1
|
Leighton SE, Wong RS, Lucaciu SA, Hauser A, Johnston D, Stathopulos PB, Bai D, Penuela S, Laird DW. Cx31.1 can selectively intermix with co-expressed connexins to facilitate its assembly into gap junctions. J Cell Sci 2024; 137:jcs261631. [PMID: 38533727 PMCID: PMC11058089 DOI: 10.1242/jcs.261631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Connexins are channel-forming proteins that function to facilitate gap junctional intercellular communication. Here, we use dual cell voltage clamp and dye transfer studies to corroborate past findings showing that Cx31.1 (encoded by GJB5) is defective in gap junction channel formation, illustrating that Cx31.1 alone does not form functional gap junction channels in connexin-deficient mammalian cells. Rather Cx31.1 transiently localizes to the secretory pathway with a subpopulation reaching the cell surface, which is rarely seen in puncta reminiscent of gap junctions. Intracellular retained Cx31.1 was subject to degradation as Cx31.1 accumulated in the presence of proteasomal inhibition, had a faster turnover when Cx43 was present and ultimately reached lysosomes. Although intracellularly retained Cx31.1 was found to interact with Cx43, this interaction did not rescue its delivery to the cell surface. Conversely, the co-expression of Cx31 dramatically rescued the assembly of Cx31.1 into gap junctions where gap junction-mediated dye transfer was enhanced. Collectively, our results indicate that the localization and functional status of Cx31.1 is altered through selective interplay with co-expressed connexins, perhaps suggesting Cx31.1 is a key regulator of intercellular signaling in keratinocytes.
Collapse
Affiliation(s)
- Stephanie E. Leighton
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Robert S. Wong
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Sergiu A. Lucaciu
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Alexandra Hauser
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Danielle Johnston
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Peter B. Stathopulos
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Donglin Bai
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
- Western's Bone and Joint Institute, The Dr. Sandy Kirkley Centre for Musculoskeletal Research, University Hospital, London, ON N6A 5B9, Canada
- Division of Experimental Oncology, Department of Oncology, University of Western Ontario, London, ON N6A 5W9, Canada
| | - Dale W. Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
2
|
Increased Hemichannel Activity Displayed by a Connexin43 Mutation Causing a Familial Connexinopathy Exhibiting Hypotrichosis with Follicular Keratosis and Hyperostosis. Int J Mol Sci 2023; 24:ijms24032222. [PMID: 36768546 PMCID: PMC9916973 DOI: 10.3390/ijms24032222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Mutations in the GJA1 gene that encodes connexin43 (Cx43) cause several rare genetic disorders, including diseases affecting the epidermis. Here, we examined the in vitro functional consequences of a Cx43 mutation, Cx43-G38E, linked to a novel human phenotype of hypotrichosis, follicular keratosis and hyperostosis. We found that Cx43-G38E was efficiently translated in Xenopus oocytes and localized to gap junction plaques in transfected HeLa cells. Cx43-G38E formed functional gap junction channels with the same efficiency as wild-type Cx43 in Xenopus oocytes, although voltage gating of the gap junction channels was altered. Notably, Cx43-G38E significantly increased membrane current flow through the formation of active hemichannels when compared to wild-type Cx43. These data demonstrate the association of increased hemichannel activity to a connexin mutation linked to a skeletal-cutaneous phenotype, suggesting that augmented hemichannel activity could play a role in skin and skeletal disorders caused by human Cx43 mutations.
Collapse
|
3
|
Connexin43 mutations linked to skin disease have augmented hemichannel activity. Sci Rep 2019; 9:19. [PMID: 30631135 PMCID: PMC6328547 DOI: 10.1038/s41598-018-37221-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/04/2018] [Indexed: 01/22/2023] Open
Abstract
Mutations in the gene (GJA1) encoding connexin43 (Cx43) are responsible for several rare genetic disorders, including non-syndromic skin-limited diseases. Here we used two different functional expression systems to characterize three Cx43 mutations linked to palmoplantar keratoderma and congenital alopecia-1, erythrokeratodermia variabilis et progressiva, or inflammatory linear verrucous epidermal nevus. In HeLa cells and Xenopus oocytes, we show that Cx43-G8V, Cx43-A44V and Cx43-E227D all formed functional gap junction channels with the same efficiency as wild-type Cx43, with normal voltage gating and a unitary conductance of ~110 pS. In HeLa cells, all three mutations also localized to regions of cell-cell contact and displayed a punctate staining pattern. In addition, we show that Cx43-G8V, Cx43-A44V and Cx43-E227D significantly increase membrane current flow through formation of active hemichannels, a novel activity that was not displayed by wild-type Cx43. The increased membrane current was inhibited by either 2 mM calcium, or 5 µM gadolinium, mediated by hemichannels with a unitary conductance of ~250 pS, and was not due to elevated mutant protein expression. The three Cx43 mutations all showed the same gain of function activity, suggesting that augmented hemichannel activity could play a role in skin-limited diseases caused by human Cx43 mutations.
Collapse
|
4
|
Kagiava A, Karaiskos C, Richter J, Tryfonos C, Lapathitis G, Sargiannidou I, Christodoulou C, Kleopa KA. Intrathecal gene therapy in mouse models expressing CMT1X mutations. Hum Mol Genet 2018; 27:1460-1473. [PMID: 29462293 DOI: 10.1093/hmg/ddy056] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/10/2018] [Indexed: 11/14/2022] Open
Abstract
Gap junction beta-1 (GJB1) gene mutations affecting the gap junction protein connexin32 (Cx32) cause the X-linked Charcot-Marie-Tooth disease (CMT1X), a common inherited neuropathy. Targeted expression of virally delivered Cx32 in Schwann cells following intrathecal injection of lentiviral vectors in the Cx32 knockout (KO) mouse model of the disease has led to morphological and functional improvement. To examine whether this approach could be effective in CMT1X patients expressing different Cx32 mutants, we treated transgenic Cx32 KO mice expressing the T55I, R75W or N175D CMT1X mutations. All three mutants were localized in the perinuclear compartment of myelinating Schwann cells consistent with retention in the ER (T55I) or Golgi (R75W, N175D) and loss of physiological expression in the non-compact myelin. Following intrathecal delivery of the GJB1 gene we detected the virally delivered wild-type (WT) Cx32 in non-compact myelin of T55I KO mice, but only rarely in N175D KO or R75W KO mice, suggesting dominant-negative effects of the R75W and N175D mutants but not of the T55I mutant on co-expressed WT Cx32. GJB1 treated T55I KO mice showed improved motor performance, lower ratios of abnormally myelinated fibers and reduction of inflammatory cells in spinal roots and peripheral nerves compared with mock-treated littermates. Either partial (N175D KO) or no (R75W KO) improvement was observed in the other two mutant lines. Thus, certain CMT1X mutants may interfere with gene addition therapy for CMT1X. Whereas gene addition can be used for non-interfering CMT1X mutations, further studies will be needed to develop treatments for patients harboring interfering mutations.
Collapse
Affiliation(s)
- A Kagiava
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus
| | - C Karaiskos
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus
| | - J Richter
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus
| | - C Tryfonos
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus
| | - G Lapathitis
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus
| | - I Sargiannidou
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus
| | - C Christodoulou
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus
| | - K A Kleopa
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus
- Neurology Clinics, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, 1683 Nicosia, Cyprus
| |
Collapse
|
5
|
Bai D, Yue B, Aoyama H. Crucial motifs and residues in the extracellular loops influence the formation and specificity of connexin docking. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:9-21. [PMID: 28693896 DOI: 10.1016/j.bbamem.2017.07.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/25/2017] [Accepted: 07/03/2017] [Indexed: 12/19/2022]
Abstract
Most of the early studies on gap junction (GJ) channel function and docking compatibility were on rodent connexins, while recent research on GJ channels gradually shifted from rodent to human connexins largely due to the fact that mutations in many human connexin genes are found to associate with inherited human diseases. The studies on human connexins have revealed some key differences from those found in rodents, calling for a comprehensive characterization of human GJ channels. Functional studies revealed that docking and formation of functional GJ channels between two hemichannels are possible only between docking-compatible connexins. Two groups of docking-compatible rodent connexins have been identified. Compatibility is believed to be due to their amino acid residue differences at the extracellular loop domains (E1 and E2). Sequence alignment of the E1 and E2 domains of all connexins known to make GJs revealed that they are highly conserved and show high sequence identity with human Cx26, which is the only connexin with near atomic resolution GJ structure. We hypothesize that different connexins have a similar structure as that of Cx26 at the E1 and E2 domains and use the corresponding residues in their E1 and E2 domains for docking. Based on the Cx26 GJ structure and sequence analysis of well-studied connexins, we propose that the E1-E1 docking interactions are staggered with each E1 interacting with two E1s on the docked connexon. The putative E1 docking residues are conserved in both docking-compatible and -incompatible connexins, indicating that E1 does not likely serve a role in docking compatibility. However, in the case of E2-E2 docking interactions, the putative docking residues are only conserved within the docking-compatible connexins, suggesting the E2 is likely to serve the function of docking compatibility. Docking compatibility studies on human connexins have attracted a lot of attention due to the fact that putative docking residues are mutational hotspots for several connexin-linked human diseases. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Donglin Bai
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada.
| | - Benny Yue
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Hiroshi Aoyama
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| |
Collapse
|
6
|
Vicario N, Calabrese G, Zappalà A, Parenti C, Forte S, Graziano ACE, Vanella L, Pellitteri R, Cardile V, Parenti R. Inhibition of Cx43 mediates protective effects on hypoxic/reoxygenated human neuroblastoma cells. J Cell Mol Med 2017; 21:2563-2572. [PMID: 28488330 PMCID: PMC5618696 DOI: 10.1111/jcmm.13177] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/28/2017] [Indexed: 12/18/2022] Open
Abstract
Olfactory ensheathing cells (OECs), a special population of glial cells, are able to synthesise several trophic factors exerting a neuroprotective action and promoting growth and functional recovery in both in vitro and in vivo models. In the present work, we investigated the neuroprotective effects of OEC-conditioned medium (OEC-CM) on two different human neuron-like cell lines, SH-SY5Y and SK-N-SH (neuroblastoma cell lines), under normoxic and hypoxic conditions. In addition, we also focused our attention on the role of connexins (Cxs) in the neuroprotective processes. Our results confirmed OEC-CM mediated neuroprotection as shown by cell adherence, proliferation and cellular viability analyses. Reduced connexin 43 (Cx43) levels in OEC-CM compared to unconditioned cells in hypoxic conditions prompted us to investigate the role of Cx43-Gap junctions (GJs) and Cx43-hemichannels (HCs) in hypoxic/reoxygenation injury using carbenoxolone (non-selective GJ inhibitor), ioxynil octanoato (selective Cx43-GJ inhibitor) and Gap19 (selective Cx43-HC inhibitor). We found that Cx43-GJ and Cx43-HC inhibitors are able to protect SH-SY5Y and allow to these cultures to overcome the injury. Our findings support the hypothesis that both OEC-CM and the inhibition of Cx43-GJs and Cx43-HCs offer a neuroprotective effect by reducing Cx43-mediated cell-to-cell and cell-to-extracellular environment communications.
Collapse
Affiliation(s)
- Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Catania, Italy
| | - Giovanna Calabrese
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Catania, Italy
| | - Agata Zappalà
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Catania, Italy
| | - Carmela Parenti
- Department of Drug Sciences, University of Catania, Catania, Italy
| | | | | | - Luca Vanella
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Rosalia Pellitteri
- Institute Neurological Sciences, National Research Council, Catania, Italy
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Catania, Italy
| |
Collapse
|
7
|
Baker MW, Macagno ER. Gap junction proteins and the wiring (Rewiring) of neuronal circuits. Dev Neurobiol 2017; 77:575-586. [PMID: 27512961 DOI: 10.1002/dneu.22429] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/01/2016] [Accepted: 08/08/2016] [Indexed: 11/11/2022]
Abstract
The unique morphology and pattern of synaptic connections made by a neuron during development arise in part by an extended period of growth in which cell-cell interactions help to sculpt the arbor into its final shape, size, and participation in different synaptic networks. Recent experiments highlight a guiding role played by gap junction proteins in controlling this process. Ectopic and overexpression studies in invertebrates have revealed that the selective expression of distinct gap junction genes in neurons and glial cells is sufficient to establish selective new connections in the central nervous systems of the leech (Firme et al. [2012]: J Neurosci 32:14265-14270), the nematode (Rabinowitch et al. [2014]: Nat Commun 5:4442), and the fruit fly (Pézier et al., 2016: PLoS One 11:e0152211). We present here an overview of this work and suggest that gap junction proteins, in addition to their synaptic/communicative functions, have an instructive role as recognition and adhesion factors. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 575-586, 2017.
Collapse
Affiliation(s)
- Michael W Baker
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, 92093
| | - Eduardo R Macagno
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, 92093
| |
Collapse
|
8
|
Karademir LB, Aoyama H, Yue B, Chen H, Bai D. Engineered Cx26 variants established functional heterotypic Cx26/Cx43 and Cx26/Cx40 gap junction channels. Biochem J 2016; 473:1391-403. [PMID: 26987811 DOI: 10.1042/bcj20160200] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/16/2016] [Indexed: 12/16/2023]
Abstract
Gap junction (GJ) channels mediate direct intercellular communication and are composed of two docked hemichannels (connexin oligomers). It is well documented that the docking and formation of GJs are possible only between compatible hemichannels (or connexins). The mechanisms of heterotypic docking compatibility are not fully clear. We aligned the protein sequences of docking-compatible and -incompatible connexins with that of connexin26 (Cx26). We found that two docking hydrogen bond (HB)-forming residues on the second extracellular domain (E2) of Cx26 and their equivalent residues are well conserved within docking-compatible connexins, but different between docking-incompatible connexins. Replacing one or both of these residues of Cx26 into the corresponding residues in the docking incompatible connexins (K168V, N176H or K168V-N176H) increased the formation of morphological and functional heterotypic GJs with connexin43 (Cx43) or connexin40 (Cx40), indicating that these two residues are important for docking incompatibility between Cx26 and these connexins. Our homology structure models predict that both HBs and hydrophobic interactions at the E2 docking interface are important docking mechanisms in heterotypic Cx26 K168V-N176H/Cx43 GJs and probably other docking compatible connexins. Revealing the key residues and mechanisms of heterotypic docking compatibility will assist us in understanding why these putative docking residues are hotspots of disease-linked mutants.
Collapse
Affiliation(s)
- Levent B Karademir
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Hiroshi Aoyama
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Benny Yue
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Honghong Chen
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Donglin Bai
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada, N6A 5C1
| |
Collapse
|
9
|
Bai D. Structural analysis of key gap junction domains--Lessons from genome data and disease-linked mutants. Semin Cell Dev Biol 2015; 50:74-82. [PMID: 26658099 DOI: 10.1016/j.semcdb.2015.11.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 11/26/2015] [Indexed: 12/27/2022]
Abstract
A gap junction (GJ) channel is formed by docking of two GJ hemichannels and each of these hemichannels is a hexamer of connexins. All connexin genes have been identified in human, mouse, and rat genomes and their homologous genes in many other vertebrates are available in public databases. The protein sequences of these connexins align well with high sequence identity in the same connexin across different species. Domains in closely related connexins and several residues in all known connexins are also well-conserved. These conserved residues form signatures (also known as sequence logos) in these domains and are likely to play important biological functions. In this review, the sequence logos of individual connexins, groups of connexins with common ancestors, and all connexins are analyzed to visualize natural evolutionary variations and the hot spots for human disease-linked mutations. Several gap junction domains are homologous, likely forming similar structures essential for their function. The availability of a high resolution Cx26 GJ structure and the subsequently-derived homology structure models for other connexin GJ channels elevated our understanding of sequence logos at the three-dimensional GJ structure level, thus facilitating the understanding of how disease-linked connexin mutants might impair GJ structure and function. This knowledge will enable the design of complementary variants to rescue disease-linked mutants.
Collapse
Affiliation(s)
- Donglin Bai
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada N6A 5C1.
| |
Collapse
|
10
|
Pelletier RM, Akpovi CD, Chen L, Kumar NM, Vitale ML. Complementary expression and phosphorylation of Cx46 and Cx50 during development and following gene deletion in mouse and in normal and orchitic mink testes. Am J Physiol Regul Integr Comp Physiol 2015; 309:R255-76. [PMID: 26017495 PMCID: PMC4525330 DOI: 10.1152/ajpregu.00152.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/23/2015] [Indexed: 01/11/2023]
Abstract
Gap junction-mediated communication helps synchronize interconnected Sertoli cell activities. Besides, coordination of germ cell and Sertoli cell activities depends on gap junction-mediated Sertoli cell-germ cell communication. This report assesses mechanisms underlying the regulation of connexin 46 (Cx46) and Cx50 in mouse testis and those accompanying a "natural" seasonal and a pathological arrest of spermatogenesis, resulting from autoimmune orchitis (AIO) in mink. Furthermore, the impact of deleting Cx46 or Cx50 on the expression, phosphorylation of junction proteins, and spermatogenesis is evaluated. Cx46 mRNA and protein expression increased, whereas Cx50 decreased with adulthood in normal mice and mink. Cx46 mRNA and protein expression increased, whereas Cx50 decreased with adulthood in normal mice and mink. During the mink active spermatogenic phase, Cx50 became phosphorylated and localized to the site of the blood-testis barrier. By contrast, Cx46 was dephosphorylated and associated with annular junctions, suggesting phosphorylation/dephosphorylation of Cx46 and Cx50 involvement in the barrier dynamics. Cx46-positive annular junctions in contact with lipid droplets were found. Cx46 and Cx50 expression and localization were altered in mink with AIO. The deletion of Cx46 or Cx50 impacted on other connexin expression and phosphorylation and differently affected tight and adhering junction protein expression. The level of apoptosis, determined by ELISA, and a number of Apostain-labeled spermatocytes and spermatids/tubules were higher in mice lacking Cx46 (Cx46-/-) than wild-type and Cx50-/- mice, arguing for life-sustaining Cx46 gap junction-mediated exchanges in late-stage germ cells secluded from the blood by the barrier. The data show that expression and phosphorylation of Cx46 and Cx50 are complementary in seminiferous tubules.
Collapse
Affiliation(s)
- R-Marc Pelletier
- Department of Pathology and Cell Biology, Université de Montréal, Québec, Canada; and
| | - Casimir D Akpovi
- Department of Pathology and Cell Biology, Université de Montréal, Québec, Canada; and
| | - Li Chen
- Department of Pathology and Cell Biology, Université de Montréal, Québec, Canada; and
| | - Nalin M Kumar
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - María L Vitale
- Department of Pathology and Cell Biology, Université de Montréal, Québec, Canada; and
| |
Collapse
|
11
|
Abrams CK, Freidin M. GJB1-associated X-linked Charcot-Marie-Tooth disease, a disorder affecting the central and peripheral nervous systems. Cell Tissue Res 2015; 360:659-73. [PMID: 25370202 DOI: 10.1007/s00441-014-2014-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 09/22/2014] [Indexed: 11/24/2022]
Abstract
Charcot-Marie-Tooth disease (CMT) is a group of inherited diseases characterized by exclusive or predominant involvement of the peripheral nervous system. Mutations in GJB1, the gene encoding Connexin 32 (Cx32), a gap-junction channel forming protein, cause the most common X-linked form of CMT, CMT1X. Cx32 is expressed in Schwann cells and oligodendrocytes, the myelinating glia of the peripheral and central nervous systems, respectively. Thus, patients with CMT1X have both central and peripheral nervous system manifestations. Study of the genetics of CMT1X and the phenotypes of patients with this disorder suggest that the peripheral manifestations of CMT1X are likely to be due to loss of function, while in the CNS gain of function may contribute. Mice with targeted ablation of Gjb1 develop a peripheral neuropathy similar to that seen in patients with CMT1X, supporting loss of function as a mechanism for the peripheral manifestations of this disorder. Possible roles for Cx32 include the establishment of a reflexive gap junction pathway in the peripheral and central nervous system and of a panglial syncitium in the central nervous system.
Collapse
Affiliation(s)
- Charles K Abrams
- Departments of Neurology and Physiology & Pharmacology, State University of New York, Brooklyn, NY, 11203, USA,
| | | |
Collapse
|
12
|
Extracellular domains play different roles in gap junction formation and docking compatibility. Biochem J 2014; 458:1-10. [PMID: 24438327 DOI: 10.1042/bj20131162] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
GJ (gap junction) channels mediate direct intercellular communication and play an important role in many physiological processes. Six connexins oligomerize to form a hemichannel and two hemichannels dock together end-to-end to form a GJ channel. Connexin extracellular domains (E1 and E2) have been shown to be important for the docking, but the molecular mechanisms behind the docking and formation of GJ channels are not clear. Recent developments in atomic GJ structure and functional studies on a series of connexin mutants revealed that E1 and E2 are likely to play different roles in the docking. Non-covalent interactions at the docking interface, including hydrogen bonds, are predicted to form between interdocked extracellular domains. Protein sequence alignment analysis on the docking compatible/incompatible connexins indicate that the E1 domain is important for the formation of the GJ channel and the E2 domain is important in the docking compatibility in heterotypic channels. Interestingly, the hydrogen-bond forming or equivalent residues in both E1 and E2 domains are mutational hot spots for connexin-linked human diseases. Understanding the molecular mechanisms of GJ docking can assist us to develop novel strategies in rescuing the disease-linked connexin mutants.
Collapse
|
13
|
Baker MW, Macagno ER. Control of neuronal morphology and connectivity: Emerging developmental roles for gap junctional proteins. FEBS Lett 2014; 588:1470-9. [DOI: 10.1016/j.febslet.2014.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 02/10/2014] [Accepted: 02/12/2014] [Indexed: 11/25/2022]
|
14
|
Oshima A. Structure and closure of connexin gap junction channels. FEBS Lett 2014; 588:1230-7. [PMID: 24492007 DOI: 10.1016/j.febslet.2014.01.042] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/24/2014] [Accepted: 01/24/2014] [Indexed: 11/29/2022]
Abstract
Connexin gap junctions comprise assembled channels penetrating two plasma membranes for which gating regulation is associated with a variety of factors, including voltage, pH, Ca(2+), and phosphorylation. Functional studies have established that various parts of the connexin peptides are related to channel closure and electrophysiology studies have provided several working models for channel gating. The corresponding structural models supporting these findings, however, are not sufficient because only small numbers of closed connexin structures have been reported. To fully understand the gating mechanisms, the channels should be visualized in both the open and closed states. Electron crystallography and X-ray crystallography studies recently revealed three-dimensional structures of connexin channels in a couple of states in which the main difference is the conformation of the N-terminal domain, which have helped to clarify the structure in regard to channel closure. Here the closure models for connexin gap junction channels inferred from structural and functional studies are described in the context of each domain of the connexin protein associated with gating modulation.
Collapse
Affiliation(s)
- Atsunori Oshima
- Cellular and Structural Physiology Institute (CeSPI), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
15
|
Yazdani N, Firme CP, Macagno ER, Baker MW. Expression of a dominant negative mutant innexin in identified neurons and glial cells reveals selective interactions among gap junctional proteins. Dev Neurobiol 2013; 73:571-86. [DOI: 10.1002/dneu.22082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 02/25/2013] [Accepted: 02/26/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Neema Yazdani
- Section of Cell and Developmental Biology; University of California; San Diego La Jolla; California; 92093
| | - Constantine P. Firme
- Section of Cell and Developmental Biology; University of California; San Diego La Jolla; California; 92093
| | - Eduardo R. Macagno
- Section of Cell and Developmental Biology; University of California; San Diego La Jolla; California; 92093
| | - Michael W. Baker
- Section of Cell and Developmental Biology; University of California; San Diego La Jolla; California; 92093
| |
Collapse
|
16
|
Wicki-Stordeur LE, Boyce AKJ, Swayne LA. Analysis of a pannexin 2-pannexin 1 chimeric protein supports divergent roles for pannexin C-termini in cellular localization. ACTA ACUST UNITED AC 2013; 20:73-9. [PMID: 23659289 DOI: 10.3109/15419061.2013.791681] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Pannexins (Panxs) are a three-member family of large pore ion channels permeable to ions and small molecules. Recent elegant work has demonstrated that the Panx1 C-terminus plays an important role in channel trafficking. Panx2, another family member, has a longer and highly dissimilar C-terminus. Interestingly, Panx1 is readily found at the plasma membrane, while Panx2 is mainly present on intracellular membranes. Here we used overlap-extension cloning to create the first chimeric Panx, consisting of Panx2 with the Panx1 C-terminus (Panx2(Panx1CT)), to determine whether the Panx1 C-terminus influences the trafficking of Panx2. We are the first to observe a high level of co-localization between Panx2 and the endolysosomal enriched mannose-6-phosphate receptor. Interestingly this distinct localization of Panx2 is altered by the presence of the Panx1 C-terminus. These novel observations support previous data indicating the importance of the C-terminus in the control of Panx trafficking, and highlight the complexity of molecular signals involved.
Collapse
Affiliation(s)
- Leigh E Wicki-Stordeur
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | | | | |
Collapse
|
17
|
Hervé JC, Derangeon M, Sarrouilhe D, Giepmans BNG, Bourmeyster N. Gap junctional channels are parts of multiprotein complexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1844-65. [PMID: 22197781 DOI: 10.1016/j.bbamem.2011.12.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 11/28/2011] [Accepted: 12/06/2011] [Indexed: 12/16/2022]
Abstract
Gap junctional channels are a class of membrane channels composed of transmembrane channel-forming integral membrane proteins termed connexins, innexins or pannexins that mediate direct cell-to-cell or cell-to extracellular medium communication in almost all animal tissues. The activity of these channels is tightly regulated, particularly by intramolecular modifications as phosphorylations of proteins and via the formation of multiprotein complexes where pore-forming subunits bind to auxiliary channel subunits and associate with scaffolding proteins that play essential roles in channel localization and activity. Scaffolding proteins link signaling enzymes, substrates, and potential effectors (such as channels) into multiprotein signaling complexes that may be anchored to the cytoskeleton. Protein-protein interactions play essential roles in channel localization and activity and, besides their cell-to-cell channel-forming functions, gap junctional proteins now appear involved in different cellular functions (e.g. transcriptional and cytoskeletal regulations). The present review summarizes the recent progress regarding the proteins capable of interacting with junctional proteins and highlights the function of these protein-protein interactions in cell physiology and aberrant function in diseases. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and functions.
Collapse
Affiliation(s)
- Jean-Claude Hervé
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers, CNRS, Poitiers, France.
| | | | | | | | | |
Collapse
|
18
|
Bedner P, Steinhäuser C, Theis M. Functional redundancy and compensation among members of gap junction protein families? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1971-84. [PMID: 22044799 DOI: 10.1016/j.bbamem.2011.10.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 10/08/2011] [Accepted: 10/17/2011] [Indexed: 12/15/2022]
Abstract
Gap junctions are intercellular conduits for small molecules made up by protein subunits called connexins. A large number of connexin genes were found in mouse and man, and most cell types express several connexins, lending support to the view that redundancy and compensation among family members exist. This review gives an overview of the current knowledge on redundancy and functional compensation - or lack thereof. It takes into account the different properties of connexin subunits which comprise gap junctional intercellular channels, but also the compatibility of connexins in gap junctions. Most insight has been gained by the investigation of mice deficient for one or more connexins and transgenic mice with functional replacement of one connexin gene by another. Most single deficient mice show phenotypical alterations limited to critical developmental time points or to specific organs and tissues, while mice doubly deficient for connexins expressed in the same cell type usually show more severe phenotypical alterations. Replacement of a connexin by another connexin in some cases gave rise to rescue of phenotypical alterations of connexin deficiencies, which were restricted to specific tissues. In many tissues, connexin substitution did not restore phenotypical alterations of connexin deficiencies, indicating that connexins are specialized in function. In some cases, fatal consequences arose from the replacement. The current consensus gained from such studies is that redundancy and compensation among connexins exists at least to a limited extent. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.
Collapse
|
19
|
Two-dimensional kinetics of inter-connexin interactions from single-molecule force spectroscopy. J Mol Biol 2011; 412:72-9. [PMID: 21802430 DOI: 10.1016/j.jmb.2011.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 07/07/2011] [Accepted: 07/11/2011] [Indexed: 11/23/2022]
Abstract
Gap junction channels are intercellular channels that form by docking the extracellular loops of connexin protein subunits. While the structure and function of gap junctions as intercellular channels have been characterized using different techniques, the physics of the inter-connexin interaction remain unknown. Moreover, as far as we know, the capacity of gap junction channels to work as adhesion complexes supporting pulling forces has not yet been quantitatively addressed. We report the first quantitative characterization of the kinetics and binding strength of the interaction of a short peptide mimicking extracellular loop 2 of Cx26 with membrane-reconstituted Cx26, combining the imaging and force spectroscopy capabilities of atomic force microscopy. The fast dissociation rate inferred a dynamic bond, while the slow association rate reflected the reduced flexibility and small size of extracellular loops. Our results propose the gap junction channel as an adhesion complex that associates slowly and dissociates fast at low force but is able to support important pulling forces in its native, hexameric form.
Collapse
|
20
|
Nakagawa S, Gong XQ, Maeda S, Dong Y, Misumi Y, Tsukihara T, Bai D. Asparagine 175 of connexin32 is a critical residue for docking and forming functional heterotypic gap junction channels with connexin26. J Biol Chem 2011; 286:19672-81. [PMID: 21478159 PMCID: PMC3103346 DOI: 10.1074/jbc.m110.204958] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 03/28/2011] [Indexed: 12/23/2022] Open
Abstract
The gap junction channel is formed by proper docking of two hemichannels. Depending on the connexin(s) in the hemichannels, homotypic and heterotypic gap junction channels can be formed. Previous studies suggest that the extracellular loop 2 (E2) is an important molecular domain for heterotypic compatibility. Based on the crystal structure of the Cx26 gap junction channel and homology models of heterotypic channels, we analyzed docking selectivity for several hemichannel pairs and found that the hydrogen bonds between E2 domains are conserved in a group of heterotypically compatible hemichannels, including Cx26 and Cx32 hemichannels. According to our model analysis, Cx32N175Y mutant destroys three hydrogen bonds in the E2-E2 interactions due to steric hindrance at the heterotypic docking interface, which makes it unlikely to dock with the Cx26 hemichannel properly. Our experimental data showed that Cx26-red fluorescent protein (RFP) and Cx32-GFP were able to traffic to cell-cell interfaces forming gap junction plaques and functional channels in transfected HeLa/N2A cells. However, Cx32N175Y-GFP exhibited mostly intracellular distribution and was occasionally observed in cell-cell junctions. Double patch clamp analysis demonstrated that Cx32N175Y did not form functional homotypic channels, and dye uptake assay indicated that Cx32N175Y could form hemichannels on the cell surface similar to wild-type Cx32. When Cx32N175Y-GFP- and Cx26-RFP-transfected cells were co-cultured, no colocalization was found at the cell-cell junctions between Cx32N175Y-GFP- and Cx26-RFP-expressing cells; also, no functional Cx32N175Y-GFP/Cx26-RFP heterotypic channels were identified. Both our modeling and experimental data suggest that Asn(175) of Cx32 is a critical residue for heterotypic docking and functional gap junction channel formation between the Cx32 and Cx26 hemichannels.
Collapse
Affiliation(s)
- So Nakagawa
- From the Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Xiang-Qun Gong
- the Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Shoji Maeda
- Biomolecular Research, Paul Scherrer Institut, CH-5232, Villigen, PSI, Switzerland, and
| | - Yuhua Dong
- the Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Yuko Misumi
- the Department of Life Science, University of Hyogo, Kamigohori, Akoh, Hyogo 678-1297, Japan
| | - Tomitake Tsukihara
- From the Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- the Department of Life Science, University of Hyogo, Kamigohori, Akoh, Hyogo 678-1297, Japan
| | - Donglin Bai
- the Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
21
|
Helbig I, Sammler E, Eliava M, Bolshakov AP, Rozov A, Bruzzone R, Monyer H, Hormuzdi SG. In vivo evidence for the involvement of the carboxy terminal domain in assembling connexin 36 at the electrical synapse. Mol Cell Neurosci 2010; 45:47-58. [PMID: 20510366 PMCID: PMC3025355 DOI: 10.1016/j.mcn.2010.05.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 05/03/2010] [Accepted: 05/15/2010] [Indexed: 12/03/2022] Open
Abstract
Connexin 36 (Cx36)-containing electrical synapses contribute to the timing and amplitude of neural responses in many brain regions. A Cx36-EGFP transgenic was previously generated to facilitate their identification and study. In this study we demonstrate that electrical coupling is normal in transgenic mice expressing Cx36 from the genomic locus and suggest that fluorescent puncta present in brain tissue represent distributed electrical synapses. These qualities emphasize the usefulness of the Cx36-EGFP reporter as a tool for the detailed anatomical characterization of electrical synapses in fixed and living tissue. However, though the fusion protein is able to form gap junctions between Xenopus laevis oocytes it is unable to restore electrical coupling to interneurons in the Cx36-deficient mouse. Further experiments in transgenic tissue and non-neural cell lines reveal impaired transport to the plasma membrane as the possible cause. By analyzing the functional deficits exhibited by the fusion protein in vivo and in vitro, we identify a motif within Cx36 that may interact with other trafficking or scaffold proteins and thereby be responsible for its incorporation into electrical synapses.
Collapse
Affiliation(s)
- Ingo Helbig
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein (UKSH), Schwanenweg 20, 24105 Kiel, Germany
| | - Esther Sammler
- Centre for Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Marina Eliava
- Department of Clinical Neurobiology, University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Alexey P. Bolshakov
- Centre for Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Andrei Rozov
- Centre for Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Roberto Bruzzone
- HKU-Pasteur Research Centre, 1/F, Dexter HC Man Building, Pokfulam, Hong Kong
| | - Hannah Monyer
- Department of Clinical Neurobiology, University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Sheriar Gustad Hormuzdi
- Centre for Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| |
Collapse
|
22
|
Parenti R, Cicirata F, Zappalà A, Catania A, La Delia F, Cicirata V, Tress O, Willecke K. Dynamic expression of Cx47 in mouse brain development and in the cuprizone model of myelin plasticity. Glia 2010; 58:1594-609. [DOI: 10.1002/glia.21032] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Carette D, Gilleron J, Decrouy X, Fiorini C, Diry M, Segretain D, Pointis G. Connexin 33 impairs gap junction functionality by accelerating connexin 43 gap junction plaque endocytosis. Traffic 2009; 10:1272-85. [PMID: 19548984 DOI: 10.1111/j.1600-0854.2009.00949.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Connexin 33 (Cx33) is a testis-specific gap junction protein. We previously reported that Cx33 exerts dominant-negative effect on gap junction intercellular communication by sequestering Cx43 within early endosomes in Sertoli cells. However, the molecular mechanisms that drive this process are unknown. The present study analyzed: (i) the trafficking of Cx33 and Cx43 in wild-type Sertoli cells transfected with Cx33-DsRed2 and Cx43-green fluorescent protein vectors; (ii) the formation of heteromeric Cx33/Cx43 hemi-channels and their incorporation into gap junction plaques. Fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer and videomicroscopy studies demonstrated that Cx33 and Cx43 associated to form heteromeric oligomers that trafficked along microtubules to the plasma membrane. However, the plaques containing Cx33 were not functional. Immunoprecipitation experiments revealed that zonula occludens-1 (ZO-1), a scaffold protein proposed to secure Cx in gap junction plaques at the cell-cell boundary, associated with Cx33 in testis extracts. In cells expressing Cx33, Cx33 and ZO-1 specifically interacted with P(1) phosphorylated and P(0) unphosphorylated isoforms of Cx43, and the ZO-1 membranous signal level was reduced. It is suggested that alteration of Cx43/ZO-1 association by Cx33 could be one mechanism by which Cx33 exerts its dominant-negative effect on gap junction plaque.
Collapse
Affiliation(s)
- Diane Carette
- INSERM U 895, Team 5 "Physiopathology of germ cell control: genomic and non genomic mechanisms", Centre Méditerranéen Moléculaire (C3M), Université Sophia Antipolis, F-06204 Nice Cedex 3, France
| | | | | | | | | | | | | |
Collapse
|
24
|
Kumar NM. Molecular Biology of the Interactions between Connexins. NOVARTIS FOUNDATION SYMPOSIUM 219 - GAP JUNCTION-MEDIATED INTERCELLULAR SIGNALLING IN HEALTH AND DISEASE 2007. [DOI: 10.1002/9780470515587.ch2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
25
|
Gong XQ, Shao Q, Langlois S, Bai D, Laird DW. Differential potency of dominant negative connexin43 mutants in oculodentodigital dysplasia. J Biol Chem 2007; 282:19190-202. [PMID: 17420259 DOI: 10.1074/jbc.m609653200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oculodentodigital dysplasia (ODDD) is a congenital autosomal dominant disorder with phenotypic variability, which has been associated with mutations in the GJA1 gene encoding connexin43 (Cx43). Given that Cx43 mutants are thought to be equally co-expressed with wild-type Cx43 in ODDD patients, it is imperative to examine the consequence of these mutants in model systems that reflect this molar ratio. To that end, we used differential fluorescent protein tagging of mutant and wild-type Cx43 to quantitatively monitor the ratio of mutant/wild-type within the same putative gap junction plaques and co-immunoprecipitation to determine if the mutants interact with wild-type Cx43. Together the fluorescence-based assay was combined with patch clamp analysis to assess the dominant negative potency of Cx43 mutants. Our results revealed that the ODDD-linked Cx43 mutants, G21R and G138R, as well as amino terminus green fluorescent protein-tagged Cx43, were able to co-localize with wild-type Cx43 at the gap junction plaque-like structures and to co-immunoprecipitate with wild-type Cx43. All Cx43 mutants demonstrated dominant negative action on gap junctional conductance of wild-type Cx43 but not that of Cx32. More interestingly, these Cx43 mutants demonstrated different potencies in inhibiting the function of wild-type Cx43 with the G21R mutant being two times more potent than the G138R mutant. The potency difference in the dominant negative properties of ODDD-linked Cx43 mutants may have clinical implications for the various symptoms and disease severity observed in ODDD patients.
Collapse
Affiliation(s)
- Xiang-Qun Gong
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | | | |
Collapse
|
26
|
González D, Gómez-Hernández JM, Barrio LC. Molecular basis of voltage dependence of connexin channels: An integrative appraisal. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2007; 94:66-106. [PMID: 17470374 DOI: 10.1016/j.pbiomolbio.2007.03.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The importance of electrical and molecular signaling through connexin (Cx) channels is now widely recognized. The transfer of ions and other small molecules between adjacent cells is regulated by multiple stimuli, including voltage. Indeed, Cx channels typically exhibit complex voltage sensitivity. Most channels are sensitive to the voltage difference between the cell interiors (or transjunctional voltage, V(j)), while other channels are also sensitive to absolute inside-outside voltage (i.e., the membrane potential, V(m)). The first part of this review is focused on the description of the distinct forms of voltage sensitivity and the gating mechanisms that regulate hemichannel activity, both individually and as components of homotypic and heterotypic gap junctions. We then provide an up to date and precise picture of the molecular and structural aspects of how V(j) and V(m) are sensed, and how they, therefore, control channel opening and closing. Mutagenic strategies coupled with structural, biochemical and electrophysical studies are providing significant insights into how distinct forms of voltage dependence are brought about. The emerging picture indicates that Cx channels can undergo transitions between multiple conductance states driven by distinct voltage-gating mechanisms. Each hemichannel may contain a set of two V(j) gates, one fast and one slow, which mediate the transitions between the main open state to the residual state and to the fully closed state, respectively. Eventually, a V(m) gate regulates channel transitions between the open and closed states. Clusters of charged residues within separate domains of the Cx molecule have been identified as integral parts of the V(j) and V(m) sensors. The charges at the first positions of the amino terminal cytoplasmic domain determine the magnitude and polarity of the sensitivity to fast V(j)-gating, as well as contributing to the V(j)-rectifying properties of ion permeation. Additionally, important advances have been made in identifying the conformational rearrangements responsible for fast V(j)-gating transitions to the residual state in the Cx43 channel. These changes involve an intramolecular particle-receptor interaction between the carboxy terminal domain and the cytoplasmic loop.
Collapse
Affiliation(s)
- Daniel González
- Research Department, Unit of Experimental Neurology, Ramón y Cajal Hospital, Carretera de Colmenar Viejo km 9, Madrid, Spain
| | | | | |
Collapse
|
27
|
Hervé JC, Bourmeyster N, Sarrouilhe D, Duffy HS. Gap junctional complexes: From partners to functions. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2007; 94:29-65. [PMID: 17507078 DOI: 10.1016/j.pbiomolbio.2007.03.010] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gap junctions (GJ), specialised membrane structures that mediate cell-to-cell communication in almost all animal tissues, are composed of intercellular channel-forming integral membrane proteins termed connexins (Cxs), innexins or pannexins. The activity of these channels is closely regulated, particularly by intramolecular modifications as phosphorylation of proteins, via the formation of multiprotein complexes where pore-forming subunits bind to auxiliary channel subunits and associate with scaffolding proteins that play essential roles in channel localization and activity. Scaffolding proteins link signalling enzymes, substrates, and potential effectors (such as channels) into multiprotein signalling complexes that may be anchored to the cytoskeleton. Protein-protein interactions play essential roles in channel localization and activity and, besides their cell-to-cell channel-forming functions, gap junctional proteins now appear involved in different cellular functions (e.g. transcriptional and cytoskeletal regulation). The present review summarizes the recent progress regarding the proteins capable of interacting with junctional proteins and their functional importance.
Collapse
Affiliation(s)
- Jean-Claude Hervé
- Interactions et Communications Cellulaires, Université de Poitiers, Poitiers, France.
| | | | | | | |
Collapse
|
28
|
Sung JY, Lee HJ, Jeong EI, Oh Y, Park J, Kang KS, Chung KC. Alpha-synuclein overexpression reduces gap junctional intercellular communication in dopaminergic neuroblastoma cells. Neurosci Lett 2007; 416:289-93. [PMID: 17337120 DOI: 10.1016/j.neulet.2007.02.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 02/03/2007] [Accepted: 02/07/2007] [Indexed: 10/23/2022]
Abstract
Alpha-synuclein has been implicated in the pathology of certain neurodegenerative diseases, including Parkinson disease (PD) and dementia with Lewy bodies (LBs). Overexpression of human alpha-synuclein in neuronal cells reduces cell viability, but the precise cellular and molecular mechanisms remain poorly understood. Gap junctional intercellular communication (GJIC) is thought to be essential for maintaining cellular homeostasis and growth control. In the present study, the effect of alpha-synuclein overexpression on GJIC in human dopaminergic neuroblastoma SH-SY5Y cells was investigated. Cells overexpressing wild-type alpha-synuclein were more vulnerable to hydrogen peroxide and 6-hydroxydopamine. GJIC was decreased in cells overexpressing alpha-synuclein. In addition, alpha-synuclein binds directly to connexin-32 (Cx32). As such, the post-translational modification of Cx32 was enhanced in cells overexpressing alpha-synuclein. These findings suggest that alpha-synuclein can modulate GJIC in a dopaminergic neuronal cell line through specific binding to Cx32.
Collapse
Affiliation(s)
- Jee Young Sung
- Department of Medical Science, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | | | | | | | | | | | | |
Collapse
|
29
|
Dunia I, Cibert C, Gong X, Xia CH, Recouvreur M, Levy E, Kumar N, Bloemendal H, Benedetti EL. Structural and immunocytochemical alterations in eye lens fiber cells from Cx46 and Cx50 knockout mice. Eur J Cell Biol 2006; 85:729-52. [PMID: 16740340 DOI: 10.1016/j.ejcb.2006.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 03/02/2006] [Accepted: 03/07/2006] [Indexed: 11/28/2022] Open
Abstract
In the current study we describe the changes of overall organization of lens fiber cells in connexin 46 (Cx46) and connexin 50 (Cx50) knockout mice. Morphometric analyses and the application of immunocytochemical techniques revealed that in Cx46 knockout lens (Cx46 -/-), where Cx50 is expressed alone, the postnatal differentiation of secondary fiber cells proceeds faster and is characterized by an increased number of smaller fiber cells. Conversely, in Cx50 knockout mice (Cx50 -/-), the lenticular mass is considerably reduced and characterized by a small number of fiber cells added during the postnatal period. The process of terminal differentiation was impaired and generated larger fiber cells still possessing cytoplasmic organelles. Freeze-fracture and fracture labeling revealed that the junctional assembly, packing organization and topographic interactions between connexons and MP26 differed when Cx46 and Cx50 were co-assembled in the wild-type or expressed separately in the two distinct knockout phenotypes. Filipin cytochemistry provided indirect evidence that Cx46 and Cx50 expressed alone are recruited into different lipid environments. Our results represent the structural proof that interaction of connexins and MP26 contributes to the overall organization of the fiber cells.
Collapse
Affiliation(s)
- Irene Dunia
- Biologie Cellulaire, Institut Jacques Monod, CNRS, Universités Paris 6-Paris 7, 2, place Jussieu, F-75251 Paris Cedex 5, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Animal species use specialized cell-to-cell channels, called gap junctions, to allow for a direct exchange of ions and small metabolites between their cells' cytoplasm. In invertebrates, gap junctions are formed by innexins, while vertebrates use connexin (Cx) proteins as gap-junction-building blocks. Recently, innexin homologs have been found in vertebrates and named pannexins. From progress in the different genome projects, it has become evident that every class of vertebrates uses their own unique set of Cxs to build their gap junctions. Here, we review all known Xenopus Cxs with respect to their expression, regulation, and function. We compare Xenopus Cxs with those of zebrafish and mouse, and provide evidence for the existence of several additional, non-identified, amphibian Cxs. Finally, we identify two new Xenopus pannexins by screening EST libraries.
Collapse
Affiliation(s)
- Teun P de Boer
- Department of Medical Physiology, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | | |
Collapse
|
31
|
Maza J, Das Sarma J, Koval M. Defining a minimal motif required to prevent connexin oligomerization in the endoplasmic reticulum. J Biol Chem 2005; 280:21115-21. [PMID: 15817491 DOI: 10.1074/jbc.m412612200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In contrast to most multimeric transmembrane complexes that oligomerize in the endoplasmic reticulum (ER), the gap junction protein connexin43 (Cx43) oligomerizes in an aspect of the Golgi apparatus. The mechanisms that prevent oligomerization of Cx43 and related connexins in the ER are not well understood. Also, some studies suggest that connexins can oligomerize in the ER. We used connexin constructs containing a C-terminal dilysine-based ER retention/retrieval signal (HKKSL) transfected into HeLa cells to study early events in connexin oligomerization. Using this approach, Cx43-HKKSL was retained in the ER and prevented from oligomerization. However, another ER-retained HKKSL-tagged connexin, Cx32-HKKSL, had the capacity to oligomerize. Because this suggested that Cx43 contains a motif that prevented oligomerization in the ER, a series of HKKSL-tagged and untagged Cx32/Cx43 chimeras was screened to define this motif. The minimal motif, which prevented ER oligomerization, consisted of the complete third transmembrane domain and the second extracellular loop from Cx43 on a Cx32 backbone. We propose that charged residues present in Cx43 and related connexins help prevent ER oligomerization by stabilizing the third transmembrane domain in the membrane bilayer.
Collapse
Affiliation(s)
- Jose Maza
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
32
|
Sosinsky GE, Nicholson BJ. Structural organization of gap junction channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1711:99-125. [PMID: 15925321 DOI: 10.1016/j.bbamem.2005.04.001] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Revised: 03/22/2005] [Accepted: 04/02/2005] [Indexed: 11/16/2022]
Abstract
Gap junctions were initially described morphologically, and identified as semi-crystalline arrays of channels linking two cells. This suggested that they may represent an amenable target for electron and X-ray crystallographic studies in much the same way that bacteriorhodopsin has. Over 30 years later, however, an atomic resolution structural solution of these unique intercellular pores is still lacking due to many challenges faced in obtaining high expression levels and purification of these structures. A variety of microscopic techniques, as well as NMR structure determination of fragments of the protein, have now provided clearer and correlated views of how these structures are assembled and function as intercellular conduits. As a complement to these structural approaches, a variety of mutagenic studies linking structure and function have now allowed molecular details to be superimposed on these lower resolution structures, so that a clearer image of pore architecture and its modes of regulation are beginning to emerge.
Collapse
Affiliation(s)
- Gina E Sosinsky
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA 92093-0608, USA
| | | |
Collapse
|
33
|
Leybaert L, Braet K, Vandamme W, Cabooter L, Martin PEM, Evans WH. Connexin channels, connexin mimetic peptides and ATP release. ACTA ACUST UNITED AC 2004; 10:251-7. [PMID: 14681025 DOI: 10.1080/cac.10.4-6.251.257] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Connexin hemichannels, that is, half gap junction channels (not connecting cells), have been implicated in the release of various messengers such as ATP and glutamate. We used connexin mimetic peptides, which are, small peptides mimicking a sequence on the connexin subunit, to investigate hemichannel functioning in endothelial cell lines. Short exposure (30 min) to synthetic peptides mimicking a sequence on the first or second extracellular loop of the connexin subunit strongly supressed ATP release and dye uptake triggered by either intracellular InsP(3) elevation or exposure to zero extracellular calcium, while gap junctional coupling was not affected under these conditions. The effect was dependent on the expression of connexin-43 in the cells. Connexin mimetic peptides thus appear to be interesting tools to distinguish connexin hemichannel from gap junction channel functioning. In addition, they are well suited to further explore the role of connexins in cellular release or uptake processes, to investigate hemichannel gating and to reveal new unknown functions of the large conductance hemichannel pathway between the cell and its environment. Work performed up to now with these peptides should be re-interpreted in terms of these new findings.
Collapse
Affiliation(s)
- Luc Leybaert
- Department of Physiology and Pathophysiology, Ghent University, Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
34
|
Goldberg GS, Valiunas V, Brink PR. Selective permeability of gap junction channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1662:96-101. [PMID: 15033581 DOI: 10.1016/j.bbamem.2003.11.022] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Accepted: 11/21/2003] [Indexed: 10/26/2022]
Abstract
Gap junctions mediate the transfer of small cytoplasmic molecules between adjacent cells. A family of gap junction proteins exist that form channels with unique properties, and differ in their ability to mediate the transfer of specific molecules. Mutations in a number of individual gap junction proteins, called connexins, cause specific human diseases. Therefore, it is important to understand how gap junctions selectively move molecules between cells. Rules that dictate the ability of a molecule to travel through gap junction channels are complex. In addition to molecular weight and size, the ability of a solute to transverse these channels depends on its net charge, shape, and interactions with specific connexins that constitute gap junctions in particular cells. This review presents some data and interpretations pertaining to mechanisms that govern the differential transfer of signals through gap junction channels.
Collapse
Affiliation(s)
- Gary S Goldberg
- Department of Physiology and Biophysics, School of Medicine, State University of New York at Stony Brook, Health Science Complex, Stony Brook, NY 11794-8661, USA.
| | | | | |
Collapse
|
35
|
Thomas T, Telford D, Laird DW. Functional Domain Mapping and Selective Trans-dominant Effects Exhibited by Cx26 Disease-causing Mutations. J Biol Chem 2004; 279:19157-68. [PMID: 14978038 DOI: 10.1074/jbc.m314117200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in Cx26 are a major cause of autosomal dominant and recessive forms of sensorineural deafness. Some mutations in Cx26 are associated not only with deafness but also with skin disease. We examined the subcellular localization and function of two green fluorescent protein (GFP)-tagged Cx26 point mutants that exhibit both phenotypes, G59A-GFP and D66H-GFP. D66H-GFP was retained within the brefeldin A-insensitive trans-Golgi network, whereas a population of G59A-GFP was transported to the cell surface. Neither G59A nor D66H formed gap junctions that were permeable to small fluorescent dyes, suggesting they are loss-of-function mutations. When co-expressed with wild-type Cx26, both G59A and D66H exerted dominant-negative effects on Cx26 function. G59A also exerted a trans-dominant negative effect on co-expressed wild type Cx32 and Cx43, whereas D66H exerted a trans-dominant negative effect on Cx43 but not Cx32. We propose that the severity of the skin disease is dependent on the specific nature of the Cx26 mutation and the trans-dominant selectivity of the Cx26 mutants on co-expressed connexins. Additional systematic mutations at residue D66, in which the overall charge of this motif was altered, suggested that the first extracellular loop is critical for Cx26 transport to the cell surface as well as function of the resulting gap junction channels.
Collapse
Affiliation(s)
- Tamsin Thomas
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | |
Collapse
|
36
|
Hervé JC, Bourmeyster N, Sarrouilhe D. Diversity in protein–protein interactions of connexins: emerging roles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1662:22-41. [PMID: 15033577 DOI: 10.1016/j.bbamem.2003.10.022] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2003] [Revised: 10/22/2003] [Accepted: 10/22/2003] [Indexed: 10/26/2022]
Abstract
Gap junctions, specialised membrane structures that mediate cell-to-cell communication in almost all tissues, are composed of channel-forming integral membrane proteins termed connexins. The activity of these intercellular channels is closely regulated, particularly by intramolecular modifications as phosphorylations of proteins by protein kinases, which appear to regulate the gap junction at several levels, including assembly of channels in the plasma membrane, connexin turnover as well as directly affecting the opening and closure ("gating") of channels. The regulation of membrane channels by protein phosphorylation/dephosphorylation processes commonly requires the formation of a multiprotein complex, where pore-forming subunits bind to auxiliary proteins (e.g. scaffolding proteins, catalytic and regulatory subunits), that play essential roles in channel localisation and activity, linking signalling enzymes, substrates and effectors into a structure frequently anchored to the cytoskeleton. The present review summarises the up-to-date progress regarding the proteins capable of interacting or at least of co-localising with connexins and their functional importance.
Collapse
Affiliation(s)
- Jean-Claude Hervé
- UMR CNRS no. 6558, Faculté de Sciences Fondamentales et Appliquées, Université de Poitiers, Pôle Biologie-Santé, 86022 Poitiers Cedex, France.
| | | | | |
Collapse
|
37
|
Braet K, Aspeslagh S, Vandamme W, Willecke K, Martin PEM, Evans WH, Leybaert L. Pharmacological sensitivity of ATP release triggered by photoliberation of inositol-1,4,5-trisphosphate and zero extracellular calcium in brain endothelial cells. J Cell Physiol 2003; 197:205-13. [PMID: 14502560 DOI: 10.1002/jcp.10365] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recently, ATP has gained much interest as an extracellular messenger involved in the communication of calcium signals between cells. The mechanism of ATP release is, however, still a matter of debate. In the present study we investigated the possible contribution of connexin hemichannels or ion channels in the release of ATP in GP8, a rat brain endothelial cell line. Release of ATP was triggered by photoactivation of InsP(3) or by reducing the extracellular calcium concentration. Both trigger protocols induced ATP release significantly above baseline. InsP(3)-triggered ATP release was completely blocked by alpha-glycyrrhetinic acid (alpha-GA), the connexin mimetic peptides gap 26 and 27, and the trivalent ions gadolinium and lanthanum. ATP release triggered by zero calcium was, in addition to these substances, also blocked by flufenamic acid (FFA), niflumic acid, and NPPB. Gap 27 selectively blocked zero calcium-triggered ATP release in connexin-43 transfected HeLa cells, while having no effect in wild-type and connexin-32 transfected cells. Of all the agents used, only alpha-GA, FFA and NPPB significantly reduced gap junctional coupling. In conclusion, InsP(3) and zero calcium-triggered ATP release show major similarities but also some differences in their sensitivity to the agents applied. It is suggested that both stimuli trigger ATP release through the same mechanism, which is connexin-dependent, permeable in both directions, potently blocked by connexin mimetic peptides, and consistent with the opening of connexin hemichannels.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Animals
- Blood-Brain Barrier/drug effects
- Blood-Brain Barrier/physiology
- Brain/blood supply
- Brain/metabolism
- Calcium/deficiency
- Cells, Cultured
- Connexin 43/drug effects
- Connexin 43/genetics
- Connexin 43/metabolism
- Connexins/drug effects
- Connexins/genetics
- Connexins/metabolism
- Connexins/pharmacology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Extracellular Space/metabolism
- Flufenamic Acid/pharmacology
- Gadolinium/pharmacology
- Gap Junctions/drug effects
- Gap Junctions/metabolism
- Glycyrrhetinic Acid/pharmacology
- Humans
- Inositol 1,4,5-Trisphosphate/analogs & derivatives
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate/pharmacology
- Inositol 1,4,5-Trisphosphate/radiation effects
- Lanthanum/pharmacology
- Niflumic Acid/pharmacology
- Nitrobenzoates/pharmacology
- Oligopeptides
- Rats
- Ultraviolet Rays
- Gap Junction beta-1 Protein
Collapse
Affiliation(s)
- Katleen Braet
- Department of Physiology and Pathophysiology, Ghent University, De Pintelaan, Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Connexins are the building blocks of gap junctions. In forming a gap junction, six connexins oligomerize to form a hexameric torus called a connexon. The number of gap junctions in a cell ranges from a few to over 105 and imparts to interconnected cells a uniform phenotype. The crucial role that gap junctions play in normal physiology is reflected by the diverse spectrum of human diseases in which allele variants of different gap junction genes are implicated. In particular, mutations in GJB2 are a major cause of autosomal recessive non-syndromic deafness. This discovery has impacted medical practice and makes it incumbent on clinicians to familiarize themselves with the genetic advances that are rapidly occurring in our field.
Collapse
Affiliation(s)
- Eugene H Chang
- Molecular Otolaryngology Research Laboratories, Dept of Otolaryngology, University of Iowa, USA
| | | | | |
Collapse
|
39
|
Alford AI, Jacobs CR, Donahue HJ. Oscillating fluid flow regulates gap junction communication in osteocytic MLO-Y4 cells by an ERK1/2 MAP kinase-dependent mechanism. Bone 2003; 33:64-70. [PMID: 12919700 DOI: 10.1016/s8756-3282(03)00167-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present work was designed to investigate the effects of oscillating fluid flow on gap junctional intercellular communication (GJIC) and the gap junction protein connexin (Cx) 43 in osteocyte-like MLOY-4 cells. Cells were exposed for 1 h to oscillating fluid flow at a shear stress of +/-10 dyn/cm(2) and a frequency of 1 Hz in a parallel plate flow chamber. Control cells were incubated in the chamber but were not exposed to oscillating fluid flow. Functional analysis of GJIC indicated that MLOY-4 cells exposed to oscillating fluid flow established more gap junctions with an independent population of dye-labeled cells than did control cells. Phosphorylation of Cx43 was quantified by immunoprecipitation with an anti-Cx43 antibody followed by immunoblot analysis using an anti-phosphoserine antibody. Phosphoserine was normalized to Cx43 in each sample. Compared to control cells, phosphoserine content of Cx43 increased approximately twofold in cells exposed to oscillating fluid flow. The possible role of the extracellular signal regulated kinase (ERK1/2) in the flow-induced upregulation of GJIC was also investigated. The ERK1/2 inhibitor PD-98059 significantly attenuated the effects of oscillating fluid flow on MLOY-4 cells GJIC. These results indicate that oscillating fluid flow regulates GJIC in MLOY-4 cells via the ERK1/2 MAP kinase. In addition, increased serine phosphorylation of Cx43 correlates with the flow-induced increase in GJIC.
Collapse
Affiliation(s)
- A I Alford
- Department of Orthopedics and Rehabilitation, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | |
Collapse
|
40
|
Bruzzone R, Gomès D, Denoyelle E, Duval N, Perea J, Veronesi V, Weil D, Petit C, Gabellec MM, D'Andrea P, White TW. Functional analysis of a dominant mutation of human connexin26 associated with nonsyndromic deafness. CELL COMMUNICATION & ADHESION 2003; 8:425-31. [PMID: 12064630 DOI: 10.3109/15419060109080765] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cx26 has been implicated in dominant (DFNA3) and recessive (DFNB1) forms of nonsyndromic sensorineural deafness. While most homozygous DFNB1 Cx26 mutations result in a simple loss of channel activity, it is less clear how heterozygous mutations in Cx26 linked to DFNA3 cause hearing loss. We have tested the ability of one dominant mutation (W44C) to interfere with wild-type human Cx26 (HCx26wt). HCx26wt induced robust electrical conductance between paired oocytes, and facilitated dye transfer between transfected HeLa cells. In contrast, oocyte pairs injected with only W44C were not electrically coupled above background levels, and W44C failed to dye couple transfected HeLa cells. Moreover, W44C dramatically inhibited intercellular conductance of HCx26wt when co-expressed in an equal ratio, and the low levels of residual conductance displayed altered gating properties. A nonfunctional recessive mutation (W77R) did not inhibit the ability of HCx26wt to form functional channels when co-injected in the same oocyte pairs, nor did it alter HCx26wt gating. These results provide evidence for a functional dominant negative effect of the W44C mutant on HCx26wt and explain how heterozygous Cx26 mutations could contribute to autosomal dominant deafness, by resulting in a net loss, and/or alteration, of Cx26 function.
Collapse
Affiliation(s)
- R Bruzzone
- Unité de Neurovirologie et Régénération du Système Nerveux, Institut Pasteur, Paris, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
White TW, Srinivas M, Ripps H, Trovato-Salinaro A, Condorelli DF, Bruzzone R. Virtual cloning, functional expression, and gating analysis of human connexin31.9. Am J Physiol Cell Physiol 2002; 283:C960-70. [PMID: 12176752 DOI: 10.1152/ajpcell.00163.2002] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have identified a novel gap junction gene by searching the human genome sequence database that encodes a protein designated as connexin31.9 (Cx31.9). Cx31.9 was most homologous to human Cx32.4 and did not cluster with either the purported alpha- or beta-connexin subfamilies. Expression of Cx31.9 was detected by RT-PCR in human mRNA from several tissues including cerebral cortex, heart, liver, lung, kidney, spleen, and testis. A partial Cx31.9 sequence was also represented in the human Expressed Sequence Tag database. Cx31.9 formed intercellular channels in both paired Xenopus oocytes and transfected neuroblastoma N2A cells that were distinguished by an apparent low unitary conductance (12-15 pS) and a remarkable insensitivity to transjunctional voltage. In contrast, Cx31.9 channels were gated by cytoplasmic acidification or exposure to halothane like other connexins. Cx31.9 was able to form heterotypic channels with the highly voltage-sensitive Xenopus Cx38 (XenCx38), which provides an opportunity to study gating in heterotypic channels formed by hemichannels (connexons) composed of connexins with widely divergent properties. Thus Cx31.9 is a novel human connexin that forms channels with unique functional properties.
Collapse
Affiliation(s)
- Thomas W White
- Department of Physiology and Biophysics, State University of New York, Stony Brook 11794-8661, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Abraham V, Chou ML, George P, Pooler P, Zaman A, Savani RC, Koval M. Heterocellular gap junctional communication between alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2001; 280:L1085-93. [PMID: 11350787 DOI: 10.1152/ajplung.2001.280.6.l1085] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We analyzed the pattern of gap junction protein (connexin) expression in vivo by indirect immunofluorescence. In normal rat lung sections, connexin (Cx)32 was expressed by type II cells, whereas Cx43 was more ubiquitously expressed and Cx46 was expressed by occasional alveolar epithelial cells. In response to bleomycin-induced lung injury, Cx46 was upregulated by alveolar epithelial cells, whereas Cx32 and Cx43 expression were largely unchanged. Given that Cx46 may form gap junction channels with either Cx43 or Cx32, we examined the ability of primary alveolar epithelial cells cultured for 6 days, which express Cx43 and Cx46, to form heterocellular gap junctions with cells expressing other connexins. Day 6 alveolar epithelial cells formed functional gap junctions with other day 6 cells or with HeLa cells transfected with Cx43 (HeLa/Cx43), but they did not communicate with HeLa/Cx32 cells. Furthermore, day 6 alveolar epithelial cells formed functional gap junction channels with freshly isolated type II cells. Taken together, these data are consistent with the notion that type I and type II alveolar epithelial cells communicate through gap junctions compatible with Cx43.
Collapse
Affiliation(s)
- V Abraham
- Department of Physiology, Institute for Environmental Medicine, University of Pennsylvania School of Medicine, 3620 Hamilton Walk, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Lewis RA, Sumner AJ, Shy ME. Electrophysiological features of inherited demyelinating neuropathies: A reappraisal in the era of molecular diagnosis. Muscle Nerve 2000; 23:1472-87. [PMID: 11003782 DOI: 10.1002/1097-4598(200010)23:10<1472::aid-mus3>3.0.co;2-#] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The observation that inherited demyelinating neuropathies have uniform conduction slowing and that acquired disorders have nonuniform or multifocal slowing was made prior to the identification of mutations in myelin-specific genes which cause many of the inherited disorders involving peripheral nerve myelin. It is now clear that the electrophysiological aspects of these disorders are more complex than previously realized. Specifically, certain mutations appear to induce nonuniform slowing of conduction which resemble the findings in acquired demyelinating neuropathies. It is clinically important to recognize the different electrodiagnostic patterns of the various inherited demyelinating neuropathies. In addition, an understanding of the relationship between mutations of specific genes and their associated neurophysiological findings is likely to facilitate understanding of the role of these myelin proteins in peripheral nerve function and of how abnormalities in myelin proteins lead to neuropathy. We therefore review the current information on the electrophysiological features of the inherited demyelinating neuropathies in hopes of clarifying their electrodiagnostic features and to shed light on the physiological consequences of the different genetic mutations.
Collapse
Affiliation(s)
- R A Lewis
- Department of Neurology, Wayne State University School of Medicine, UHC 8D, 4201 St. Antoine, Detroit, Michigan, USA.
| | | | | |
Collapse
|
44
|
Todman MG, Baines RA, Stebbings LA, Davies JA, Bacon JP. Gap-Junctional communication between developing Drosophila muscles is essential for their normal development. DEVELOPMENTAL GENETICS 2000; 24:57-68. [PMID: 10079511 DOI: 10.1002/(sici)1520-6408(1999)24:1/2<57::aid-dvg7>3.0.co;2-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Recent experiments have demonstrated that a family of proteins, known as the innexins, are structural components of invertebrate gap junctions. The shaking-B (shak-B) locus of Drosophila encodes two members of this emerging family, Shak-B(lethal) and Shak-B(neural). This study focuses on the role of Shak-B gap junctions in the development of embryonic and larval muscle. During embryogenesis, shak-B transcripts are expressed in a subset of the somatic muscles; expression is strong in ventral oblique muscles (VO4-6) but only weak in ventral longitudinals (VL3 and 4). Carboxyfluorescein injected into VO4 of wild-type early stage 16 embryos spreads, via gap junctions, to label adjacent muscles, including VL3 and 4. In shak-B2 embryos (in which the shak-B(neural) function is disrupted), dye injected into VO4 fails to spread into other muscles. In the first instar larva, when dye coupling between muscles is no longer present, another effect of the shak-B2 mutation is revealed by whole-cell voltage clamp. In a calcium-free saline, only two voltage-activated potassium currents are present in wild-type muscles; a fast IA and a slow IK current. In shak-B2 larvae, these two currents are significantly reduced in magnitude in VO4 and 5, but remain normal in VL3. Expression of shak-B(neural) in a shak-B2 background fully rescues both dye coupling in embryonic muscle and whole-cell currents in first instar VO4 and 5. Our observations show that Shak-B(neural) is one of a set of embryonic gap-junction proteins, and that it is required for the normal temporal development of potassium currents in some larval muscles.
Collapse
Affiliation(s)
- M G Todman
- Sussex Centre for Neuroscience, University of Sussex, Brighton, UK
| | | | | | | | | |
Collapse
|
45
|
Hildebrandt G, Holler E, Woenkhaus M, Quarch G, Reichle A, Schalke B, Andreesen R. Acute deterioration of Charcot-Marie-Tooth disease IA (CMT IA) following 2 mg of vincristine chemotherapy. Ann Oncol 2000; 11:743-7. [PMID: 10942065 DOI: 10.1023/a:1008369315240] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Severe up to life-threatening neuropathy has been observed in patients with hereditary neuropathies receiving vincristine. CASE REPORT A 52-year-old female painter suffering from high-grade non-Hodgkin's lymphoma (stage IVB) was treated with a total of 4 mg of vincristine during two courses of CHOP chemotherapy (cyclophosphamide, vincristine, adriamycin, prednisone). At onset of treatment no neurological problems were reported. There was good lymphoma response to chemotherapy. At the same time, however, the patient gradually developed dysphagia, dysarthria, muscular weakness of both lower and upper extremities, areflexia, paraesthesia of the fingertips and bilateral sensory impairment of feet and lower legs. These symptoms continually worsened over a period of seven weeks until she was unable to walk or to perform her work. Electrophysiological studies showed peripheral axonal and demyelinative sensorimotor neuropathy in correlation to histological findings. Molecular analysis revealed 17p11.2 duplication typical for Charcot-Marie-Tooth disease IA. While continuing chemotherapy without the use of vincristine the patient's neurologic symptoms slowly recovered within six months. CONCLUSION Prior to administration of vincristine family and patient history as well as physical examination should be performed carefully to look for underlying hereditary neuropathy. For those patients with a clinical history or symptoms suggestive for CMT nerve conduction velocity studies and on an individual base even molecular genetic analysis are necessary to prevent serious neurologic complications. worsened significantly resulting in dependency on a wheelchair and inability to perform her work as a painter. Finally she consulted a neurologist and was admitted to hospital for further diagnostic studies and continuation of treatment for her lymphoma in March 1998 with a provisional diagnosis of severe vincristine-induced neuropathy. Medical history at time of admission included hyperthyroidism, that was currently treated with propylthiouracil, a MALT lymphoma 1983, that was treated surgically only, and a meningoencephalitis in 1968. No further medication was taken. In addition she had a history of Lyme disease since 1993 with positive IgM-titer until December 1997, when antibiotic therapy with doxycycline and ceftriaxone was administered successfully. Family history obtained on admission revealed that her mother had non-specific neuropathic symptoms as well as a poorly defined foot deformities of the mother's father. The patient's brother does not show any neurologic impairment and is in good physical health.
Collapse
Affiliation(s)
- G Hildebrandt
- Department of Hematology & Oncology, University of Regensburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
46
|
Al-Ubaidi MR, White TW, Ripps H, Poras I, Avner P, Gomès D, Bruzzone R. Functional properties, developmental regulation, and chromosomal localization of murine connexin36, a gap-junctional protein expressed preferentially in retina and brain. J Neurosci Res 2000; 59:813-26. [PMID: 10700019 DOI: 10.1002/(sici)1097-4547(20000315)59:6<813::aid-jnr14>3.0.co;2-#] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Retinal neurons of virtually every type are coupled by gap-junctional channels whose pharmacological and gating properties have been studied extensively. We have begun to identify the molecular composition and functional properties of the connexins that form these 'electrical synapses,' and have cloned several that constitute a new subclass (gamma) of the connexin family expressed predominantly in retina and brain. In this paper, we present a series of experiments characterizing connexin36 (Cx36), a member of the gamma subclass that was cloned from a mouse retinal cDNA library. Cx36 has been localized to mouse chromosome 2, in a region syntenic to human chromosome 5, and immunocytochemistry showed strong labeling in the ganglion cell and inner nuclear layers of the mouse retina. Comparison of the developmental time course of Cx36 expression in mouse retina with the genesis of the various classes of retinal cells suggests that the expression of Cx36 occurs primarily after cellular differentiation is complete. Because photic stimulation can affect the gap-junctional coupling between retinal neurons, we determined whether lighting conditions might influence the steady state levels of Cx36 transcript in the mouse retina. Steady-state levels of Cx36 transcript were significantly higher in animals reared under typical cyclic-light conditions; exposure either to constant darkness or to continuous illumination reduced the steady-state level of mRNA approximately 40%. Injection of Cx36 cRNA into pairs of Xenopus oocytes induced intercellular conductances that were relatively insensitive to transjunctional voltage, a property shared with other members of the gamma subclass of connexins. Like skate Cx35, mouse Cx36 was unable to form heterotypic gap-junctional channels when paired with two other rodent connexins. In addition, mouse Cx36 failed to form voltage-activated hemichannels, whereas both skate and perch Cx35 displayed quinine-sensitive hemichannel activity. The conservation of intercellular channel gating contrasts with the failure of Cx36 to make hemichannels, suggesting that the voltage-gating mechanisms of hemichannels may be distinct from those of intact intercellular channels.
Collapse
Affiliation(s)
- M R Al-Ubaidi
- Lions of Illinois Eye Research Institute, Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago, IL 6012, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Larson DM, Seul KH, Berthoud VM, Lau AF, Sagar GD, Beyer EC. Functional expression and biochemical characterization of an epitope-tagged connexin37. MOLECULAR CELL BIOLOGY RESEARCH COMMUNICATIONS : MCBRC 2000; 3:115-21. [PMID: 10775509 DOI: 10.1006/mcbr.2000.0200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To study the gap junction protein connexin37 (Cx37), we stably transfected cell lines with constructs of human Cx37 containing the epitope tag FLAG (DYKDDDDK). A Cx37 construct containing the FLAG moiety at the carboxyl terminus (Cx37F) was expressed in BWEM cells, and did not substantially alter the levels of endogenous Cx43 in these cells. Immunostaining showed that Cx37F colocalized with Cx43 at cell-cell contacts. Pulse-chase metabolic labeling and immunoprecipitation with anti-FLAG antibodies indicated that Cx37F was synthesized as a protein that ran at 35.9 +/- 0.9 kDa on reducing SDS-PAGE but chased into a slower migrating band at 38.0 +/- 1.0 kDa. This shift in mobility was due to phosphorylation on serine residues, based on [(32)P]-metabolic labeling, immunoprecipitation, and phosphoamino acid analyses. The transition to the phosphoCx37F correlated with a loss of solubility in 1% Triton X-100. Based on the [(35)S]-methionine pulse-chase experiments, the half-life of the labeled Cx37F was approximately 3 h, which is within the range reported for other connexins. Analysis of dye injection experiments indicated that dye transfer was reduced in Cx37-transfected cells in comparison to parental BWEM cells, suggesting that formation of heteromeric Cx37-Cx43 channels reduced the molecular permeability of communication between these cells. Moreover, the similarities of previously demonstrated kinetic details and modification of Cx43 to our new data regarding Cx37 provide evidence for a commonality in processing and assembly steps of these two connexins.
Collapse
Affiliation(s)
- D M Larson
- Mallory Institute of Pathology, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Verselis VK, Veenstra R. Gap junction channels Permeability and voltage gating. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1569-2558(00)30005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
49
|
Structure and biochemistry of gap junctions. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1569-2558(00)30003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
50
|
Landesman Y, White TW, Starich TA, Shaw JE, Goodenough DA, Paul DL. Innexin-3 forms connexin-like intercellular channels. J Cell Sci 1999; 112 ( Pt 14):2391-6. [PMID: 10381394 DOI: 10.1242/jcs.112.14.2391] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Innexins comprise a large family of genes that are believed to encode invertebrate gap junction channel-forming proteins. However, only two Drosophila innexins have been directly tested for the ability to form intercellular channels and only one of those was active. Here we tested the ability of Caenorhabditis elegans family members INX-3 and EAT-5 to form intercellular channels between paired Xenopus oocytes. We show that expression of INX-3 but not EAT-5, induces electrical coupling between the oocyte pairs. In addition, analysis of INX-3 voltage and pH gating reveals a striking degree of conservation in the functional properties of connexin and innnexin channels. These data strongly support the idea that innexin genes encode intercellular channels.
Collapse
Affiliation(s)
- Y Landesman
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|