1
|
Bonnin E, Rodrigo Riestra M, Marziali F, Mena Osuna R, Denizeau J, Maurin M, Saez JJ, Jouve M, Bonté PE, Richer W, Nevo F, Lemoine S, Girard N, Lefevre M, Borcoman E, Vincent-Salomon A, Baulande S, Moreau HD, Sedlik C, Hivroz C, Lennon-Duménil AM, Tosello Boari J, Piaggio E. CD74 supports accumulation and function of regulatory T cells in tumors. Nat Commun 2024; 15:3749. [PMID: 38702311 PMCID: PMC11068745 DOI: 10.1038/s41467-024-47981-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/17/2024] [Indexed: 05/06/2024] Open
Abstract
Regulatory T cells (Tregs) are plastic cells playing a pivotal role in the maintenance of immune homeostasis. Tregs actively adapt to the microenvironment where they reside; as a consequence, their molecular and functional profiles differ among tissues and pathologies. In tumors, the features acquired by Tregs remains poorly characterized. Here, we observe that human tumor-infiltrating Tregs selectively overexpress CD74, the MHC class II invariant chain. CD74 has been previously described as a regulator of antigen-presenting cell biology, however its function in Tregs remains unknown. CD74 genetic deletion in human primary Tregs reveals that CD74KO Tregs exhibit major defects in the organization of their actin cytoskeleton and intracellular organelles. Additionally, intratumoral CD74KO Tregs show a decreased activation, a drop in Foxp3 expression, a low accumulation in the tumor, and consistently, they are associated with accelerated tumor rejection in preclinical models in female mice. These observations are unique to tumor conditions as, at steady state, CD74KO-Treg phenotype, survival, and suppressive capacity are unaffected in vitro and in vivo. CD74 therefore emerges as a specific regulator of tumor-infiltrating Tregs and as a target to interfere with Treg anti-tumor activity.
Collapse
MESH Headings
- T-Lymphocytes, Regulatory/immunology
- Animals
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/immunology
- Histocompatibility Antigens Class II/metabolism
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/genetics
- Humans
- Female
- Mice
- Forkhead Transcription Factors/metabolism
- Forkhead Transcription Factors/genetics
- Tumor Microenvironment/immunology
- Neoplasms/immunology
- Neoplasms/genetics
- Neoplasms/metabolism
- Neoplasms/pathology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
Collapse
Affiliation(s)
- Elisa Bonnin
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
- Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Maria Rodrigo Riestra
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
- Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Federico Marziali
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
- Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Rafael Mena Osuna
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
- Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Jordan Denizeau
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
- Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Mathieu Maurin
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
| | - Juan Jose Saez
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
| | - Mabel Jouve
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
| | - Pierre-Emmanuel Bonté
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
| | - Wilfrid Richer
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
- Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | | | | | - Nicolas Girard
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
- Paris Saclay University, UVSQ, Versailles, France
- Institut du Thorax Curie Montsouris, Institut Curie, Paris, France
| | - Marine Lefevre
- Pathology Department, Institut Mutualiste Montsouris, Paris, France
| | - Edith Borcoman
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
| | - Anne Vincent-Salomon
- Institut du Thorax Curie Montsouris, Institut Curie, Paris, France
- Diagnostic and Theranostic Medicine Division, Institut Curie, PSL Research University, Paris, France
| | - Sylvain Baulande
- Institut Curie Genomics of Excellence (ICGex) Platform, PSL Research University, Institut Curie Research Center, Paris, France
| | - Helene D Moreau
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
| | - Christine Sedlik
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
- Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Claire Hivroz
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
| | | | - Jimena Tosello Boari
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France.
- Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France.
| | - Eliane Piaggio
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France.
- Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France.
- Egle Therapeutics, Paris, France.
| |
Collapse
|
2
|
Margiotta A, Frei DM, Sendstad IH, Janssen L, Neefjes J, Bakke O. Invariant chain regulates endosomal fusion and maturation through an interaction with the SNARE Vti1b. J Cell Sci 2020; 133:jcs244624. [PMID: 32907852 DOI: 10.1242/jcs.244624] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 08/25/2020] [Indexed: 01/01/2023] Open
Abstract
The invariant chain (Ii, also known as CD74) is a multifunctional regulator of adaptive immune responses and is responsible for sorting major histocompatibility complex class I and class II (MHCI and MHCII, respectively) molecules, as well as other Ii-associated molecules, to a specific endosomal pathway. When Ii is expressed, endosomal maturation and proteolytic degradation of proteins are delayed and, in non-antigen presenting cells, the endosomal size increases, but the molecular mechanisms underlying this are not known. We identified that a SNARE, Vti1b, is essential for regulating these Ii-induced effects. Vti1b binds to Ii and is localized at the contact sites of fusing Ii-positive endosomes. Furthermore, truncated Ii lacking the cytoplasmic tail, which is not internalized from the plasma membrane, relocates Vti1b to the plasma membrane. Knockout of Ii in an antigen-presenting cell line was found to speed up endosomal maturation, whereas silencing of Vti1b inhibits the Ii-induced maturation delay. Our results suggest that Ii, by interacting with the SNARE Vti1b in antigen-presenting cells, directs specific Ii-associated SNARE-mediated fusion in the early part of the endosomal pathway that leads to a slower endosomal maturation for efficient antigen processing and MHC antigen loading.
Collapse
Affiliation(s)
- Azzurra Margiotta
- Department of Molecular Biosciences, University of Oslo, PB 1066, 0316 Oslo, Norway
| | - Dominik M Frei
- Department of Molecular Biosciences, University of Oslo, PB 1066, 0316 Oslo, Norway
| | | | - Lennert Janssen
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center LUMC, Leiden, The Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center LUMC, Leiden, The Netherlands
| | - Oddmund Bakke
- Department of Molecular Biosciences, University of Oslo, PB 1066, 0316 Oslo, Norway
| |
Collapse
|
3
|
Semple SL, Heath G, Christie D, Braunstein M, Kales SC, Dixon B. Immune stimulation of rainbow trout reveals divergent regulation of MH class II-associated invariant chain isoforms. Immunogenetics 2019; 71:407-420. [PMID: 31037384 DOI: 10.1007/s00251-019-01115-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 04/06/2019] [Indexed: 12/20/2022]
Abstract
Major histocompatibility complex (MHC) class II-associated invariant chain is a chaperone responsible for targeting the MHC class II dimer to the endocytic pathway, thus enabling the loading of exogenous antigens onto the MHC class II receptor. In the current study, in vivo and in vitro methods were used to investigate the regulation of the rainbow trout invariant chain proteins S25-7 and INVX, upon immune system activation. Whole rainbow trout and the macrophage/monocyte-like cell line RTS11 were treated with PMA at concentrations shown to induce IL-1β transcripts and homotypic aggregation of RTS11. S25-7 transcript levels remained unchanged in the gill, spleen, and liver and were found to be significantly decreased in head kidney beginning 24 h post-stimulation. Meanwhile, INVX transcript levels remained unchanged in all tissues studied. Both S25-7 and INVX proteins were produced in gill and spleen tissues but their expression was unaffected by immune system stimulation. Surprisingly, neither INVX nor S25-7 protein was detected in the secondary immune organ, the head kidney. Analysis of RTS11 cultures demonstrated that both INVX and S25-7 transcript levels significantly increased at 96 h and 120 h following PMA stimulation before returning to control levels at 168 h. Meanwhile, at the protein level in RTS11, S25-7 remained unchanged while INVX had a significant decrease at 168 h post-stimulation. These results indicate that neither INVX nor S25-7 is upregulated upon immune system activation; thus, teleosts have evolved a system of immune regulation that is different than that found in mammals.
Collapse
Affiliation(s)
- Shawna L Semple
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, N2L 3G1, Canada
| | - George Heath
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, N2L 3G1, Canada
| | - Darah Christie
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, N2L 3G1, Canada
| | - Marsela Braunstein
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, N2L 3G1, Canada
| | - Stephen C Kales
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, N2L 3G1, Canada
| | - Brian Dixon
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
4
|
Fougeroux C, Turner L, Bojesen AM, Lavstsen T, Holst PJ. Modified MHC Class II-Associated Invariant Chain Induces Increased Antibody Responses against Plasmodium falciparum Antigens after Adenoviral Vaccination. THE JOURNAL OF IMMUNOLOGY 2019; 202:2320-2331. [PMID: 30833346 DOI: 10.4049/jimmunol.1801210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/01/2019] [Indexed: 01/04/2023]
Abstract
Adenoviral vectors can induce T and B cell immune responses to Ags encoded in the recombinant vector. The MHC class II invariant chain (Ii) has been used as an adjuvant to enhance T cell responses to tethered Ag encoded in adenoviral vectors. In this study, we modified the Ii adjuvant by insertion of a furin recognition site (Ii-fur) to obtain a secreted version of the Ii. To test the capacity of this adjuvant to enhance immune responses, we recombined vectors to encode Plasmodium falciparum virulence factors: two cysteine-rich interdomain regions (CIDR) α1 (IT4var19 and PFCLINvar30 var genes), expressed as a dimeric Ag. These domains are members of a highly polymorphic protein family involved in the vascular sequestration and immune evasion of parasites in malaria. The Ii-fur molecule directed secretion of both Ags in African green monkey cells and functioned as an adjuvant for MHC class I and II presentation in T cell hybridomas. In mice, the Ii-fur adjuvant induced a similar T cell response, as previously demonstrated with Ii, accelerated and enhanced the specific Ab response against both CIDR Ags, with an increased binding capacity to the cognate endothelial protein C receptor, and enhanced the breadth of the response toward different CIDRs. We also demonstrate that the endosomal sorting signal, secretion, and the C-terminal part of Ii were needed for the full adjuvant effect for Ab responses. We conclude that engineered secretion of Ii adjuvant-tethered Ags establishes a single adjuvant and delivery vehicle platform for potent T and B cell-dependent immunity.
Collapse
Affiliation(s)
- Cyrielle Fougeroux
- Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark; and
| | - Louise Turner
- Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark; and
| | - Anders Miki Bojesen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Thomas Lavstsen
- Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark; and
| | - Peter Johannes Holst
- Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark; and
| |
Collapse
|
5
|
Mensali N, Grenov A, Pati NB, Dillard P, Myhre MR, Gaudernack G, Kvalheim G, Inderberg EM, Bakke O, Wälchli S. Antigen-delivery through invariant chain (CD74) boosts CD8 and CD4 T cell immunity. Oncoimmunology 2019; 8:1558663. [PMID: 30723591 PMCID: PMC6350688 DOI: 10.1080/2162402x.2018.1558663] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 11/08/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022] Open
Abstract
Eradication of tumors by the immune system relies on the efficient activation of a T-cell response. For many years, the main focus of cancer immunotherapy has been on cytotoxic CD8 T-cell. However, stimulation of CD4 helper T cells is critical for the promotion and maintenance of immune memory, thus a good vaccine should evoke a two-dimensional T-cell response. The invariant chain (Ii) is required for the MHC class II heterodimer to be correctly guided through the cell, loaded with peptide, and expressed on the surface of antigen presenting cells (APC). We previously showed that by replacing the Ii CLIP peptide by an MHC-I cancer peptide, we could efficiently load MHC-I. This prompted us to test whether longer cancer peptides could be loaded on both MHC classes and whether such peptides could be accommodated in the CLIP region of Ii. We here present data showing that expanding the CLIP replacement size leads to T-cell activation. We demonstrate by using long peptides that APCs can present peptides from the same Ii molecule on both MHC-I and -II. In addition, we present evidence that antigen presentation after Ii-loading was superior to an ER-targeted minigene construct, suggesting that ER-localization was not sufficient to obtain efficient MHC-II loading. Finally, we verified that Ii-expressing dendritic cells could prime CD4+ and CD8+ T cells from a naïve population. Taken together our study demonstrates that CLIP peptide replaced Ii constructs fulfill some of the major requirements for an efficient vector for cancer vaccination.
Collapse
Affiliation(s)
- Nadia Mensali
- Department of Cellular Therapy, Department of Oncology, Oslo University Hospital-Radiumhospitalet, Oslo, Norway.,Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | - Amalie Grenov
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway.,Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Niladri Bhusan Pati
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway.,Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Pierre Dillard
- Department of Cellular Therapy, Department of Oncology, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Marit Renée Myhre
- Department of Cellular Therapy, Department of Oncology, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Gustav Gaudernack
- Department of Cancer Immunology, Institute for cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Gunnar Kvalheim
- Department of Cellular Therapy, Department of Oncology, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Else Marit Inderberg
- Department of Cellular Therapy, Department of Oncology, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Oddmund Bakke
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway.,Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Sébastien Wälchli
- Department of Cellular Therapy, Department of Oncology, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| |
Collapse
|
6
|
Thibodeau J, Moulefera MA, Balthazard R. On the structure–function of MHC class II molecules and how single amino acid polymorphisms could alter intracellular trafficking. Hum Immunol 2019; 80:15-31. [DOI: 10.1016/j.humimm.2018.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/25/2018] [Accepted: 10/01/2018] [Indexed: 12/01/2022]
|
7
|
Ancient features of the MHC class II presentation pathway, and a model for the possible origin of MHC molecules. Immunogenetics 2018; 71:233-249. [DOI: 10.1007/s00251-018-1090-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/06/2018] [Indexed: 10/28/2022]
|
8
|
Blurring Boundaries: Receptor Tyrosine Kinases as functional G Protein-Coupled Receptors. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 339:1-40. [DOI: 10.1016/bs.ircmb.2018.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Pérez-Montesinos G, López-Ortega O, Piedra-Reyes J, Bonifaz LC, Moreno J. Dynamic Changes in the Intracellular Association of Selected Rab Small GTPases with MHC Class II and DM during Dendritic Cell Maturation. Front Immunol 2017; 8:340. [PMID: 28396666 PMCID: PMC5367080 DOI: 10.3389/fimmu.2017.00340] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/09/2017] [Indexed: 01/13/2023] Open
Abstract
Antigen processing for presentation by major histocompatibility complex class II (MHCII) molecules requires the latter to travel through the endocytic pathway together with its chaperons: the invariant chain (Ii) and DM. Nevertheless, the nature of the compartments where MHCII molecules travel to acquire peptides lacks definition regarding molecules involved in intracellular vesicular trafficking, such as Rab small GTPases. We aimed to define which Rab proteins are present during the intracellular transport of MHCII, DM, and Ii through the endocytic pathway on their route to the cell surface during dendritic cell (DC) maturation. We examined, by means of three-color confocal microscopy, the association of MHCII, DM, and Ii with Rab5, Rab7, Rab9, and Rab11 during the maturation of bone marrow-derived or spleen DC in response to LPS as an inflammatory stimulus. Prior to the stage of immature DC, MHCII migrated from diffuse small cytoplasmic vesicles, predominantly Rab5+Rab7- and Rab5+Rab7+ into a pericentriolar Rab5+Rab7+Rab9+ cluster, with Rab11+ areas. As DC reached the mature phenotype, MHCII left the pericentriolar endocytic compartments toward the cell surface in Rab11+ and Rab9+Rab11+ vesicles. The invariant chain and MHCII transport pathways were not identical. DM and MHCII appeared to arrive to pericentriolar endocytic compartments of immature DC through partially different routes. The association of MHCII molecules with distinct Rab GTPases during DC maturation suggests that after leaving the biosynthetic pathway, MHCII sequentially traffic from typical early endosomes to multivesicular late endosomes to finally arrive at the cell surface in Rab11+ recycling-type endosomes. In immature DCs, DM encounters transiently MHCII in the Rab5+Rab7+Rab9+ compartments, to remain there in mature DC.
Collapse
Affiliation(s)
- Gibrán Pérez-Montesinos
- Research Unit on Autoimmune Diseases, Research Unit on Immunochemistry, Centro México Nacional Siglo XXI, IMSS, Instituto Mexicano del Seguro Social, Mexico City, Distrito Federal, Mexico
- Centro Dermatológico “Dr. Ladislao de la Pascua”, Secretaría de Salud del Distrito Federal, Mexico City, Distrito Federal, Mexico
| | - Orestes López-Ortega
- Hospital Juárez de México, Secretaría de Salud, Mexico City, Distrito Federal, Mexico
| | - Jessica Piedra-Reyes
- Hospital Juárez de México, Secretaría de Salud, Mexico City, Distrito Federal, Mexico
| | - Laura C. Bonifaz
- Research Unit on Autoimmune Diseases, Research Unit on Immunochemistry, Centro México Nacional Siglo XXI, IMSS, Instituto Mexicano del Seguro Social, Mexico City, Distrito Federal, Mexico
| | - José Moreno
- Research Unit on Autoimmune Diseases, Research Unit on Immunochemistry, Centro México Nacional Siglo XXI, IMSS, Instituto Mexicano del Seguro Social, Mexico City, Distrito Federal, Mexico
- Hospital Juárez de México, Secretaría de Salud, Mexico City, Distrito Federal, Mexico
| |
Collapse
|
10
|
Lukhele S, Cohen ÉA. Conserved residues within the HIV-1 Vpu transmembrane-proximal hinge region modulate BST2 binding and antagonism. Retrovirology 2017; 14:18. [PMID: 28288652 PMCID: PMC5348903 DOI: 10.1186/s12977-017-0345-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/05/2017] [Indexed: 11/10/2022] Open
Abstract
Background BST2 inhibits HIV-1 release by tethering nascent virions to the surface of infected cells. HIV-1 Vpu overcomes this restriction by removing BST2 from viral budding sites via BST2 intracellular trapping and sequestration, surface downregulation and/or displacement mechanisms. Vpu is composed of a short luminal tail, a transmembrane domain (TMD) and a cytoplasmic hinge region that is followed by two helices. BST2 counteraction relies on the ability of Vpu to physically bind BST2 through TMD interactions and recruit the clathrin-dependent trafficking machinery via a canonical acidic di-leucine signalling motif within the helix-2 of Vpu. The highly conserved Vpu transmembrane-proximal hinge region encompasses residues that resemble an acidic leucine-based trafficking motif, whose functional roles are currently ill-defined. In this study, we investigated the contribution of these residues towards Vpu-mediated BST2 antagonism. Results We show that while these conserved residues have no intrinsic activity on the cellular distribution of Vpu in the absence of BST2, they regulate the ability of Vpu to bind to BST2 and, consequently, govern both BST2-dependent trafficking properties of the protein as well as its co-localization with BST2. Moreover, these residues, particularly a glutamic acid residue positioned immediately following the TMD, are a determinant not only for efficient targeting of BST2, but also binding and degradation of CD4, another host membrane protein targeted by Vpu. Mechanistically, our data are consistent with a role of these residues in the maintenance of the Vpu TMD conformational configuration such that interactions with membrane-associated host targets are favoured. Conclusions Altogether, this work demonstrates an important regulatory role of the transmembrane-proximal Vpu hinge region residues towards enabling the protein to efficiently engage its target host proteins. Thus, this highly conserved, cytosolic Vpu hinge region may represent an attractive target for the development of anti-Vpu inhibitors. Electronic supplementary material The online version of this article (doi:10.1186/s12977-017-0345-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sabelo Lukhele
- Laboratory of Human Retrovirology, Institut de Recherches Cliniques de Montréal (IRCM), 110, Pine Avenue West, Montreal, QC, H2W 1R7, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Éric A Cohen
- Laboratory of Human Retrovirology, Institut de Recherches Cliniques de Montréal (IRCM), 110, Pine Avenue West, Montreal, QC, H2W 1R7, Canada. .,Division of Experimental Medicine, McGill University, Montreal, QC, H3A 1A3, Canada. .,Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC, H3T 1J4, Canada.
| |
Collapse
|
11
|
Schröder B. The multifaceted roles of the invariant chain CD74--More than just a chaperone. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1269-81. [PMID: 27033518 DOI: 10.1016/j.bbamcr.2016.03.026] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 01/13/2023]
Abstract
The invariant chain (CD74) is well known for its essential role in antigen presentation by mediating assembly and subcellular trafficking of the MHCII complex. Beyond this, CD74 has also been implicated in a number of processes independent of MHCII. These include the regulation of endosomal trafficking, cell migration and cellular signalling as surface receptor of the pro-inflammatory cytokine macrophage migration inhibitory factor (MIF). In several forms of cancer, CD74 is up-regulated and associated with enhanced proliferation and metastatic potential. In this review, an overview of the diverse biological functions of the CD74 protein is provided with a particular focus on how these may be regulated. In particular, proteolysis of CD74 will be discussed as a central mechanism to control the actions of this important protein at different levels.
Collapse
Affiliation(s)
- Bernd Schröder
- Biochemical Institute, Christian Albrechts University of Kiel, Otto-Hahn-Platz 9, D-24118 Kiel, Germany.
| |
Collapse
|
12
|
Chabaud M, Heuzé ML, Bretou M, Vargas P, Maiuri P, Solanes P, Maurin M, Terriac E, Le Berre M, Lankar D, Piolot T, Adelstein RS, Zhang Y, Sixt M, Jacobelli J, Bénichou O, Voituriez R, Piel M, Lennon-Duménil AM. Cell migration and antigen capture are antagonistic processes coupled by myosin II in dendritic cells. Nat Commun 2015; 6:7526. [PMID: 26109323 PMCID: PMC4491822 DOI: 10.1038/ncomms8526] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 05/16/2015] [Indexed: 12/23/2022] Open
Abstract
The immune response relies on the migration of leukocytes and on their ability to stop in precise anatomical locations to fulfil their task. How leukocyte migration and function are coordinated is unknown. Here we show that in immature dendritic cells, which patrol their environment by engulfing extracellular material, cell migration and antigen capture are antagonistic. This antagonism results from transient enrichment of myosin IIA at the cell front, which disrupts the back-to-front gradient of the motor protein, slowing down locomotion but promoting antigen capture. We further highlight that myosin IIA enrichment at the cell front requires the MHC class II-associated invariant chain (Ii). Thus, by controlling myosin IIA localization, Ii imposes on dendritic cells an intermittent antigen capture behaviour that might facilitate environment patrolling. We propose that the requirement for myosin II in both cell migration and specific cell functions may provide a general mechanism for their coordination in time and space.
Collapse
Affiliation(s)
- Mélanie Chabaud
- Inserm U932, Institut Curie, 26 rue d'Ulm, 75248 Paris cedex 05, France
| | - Mélina L. Heuzé
- Inserm U932, Institut Curie, 26 rue d'Ulm, 75248 Paris cedex 05, France
| | - Marine Bretou
- Inserm U932, Institut Curie, 26 rue d'Ulm, 75248 Paris cedex 05, France
| | - Pablo Vargas
- Inserm U932, Institut Curie, 26 rue d'Ulm, 75248 Paris cedex 05, France
| | - Paolo Maiuri
- CNRS UMR144, Institut Curie, 26 rue d'Ulm, 75248 Paris cedex 05, France
| | - Paola Solanes
- Inserm U932, Institut Curie, 26 rue d'Ulm, 75248 Paris cedex 05, France
| | - Mathieu Maurin
- Inserm U932, Institut Curie, 26 rue d'Ulm, 75248 Paris cedex 05, France
| | - Emmanuel Terriac
- CNRS UMR144, Institut Curie, 26 rue d'Ulm, 75248 Paris cedex 05, France
| | - Maël Le Berre
- CNRS UMR144, Institut Curie, 26 rue d'Ulm, 75248 Paris cedex 05, France
| | - Danielle Lankar
- Inserm U932, Institut Curie, 26 rue d'Ulm, 75248 Paris cedex 05, France
| | - Tristan Piolot
- CNRS UMR3215/Inserm U934, Institut Curie, 26 rue d'Ulm, 75248 Paris cedex 05, France
| | - Robert S. Adelstein
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Yingfan Zhang
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Michael Sixt
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Jordan Jacobelli
- National Jewish Health & University of Colorado, 1250 14th Street, Denver, USA
| | - Olivier Bénichou
- CNRS UMR 7600, Université Pierre et Marie Curie, 4 Place Jussieu, 7600 Paris, France
| | - Raphaël Voituriez
- CNRS UMR 7600, Université Pierre et Marie Curie, 4 Place Jussieu, 7600 Paris, France
- CNRS FRE 3231, Université Pierre et Marie Curie, 4 Place Jussieu, 75005 Paris, France
| | - Matthieu Piel
- CNRS UMR144, Institut Curie, 26 rue d'Ulm, 75248 Paris cedex 05, France
| | | |
Collapse
|
13
|
Uhlenbrock F, van Andel E, Andresen L, Skov S. A conserved WW domain-like motif regulates invariant chain-dependent cell-surface transport of the NKG2D ligand ULBP2. Mol Immunol 2015; 66:418-27. [PMID: 25983110 DOI: 10.1016/j.molimm.2015.04.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 04/16/2015] [Accepted: 04/22/2015] [Indexed: 11/16/2022]
Abstract
Malignant cells expressing NKG2D ligands on their cell surface can be directly sensed and killed by NKG2D-bearing lymphocytes. To ensure this immune recognition, accumulating evidence suggests that NKG2D ligands are trafficed via alternative pathways to the cell surface. We have previously shown that the NKG2D ligand ULBP2 traffics over an invariant chain (Ii)-dependent pathway to the cell surface. This study set out to elucidate how Ii regulates ULBP2 cell-surface transport: We discovered conserved tryptophan (Trp) residues in the primary protein sequence of ULBP1-6 but not in the related MICA/B. Substitution of Trp to alanine resulted in cell-surface inhibition of ULBP2 in different cancer cell lines. Moreover, the mutated ULBP2 constructs were retained and not degraded inside the cell, indicating a crucial role of this conserved Trp-motif in trafficking. Finally, overexpression of Ii increased surface expression of wt ULBP2 while Trp-mutants could not be expressed, proposing that this Trp-motif is required for an Ii-dependent cell-surface transport of ULBP2. Aberrant soluble ULBP2 is immunosuppressive. Thus, targeting a distinct protein module on the ULBP2 sequence could counteract this abnormal expression of ULBP2.
Collapse
Affiliation(s)
- Franziska Uhlenbrock
- Laboratory of Immunology, Section for Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 7, DK-1870 Frederiksberg, Denmark.
| | - Esther van Andel
- Laboratory of Immunology, Section for Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 7, DK-1870 Frederiksberg, Denmark
| | - Lars Andresen
- Laboratory of Immunology, Section for Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 7, DK-1870 Frederiksberg, Denmark
| | - Søren Skov
- Laboratory of Immunology, Section for Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 7, DK-1870 Frederiksberg, Denmark.
| |
Collapse
|
14
|
Hennies CM, Lehn MA, Janssen EM. Quantitating MHC class II trafficking in primary dendritic cells using imaging flow cytometry. J Immunol Methods 2015; 423:18-28. [PMID: 25967952 DOI: 10.1016/j.jim.2015.04.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 04/24/2015] [Accepted: 04/30/2015] [Indexed: 01/24/2023]
Abstract
Presentation of antigenic peptides in MHC class II (MHCII) on dendritic cells (DCs) is the first step in the activation of antigen-specific CD4(+)T cells. The expression of surface MHCII-peptide complexes is tightly regulated as the frequency of MHCII-peptide complexes can affect the magnitude, as well as the phenotype of the ensuing CD4(+)T cell response. The surface MHCII-peptide levels are determined by the balance between expression of newly generated complexes, complex internalization, and their subsequent re-emergence or degradation. However, the molecular mechanisms that underpin these processes are still poorly understood. Here we describe a multispectral imaging flow cytometry assay to visualize MHCII trafficking that can be used as a tool to dissect the molecular mechanisms that regulate MHCII homeostasis in primary mouse and human DCs.
Collapse
Affiliation(s)
- Cassandra M Hennies
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Maria A Lehn
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Edith M Janssen
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
15
|
Genève L, Gauthier C, Thibodeau J. The D-6 mouse monoclonal antibody recognizes the CD74 cytoplasmic tail. Monoclon Antib Immunodiagn Immunother 2014; 33:221-7. [PMID: 25171001 DOI: 10.1089/mab.2013.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The invariant chain (Ii; CD74) is a multifunctional protein of the immune system and a major player in the presentation of exogenous antigens to T cells. In the endoplasmic reticulum (ER), Ii assists the folding and trafficking of MHC class II molecules. In the present study, we characterized the recently commercialized D-6 monoclonal antibody (MAb) made against a polypeptide spanning the entire sequence of the p33 isoform of human Ii. Using transgenic mice expressing the human p35 isoform, we showed by flow cytometry that D-6 only slightly cross-reacts with mouse Ii in permeabilized splenocytes. Analysis of the human B lymphoblastoid cell line LG2 revealed that D-6 recognizes Ii only upon membrane permeabilization. Variants of Ii bearing specific mutations or deletions were transfected in human cells to map the D-6 epitope. Our results showed that this MAb binds to the N-terminal cytoplasmic domain of Ii and that the epitope was destroyed upon mutagenesis of the two leucine-based endosomal targeting motifs. Thus, D-6 cannot be used for rapid flow cytometric assessment of CD74 cell surface expression and would be ineffective as a drug conjugate for the treatment of hematological malignancies.
Collapse
Affiliation(s)
- Laetitia Genève
- Laboratoire d'Immunologie Moléculaire, Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal , Montréal, Canada
| | | | | |
Collapse
|
16
|
The human-specific invariant chain isoform Iip35 modulates Iip33 trafficking and function. Immunol Cell Biol 2014; 92:791-8. [PMID: 24983457 DOI: 10.1038/icb.2014.54] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 05/12/2014] [Accepted: 05/31/2014] [Indexed: 12/24/2022]
Abstract
The invariant chain (Ii) is a multifunctional protein, which has an essential role in the assembly and transport of major histocompatibility complex class II (MHC II) molecules. From a single gene, Ii is synthesized as four different isoforms: Iip33, Iip35, Iip41 and Iip43. Iip35 and Iip43 are specific to humans, and are formed due to an upstream alternative translation site, resulting in an N-terminal extension of 16 amino acids. This extension harbors a strong endoplasmic reticulum (ER) retention motif. Consequently, Iip35 or Iip43 expressed alone are retained in the ER, whereas Iip33 and Iip41 rapidly traffic to the endosomal pathway. Endogenously expressed, the four isoforms form mixed heterotrimers in the ER; however, mainly due to the absence of the Iip35/p43 isoforms in mice, little is known about how they influence general Ii function. In this study, we have co-expressed Iip33 and Iip35 in human cells with and without MHC II to gain a better understanding of how Iip35 isoform influences the cellular properties of Iip33. We find that Iip35 significantly affects the properties of Iip33. In the presence of Iip35, the transport of Iip33 out of the ER is delayed, its half-life is dramatically prolonged and its ability to induce enlarged endosomes and delayed endosomal maturation is abrogated.
Collapse
|
17
|
Something old, something new and something borrowed: emerging paradigm of insulin-like growth factor type 1 receptor (IGF-1R) signaling regulation. Cell Mol Life Sci 2013; 71:2403-27. [PMID: 24276851 PMCID: PMC4055838 DOI: 10.1007/s00018-013-1514-y] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 10/17/2013] [Accepted: 11/07/2013] [Indexed: 12/14/2022]
Abstract
The insulin-like growth factor type 1 receptor (IGF-1R) plays a key role in the development and progression of cancer; however, therapeutics targeting it have had disappointing results in the clinic. As a receptor tyrosine kinase (RTK), IGF-1R is traditionally described as an ON/OFF system, with ligand stabilizing the ON state and exclusive kinase-dependent signaling activation. Newly added to the traditional model, ubiquitin-mediated receptor downregulation and degradation was originally described as a response to ligand/receptor interaction and thus inseparable from kinase signaling activation. Yet, the classical model has proven over-simplified and insufficient to explain experimental evidence accumulated over the last decade, including kinase-independent signaling, unbalanced signaling, or dissociation between signaling and receptor downregulation. Based on the recent findings that IGF-1R “borrows” components of G-protein coupled receptor (GPCR) signaling, including β-arrestins and G-protein-related kinases, we discuss the emerging paradigm for the IGF-1R as a functional RTK/GPCR hybrid, which integrates the kinase signaling with the IGF-1R canonical GPCR characteristics. The contradictions to the classical IGF-1R signaling concept as well as the design of anti-IGF-1R therapeutics treatment are considered in the light of this paradigm shift and we advocate recognition of IGF-1R as a valid target for cancer treatment.
Collapse
|
18
|
Internalizing MHC class II-peptide complexes are ubiquitinated in early endosomes and targeted for lysosomal degradation. Proc Natl Acad Sci U S A 2013; 110:20188-93. [PMID: 24277838 DOI: 10.1073/pnas.1312994110] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
As sentinels of the immune system, dendritic cells (DCs) continuously generate and turnover antigenic peptide-MHC class II complexes (pMHC-II). pMHC-II generation is a complex process that involves many well-characterized MHC-II biosynthetic intermediates; however, the mechanisms leading to MHC-II turnover/degradation are poorly understood. We now show that pMHC-II complexes undergoing clathrin-independent endocytosis from the DC surface are efficiently ubiquitinated by the E3 ubiquitin ligase March-I in early endosomes, whereas biosynthetically immature MHC-II-Invariant chain (Ii) complexes are not. The inability of MHC-II-Ii to serve as a March-I substrate is a consequence of Ii sorting motifs that divert the MHC-II-Ii complex away from March-I(+) early endosomes. When these sorting motifs are mutated, or when clathrin-mediated endocytosis is inhibited, MHC-II-Ii complexes internalize by using a clathrin-independent endocytosis pathway and are now ubiquitinated as efficiently as pMHC-II complexes. These data show that the selective ubiquitination of internalizing surface pMHC-II in March-I(+) early endosomes promotes degradation of "old" pMHC-II and spares forms of MHC-II that have not yet loaded antigenic peptides or have not yet reached the DC surface.
Collapse
|
19
|
Genève L, Ménard C, Labrecque N, Thibodeau J. The p35 human invariant chain in transgenic mice restores mature B cells in the absence of endogenous CD74. Int Immunol 2012; 24:645-60. [PMID: 22966065 DOI: 10.1093/intimm/dxs066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The invariant chain (Ii; CD74) has pleiotropic functions and Ii-deficient mice show defects in MHC class II (MHC II) transport and B cell maturation. In humans, but not in mice, a minor Iip35 isoform of unknown function includes an endoplasmic reticulum-retention motif that is masked upon binding of MHC II molecules. To gain further insight into the roles of Ii in B cell homeostasis, we generated Iip35 transgenic mice (Tgp35) and bred these with mice deficient for Ii (Tgp35/mIiKO). Iip35 was shown to compete with mIi for the binding to I-A(b) . In addition, classical endosomal degradation products (p20/p10) and the class II-associated invariant chain peptide (CLIP) fragment were detected. Moreover, Iip35 favored the formation of compact peptide-MHC II complexes in the Tgp35/mIiKO mice. I-A(b) levels were restored at the plasma membrane of mature B cells but Iip35 affected the fine conformation of MHC II molecules as judged by the increased reactivity of the AF6-120.1 antibody in permeabilized cells. However, the human Iip35 cannot fully replace the endogenous Ii. Indeed, most immature B cells in the bone marrow and spleen of transgenic mice had reduced surface expression of MHC II molecules, demonstrating a dominant-negative effect of Iip35 in Tgp35 mice. Interestingly, while maturation to follicular B cells was normal, Iip35 expression appeared to reduce the proportions of marginal zone B cells. These results emphasize the importance of Ii in B cell homeostasis and suggest that Iip35 could have regulatory functions.
Collapse
Affiliation(s)
- Laetitia Genève
- Laboratoire d'Immunologie Moléculaire, Département de Microbiologie et Immunologie, Université de Montréal, Montréal, Québec H3T1J4, Canada
| | | | | | | |
Collapse
|
20
|
Karakikes I, Morrison IEG, O'Toole P, Metodieva G, Navarrete CV, Gomez J, Miranda-Sayago JM, Cherry RJ, Metodiev M, Fernandez N. Interaction of HLA-DR and CD74 at the cell surface of antigen-presenting cells by single particle image analysis. FASEB J 2012; 26:4886-96. [PMID: 22889831 DOI: 10.1096/fj.12-211466] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Major histocompatibility complex (MHC) class II-associated antigen presentation involves an array of interacting molecules. CD74, the cell surface isoform of the MHC class II-associated invariant chain, is one such molecule; its role remains poorly defined. To address this, we have employed a high-resolution single-particle imaging method for quantifying the colocalization of CD74 with human leukocyte antigen (HLA)-DR molecules on human fibroblast cells known for their capacity to function as antigen-presenting cells. We have also examined whether the colocalization induces internalization of HLA-DR using HA(307-319), a "universal" peptide that binds specifically to the peptide-binding groove of all HLA-DR molecules, irrespective of their alleles. We have determined that 25 ± 1.3% of CD74 and 17 ± 0.3% of HLA-DR are colocalized, and the association of CD74 with HLA-DR and the internalization of HLA-DR are both inhibited by HA(307-319). A similar inhibition of HLA-DR internalization was observed in freshly isolated monocyte-derived dendritic cells. A key role of CD74 is to translocate HLA-DR molecules to early endosomes for reloading with peptides prior to recycling to the cell surface. We conclude that CD74 regulates the balance of peptide-occupied and peptide-free forms of MHC class II at the cell surface.
Collapse
Affiliation(s)
- Ioannis Karakikes
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester C04 3SQ, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Jahnke M, Trowsdale J, Kelly AP. Ubiquitination of human leukocyte antigen (HLA)-DM by different membrane-associated RING-CH (MARCH) protein family E3 ligases targets different endocytic pathways. J Biol Chem 2012; 287:7256-64. [PMID: 22247549 PMCID: PMC3293585 DOI: 10.1074/jbc.m111.305961] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 01/12/2012] [Indexed: 01/24/2023] Open
Abstract
HLA-DM plays an essential role in the peptide loading of classical class II molecules and is present both at the cell surface and in late endosomal peptide-loading compartments. Trafficking of DM within antigen-presenting cells is complex and is, in part, controlled by a tyrosine-based targeting signal present in the cytoplasmic tail of DMβ. Here, we show that DM also undergoes post-translational modification through ubiquitination of a single lysine residue present in the cytoplasmic tail of the α chain, DMα. Ubiquitination of DM by MARCH1 and MARCH9 induced loss of DM molecules from the cell surface by a mechanism that cumulatively involved both direct attachment of ubiquitin chains to DMα and a functional tyrosine-based signal on DMβ. In contrast, MARCH8-induced loss of surface DM was entirely dependent upon the tyrosine signal on DMβ. In the absence of this tyrosine residue, levels of DM remained unchanged irrespective of whether DMα was ubiquitinated by MARCH8. The influence of MARCH8 was indirect and may have resulted from modification of components of the endocytic machinery by ubiquitination.
Collapse
Affiliation(s)
- Martin Jahnke
- From the Division of Immunology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - John Trowsdale
- From the Division of Immunology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Adrian P. Kelly
- From the Division of Immunology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| |
Collapse
|
22
|
Liu S, Chen F, Dai Y, Wu C, Ni Q, Yu W. Molecular characterization and tissue-specific expression of invariant chain in the muscovy duck (Cairina moschata). GENETICS AND MOLECULAR RESEARCH 2011; 10:2867-80. [DOI: 10.4238/2011.november.22.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
ten Broeke T, de Graaff A, van't Veld EM, Wauben MHM, Stoorvogel W, Wubbolts R. Trafficking of MHC class II in dendritic cells is dependent on but not regulated by degradation of its associated invariant chain. Traffic 2009; 11:324-31. [PMID: 20051049 DOI: 10.1111/j.1600-0854.2009.01024.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In dendritic cells (DC), newly synthesized MHCII is directed to endosomes by its associated invariant chain (Ii). Here, Ii is degraded after which MHCII is loaded with peptides. In immature DC, ubiquitination of peptide-loaded MHCII drives its sorting to lysosomes for degradation. Ubiquitination of MHCII is strongly reduced in response to inflammatory stimuli, resulting in increased expression of MHCII at the plasma membrane. Whether surface exposure of MHCII is also regulated during DC maturation by changing the rate of Ii degradation remained unresolved by conflicting results in the literature. We here pinpoint experimental problems that have contributed to these controversies and demonstrate that immature and mature DC degrade Ii equally efficient at proper culture conditions. Only when DC were cultured in glutamine containing media, endosome acidification and Ii degradation were restricted in immature DC and enhanced in response to lipopolysaccharide (LPS). These effects are caused by ammonia, a glutamine decomposition product. This artificial behavior could be prevented by culturing DC in media containing a stable dipeptide as glutamine source. We conclude that Ii degradation is a prerequisite for but not a rate limiting step in MHCII processing.
Collapse
Affiliation(s)
- Toine ten Broeke
- Department of Biochemistry and Cell Biology, Utrecht University, PO Box 80.176, NL-3508 TD Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
24
|
Landsverk OJB, Bakke O, Gregers TF. MHC II and the endocytic pathway: regulation by invariant chain. Scand J Immunol 2009; 70:184-93. [PMID: 19703008 DOI: 10.1111/j.1365-3083.2009.02301.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The major histocompatibility complex (MHC) class I and II molecules perform vital functions in innate and adaptive immune responses towards invading pathogens. MHC class I molecules load peptides in the endoplasmatic reticulum (ER) and display them to the T cell receptors (TcR) on CD8(+) T lymphocytes. MHC class II molecules (MHC II) acquire their peptides in endosomes and present these to the TcR on CD4+ T lymphocytes. They are vital for the generation of humoral immune responses. MHC II assembly in the ER and trafficking to endosomes is guided by a specialized MHC II chaperone termed the invariant chain (Ii). Ii self-associates into a trimer in the ER, this provides a scaffold for the assembly of three MHC II heterodimers and blocks their peptide binding grooves, thereby avoiding premature peptide binding. Ii then transports the nascent MHC II to more or less specialized compartment where they can load peptides derived from internalized pathogens.
Collapse
Affiliation(s)
- O J B Landsverk
- Centre for Immune Regulation, Department of Molecular Biosciences, University of Oslo, 0316 Oslo, Norway
| | | | | |
Collapse
|
25
|
Xu FZ, Ye H, Wang JJ, Yu WY. The effect of site-directed mutagenesis of the ambient amino acids of leucine-based sorting motifs on the localization of chicken invariant chain. Poult Sci 2008; 87:1980-6. [PMID: 18809859 DOI: 10.3382/ps.2008-00111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two Leu residues and their ambient amino acid residues are known to exist in the cytosolic tail of chicken invariant chain (Ii), and these play an important role as motifs in mediating the sorting endocytic pathway. We performed 20 mutations via site-directed mutagenesis by the PCR megaprimer method to study the effect of some ambient amino residues of both Leu on the localization of chicken Ii. These mutated fragments were ligated to the vector pEGFP-C1. The recombinant plasmids were transiently transfected into COS-7 cells with Lipofectamine 2000. Furthermore, the fluorescence of located fusion proteins (green fluorescent protein-Ii) was observed with a fluorescence microscope. Our results indicated that 2 Leu-based motifs are required for chicken Ii intracellular localization, and both motifs independently mediate this function of the Ii. The other amino acid residues surrounding both Leu also influence Ii-induced endosomal vacuolation. In addition, we found that Pro19, which is near the Val17-Leu18 motif, was a key residue for chicken Ii intracellular localization. Not only is it critical for endocytic targeting to each Leu, but its unique mutation can also result in altering the function of chicken Ii.
Collapse
Affiliation(s)
- F Z Xu
- Key Laboratory of Zoonoses of Anhui Province, Anhui Agricultural University, Hefei, 230036, China
| | | | | | | |
Collapse
|
26
|
Competition model for upregulation of the major histocompatibility complex class II-associated invariant chain by human immunodeficiency virus type 1 Nef. J Virol 2008; 82:7758-67. [PMID: 18524831 DOI: 10.1128/jvi.02668-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) Nef protein upregulates the expression of the invariant chain (Ii)/major histocompatibility complex class II (MHC-II) complex at the cell surface. This complex appears to reach the antigen-loading endosomal compartment at least in part via an indirect pathway in which it is internalized from the cell surface via the adaptor protein 2 (AP-2) complex. Here we provide evidence for a competition model to explain how Nef upregulates the expression of Ii at the cell surface. In this model, Nef and Ii compete for binding to AP-2. In support of this model, Nef decreased the rate of internalization of Ii from the cell surface. The AP-binding dileucine motif in Nef, ENTSLL(165), was necessary and sufficient for the upregulation of Ii. In addition, two leucine-based AP-binding motifs in the Ii cytoplasmic tail, DDQRDLI(8) and EQLPML(17), were critical for the efficient upregulation of Ii by Nef. Experiments using Nef variants in which the native dileucine-based sorting motif was replaced with similar motifs from cellular transmembrane proteins allowed modulation of AP-binding specificity. Analysis of these variants suggested that the binding of Nef to AP-2 is sufficient to upregulate Ii at the plasma membrane. Finally, interference with the expression of AP-2 caused an upregulation of Ii at the plasma membrane, and this decreased the effect of Nef. These data indicate that Nef usurps AP-2 complexes to dysregulate Ii trafficking and potentially interfere with antigen presentation in the context of MHC-II.
Collapse
|
27
|
Fei H, Grygoruk A, Brooks ES, Chen A, Krantz DE. Trafficking of vesicular neurotransmitter transporters. Traffic 2008; 9:1425-36. [PMID: 18507811 DOI: 10.1111/j.1600-0854.2008.00771.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vesicular neurotransmitter transporters are required for the storage of all classical and amino acid neurotransmitters in secretory vesicles. Transporter expression can influence neurotransmitter storage and release, and trafficking targets the transporters to different types of secretory vesicles. Vesicular transporters traffic to synaptic vesicles (SVs) as well as large dense core vesicles and are recycled to SVs at the nerve terminal. Some of the intrinsic signals for these trafficking events have been defined and include a dileucine motif present in multiple transporter subtypes, an acidic cluster in the neural isoform of the vesicular monoamine transporter (VMAT) 2 and a polyproline motif in the vesicular glutamate transporter (VGLUT) 1. The sorting of VMAT2 and the vesicular acetylcholine transporter to secretory vesicles is regulated by phosphorylation. In addition, VGLUT1 uses alternative endocytic pathways for recycling back to SVs following exocytosis. Regulation of these sorting events has the potential to influence synaptic transmission and behavior.
Collapse
Affiliation(s)
- Hao Fei
- Departments of Psychiatry and Neurobiology, Gonda Goldschmied Neuroscience and Genetics Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1761, USA
| | | | | | | | | |
Collapse
|
28
|
Zarei MM, Song M, Wilson RJ, Cox N, Colom LV, Knaus HG, Stefani E, Toro L. Endocytic trafficking signals in KCNMB2 regulate surface expression of a large conductance voltage and Ca2+-activated K+ channel. Neuroscience 2007; 147:80-9. [PMID: 17521822 DOI: 10.1016/j.neuroscience.2007.04.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 04/05/2007] [Accepted: 04/06/2007] [Indexed: 11/22/2022]
Abstract
Large conductance voltage and calcium-activated K(+) channels play critical roles in neuronal excitability and vascular tone. Previously, we showed that coexpression of the transmembrane beta2 subunit, KCNMB2, with the human pore-forming alpha subunit of the large conductance voltage and Ca(2+)-activated K(+) channel (hSlo) yields inactivating currents similar to those observed in hippocampal neurons [Hicks GA, Marrion NV (1998) Ca(2+)-dependent inactivation of large conductance Ca(2+)-activated K(+) (BK) channels in rat hippocampal neurones produced by pore block from an associated particle. J Physiol (Lond) 508 (Pt 3):721-734; Wallner M, Meera P, Toro L (1999b) Molecular basis of fast inactivation in voltage and Ca(2+)-activated K(+) channels: A transmembrane beta-subunit homolog. Proc Natl Acad Sci U S A 96:4137-4142]. Herein, we report that coexpression of beta2 subunit with hSlo can also modulate hSlo surface expression levels in HEK293T cells. We found that, when expressed alone, beta2 subunit appears to reach the plasma membrane but also displays a distinct intracellular punctuated pattern that resembles endosomal compartments. beta2 Subunit coexpression with hSlo causes two biological effects: i) a shift of hSlo's intracellular expression pattern from a relatively diffuse to a distinct punctated cytoplasmic distribution overlapping beta2 expression; and ii) a decrease of hSlo surface expression that surpassed an observed small decrease in total hSlo expression levels. beta2 Site-directed mutagenesis studies revealed two putative endocytic signals at the C-terminus of beta2 that can control expression levels of hSlo. In contrast, a beta2 N-terminal consensus endocytic signal had no effect on hSlo expression levels. Thus, beta2 subunit not only can influence hSlo currents but also has the ability to limit hSlo surface expression levels via an endocytic mechanism. This new mode of beta2 modulation of hSlo may depend on particular coregulatory mechanisms in different cell types.
Collapse
Affiliation(s)
- M M Zarei
- Department of Anesthesiology, University of California-Los Angeles, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Silva DSP, Reis MIR, Nascimento DS, do Vale A, Pereira PJB, dos Santos NMS. Sea bass (Dicentrarchus labrax) invariant chain and class II major histocompatibility complex: sequencing and structural analysis using 3D homology modelling. Mol Immunol 2007; 44:3758-76. [PMID: 17512596 DOI: 10.1016/j.molimm.2007.03.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 03/27/2007] [Accepted: 03/29/2007] [Indexed: 11/21/2022]
Abstract
The present manuscript reports for the first time the sequencing and characterisation of sea bass (sb) MHCII alpha and beta chains and Ii chain cDNAs as well as their expression analysis under resting state. 3D homology modelling, using crystal structures from mammalian orthologues, has been used to illustrate and support putative structural homologies of the sea bass counterparts. The sbIi cDNA consists of 96 bp of 5'-UTR, a 843 bp open reading frame (ORF) and 899 bp of 3'-UTR including a canonical polyadenylation signal 16 nucleotides before the polyadenylation tail. The ORF was translated into a 280 amino acid sequence, in which all characteristic domains found in the Ii p41 human form could be identified, including the cytoplasmic N-terminus domain, the transmembrane (TM) region, the CLIP domain, the trimerization domain and the thyroglobulin (Tg) type I domain. The trimerization and Tg domains of sbIi were successfully modelled using the human counterparts as templates. Four different sequences of each class II alpha and beta MHCII were obtained from a single fish, apparently not derived from a single locus. All the characteristic features of the MHCII chain structure could be identified in the predicted ORF of sea bass alpha and beta sequences, consisting of leader peptide (LP), alpha1/beta1 and alpha2/beta2 domains, connecting peptide and TM and cytoplasmic regions. Furthermore, independently of the HLA-DR crystal structure used as template in homology modelling, a similar predicted 3D structure and trimeric quaternary architecture was obtained for sbMHC, with major deviations occurring only within the sea bass MHCII alpha1 domain.
Collapse
MESH Headings
- 5' Untranslated Regions/genetics
- Amino Acid Sequence
- Animals
- Antigens, Differentiation, B-Lymphocyte/chemistry
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Base Sequence
- Bass/genetics
- Bass/immunology
- DNA, Complementary/genetics
- Gene Expression Regulation
- Histocompatibility Antigens Class II/chemistry
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/metabolism
- Hydrophobic and Hydrophilic Interactions
- Models, Molecular
- Molecular Sequence Data
- Phylogeny
- Sequence Alignment
- Sequence Analysis, DNA
- Structural Homology, Protein
Collapse
Affiliation(s)
- Daniela S P Silva
- Fish Immunology and Vaccinology, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | | | | | | | | | | |
Collapse
|
30
|
Keller AM, Groothuis TA, Veraar EAM, Marsman M, de Buy Wenniger LM, Janssen H, Neefjes J, Borst J. Costimulatory ligand CD70 is delivered to the immunological synapse by shared intracellular trafficking with MHC class II molecules. Proc Natl Acad Sci U S A 2007; 104:5989-94. [PMID: 17389361 PMCID: PMC1851604 DOI: 10.1073/pnas.0700946104] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
TNF family member CD70 is the ligand of CD27, a costimulatory receptor that shapes effector and memory T cell pools. Tight control of CD70 expression is required to prevent lethal immunodeficiency. By selective transcription, CD70 is largely confined to activated lymphocytes and dendritic cells (DC). We show here that, in addition, specific intracellular routing controls its plasma membrane deposition. In professional antigen-presenting cells, such as DC, CD70 is sorted to late endocytic vesicles, defined as MHC class II compartments (MIIC). In cells lacking the machinery for antigen presentation by MHC class II, CD70 travels by default to the plasma membrane. Introduction of class II transactivator sufficed to reroute CD70 to MIIC. Vesicular trafficking of CD70 and MHC class II is coordinately regulated by the microtubule-associated dynein motor complex. We show that when maturing DC make contact with T cells in a cognate fashion, newly synthesized CD70 is specifically delivered via MIIC to the immunological synapse. Therefore, we propose that routing of CD70 to MIIC serves to coordinate delivery of the T cell costimulatory signal in time and space with antigen recognition.
Collapse
Affiliation(s)
| | - Tom A. Groothuis
- Tumor Biology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | | | - Marije Marsman
- Tumor Biology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | | | - Hans Janssen
- Tumor Biology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Jacques Neefjes
- Tumor Biology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Jannie Borst
- Divisions of *Immunology and
- To whom correspondence should be addressed at:
Division of Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands. E-mail:
| |
Collapse
|
31
|
Toro B, Cox N, Wilson RJ, Garrido-Sanabria E, Stefani E, Toro L, Zarei MM. KCNMB1 regulates surface expression of a voltage and Ca2+-activated K+ channel via endocytic trafficking signals. Neuroscience 2006; 142:661-9. [PMID: 16908104 DOI: 10.1016/j.neuroscience.2006.06.061] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 06/27/2006] [Accepted: 06/28/2006] [Indexed: 11/20/2022]
Abstract
Voltage-dependent and calcium-activated K(+) (MaxiK, BK) channels are ubiquitously expressed and have various physiological roles including regulation of neurotransmitter release and smooth muscle tone. Coexpression of the pore-forming alpha (hSlo) subunit of MaxiK channels with a regulatory beta1 subunit (KCNMB1) produces noninactivating currents that are distinguished by high voltage/Ca(2+) sensitivities and altered pharmacology [McManus OB, Helms LM, Pallanck L, Ganetzky B, Swanson R, Leonard RJ (1995) Functional role of the beta subunit of high conductance calcium-activated potassium channels. Neuron 14:645-650; Wallner M, Meera P, Ottolia M, Kaczorowski G, Latorre R, Garcia ML, Stefani E, Toro L (1995) Characterization of and modulation by a beta-subunit of a human maxi K(Ca) channel cloned from myometrium. Receptors Channels 3:185-199]. We now show that beta1 can regulate hSlo traffic as well, resulting in decreased hSlo surface expression. beta1 subunit expressed alone is able to reach the plasma membrane; in addition, it exhibits a distinct intracellular punctated pattern that colocalizes with an endosomal marker. Coexpressing beta1 subunit with hSlo, switches hSlo's rather diffuse intracellular expression to a punctate cytoplasmic localization that overlaps beta1 expression. Furthermore, coexpressed beta1 subunit reduces steady-state hSlo surface expression. Site-directed mutagenesis underscores a role of a putative endocytic signal at the beta1 C-terminus in the control of hSlo surface expression. We propose that aside from its well-established role as regulator of hSlo electrical activity, beta1 can regulate hSlo expression levels by means of an endocytic mechanism. This highlights a new beta1 subunit feature that regulates hSlo channels by a trafficking mechanism.
Collapse
Affiliation(s)
- B Toro
- South Texas Arthritis Center, Brownsville, TX 78526, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Neumann J, Koch N. A novel domain on HLA-DRbeta chain regulates the chaperone role of the invariant chain. J Cell Sci 2006; 119:4207-14. [PMID: 16984974 DOI: 10.1242/jcs.03177] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The human lymphocyte antigen (HLA) class II region encodes highly polymorphic peptide receptors, which associate in the ER to the chaperone invariant chain (Ii). Ii facilitates assembly of class II subunits to functional peptide receptors. We searched for a conserved structure on HLA-DR polypeptides that mediates contact to a previously identified proline-rich class-II-binding sequence of Ii. Major histocompatibility complex (MHC) class II beta chain sequences exhibit two conserved tryptophan residues separated by 22 amino acids. Inspection of this motif in the X-ray structure of DR3 showed TrpTyr residues in the vicinity of the Ii-derived fragment CLIP. Five DRbeta mutants were produced. Mutation at Tyr123, Trp153 and Asp152 residues abolished interaction to the proline-rich sequence of Ii. All mutants formed heterodimers with DRalpha, were capable of binding an antigenic sequence and were expressed on the cell surface of transfected cells. In the presence of endogenous DRbeta chain however, the TyrAspTrp mutant was not cell-surface exposed and did not co-isolate with Ii or DRalpha. The competition of the mutant with the endogenous DRbeta for binding to DRalpha indicates that a structure on DRbeta chain regulates assembly of DR subunits. Hence, the chaperone function of Ii is mediated through a conserved region on the beta2 domain of class II.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Antigens, Differentiation, B-Lymphocyte/physiology
- COS Cells
- Cell Line, Tumor
- Chlorocebus aethiops
- Crystallography, X-Ray
- Dimerization
- HLA-DR Antigens/chemistry
- HLA-DR Antigens/genetics
- HLA-DR Antigens/physiology
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/metabolism
- Histocompatibility Antigens Class II/physiology
- Humans
- Immunoblotting
- Immunoprecipitation
- Microscopy, Fluorescence
- Models, Molecular
- Molecular Chaperones/genetics
- Molecular Chaperones/metabolism
- Molecular Chaperones/physiology
- Molecular Sequence Data
- Mutagenesis/genetics
- Mutation/genetics
- Polymerase Chain Reaction/methods
- Proline/chemistry
- Proline/genetics
- Proline/metabolism
- Protein Binding
- Sequence Homology, Amino Acid
- Tryptophan/chemistry
- Tryptophan/genetics
- Tryptophan/metabolism
Collapse
Affiliation(s)
- Jürgen Neumann
- Division of Immunobiology, Institute of Genetics, University of Bonn, Römerstr. 164, 53117 Bonn, Germany
| | | |
Collapse
|
33
|
Kidd GJ, Yadav VK, Huang P, Brand SL, Low SH, Weimbs T, Trapp BD. A dual tyrosine-leucine motif mediates myelin protein P0 targeting in MDCK cells. Glia 2006; 54:135-45. [PMID: 16788992 DOI: 10.1002/glia.20366] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Differential targeting of myelin proteins to multiple, biochemically and functionally distinct Schwann cell plasma membrane domains is essential for myelin formation. In this study, we investigated whether the myelin protein P0 contains targeting signals using Madin-Darby canine kidney (MDCK) cells. By confocal microscopy, P0 was localized to MDCK cell basolateral membranes. C-terminal deletion resulted in apical accumulation, and stepwise deletions defined a 15-mer region that was required for basolateral targeting. Alanine substitutions within this region identified the YAML sequence as a functional tyrosine-based targeting signal, with the ML sequence serving as a secondary leucine-based signal. Replacement of the P0 ectodomain with green fluorescent protein altered the distribution of constructs lacking the YAML signal. Coexpression of the myelin-associated glycoprotein did not alter P0 distribution in MDCK cells. The results indicate that P0 contains a hierarchy of targeting signals, which may contribute to P0 localization in myelinating Schwann cells and the pathogenesis in human disease.
Collapse
Affiliation(s)
- Grahame J Kidd
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Gupta SN, Kloster MM, Rodionov DG, Bakke O. Re-routing of the invariant chain to the direct sorting pathway by introduction of an AP3-binding motif from LIMP II. Eur J Cell Biol 2006; 85:457-67. [PMID: 16542748 DOI: 10.1016/j.ejcb.2006.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 02/01/2006] [Accepted: 02/02/2006] [Indexed: 11/16/2022] Open
Abstract
AP3 is a heteromeric adaptor protein complex involved in the biogenesis of late endosomal/lysosomal structures. It recognizes tyrosine- and leucine-based sorting signals present in the cytoplasmic tails or loops of a number of proteins and is thought to be responsible for the direct transport of these proteins from the Golgi network to late endosomal/lysosomal structures. We have previously reported (Rodionov, Höning, Silye, Kongsvik, von Figura, Bakke, 2002. Structural requirements for interactions between leucine-sorting signals and clathrin-associated adaptor protein complex AP3. J. Biol. Chem. 277, 47436-47443) that in vitro binding of AP3 to the leucine signals is dependent on the nature of three residues immediately upstream of the leucine signal and suggested that these three amino acids define whether the protein is sorted to endosomes via the plasma membrane (PM) or traffics directly to the late endosomes/lysosomes. In this paper, we show in vivo evidence that residues favoring AP3 binding introduced into a protein that is transported via the PM such as the invariant chain can re-route such protein into direct sorting to late endosomal/lysosomal structures.
Collapse
Affiliation(s)
- Shailly N Gupta
- Department of Molecular Biosciences, University of Oslo, N-0316 Oslo, Norway
| | | | | | | |
Collapse
|
35
|
Zhong D, Yu W, Bao M, Xu Z, Li L, Liu J. Molecular cloning and mRNA expression of duck invariant chain. Vet Immunol Immunopathol 2006; 110:293-302. [PMID: 16313970 DOI: 10.1016/j.vetimm.2005.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2005] [Revised: 09/30/2005] [Accepted: 10/14/2005] [Indexed: 10/25/2022]
Abstract
In the present study we identified a duck invariant chain (Ii) cDNA, named duck Ii-1, by RT-PCR and RACE. It was 1190 bp in length and contained a 669 bp open reading frame. An alternative transcript encoding a thyroglobulin (Tg)-containing form of Ii, named duck Ii-2, was also found in duck. The putative amino acid sequence of duck Ii-1 showed an 82% similarity to chicken Ii-1 and about 60% similarity to its mammalian homologues. The similarity of the Tg domain between duck and chicken Ii-2 was 96%, and about 70% between duck and mammalian Ii. The result of RT-PCR showed that Ii mRNA was extensively expressed in various tissues. High levels of both Ii-1 and Ii-2 mRNA were observed in the spleen and bursa of Fabricius. The predicted three-dimensional (3D) structures of duck Ii trimerization and Tg domain are similar to the corresponding regions of human Ii analyzed by comparative protein modeling. These findings indicate that the two isoforms of duck Ii, which strongly expressed in the major immune organs, share structural identity with human Ii.
Collapse
Affiliation(s)
- Dalian Zhong
- Department of Molecular and Cell Biology, School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | | | | | | | | | | |
Collapse
|
36
|
Neumann J, Koch N. Assembly of major histocompatibility complex class II subunits with invariant chain. FEBS Lett 2005; 579:6055-9. [PMID: 16242130 DOI: 10.1016/j.febslet.2005.09.070] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 09/22/2005] [Indexed: 11/30/2022]
Abstract
The highly polymorphic major histocompatibility complex class II (MHCII) polypeptides assemble in the ER with the assistance of invariant chain (Ii) chaperone. Ii binds to the peptide-binding pocket of MHCII heterodimers. We explored the mechanism how MHCII subunits attach to Ii. Expression with single alpha or beta subunits from three human HLA and two mouse H2 class II isotypes revealed that Ii co-isolates predominantly with the alpha polypeptide. Co-isolation with alpha chain requires the groove binding Ii-segment and depends on M91 of Ii. Immunoprecipitation of Ii from pulse chase labeled cells showed sequential assembly of alpha and beta chains.
Collapse
Affiliation(s)
- Jürgen Neumann
- Division of Immunobiology, Institute of Molecular Physiology, University of Bonn, Romerstrasse 164, 53117 Bonn, Germany
| | | |
Collapse
|
37
|
Dugast M, Toussaint H, Dousset C, Benaroch P. AP2 clathrin adaptor complex, but not AP1, controls the access of the major histocompatibility complex (MHC) class II to endosomes. J Biol Chem 2005; 280:19656-64. [PMID: 15749704 DOI: 10.1074/jbc.m501357200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Newly synthesized MHC II alpha- and beta-chains associated with the invariant chain chaperone (Ii) enter the endocytic pathway for Ii degradation and loading with peptides before transport to the cell surface. It is unclear how alphabetaIi complexes are sorted from the Golgi apparatus and directed to endosomes. However, indirect evidence tends to support direct transport involving the AP1 clathrin adaptor complex. Surprisingly, we show here that knocking down the production of AP1 by RNA interference did not affect the trafficking of alphabetaIi complexes. In contrast, AP2 depletion led to a large increase in surface levels of alphabetaIi complexes, inhibited their rapid internalization, and strongly delayed the appearance of mature MHC II in intracellular compartments. Thus, in the cell systems studied here, rapid internalization of alphabetaIi complexes via an AP2-dependent pathway represents a key step for MHC II delivery to endosomes and lysosomes.
Collapse
Affiliation(s)
- Marc Dugast
- INSERM U520 Institut Curie, Section de Recherche, Paris, France
| | | | | | | |
Collapse
|
38
|
Scott C, Higgins ME, Davies JP, Ioannou YA. Targeting of NPC1 to late endosomes involves multiple signals, including one residing within the putative sterol-sensing domain. J Biol Chem 2004; 279:48214-23. [PMID: 15347664 DOI: 10.1074/jbc.m406090200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The NPC1 protein is a multipass transmembrane protein whose deficiency causes the autosomal recessive lipid storage disorder Niemann-Pick type C1. NPC1 localizes predominantly to late endosomes and has a dileucine motif located within a small cytoplasmic tail thought to target the protein to this location. Our data have suggested previously that the protein can reach its correct location in the absence of its cytoplasmic tail, suggesting that other signals contribute to NPC1 targeting. By using various FLAG-tagged and CD32-NPC1 chimeric fusion constructs, we show that multiple signals are responsible for the trafficking of NPC1 to the endosomal compartment, including the dileucine motif and a previously unidentified signal residing within the putative sterol-sensing domain transmembrane domain 3. Neither region alone was capable of directing heterologous CD32 fusions to late endosomes exclusively via the trans-Golgi network to the late endosome route taken by wild-type NPC1; transmembrane domain 3 was unable to maintain CD32 in late endosomes, indicating that two or more signals work in concert to target and retain NPC1 in this compartment. In addition we confirm that the tail dileucine motif is not essential for NPC1 targeting to late endosomes, and we discuss the implications of this finding along with the previously unappreciated role for transmembrane domain 3 in NPC1 localization and function.
Collapse
Affiliation(s)
- Catherine Scott
- Department of Human Genetics, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|
39
|
Sevilla LM, Comstock SS, Swier K, Miller J. Endoplasmic reticulum-associated degradation-induced dissociation of class II invariant chain complexes containing a glycosylation-deficient form of p41. THE JOURNAL OF IMMUNOLOGY 2004; 173:2586-93. [PMID: 15294975 DOI: 10.4049/jimmunol.173.4.2586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The quality control system in the secretory pathway can identify and eliminate misfolded proteins through endoplasmic reticulum-associated degradation (ERAD). ERAD is thought to occur by retrotranslocation through the Sec61 complex into the cytosol and degradation by the proteasome. However, the extent of disassembly of oligomeric proteins and unfolding of polypeptide chains that is required for retrotranslocation is not fully understood. In this report we used a glycosylation mutant of the p41 isoform of invariant chain (Ii) to evaluate the ability of ERAD to discriminate between correctly folded and misfolded subunits in an oligomeric complex. We show that loss of glycosylation at position 239 of p41 does not detectably affect Ii trimerization or association with class II but does result in a defect in endoplasmic reticulum export of Ii that ultimately leads to its degradation via the ERAD pathway. Although class II associated with the mutated form of p41 is initially retained in the endoplasmic reticulum, it is subsequently released and traffics through the Golgi to the plasma membrane. ERAD-mediated degradation of the mutant p41 is dependent on mannose trimming and inhibition of mannosidase I stabilizes Ii. Interestingly, inhibition of mannosidase I also results in prolonged association between the mutant Ii and class II, indicating that complex disassembly and release of class II is linked to mannosidase-dependent ERAD targeting of the misfolded Ii. These results suggest that the ERAD machinery can induce subunit disassembly, specifically targeting misfolded subunits to degradation and sparing properly folded subunits for reassembly and/or export.
Collapse
Affiliation(s)
- Lisa M Sevilla
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
40
|
Barabanova YA, Kang HK, Myoung J, Kang B, Bishop GA, Kim BS. Role of the major histocompatibility complex class II transmembrane region in antigen presentation and intracellular trafficking. Immunology 2004; 111:165-72. [PMID: 15027901 PMCID: PMC1782412 DOI: 10.1111/j.0019-2805.2003.01772.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
While a sorting signal in the cytoplasmic tail of the major histocompatibility complex (MHC) class II molecules is known to influence their endocytic transport, potential effects of the transmembrane (TM) domain of the MHC class II molecules on endocytic transport remain unclear. We have examined the role of the TM domain by comparing antigen-presenting functions of the wildtype (WT) I-Ab and mutant (MT) I-Ab molecule substituted in the beta-chain TM with alpha chain TM. A20 cells transfected with WT I-Ab were able to present antigen (hen egg lysozyme) better to some hybridomas, while those transfected with MT I-Ab consistently outperformed WT for other hybridomas recognizing different epitopes. This difference in antigen processing and presentation is not caused by the differences in H-2M (DM) requirement or association with Ii. The time required for processing of specific epitopes appears to be different, suggesting sequential involvement of various endocytic compartments in the antigen processing. Although both WT and MT molecules were found in the early endocytic (transferrin receptor-rich) compartments, MT molecules accumulated in these compartments in higher quantities for longer time periods. Similarly, the MT molecule is retained for a longer time period than WT in late endocytic (LAMP-1 associated) compartments. Together, our data indicate an important role of the TM domain of the MHC class II molecules in the intracellular trafficking and, consequently, antigen processing and presentation.
Collapse
Affiliation(s)
- Yelena A Barabanova
- Department of Microbiology-Immunology, North-western University Medical School, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
41
|
Sandoval IV, Bakke O. Targeting of membrane proteins to endosomes and lysosomes. Trends Cell Biol 2004; 4:292-7. [PMID: 14731593 DOI: 10.1016/0962-8924(94)90220-8] [Citation(s) in RCA: 237] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The pathways involved in targeting membrane proteins to lysosomes are extraordinarily complex. Newly synthesized proteins in the ER are transported to the Golgi complex, and upon arrival at the trans Golgi network (TGN) are targeted either directly to endosomes, or first to the cell surface from where they can be rapidly internalized into the endocytic pathway for delivery to lysosomes. The routes to endosomes are specified by sorting motifs in the cytoplasmic tails of the proteins that are recognized at the TGN or plasma membrane. The molecular details of these processes are just emerging.
Collapse
Affiliation(s)
- I V Sandoval
- Centro de Biologia Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | |
Collapse
|
42
|
Hu K, Huang CS, Jan YN, Jan LY. ATP-sensitive potassium channel traffic regulation by adenosine and protein kinase C. Neuron 2003; 38:417-32. [PMID: 12741989 DOI: 10.1016/s0896-6273(03)00256-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ATP-sensitive potassium (K(ATP)) channels activate under metabolic stress to protect neurons and cardiac myocytes. However, excessive channel activation may cause arrhythmia in the heart and silence neurons in the brain. Here, we report that PKC-mediated downregulation of K(ATP) channel number, via dynamin-dependent channel internalization, can act as a brake mechanism to control K(ATP) activation. A dileucine motif in the pore-lining Kir6.2 subunit of K(ATP), but not the site of PKC phosphorylation for channel activation, is essential for PKC downregulation. Whereas K(ATP) activation results in a rapid shortening of the action potential duration (APD) in metabolically inhibited ventricular myocytes, adenosine receptor stimulation and consequent PKC-mediated K(ATP) channel internalization can act as a brake to lessen this APD shortening. Likewise, in hippocampal CA1 neurons under metabolic stress, PKC-mediated, dynamin-dependent K(ATP) channel internalization can also act as a brake to dampen the rapid decline of excitability due to K(ATP) activation.
Collapse
Affiliation(s)
- Keli Hu
- Howard Hughes Medical Institute, Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
43
|
Rodionov DG, Höning S, Silye A, Kongsvik TL, von Figura K, Bakke O. Structural requirements for interactions between leucine-sorting signals and clathrin-associated adaptor protein complex AP3. J Biol Chem 2002; 277:47436-43. [PMID: 12370188 DOI: 10.1074/jbc.m207149200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Cytoplasmic tails of LIMPII and the invariant chain contain similar leucine-based sorting signals, but the invariant chain interacts only with AP1 and AP2, whereas LIMPII interacts strongly with AP3. In a series of in vitro experiments, we investigated the effect of residues upstream of the leucine pairs and demonstrated that these residues determine adapter binding, and certain residues favor interactions with AP3. Furthermore, constructs that interacted stronger with AP3 interacted weakly with AP1 and vice versa. Exchanging residues upstream of the leucine-based signal in LIMPII with those of the invariant chain reduced LIMPII binding to AP3 in vitro, and in vivo the corresponding LIMPII mutant was rerouted via the plasma membrane like the invariant chain. These preferential interactions of different leucine signals with different AP complexes may thus be the determining step sorting proteins from the trans-Golgi network to their final destinations. Proteins that interact with AP3 are sorted directly to endosomes/lysosomes, whereas proteins that interact with AP1 are sorted via a different route. At the same time, constructs that exhibited specificity for either AP1 or AP3 might still interact with AP2, suggesting that AP2 may recognize a wider variety of leucine signals. This is consistent with the suggested role of AP2 in internalization of proteins containing general leucine-based signals, including proteins that have been missorted to the plasma membrane.
Collapse
Affiliation(s)
- Dmitrii G Rodionov
- Division of Molecular Cell Biology, Department of Biology, University of Oslo, Norway
| | | | | | | | | | | |
Collapse
|
44
|
Nordeng TW, Gregers TF, Kongsvik TL, Méresse S, Gorvel JP, Jourdan F, Motta A, Bakke O. The cytoplasmic tail of invariant chain regulates endosome fusion and morphology. Mol Biol Cell 2002; 13:1846-56. [PMID: 12058053 PMCID: PMC117608 DOI: 10.1091/mbc.01-10-0478] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The major histocompatibility complex class II associated invariant chain (Ii) has been shown to inhibit endocytic transport and to increase the size of endosomes. We have recently found that this property has a significant impact on antigen processing and presentation. Here, we show in a cell-free endosome fusion assay that expression of Ii can increase fusion after phosphatidylinositol 3-kinase activity is blocked by wortmannin. In live cells wortmannin was also not able to block formation of the Ii-induced enlarged endosomes. The effects of Ii on endosomal transport and morphology depend on elements within the cytoplasmic tail. Data from mutagenesis analysis and nuclear magnetic resonance-based structure calculations of the Ii cytoplasmic tail demonstrate that free negative charges that are not involved in internal salt bridges are essential for both interactions between the tails and for the formation of enlarged endosomes. This correlation indicates that it is interactions between the Ii cytoplasmic tails that are involved in endosome fusion. The combined data from live cells, cell-free assays, and molecular dynamic simulations suggest that Ii molecules on different vesicles can promote endosome docking and fusion and thereby control endosomal traffic of membrane proteins and endosomal content.
Collapse
Affiliation(s)
- Tommy W Nordeng
- Centre d'Immunologie de Marseille-Luminy, Centre National de la Recherche Scientifique-INSERM-Univ-Med, 13288 Marseille, Cedex 09, France
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Kongsvik TL, Höning S, Bakke O, Rodionov DG. Mechanism of interaction between leucine-based sorting signals from the invariant chain and clathrin-associated adaptor protein complexes AP1 and AP2. J Biol Chem 2002; 277:16484-8. [PMID: 11854303 DOI: 10.1074/jbc.m201583200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cytoplasmic tail of the invariant chain contains two leucine-based sorting signals, and each of those seems sufficient to route the invariant chain to its intracellular destination in either normal or polarized cells. It is believed that the intracellular routing of the invariant chain is mediated by its interactions with the clathrin-associated adaptor protein complexes AP1 and AP2. We () have previously demonstrated the in vitro interactions between the cytoplasmic tail of the invariant chain and AP1/AP2 complexes. These interactions were specific and depended on the critical leucine residues in the invariant chain's sorting signals. In the present study, we decided to investigate the molecular mechanism of these interactions. To this end, we constructed a set of glutathione S-transferase fusion proteins that contained the intact cytoplasmic tail of the invariant chain and its various mutants to define residues important for its interactions with AP1 and AP-2. Our results demonstrated the importance of several residues other than the critical leucine residues for such interactions. A strong correlation between in vitro binding of AP2 to the invariant chain and in vivo internalization of the invariant chain was observed, confirming the primary role of AP2 in recognition of endocytic signals. In addition, we demonstrated different requirements for AP1 and AP2 binding to cytoplasmic tail of the invariant chain, which may reflect that the different sorting pathways mediated by AP1 and AP2 involve their recognition of the primary structure of the sorting signal.
Collapse
Affiliation(s)
- Thomas L Kongsvik
- Division of Molecular Cell Biology, Department of Biology, University of Oslo, P. O. Box 1050 Blindern, N-0316 Oslo, Norway
| | | | | | | |
Collapse
|
46
|
Stumptner-Cuvelette P, Benaroch P. Multiple roles of the invariant chain in MHC class II function. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1542:1-13. [PMID: 11853874 DOI: 10.1016/s0167-4889(01)00166-5] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
47
|
Bryant PW, Lennon-Duménil AM, Fiebiger E, Lagaudrière-Gesbert C, Ploegh HL. Proteolysis and antigen presentation by MHC class II molecules. Adv Immunol 2002; 80:71-114. [PMID: 12078484 PMCID: PMC7130937 DOI: 10.1016/s0065-2776(02)80013-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Proteolysis is the primary mechanism used by all cells not only to dispose of unwanted proteins but also to regulate protein function and maintain cellular homeostasis. Proteases that reside in the endocytic pathway are the principal actors of terminal protein degradation. The proteases contained in the endocytic pathway are classified into four major groups based on the active-site amino acid used by the enzyme to hydrolyze amide bonds of proteins: cysteine, aspartyl, serine, and metalloproteases. The presentation of peptide antigens by major histocompatibility complex (MHC) class II molecules is strictly dependent on the action of proteases. Class II molecules scour the endocytic pathway for antigenic peptides to bind and present at the cell surface for recognition by CD4+ T cells. The specialized cell types that support antigen presentation by class II molecules are commonly referred to as professional antigen presenting cells (APCs), which include bone marrow-derived B lymphocytes, dendritic cells (DCs), and macrophages. In addition, the expression of certain endocytic proteases is regulated either at the level of gene transcription or enzyme maturation and their activity is controlled by the presence of endogenous protease inhibitors.
Collapse
Affiliation(s)
- Paula Wolf Bryant
- Department of Microbiology, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
48
|
Abstract
The function of MHC class II molecules is to bind peptides derived from antigens that access the endocytic route of antigen presenting cells and display them on the plasma membrane for recognition by CD4(+) T cells. Formation of the MHC II-peptide complexes entails the confluence of the antigens and the MHC II molecules in the same compartments of the endocytic route. There, both the antigens and the MHC II molecules undergo a series of orchestrated changes that involve proteases, other hydrolases and chaperones, culminating in the generation of a wide repertoire of MHC II-peptide combinations. All the events that lead to formation of MHC II-peptide complexes show a considerable degree of flexibility; this lack of strict rules is advantageous in that it provides T cells with the maximum amount of information, ensuring that pathogens do not go undetected.
Collapse
Affiliation(s)
- J A Villadangos
- The Walter and Eliza Hall Institute of Medical Research, P.O. The Royal Melbourne Hospital, 3050, Victoria, Melbourne, Australia.
| |
Collapse
|
49
|
Jarousse N, Kelly RB. The AP2 binding site of synaptotagmin 1 is not an internalization signal but a regulator of endocytosis. J Cell Biol 2001; 154:857-66. [PMID: 11502761 PMCID: PMC2196445 DOI: 10.1083/jcb.200103040] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
One characteristic linking members of the synaptotagmin family to endocytosis is their ability to bind the heterotetrameric AP2 complex via their C2B domain. By using CD4/synaptotagmin 1 chimeras, we found that the internalization signal of synaptotagmin 1 lies at the extreme COOH-terminus of the protein and can function in the absence of the C2B domain that contains the AP2 binding site. However, although not essential for internalization, the C2B domain of synaptotagmin 1 appeared to control the recognition of the internalization motif. By mutagenesis, two sites have been identified that modify regulation by the C2B domain in the neuroendocrine PC12 cell line. Mutation of a dilysine motif in the beta sandwich core of the domain eliminates endocytosis. This site is known to be a site of protein-protein interaction. Mutations in the calcium binding region, or in its close proximity, also affect internalization in PC12 cells. In fibroblasts, the C2B domain inhibits the COOH-terminal internalization signal, resulting in an absence of internalization in those cells. Thus, internalization of synaptotagmin 1 is controlled by the presence of a latent internalization signal in the COOH-terminal region and a regulatory region in the C2B domain. We propose that internalization of synaptotagmin 1 is regulated in this way to allow it to couple the processes of endocytosis and calcium-mediated exocytosis in cells of the neuroendocrine lineage.
Collapse
Affiliation(s)
- N Jarousse
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
| | | |
Collapse
|
50
|
Sevilla LM, Richter SS, Miller J. Intracellular transport of MHC class II and associated invariant chain in antigen presenting cells from AP-3-deficient mocha mice. Cell Immunol 2001; 210:143-53. [PMID: 11520080 DOI: 10.1006/cimm.2001.1817] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
MHC class II-restricted antigen presentation requires trafficking of newly synthesized class II-invariant chain complexes from the trans-Golgi network to endosomal, peptide-loading compartments. This transport is mediated by dileucine-like motifs within the cytosolic tail of the invariant chain. Although these signals have been well characterized, the cytosolic proteins that interact with these dileucine signals and mediate Golgi sorting and endosomal transport have not been identified. Recently, an adaptor complex, AP-3, has been identified that interacts with dileucine motifs and mediates endosomal/lysosomal transport in yeast, Drosophila, and mammals. In this report, we have assessed class II-invariant chain trafficking in a strain of mice (mocha) which lacks expression of AP-3. Our studies demonstrate that the lack of AP-3 does not affect the kinetics of invariant chain degradation, the route of class II-invariant chain transport, or the rate and extent of class II-peptide binding as assessed by the generation of SDS-stable dimers. The possible role of other known or unknown adaptor complexes in class II-invariant chain transport is discussed.
Collapse
Affiliation(s)
- L M Sevilla
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|