines, which correlate with cognitive deficit and impaired brain function. Actin dynamics has a prominent role in maintaining spine plasticity and integrity, thus providing the basis for memory and learning processes. Hence, factors that disrupt both actin and MT network dynamics will compromise neuronal function and survival. The peptide Aβ is the major component of senile plaques and has been described as a pivotal mediator of neuronal dystrophy and synaptic loss in AD. Here, we review Aβ-mediated effects on both MT and actin networks and focus on the relevance of the elicited cytoskeletal signaling events targeted in AD pathology.
Collapse
Affiliation(s)
- Ana Gabriela Henriques
- Laboratório de Neurociências e Sinalização, Centro de Biologia Celular, SACS, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Joana Machado Oliveira
- Laboratório de Neurociências e Sinalização, Centro de Biologia Celular, SACS, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Liliana Patrícia Carvalho
- Laboratório de Neurociências e Sinalização, Centro de Biologia Celular, SACS, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Odete A B da Cruz E Silva
- Laboratório de Neurociências e Sinalização, Centro de Biologia Celular, SACS, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
39
|
Adolescent nicotine-induced dendrite remodeling in the nucleus accumbens is rapid, persistent, and D1-dopamine receptor dependent. Brain Struct Funct 2014; 221:133-45. [PMID: 25257604 DOI: 10.1007/s00429-014-0897-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 09/19/2014] [Indexed: 10/24/2022]
Abstract
Chronic nicotine exposure during adolescence induces dendritic remodeling of medium spiny neurons (MSNs) in the nucleus accumbens (NAcc) shell. While nicotine-induced dendritic remodeling has frequently been described as persistent, the trajectory of dendrite remodeling is unknown. Specifically, no study to date has characterized the structural plasticity of dendrites in the NAcc immediately following chronic nicotine, leaving open the possibility that dendrite remodeling emerges gradually over time. Further, the neuropharmacological mechanisms through which nicotine induces dendrite remodeling are not well understood. To address these questions, rats were co-administered chronic nicotine (0.5 mg/kg) and the D1-dopamine receptor (D1DR) antagonist SCH-23390 (0.05 mg/kg) subcutaneously every other day during adolescence. Brains were then processed for Golgi-Cox staining either 1 day or 21 days following drug exposure and dendrites from MSNs in the NAcc shell digitally reconstructed in 3D. Spine density was also measured at both time points. Our morphometric results show (1) the formation of new dendritic branches and spines 1 day following nicotine exposure, (2) new dendritic branches, but not spine density, remains relatively stable for at least 21 days, (3) the co-administration of SCH-23390 completely blocked nicotine-induced dendritic remodeling of MSNs at both early and late time points, suggesting the formation of new dendritic branches in response to nicotine is D1DR-dependent, and (4) SCH-23390 failed to block nicotine-induced increases in spine density. Overall this study provides new insight into how nicotine influences the normal trajectory of adolescent brain development and demonstrates a persistent form of nicotine-induced neuroplasticity in the NAcc shell that develops rapidly and is D1DR dependent.
Collapse
|
40
|
Lohcharoenkal W, Wang L, Stueckle TA, Park J, Tse W, Dinu CZ, Rojanasakul Y. Role of H-Ras/ERK signaling in carbon nanotube-induced neoplastic-like transformation of human mesothelial cells. Front Physiol 2014; 5:222. [PMID: 24971065 PMCID: PMC4054652 DOI: 10.3389/fphys.2014.00222] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 05/27/2014] [Indexed: 12/12/2022] Open
Abstract
Rapid development and deployment of engineered nanomaterials such as carbon nanotubes (CNTs) in various commercial and biomedical applications have raised concerns about their potential adverse health effects, especially their long-term effects which have not been well addressed. We demonstrated here that prolonged exposure of human mesothelial cells to single-walled CNT (SWCNT) induced neoplastic-like transformation as indicated by anchorage-independent cell growth and increased cell invasiveness. Such transformation was associated with an up-regulation of H-Ras and activation of ERK1/2. Downregulation of H-Ras by siRNA or inactivation of ERK by chemical inhibitor effectively inhibited the aggressive phenotype of SWCNT-exposed cells. Integrin alpha V and cortactin, but not epithelial-mesenchymal transition (EMT) transcriptional regulators, were up-regulated in the SWCNT-exposed cells, suggesting their role in the aggressive phenotype. Cortactin expression was shown to be controlled by the H-Ras/ERK signaling. Thus, our results indicate a novel role of H-Ras/ERK signaling and cortactin in the aggressive transformation of human mesothelial cells by SWCNT.
Collapse
Affiliation(s)
| | - Liying Wang
- Health Effects Laboratory Division, Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health Morgantown, WV, USA
| | - Todd A Stueckle
- Health Effects Laboratory Division, Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health Morgantown, WV, USA
| | - Jino Park
- Department of Medicine, Mary Babb Randolph Cancer Center, West Virginia University Morgantown, WV, USA
| | - William Tse
- Department of Medicine, Mary Babb Randolph Cancer Center, West Virginia University Morgantown, WV, USA
| | - Cerasela-Zoica Dinu
- Department of Chemical Engineering, West Virginia University Morgantown, WV, USA
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University Morgantown, WV, USA ; Department of Medicine, Mary Babb Randolph Cancer Center, West Virginia University Morgantown, WV, USA
| |
Collapse
|
41
|
Lamprecht R. The actin cytoskeleton in memory formation. Prog Neurobiol 2014; 117:1-19. [DOI: 10.1016/j.pneurobio.2014.02.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/02/2014] [Accepted: 02/03/2014] [Indexed: 01/21/2023]
|
42
|
Ojelade SA, Acevedo SF, Rothenfluh A. The role of the actin cytoskeleton in regulating Drosophila behavior. Rev Neurosci 2014; 24:471-84. [PMID: 24077615 DOI: 10.1515/revneuro-2013-0017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022]
Abstract
Over the past decade, the function of the cytoskeleton has been studied extensively in developing and mature neurons. Actin, a major cytoskeletal protein, is indispensable for the structural integrity and plasticity of neurons and their synapses. Disruption of actin dynamics has significant consequence for neurons, neuronal circuits, and the functions they govern. In particular, cell adhesion molecules, members of the Rho family of GTPases, and actin-binding proteins are important modulators of actin dynamics and neuronal as well as behavioral plasticity. In this review, we discuss recent advances in Drosophila that highlight the importance of actin regulatory proteins in mediating fly behaviors such as circadian rhythm, courtship behavior, learning and memory, and the development of drug addiction.
Collapse
|
43
|
Bolognin S, Lorenzetto E, Diana G, Buffelli M. The potential role of rho GTPases in Alzheimer's disease pathogenesis. Mol Neurobiol 2014; 50:406-22. [PMID: 24452387 DOI: 10.1007/s12035-014-8637-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/02/2014] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is characterized by a wide loss of synapses and dendritic spines. Despite extensive efforts, the molecular mechanisms driving this detrimental alteration have not yet been determined. Among the factors potentially mediating this loss of neuronal connectivity, the contribution of Rho GTPases is of particular interest. This family of proteins is classically considered a key regulator of actin cytoskeleton remodeling and dendritic spine maintenance, but new insights into the complex dynamics of its regulation have recently determined how its signaling cascade is still largely unknown, both in physiological and pathological conditions. Here, we review the growing evidence supporting the potential involvement of Rho GTPases in spine loss, which is a unanimously recognized hallmark of early AD pathogenesis. We also discuss some new insights into Rho GTPase signaling framework that might explain several controversial results that have been published. The study of the connection between AD and Rho GTPases represents a quite unchartered avenue that holds therapeutic potential.
Collapse
Affiliation(s)
- Silvia Bolognin
- Department of Neurological and Movement Sciences, Section of Physiology, University of Verona, Strada le Grazie 8, 37134, Verona, Italy,
| | | | | | | |
Collapse
|
44
|
Khan ZU, Martín-Montañez E, Navarro-Lobato I, Muly EC. Memory deficits in aging and neurological diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 122:1-29. [PMID: 24484696 DOI: 10.1016/b978-0-12-420170-5.00001-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Memory is central to our ability to perform daily life activities and correctly function in society. Improvements in public health and medical treatment for a variety of diseases have resulted in longer life spans; however, age-related memory impairments have been significant sources of morbidity. Loss in memory function is not only associated with aging population but is also a feature of neurodegenerative diseases such as Alzheimer's disease and other psychiatric and neurological disorders. Here, we focus on current understanding of the impact of normal aging on memory and what is known about its mechanisms, and further review pathological mechanisms behind the cause of dementia in Alzheimer's disease. Finally, we discuss schizophrenia and look into abnormalities in circuit function and neurotransmitter systems that contribute to memory impairment in this illness.
Collapse
Affiliation(s)
- Zafar U Khan
- Laboratory of Neurobiology at CIMES, University of Málaga, Málaga, Spain; Department of Medicine at Faculty of Medicine, University of Málaga, Málaga, Spain
| | - Elisa Martín-Montañez
- Laboratory of Neurobiology at CIMES, University of Málaga, Málaga, Spain; Department of Pharmacology at Faculty of Medicine, University of Málaga, Málaga, Spain
| | - Irene Navarro-Lobato
- Laboratory of Neurobiology at CIMES, University of Málaga, Málaga, Spain; Department of Medicine at Faculty of Medicine, University of Málaga, Málaga, Spain
| | - E Chris Muly
- Atlanta Department of Veterans Affairs Medical Center, Decatur, Georgia, USA; Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia, USA; Division of Neuropharmacology and Neurological Diseases, Yerkes National Primate Research Center, Atlanta, Georgia, USA
| |
Collapse
|
45
|
Chia PH, Li P, Shen K. Cell biology in neuroscience: cellular and molecular mechanisms underlying presynapse formation. ACTA ACUST UNITED AC 2013; 203:11-22. [PMID: 24127213 PMCID: PMC3798257 DOI: 10.1083/jcb.201307020] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Synapse formation is a highly regulated process that requires the coordination of many cell biological events. Decades of research have identified a long list of molecular components involved in assembling a functioning synapse. Yet how the various steps, from transporting synaptic components to adhering synaptic partners and assembling the synaptic structure, are regulated and precisely executed during development and maintenance is still unclear. With the improvement of imaging and molecular tools, recent work in vertebrate and invertebrate systems has provided important insight into various aspects of presynaptic development, maintenance, and trans-synaptic signals, thereby increasing our understanding of how extrinsic organizers and intracellular mechanisms contribute to presynapse formation.
Collapse
Affiliation(s)
- Poh Hui Chia
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305
| | | | | |
Collapse
|
46
|
Pierrot N, Tyteca D, D'auria L, Dewachter I, Gailly P, Hendrickx A, Tasiaux B, Haylani LE, Muls N, N'Kuli F, Laquerrière A, Demoulin JB, Campion D, Brion JP, Courtoy PJ, Kienlen-Campard P, Octave JN. Amyloid precursor protein controls cholesterol turnover needed for neuronal activity. EMBO Mol Med 2013; 5:608-25. [PMID: 23554170 PMCID: PMC3628100 DOI: 10.1002/emmm.201202215] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/21/2013] [Accepted: 02/06/2013] [Indexed: 01/06/2023] Open
Abstract
Perturbation of lipid metabolism favours progression of Alzheimer disease, in which processing of Amyloid Precursor Protein (APP) has important implications. APP cleavage is tightly regulated by cholesterol and APP fragments regulate lipid homeostasis. Here, we investigated whether up or down regulation of full-length APP expression affected neuronal lipid metabolism. Expression of APP decreased HMG-CoA reductase (HMGCR)-mediated cholesterol biosynthesis and SREBP mRNA levels, while its down regulation had opposite effects. APP and SREBP1 co-immunoprecipitated and co-localized in the Golgi. This interaction prevented Site-2 protease-mediated processing of SREBP1, leading to inhibition of transcription of its target genes. A GXXXG motif in APP sequence was critical for regulation of HMGCR expression. In astrocytes, APP and SREBP1 did not interact nor did APP affect cholesterol biosynthesis. Neuronal expression of APP decreased both HMGCR and cholesterol 24-hydroxylase mRNA levels and consequently cholesterol turnover, leading to inhibition of neuronal activity, which was rescued by geranylgeraniol, generated in the mevalonate pathway, in both APP expressing and mevastatin treated neurons. We conclude that APP controls cholesterol turnover needed for neuronal activity.
Collapse
Affiliation(s)
- Nathalie Pierrot
- Université Catholique de LouvainBrussels, Belgium
- Institute of NeuroscienceBrussels, Belgium
| | - Donatienne Tyteca
- Université Catholique de LouvainBrussels, Belgium
- de Duve InstituteBrussels, Belgium
| | - Ludovic D'auria
- Université Catholique de LouvainBrussels, Belgium
- de Duve InstituteBrussels, Belgium
| | - Ilse Dewachter
- Université Catholique de LouvainBrussels, Belgium
- Institute of NeuroscienceBrussels, Belgium
| | - Philippe Gailly
- Université Catholique de LouvainBrussels, Belgium
- Institute of NeuroscienceBrussels, Belgium
| | - Aurélie Hendrickx
- Université Catholique de LouvainBrussels, Belgium
- Institute of NeuroscienceBrussels, Belgium
| | - Bernadette Tasiaux
- Université Catholique de LouvainBrussels, Belgium
- Institute of NeuroscienceBrussels, Belgium
| | - Laetitia El Haylani
- Université Catholique de LouvainBrussels, Belgium
- Institute of NeuroscienceBrussels, Belgium
| | - Nathalie Muls
- Université Catholique de LouvainBrussels, Belgium
- Institute of NeuroscienceBrussels, Belgium
| | - Francisca N'Kuli
- Université Catholique de LouvainBrussels, Belgium
- de Duve InstituteBrussels, Belgium
| | - Annie Laquerrière
- Department of Pathology, Rouen University Hospital and ERI 28, Institute for Biomedical Research, University of RouenRouen, France
| | | | - Dominique Campion
- Faculty of Medicine, Inserm U614-IFRMPRouen, France
- Department of Research, CHSRSotteville-lès-Rouen, France
| | - Jean-Pierre Brion
- Laboratory of Histology and Neuropathology, Université libre de BruxellesBrussels, Belgium
| | - Pierre J Courtoy
- Université Catholique de LouvainBrussels, Belgium
- de Duve InstituteBrussels, Belgium
| | - Pascal Kienlen-Campard
- Université Catholique de LouvainBrussels, Belgium
- Institute of NeuroscienceBrussels, Belgium
| | - Jean-Noël Octave
- Université Catholique de LouvainBrussels, Belgium
- Institute of NeuroscienceBrussels, Belgium
- *Corresponding author: Tel: +32 2 764 93 41; Fax: +32 2 764 54 60; E-mail:
| |
Collapse
|
47
|
Essential role for synaptopodin in dendritic spine plasticity of the developing hippocampus. J Neurosci 2013; 33:12510-8. [PMID: 23884954 DOI: 10.1523/jneurosci.2983-12.2013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dendritic spines are a major substrate of brain plasticity. Although many studies have focused on Ca(2+)/calmodulin-dependent protein kinase II (CaMKII)-mediated regulation of spine dynamics and synaptic function in adult brain, much less is know about protein kinase A (PKA)-dependent regulation of spine shape dynamics during postnatal brain development. Synaptopodin is a dendritic spine associated modulator of actin dynamics and a substrate of PKA. Here we show that NMDA and cAMP-induced dendritic spine expansion is impaired in hippocampal slices from 15- and 21-d-old synaptopodin-deficient mice. We further show that synaptopodin is required for full expression of PKA-dependent hippocampal long-term potentiation in 15- and 21-d-old, but not adult, mice. PKA-induced cAMP response element-binding phosphorylation is normal in the hippocampus of synaptopodin-deficient mice, suggesting that synaptopodin functions independently of cAMP response element-binding. Our results identify synaptopodin as a substrate of PKA in hippocampal neurons and point to an essential role for synaptopodin in activity-dependent regulation of dendritic spine dynamics and synaptic plasticity in postnatal brain development.
Collapse
|
48
|
Sántha P, Pákáski M, Fodor EK, Fazekas ÖC, Kálmán S, Kálmán J, Janka Z, Szabó G, Kálmán J. Cytoskeletal protein translation and expression in the rat brain are stressor-dependent and region-specific. PLoS One 2013; 8:e73504. [PMID: 24124448 PMCID: PMC3790765 DOI: 10.1371/journal.pone.0073504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 07/23/2013] [Indexed: 11/19/2022] Open
Abstract
Stress is an integral component of life that can sometimes cause a critical overload, depending on the qualitative and quantitative natures of the stressors. The involvement of actin, the predominant component of dendritic integrity, is a plausible candidate factor in stress-induced neuronal cytoskeletal changes. The major aim of this study was to compare the effects of three different stress conditions on the transcription and translation of actin-related cytoskeletal genes in the rat brain. Male Wistar rats were exposed to one or other of the frequently used models of physical stress, i.e. electric foot shock stress (EFSS), forced swimming stress (FSS), or psychosocial stress (PSS) for periods of 3, 7, 14, or 21 days. The relative mRNA and protein expressions of β-actin, cofilin and mitogen-activated protein kinase 1 (MAPK-1) were determined by qRT- PCR and western blotting from hippocampus and frontal cortex samples. Stressor-specific alterations in both β-actin and cofilin expression levels were seen after stress. These alterations were most pronounced in response to EFSS, and exhibited a U-shaped time course. FSS led to a significant β-actin mRNA expression elevation in the hippocampus and the frontal cortex after 3 and 7 days, respectively, without any subsequent change. PSS did not cause any change in β-actin or cofilin mRNA or protein expression in the examined brain regions. EFSS, FSS and PSS had no effect on the expression of MAPK-1 mRNA at any tested time point. These findings indicate a very delicate, stress type-dependent regulation of neuronal cytoskeletal components in the rat hippocampus and frontal cortex.
Collapse
Affiliation(s)
- Petra Sántha
- Alzheimer's Disease Research Centre, Department of Psychiatry, University of Szeged, Szeged, Hungary
- * E-mail:
| | - Magdolna Pákáski
- Alzheimer's Disease Research Centre, Department of Psychiatry, University of Szeged, Szeged, Hungary
| | - Eszter K. Fodor
- Alzheimer's Disease Research Centre, Department of Psychiatry, University of Szeged, Szeged, Hungary
| | - Örsike Cs Fazekas
- Alzheimer's Disease Research Centre, Department of Psychiatry, University of Szeged, Szeged, Hungary
| | - Sára Kálmán
- Alzheimer's Disease Research Centre, Department of Psychiatry, University of Szeged, Szeged, Hungary
| | - János Kálmán
- Alzheimer's Disease Research Centre, Department of Psychiatry, University of Szeged, Szeged, Hungary
| | - Zoltán Janka
- Department of Psychiatry, University of Szeged, Szeged, Hungary
| | - Gyula Szabó
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - János Kálmán
- Alzheimer's Disease Research Centre, Department of Psychiatry, University of Szeged, Szeged, Hungary
| |
Collapse
|
49
|
Nechipurenko IV, Doroquez DB, Sengupta P. Primary cilia and dendritic spines: different but similar signaling compartments. Mol Cells 2013; 36:288-303. [PMID: 24048681 PMCID: PMC3837705 DOI: 10.1007/s10059-013-0246-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 09/02/2013] [Indexed: 01/11/2023] Open
Abstract
Primary non-motile cilia and dendritic spines are cellular compartments that are specialized to sense and transduce environmental cues and presynaptic signals, respectively. Despite their unique cellular roles, both compartments exhibit remarkable parallels in the general principles, as well as molecular mechanisms, by which their protein composition, membrane domain architecture, cellular interactions, and structural and functional plasticity are regulated. We compare and contrast the pathways required for the generation and function of cilia and dendritic spines, and suggest that insights from the study of one may inform investigations into the other of these critically important signaling structures.
Collapse
Affiliation(s)
- Inna V. Nechipurenko
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - David B. Doroquez
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - Piali Sengupta
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| |
Collapse
|
50
|
Chandra R, Lenz JD, Gancarz AM, Chaudhury D, Schroeder GL, Han MH, Cheer JF, Dietz DM, Lobo MK. Optogenetic inhibition of D1R containing nucleus accumbens neurons alters cocaine-mediated regulation of Tiam1. Front Mol Neurosci 2013; 6:13. [PMID: 23745104 PMCID: PMC3662885 DOI: 10.3389/fnmol.2013.00013] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 05/03/2013] [Indexed: 12/25/2022] Open
Abstract
Exposure to psychostimulants results in structural and synaptic plasticity in striatal medium spiny neurons (MSNs). These cellular adaptations arise from alterations in genes that are highly implicated in the rearrangement of the actin-cytoskeleton, such as T-lymphoma invasion and metastasis 1 (Tiam1). Previous studies have demonstrated a crucial role for dopamine receptor 1 (D1)-containing striatal MSNs in mediating psychostimulant induced plasticity changes. These D1-MSNs in the nucleus accumbens (NAc) positively regulate drug seeking, reward, and locomotor behavioral effects as well as the morphological adaptations of psychostimulant drugs. Here, we demonstrate that rats that actively self-administer cocaine display reduced levels of Tiam1 in the NAc. To further examine the cell type-specific contribution to these changes in Tiam1 we used optogenetics to selectively manipulate NAc D1-MSNs or dopamine receptor 2 (D2) expressing MSNs. We find that repeated channelrhodopsin-2 activation of D1-MSNs but not D2-MSNs caused a down-regulation of Tiam1 levels similar to the effects of cocaine. Further, activation of D2-MSNs, which caused a late blunted cocaine-mediated locomotor behavioral response, did not alter Tiam1 levels. We then examined the contribution of D1-MSNs to the cocaine-mediated decrease of Tiam1. Using the light activated chloride pump, eNpHR3.0 (enhanced Natronomonas pharaonis halorhodopsin 3.0), we selectively inhibited D1-MSNs during cocaine exposure, which resulted in a behavioral blockade of cocaine-induced locomotor sensitization. Moreover, inhibiting these NAc D1-MSNs during cocaine exposure reversed the down-regulation of Tiam1 gene expression and protein levels. These data demonstrate that altering activity in specific neural circuits with optogenetics can impact the underlying molecular substrates of psychostimulant-mediated behavior and function.
Collapse
Affiliation(s)
- Ramesh Chandra
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine Baltimore, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|