1
|
Garrido-Casado M, Asensio-Juárez G, Vicente-Manzanares M. Nonmuscle Myosin II Regulation Directs Its Multiple Roles in Cell Migration and Division. Annu Rev Cell Dev Biol 2021; 37:285-310. [PMID: 34314591 DOI: 10.1146/annurev-cellbio-042721-105528] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nonmuscle myosin II (NMII) is a multimeric protein complex that generates most mechanical force in eukaryotic cells. NMII function is controlled at three main levels. The first level includes events that trigger conformational changes that extend the complex to enable its assembly into filaments. The second level controls the ATPase activity of the complex and its binding to microfilaments in extended NMII filaments. The third level includes events that modulate the stability and contractility of the filaments. They all work in concert to finely control force generation inside cells. NMII is a common endpoint of mechanochemical signaling pathways that control cellular responses to physical and chemical extracellular cues. Specific phosphorylations modulate NMII activation in a context-dependent manner. A few kinases control these phosphorylations in a spatially, temporally, and lineage-restricted fashion, enabling functional adaptability to the cellular microenvironment. Here, we review mechanisms that control NMII activity in the context of cell migration and division. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Marina Garrido-Casado
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain;
| | - Gloria Asensio-Juárez
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain;
| | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain;
| |
Collapse
|
2
|
Cramer LP, Kay RR, Zatulovskiy E. Repellent and Attractant Guidance Cues Initiate Cell Migration by Distinct Rear-Driven and Front-Driven Cytoskeletal Mechanisms. Curr Biol 2018. [PMID: 29526589 PMCID: PMC5863766 DOI: 10.1016/j.cub.2018.02.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Attractive and repulsive cell guidance is essential for animal life and important in disease. Cell migration toward attractants dominates studies [1, 2, 3, 4, 5, 6, 7, 8], but migration away from repellents is important in biology yet relatively little studied [5, 9, 10]. It is widely held that cells initiate migration by protrusion of their front [11, 12, 13, 14, 15], yet this has not been explicitly tested for cell guidance because cell margin displacement at opposite ends of the cell has not been distinguished for any cue. We argue that protrusion of the front, retraction of the rear, or both together could in principle break cell symmetry and start migration in response to guidance cues [16]. Here, we find in the Dictyostelium model [6] that an attractant—cAMP—breaks symmetry by causing protrusion of the front of the cell, whereas its repellent analog—8CPT—breaks symmetry by causing retraction of the rear. Protrusion of the front of these cells in response to cAMP starts with local actin filament assembly, while the delayed retraction of the rear is independent of both myosin II polarization and of motor-based contractility. On the contrary, myosin II accumulates locally in the rear of the cell in response to 8CPT, anticipating retraction and required for it, while local actin assembly is delayed and couples to delayed protrusion at the front. These data reveal an important new concept in the understanding of cell guidance. In attractant, cell front protrusion breaks cell symmetry and starts migration In repellent, cell rear retraction breaks cell symmetry and starts migration Myosin II motor is not required for front-driven migration toward attractant Biased myosin II motor contractility drives rear-driven migration away from repellent
Collapse
Affiliation(s)
- Louise P Cramer
- Laboratory of Molecular Cell Biology and Department of Cell and Developmental Biology, Faculty Life Science, UCL, Gower Street, London WC1E 6BT, England, UK.
| | - Robert R Kay
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, England, UK
| | - Evgeny Zatulovskiy
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, England, UK
| |
Collapse
|
3
|
iTRAQ-Based Identification of Proteins Related to Muscle Growth in the Pacific Abalone, Haliotis discus hannai. Int J Mol Sci 2017; 18:ijms18112237. [PMID: 29068414 PMCID: PMC5713207 DOI: 10.3390/ijms18112237] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/20/2017] [Accepted: 10/21/2017] [Indexed: 11/16/2022] Open
Abstract
The abalone Haliotis discus hannai is an important aquaculture species that is grown for human consumption. However, little is known of the genetic mechanisms governing muscle growth in this species, particularly with respect to proteomics. The isobaric tag for relative and absolute quantitation (iTRAQ) method allows for sensitive and accurate protein quantification. Our study was the first to use iTRAQ-based quantitative proteomics to investigate muscle growth regulation in H. discus hannai. Among the 1904 proteins identified from six samples, 125 proteins were differentially expressed in large specimens of H. discus hannai as compared to small specimens. In the large specimens, 47 proteins were upregulated and 78 were downregulated. Many of the significant Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including these differentially expressed proteins, were closely related to muscle growth, including apoptosis, thyroid hormone signaling, regulation of the actin cytoskeleton, and viral myocarditis (p < 0.05). Our quantitative real-time polymerase chain reaction (qRT-PCR) analyses suggested that the alterations in expression levels observed in the differentially expressed proteins were consistent with the alterations observed in the encoding mRNAs, indicating the repeatability of our proteomic approach. Our findings contribute to the knowledge of the molecular mechanisms of muscle growth in H. discus hannai.
Collapse
|
4
|
Guhathakurta P, Prochniewicz E, Roopnarine O, Rohde JA, Thomas DD. A Cardiomyopathy Mutation in the Myosin Essential Light Chain Alters Actomyosin Structure. Biophys J 2017; 113:91-100. [PMID: 28700929 DOI: 10.1016/j.bpj.2017.05.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 01/01/2023] Open
Abstract
We have used site-directed time-resolved fluorescence resonance energy transfer to determine the effect of a pathological mutation in the human ventricular essential light chain (hVELC) of myosin, on the structural dynamics of the actin-myosin complex. The hVELC modulates the function of actomyosin, through the interaction of its N-terminal extension with actin and its C-terminal lobe with the myosin heavy chain. Several mutations in hVELC are associated with hypertrophic cardiomyopathy (HCM). Some biochemical effects of these mutations are known, but further insight is needed about their effects on the structural dynamics of functioning actomyosin. Therefore, we introduced the HCM mutation E56G into a single-cysteine (C16) hVELC construct and substituted it for the VELC of bovine cardiac myosin subfragment 1. Using a donor fluorescent probe on actin (at C374) and an acceptor probe on C16 of hVELC, we performed time-resolved fluorescence resonance energy transfer, directly detecting structural changes within the bound actomyosin complex during function. The E56G mutation has no significant effect on actin-activated ATPase activity or actomyosin affinity in the presence of ATP, or on the structure of the strong-binding S complex in the absence of ATP. However, in the presence of saturating ATP, where both W (prepowerstroke) and S (postpowerstroke) structural states are observed, the mutant increases the mole fraction of the S complex (increasing the duty ratio), while shifting the structure of the remaining W complex toward that of S, indicating a structural redistribution toward the strongly bound (force-generating) complex. We propose that this effect is responsible for the hypercontractile phenotype induced by this HCM mutation in myosin.
Collapse
Affiliation(s)
- Piyali Guhathakurta
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Ewa Prochniewicz
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Osha Roopnarine
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - John A Rohde
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - David D Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
5
|
Jahan MGS, Yumura S. Traction force and its regulation during cytokinesis in Dictyostelium cells. Eur J Cell Biol 2017. [PMID: 28633918 DOI: 10.1016/j.ejcb.2017.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cytokinesis is the final stage of cell division. Dictyostelium cells have multiple modes of cytokinesis, including cytokinesis A, B and C. Cytokinesis A is a conventional mode, which depends on myosin II in the contractile ring. Myosin II null cells divide depending on substratum-attachment (cytokinesis B) or in a multi-polar fashion independent of the cell cycle (cytokinesis C). We investigated the traction stress exerted by dividing cells in the three different modes using traction force microscopy. In all cases, the traction forces were directed inward from both poles. Interestingly, the traction stress of cytokinesis A was the smallest of the three modes. Latrunculin B, an inhibitor of actin polymerization, completely diminished the traction stress of dividing cells, but blebbistatin, an inhibitor of myosin II ATPase, increased the traction stress. Myosin II is proposed to contribute to the detachment of cell body from the substratum. When the cell-substratum attachment was artificially strengthened by a poly-lysine coating, wild type cells increased their traction stress in contrast to myosin II null and other cytokinesis-deficient mutant cells, which suggests that wild type cells may increase their own power to conduct their cytokinesis. The cytokinesis-deficient mutants frequently divided unequally, whereas wild type cells divided equally. A traction stress imbalance between two daughter halves was correlated with cytokinesis failure. We discuss the regulation of cell shape changes during cell division through mechanosensing.
Collapse
Affiliation(s)
- Md Golam Sarowar Jahan
- Department of Functional Molecular Biology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan; Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Shigehiko Yumura
- Department of Functional Molecular Biology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan.
| |
Collapse
|
6
|
Di G, Miao X, Ke C, Kong X, Li H, You W. Protein changes in abalone foot muscle from three geographical populations of Haliotis diversicolor based on proteomic approach. Ecol Evol 2016; 6:3645-3657. [PMID: 27186366 PMCID: PMC4851958 DOI: 10.1002/ece3.2128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 03/19/2016] [Accepted: 03/21/2016] [Indexed: 12/25/2022] Open
Abstract
Using two‐dimensional gel electrophoresis, the foot muscle proteome of three geographical populations of Haliotis diversicolor were examined, with a total of 922 ± 21 protein spots detected in the Japanese population (JJ), 904 ± 25.6 in the Taiwanese population (TT), and 936 ± 16.2 in the Vietnamese population (VV). Of these, 254 spots showed differential expression and 85 protein spots percentage volumes varied more than twofold. Both “genotype” and “spot” analysis of variance approaches significantly showed differences among the three populations. Hierarchical clustering analysis showed that TT and VV clustered together followed by clustering with JJ, which is consistent with their geographical location. Following matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, 30 differentially expressed proteins involved in major biological processes including energy production and storage and stress response were identified. Of these proteins, proteins pertaining to muscle contraction and muscle protein regulation showed highest expression levels in VV samples. Proteins involved in energy production and storage, including ATP synthase beta subunit, fructose‐1,6‐bisphosphate aldolase, arginine kinase, enolase, triosephosphate isomerase, and tauropine dehydrogenase, showed diverse expression patterns among the three populations. For stress‐responsive proteins, the expression of heat shock protein 70 was JJ > VV > TT. The expression pattern of Cu/Zn‐superoxide dismutase was JJ > VV > TT. Overall, these results may aid in the detection of new differentially expressed proteins within three different abalone populations.
Collapse
Affiliation(s)
- Guilan Di
- College of Fisheries Henan Normal University Xinxiang 453007 China.,State Key Laboratory of Marine Environmental Science College of Ocean and Earth Sciences Xiamen University Xiamen China
| | - Xiulian Miao
- College of Life Sciences Liaocheng University Liaocheng 252059 China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science College of Ocean and Earth Sciences Xiamen University Xiamen China
| | - Xianghui Kong
- College of Fisheries Henan Normal University Xinxiang 453007 China
| | - Hui Li
- College of Fisheries Henan Normal University Xinxiang 453007 China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science College of Ocean and Earth Sciences Xiamen University Xiamen China
| |
Collapse
|
7
|
Guhathakurta P, Prochniewicz E, Thomas DD. Amplitude of the actomyosin power stroke depends strongly on the isoform of the myosin essential light chain. Proc Natl Acad Sci U S A 2015; 112:4660-5. [PMID: 25825773 PMCID: PMC4403186 DOI: 10.1073/pnas.1420101112] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We have used time-resolved fluorescence resonance energy transfer (TR-FRET) to determine the role of myosin essential light chains (ELCs) in structural transitions within the actomyosin complex. Skeletal muscle myosins have two ELC isoforms, A1 and A2, which differ by an additional 40-45 residues at the N terminus of A1, and subfragment 1 (S1) containing A1 (S1A1) has higher catalytic efficiency and higher affinity for actin than S1A2. ELC's location at the junction between the catalytic and light-chain domains gives it the potential to play a central role in the force-generating power stroke. Therefore, we measured site-directed TR-FRET between a donor on actin and an acceptor near the C terminus of ELC, detecting directly the rotation of the light-chain domain (lever arm) relative to actin (power stroke), induced by the interaction of ATP-bound myosin with actin. TR-FRET resolved the weakly bound (W) and strongly bound (S) states of actomyosin during the W-to-S transition (power stroke). We found that the W states are essentially the same for the two isoenzymes, but the S states are quite different, indicating a much larger movement of S1A1. FRET from actin to a probe on the N-terminal extension of A1 showed close proximity to actin. We conclude that the N-terminal extension of A1-ELC modulates the W-to-S structural transition of acto-S1, so that the light-chain domain undergoes a much larger power stroke in S1A1 than in S1A2. These results have profound implications for understanding the contractile function of actomyosin, as needed in therapeutic design for muscle disorders.
Collapse
Affiliation(s)
- Piyali Guhathakurta
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Ewa Prochniewicz
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
8
|
Feng Z, Okada S, Cai G, Zhou B, Bi E. Myosin‑II heavy chain and formin mediate the targeting of myosin essential light chain to the division site before and during cytokinesis. Mol Biol Cell 2015; 26:1211-24. [PMID: 25631819 PMCID: PMC4454170 DOI: 10.1091/mbc.e14-09-1363] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
MLC1 is a haploinsufficient gene encoding the essential light chain for Myo1, the sole myosin‑II heavy chain in the budding yeast Saccharomyces cerevisiae. Mlc1 defines an essential hub that coordinates actomyosin ring function, membrane trafficking, and septum formation during cytokinesis by binding to IQGAP, myosin‑II, and myosin‑V. However, the mechanism of how Mlc1 is targeted to the division site during the cell cycle remains unsolved. By constructing a GFP‑tagged MLC1 under its own promoter control and using quantitative live‑cell imaging coupled with yeast mutants, we found that septin ring and actin filaments mediate the targeting of Mlc1 to the division site before and during cytokinesis, respectively. Both mechanisms contribute to and are collectively required for the accumulation of Mlc1 at the division site during cytokinesis. We also found that Myo1 plays a major role in the septin‑dependent Mlc1 localization before cytokinesis, whereas the formin Bni1 plays a major role in the actin filament-dependent Mlc1 localization during cytokinesis. Such a two‑tiered mechanism for Mlc1 localization is presumably required for the ordered assembly and robustness of cytokinesis machinery and is likely conserved across species.
Collapse
Affiliation(s)
- Zhonghui Feng
- School of Life Sciences, Tsinghua University, Beijing 100084, China Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Satoshi Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Guoping Cai
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bing Zhou
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
9
|
Álvarez-González B, Bastounis E, Meili R, del Álamo JC, Firtel R, Lasheras JC. Cytoskeletal Mechanics Regulating Amoeboid Cell Locomotion. APPLIED MECHANICS REVIEWS 2014; 66. [PMID: 25328163 PMCID: PMC4201387 DOI: 10.1115/1.4026249] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Migrating cells exert traction forces when moving. Amoeboid cell migration is a common type of cell migration that appears in many physiological and pathological processes and is performed by a wide variety of cell types. Understanding the coupling of the biochemistry and mechanics underlying the process of migration has the potential to guide the development of pharmacological treatment or genetic manipulations to treat a wide range of diseases. The measurement of the spatiotemporal evolution of the traction forces that produce the movement is an important aspect for the characterization of the locomotion mechanics. There are several methods to calculate the traction forces exerted by the cells. Currently the most commonly used ones are traction force microscopy methods based on the measurement of the deformation induced by the cells on elastic substrate on which they are moving. Amoeboid cells migrate by implementing a motility cycle based on the sequential repetition of four phases. In this paper we review the role that specific cytoskeletal components play in the regulation of the cell migration mechanics. We investigate the role of specific cytoskeletal components regarding the ability of the cells to perform the motility cycle effectively and the generation of traction forces. The actin nucleation in the leading edge of the cell, carried by the ARP2/3 complex activated through the SCAR/WAVE complex, has shown to be fundamental to the execution of the cyclic movement and to the generation of the traction forces. The protein PIR121, a member of the SCAR/WAVE complex, is essential to the proper regulation of the periodic movement and the protein SCAR, also included in the SCAR/WAVE complex, is necessary for the generation of the traction forces during migration. The protein Myosin II, an important F-actin cross-linker and motor protein, is essential to cytoskeletal contractility and to the generation and proper organization of the traction forces during migration.
Collapse
Affiliation(s)
- Begoña Álvarez-González
- Mechanical and Aerospace
Engineering Department,
University of California, San Diego,
La Jolla, CA 92093-0411
e-mail:
| | - Effie Bastounis
- Postdoctoral Fellow
Division of Cell and Developmental Biology,
University of California, San Diego,
La Jolla, CA 92093-0411
| | - Ruedi Meili
- Mechanical and Aerospace
Engineering Department,
Division of Cell and Developmental Biology,
University of California, San Diego,
La Jolla, CA 92093-0411
| | - Juan C. del Álamo
- Associate Professor
Mechanical and Aerospace
Engineering Department,
Institute for Engineering in Medicine,
University of California, San Diego,
La Jolla, CA 92093-0411
| | - Richard Firtel
- Distinguished Professor
Division of Cell and Developmental Biology,
University of California, San Diego,
La Jolla, CA 92093-0411
| | | |
Collapse
|
10
|
Moving towards a paradigm: common mechanisms of chemotactic signaling in Dictyostelium and mammalian leukocytes. Cell Mol Life Sci 2014; 71:3711-47. [PMID: 24846395 DOI: 10.1007/s00018-014-1638-8] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/24/2014] [Accepted: 04/29/2014] [Indexed: 12/31/2022]
Abstract
Chemotaxis, or directed migration of cells along a chemical gradient, is a highly coordinated process that involves gradient sensing, motility, and polarity. Most of our understanding of chemotaxis comes from studies of cells undergoing amoeboid-type migration, in particular the social amoeba Dictyostelium discoideum and leukocytes. In these amoeboid cells the molecular events leading to directed migration can be conceptually divided into four interacting networks: receptor/G protein, signal transduction, cytoskeleton, and polarity. The signal transduction network occupies a central position in this scheme as it receives direct input from the receptor/G protein network, as well as feedback from the cytoskeletal and polarity networks. Multiple overlapping modules within the signal transduction network transmit the signals to the actin cytoskeleton network leading to biased pseudopod protrusion in the direction of the gradient. The overall architecture of the networks, as well as the individual signaling modules, is remarkably conserved between Dictyostelium and mammalian leukocytes, and the similarities and differences between the two systems are the subject of this review.
Collapse
|
11
|
Molecular and functional characterization of an Entamoeba histolytica protein (EhMLCI) with features of a myosin essential light chain. Mol Biochem Parasitol 2012; 181:17-28. [DOI: 10.1016/j.molbiopara.2011.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/14/2011] [Accepted: 09/17/2011] [Indexed: 01/08/2023]
|
12
|
Abstract
Most experiments observing cell migration use planar plastic or glass surfaces despite these conditions being considerably different from physiological ones. On such planar surfaces, cells take a dorsal-ventral polarity to move two-dimensionally. Cells in tissues, however, interact with surrounding cells and the extracellular matrix such that they transverse three-dimensionally. For this reason, three-dimensional matrices have become more and more popular for cell migration experiments. In addition, recent developments in imaging techniques have enabled high resolution observations of in vivo cell migration. The combination of three-dimensional matrices and such imaging techniques has revealed motile mechanisms in tissues not observable in studies using planar surfaces. Regarding models for such cell migration studies, the cellular slime mould Dictyostelium discoideum is ideal. Single amoeboid cells aggregate into hemispherical mound structures upon starvation to begin a multicellular morphogenesis. These tiny and simple multicellular bodies are suitable for observing the behaviors of individual cells in multicellular structures. Furthermore, the unique life cycle can be exploited to identify which genes are involved in cell migration in multicellular environments. Since mutants lacking such genes are expected to fail to undergo morphogenesis, easy and systematic gene screening is possible by isolating mutants whose developments arrest around the mound stage, which is the case for several mutants lacking specific cytoskeletal proteins. In this article, I discuss the basic elements required for cell migration in multicellular environments and how Dictyostelium can be used to elucidate them.
Collapse
Affiliation(s)
- Masatsune Tsujioka
- Special Research Promotion Group, Graduate School of Frontier Bioscience, Osaka University, 1-3 Yamadaoka, Suita, Japan.
| |
Collapse
|
13
|
Alonso-Latorre B, del Álamo JC, Meili R, Firtel RA, Lasheras JC. An Oscillatory Contractile Pole-Force Component Dominates the Traction Forces Exerted by Migrating Amoeboid Cells. Cell Mol Bioeng 2011; 4:603-615. [PMID: 22207880 PMCID: PMC3234362 DOI: 10.1007/s12195-011-0184-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 06/11/2011] [Indexed: 01/18/2023] Open
Abstract
We used principal component analysis to dissect the mechanics of chemotaxis of amoeboid cells into a reduced set of dominant components of cellular traction forces and shape changes. The dominant traction force component in wild-type cells accounted for ~40% of the mechanical work performed by these cells, and consisted of the cell attaching at front and back contracting the substrate towards its centroid (pole-force). The time evolution of this pole-force component was responsible for the periodic variations of cell length and strain energy that the cells underwent during migration. We identified four additional canonical components, reproducible from cell to cell, overall accounting for an additional ~20% of mechanical work, and associated with events such as lateral protrusion of pseudopodia. We analyzed mutant strains with contractility defects to quantify the role that non-muscle Myosin II (MyoII) plays in amoeboid motility. In MyoII essential light chain null cells the polar-force component remained dominant. On the other hand, MyoII heavy chain null cells exhibited a different dominant traction force component, with a marked increase in lateral contractile forces, suggesting that cortical contractility and/or enhanced lateral adhesions are important for motility in this cell line. By compressing the mechanics of chemotaxing cells into a reduced set of temporally-resolved degrees of freedom, the present study may contribute to refined models of cell migration that incorporate cell-substrate interactions.
Collapse
Affiliation(s)
- Baldomero Alonso-Latorre
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 USA
| | - Juan C. del Álamo
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 USA
| | - Ruedi Meili
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 USA
| | - Richard A. Firtel
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 USA
| | - Juan C. Lasheras
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 USA
| |
Collapse
|
14
|
Mujumdar N, Inouye K, Nanjundiah V. The trishanku gene and terminal morphogenesis in Dictyostelium discoideum. Evol Dev 2010; 11:697-709. [PMID: 19878291 DOI: 10.1111/j.1525-142x.2009.00377.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multicellular development in the social amoeba Dictyostelium discoideum is triggered by starvation. It involves a series of morphogenetic movements, among them being the rising of the spore mass to the tip of the stalk. The process requires precise coordination between two distinct cell types-presumptive (pre-) spore cells and presumptive (pre-) stalk cells. Trishanku (triA) is a gene expressed in prespore cells that is required for normal morphogenesis. The triA(-) mutant shows pleiotropic effects that include an inability of the spore mass to go all the way to the top. We have examined the cellular behavior required for the normal ascent of the spore mass. Grafting and mixing experiments carried out with tissue fragments and cells show that the upper cup, a tissue that derives from prestalk cells and anterior-like cells (ALCs), does not develop properly in a triA(-) background. A mutant upper cup is unable to lift the spore mass to the top of the fruiting body, likely due to defective intercellular adhesion. If wild-type upper cup function is provided by prestalk and ALCs, trishanku spores ascend all the way. Conversely, Ax2 spores fail to do so in chimeras in which the upper cup is largely made up of mutant cells. Besides proving that under these conditions the wild-type phenotype of the upper cup is necessary and sufficient for terminal morphogenesis in D. discoideum, this study provides novel insights into developmental and evolutionary aspects of morphogenesis in general. Genes that are active exclusively in one cell type can elicit behavior in a second cell type that enhances the reproductive fitness of the first cell type, thereby showing that morphogenesis is a cooperative process.
Collapse
Affiliation(s)
- Nameeta Mujumdar
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India.
| | | | | |
Collapse
|
15
|
Meili R, Alonso-Latorre B, del Alamo JC, Firtel RA, Lasheras JC. Myosin II is essential for the spatiotemporal organization of traction forces during cell motility. Mol Biol Cell 2009; 21:405-17. [PMID: 19955212 PMCID: PMC2814786 DOI: 10.1091/mbc.e09-08-0703] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Amoeboid motility results from pseudopod protrusions and retractions driven by traction forces of cells. We propose that the motor and actin-crosslinking functions of MyoII differentially control the temporal and spatial distribution of the traction forces, and establish mechanistic relationships between these distributions, enabling cells to move. Amoeboid motility requires spatiotemporal coordination of biochemical pathways regulating force generation and consists of the quasi-periodic repetition of a motility cycle driven by actin polymerization and actomyosin contraction. Using new analytical tools and statistical methods, we provide, for the first time, a statistically significant quantification of the spatial distribution of the traction forces generated at each phase of the cycle (protrusion, contraction, retraction, and relaxation). We show that cells are constantly under tensional stress and that wild-type cells develop two opposing “pole” forces pulling the front and back toward the center whose strength is modulated up and down periodically in each cycle. We demonstrate that nonmuscular myosin II complex (MyoII) cross-linking and motor functions have different roles in controlling the spatiotemporal distribution of traction forces, the changes in cell shape, and the duration of all the phases. We show that the time required to complete each phase is dramatically increased in cells with altered MyoII motor function, demonstrating that it is required not only for contraction but also for protrusion. Concomitant loss of MyoII actin cross-linking leads to a force redistribution throughout the cell perimeter pulling inward toward the center. However, it does not reduce significantly the magnitude of the traction forces, uncovering a non–MyoII-mediated mechanism for the contractility of the cell.
Collapse
Affiliation(s)
- Ruedi Meili
- Section of Cell and Developmental Biology, Division of Biological Sciences, Department of Mechanical and Aerospace Engineering, and Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
16
|
Jeon TJ, Lee S, Weeks G, Firtel RA. Regulation of Dictyostelium morphogenesis by RapGAP3. Dev Biol 2009; 328:210-20. [PMID: 19284976 DOI: 10.1016/j.ydbio.2009.01.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 12/16/2008] [Accepted: 01/08/2009] [Indexed: 12/01/2022]
Abstract
Rap1 is a key regulator of cell adhesion and cell motility in Dictyostelium. Here, we identify a Rap1-specific GAP protein (RapGAP3) and provide evidence that Rap1 signaling regulates cell-cell adhesion and cell migration within the multicellular organism. RapGAP3 mediates the deactivation of Rap1 at the late mound stage of development and plays an important role in regulating cell sorting during apical tip formation, when the anterior-posterior axis of the organism is formed, by controlling cell-cell adhesion and cell migration. The loss of RapGAP3 results in a severely altered morphogenesis of the multicellular organism at the late mound stage. Direct measurement of cell motility within the mound shows that rapGAP3(-) cells have a reduced speed of movement and, compared to wild-type cells, have a reduced motility towards the apex. rapGAP3(-) cells exhibit some increased EDTA/EGTA sensitive cell-cell adhesion at the late mound stage. RapGAP3 transiently and rapidly translocates to the cell cortex in response to chemoattractant stimulation, which is dependent on F-actin polymerization. We suggest that the altered morphogenesis and the cell-sorting defect of rapGAP3(-) cells may result in reduced directional movement of the mutant cells to the apex of the mound.
Collapse
Affiliation(s)
- Taeck J Jeon
- Section of Cell and Developmental Biology, Division of Biological Sciences, Center for Molecular Genetics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA
| | | | | | | |
Collapse
|
17
|
Lombardi ML, Knecht DA, Dembo M, Lee J. Traction force microscopy in Dictyostelium reveals distinct roles for myosin II motor and actin-crosslinking activity in polarized cell movement. J Cell Sci 2007; 120:1624-34. [PMID: 17452624 DOI: 10.1242/jcs.002527] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Continuous cell movement requires the coordination of protrusive forces at the leading edge with contractile forces at the rear of the cell. Myosin II is required to generate the necessary contractile force to facilitate retraction; however, Dictyostelium cells that lack myosin II (mhcA–) are still motile. To directly investigate the role of myosin II in contractility we used a gelatin traction force assay to measure the magnitude and dynamic redistribution of traction stresses generated by randomly moving wild-type, myosin II essential light chain null (mlcE–) and mhcA– cells. Our data show that for each cell type, periods of rapid, directed cell movement occur when an asymmetrical distribution of traction stress is present, in which traction stresses at the rear are significantly higher than those at the front. We found that the major determinants of cell speed are the rate and frequency at which traction stress asymmetry develops, not the absolute magnitude of traction stress. We conclude that traction stress asymmetry is important for rapid, polarized cell movement because high traction stresses at the rear promote retraction, whereas low traction at the front allows protrusion. We propose that myosin II motor activity increases the rate and frequency at which traction stress asymmetry develops, whereas actin crosslinking activity is important for stabilizing it.
Collapse
Affiliation(s)
- Maria L Lombardi
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | | | | | | |
Collapse
|
18
|
Franke JD, Boury AL, Gerald NJ, Kiehart DP. Native nonmuscle myosin II stability and light chain binding inDrosophila melanogaster. ACTA ACUST UNITED AC 2006; 63:604-22. [PMID: 16917818 DOI: 10.1002/cm.20148] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Native nonmuscle myosin IIs play essential roles in cellular and developmental processes throughout phylogeny. Individual motor molecules consist of a heterohexameric complex of three polypeptides which, when properly assembled, are capable of force generation. Here, we more completely characterize the properties, relationships and associations that each subunit has with one another in Drosophila melanogaster. All three native nonmuscle myosin II polypeptide subunits are expressed in close to constant stoichiometry to each other throughout development. We find that the stability of two subunits, the heavy chain and the regulatory light chain, depend on one another whereas the stability of the third subunit, the essential light chain, does not depend on either the heavy chain or regulatory light chain. We demonstrate that heavy chain aggregates, which form when regulatory light chain is lacking, associate with the essential light chain in vivo-thus showing that regulatory light chain association is required for heavy chain solubility. By immunodepletion we find that the majority of both light chains are associated with the nonmuscle myosin II heavy chain but pools of free light chain and/or light chain bound to other proteins are present. We identify four myosins (myosin II, myosin V, myosin VI and myosin VIIA) and a microtubule-associated protein (asp/Abnormal spindle) as binding partners for the essential light chain (but not the regulatory light chain) through mass spectrometry and co-precipitation. Using an in silico approach we identify six previously uncharacterized genes that contain IQ-motifs and may be essential light chain binding partners.
Collapse
Affiliation(s)
- Josef D Franke
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | | | | | | |
Collapse
|
19
|
Fu ZY, Xie BT, Ma YT, Gong ZX. Preparation of monoclonal antibodies against human ventricular myosin light chain 1 (HVMLC1) for functional studies. Acta Biochim Biophys Sin (Shanghai) 2006; 38:625-32. [PMID: 16953301 DOI: 10.1111/j.1745-7270.2006.00203.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Using purified recombinant human ventricular myosin light chain 1 (HVMLC1) as the antigen, three monoclonal antibodies, designated C8, C9 and B12, were prepared. Immunoblot experiments demonstrated that all monoclonal antibodies could react with the ventricular myosin light chain 1 isolated from different sources, such as human, rat or pig. It was also demonstrated that C8 was directed against the NN part of the N-fragment (amino acid 1-40) of HVMLC1, and both C9 and B12 against the C-fragment (amino acid 99-195). The affinity constants of C8, C9 and B12 were 3.20 x 10(8), 8.600 x 10(7) and 1.770 x 10(8) M(-1), respectively, determined by non-competitive ELISA. The isotype of B12 was determined as IgG2a, whereas the isotype of both C8 and C9 were IgG1. In the presence of C9 or B12, the actin-activated Mg(2+)ATPase activity of myosin was greatly inhibited, but there was almost no effect on the Mg(2+) ATPase activity for C8. B12 and C9 also inhibited the superprecipitation of porcine cardiac native actomyosin (myosin B) and reconstituted actomyosin, but C8 did not. The results indicate that all three monoclonal antibodies could bind the intact myosin molecule, but B12 and C9 might more easily react with epitopes located in the C-fragment of HVMLC1. The inhibitory effects of B12 and C9 on ATPase activity and superprecipitation assays show that light chain 1, particularly the C-fragment domain, is involved in the modulation of the actin-activated Mg(2+) ATPase activity of myosin and, as a consequence, plays an essential role in the interaction of actin and myosin.
Collapse
Affiliation(s)
- Zhen-Yan Fu
- Cardiovascular Research Center, First Clinical College of Xinjiang Medical University, Urumqi 830054, China
| | | | | | | |
Collapse
|
20
|
Abstract
Dictyostelium conventional myosin (myosin II) is an abundant protein that plays a role in various cellular processes such as cytokinesis, cell protrusion and development. This review will focus on the signal transduction pathways that regulate myosin II during cell movement. Myosin II appears to have two modes of action in Dictyostelium: local stabilization of the cytoskeleton by myosin filament association to the actin meshwork (structural mode) and force generation by contraction of actin filaments (motor mode). Some processes, such as cell movement under restrictive environment, require only the structural mode of myosin. However, cytokinesis in suspension and uropod retraction depend on motor activity as well. Myosin II can self-assemble into bipolar filaments. The formation of these filaments is negatively regulated by heavy chain phosphorylation through the action of a set of novel alpha kinases and is relatively well understood. However, only recently it has become clear that the formation of bipolar filaments and their translocation to the cortex are separate events. Translocation depends on filamentous actin, and is regulated by a cGMP pathway and possibly also by the cAMP phosphodiesterase RegA and the p21-activated kinase PAKa. Myosin motor activity is regulated by phosphorylation of the regulatory light chain through myosin light chain kinase A. Unlike conventional light chain kinases, this enzyme is not regulated by calcium but is activated by cGMP-induced phosphorylation via an upstream kinase and subsequent autophosphorylation.
Collapse
Affiliation(s)
- Leonard Bosgraaf
- Department of Biology, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | |
Collapse
|
21
|
Lord M, Laves E, Pollard TD. Cytokinesis depends on the motor domains of myosin-II in fission yeast but not in budding yeast. Mol Biol Cell 2005; 16:5346-55. [PMID: 16148042 PMCID: PMC1266431 DOI: 10.1091/mbc.e05-07-0601] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Budding yeast possesses one myosin-II, Myo1p, whereas fission yeast has two, Myo2p and Myp2p, all of which contribute to cytokinesis. We find that chimeras consisting of Myo2p or Myp2p motor domains fused to the tail of Myo1p are fully functional in supporting budding yeast cytokinesis. Remarkably, the tail alone of budding yeast Myo1p localizes to the contractile ring, supporting both its constriction and cytokinesis. In contrast, fission yeast Myo2p and Myp2p require both the catalytic head domain as well as tail domains for function, with the tails providing distinct functions (Bezanilla and Pollard, 2000). Myo1p is the first example of a myosin whose cellular function does not require a catalytic motor domain revealing a novel mechanism of action for budding yeast myosin-II independent of actin binding and ATPase activity.
Collapse
Affiliation(s)
- Matthew Lord
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | | | | |
Collapse
|
22
|
Xie B, Huang R, Huang L, Zhou G, Gong Z. The functional domains of human ventricular myosin light chain 1. Biophys Chem 2004; 106:57-66. [PMID: 14516912 DOI: 10.1016/s0301-4622(03)00172-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The biological functions of the myosin light chain 1 (LC1) have not been clearly elucidated yet. In this work we cloned and expressed N- and C- terminal fragments of human ventricular LC1 (HVLC1) containing amino acid residues 1-98 and 99-195 and two parts, NN and NC of N fragment in GST-fusion forms, respectively. Using GST pull-down assay, the direct binding experiments of LC1 with rat cardiac G-actin, F-actin and thin filaments, as well as rat cardiac myosin heavy chain (RCMHC) have been performed. Furthermore, the recombinant complexes of rat myosin S1 with N- and C-fragments, as well as the whole molecular of HVLC1 were generated. The results suggested that both binding sites of HVLC1 for actin and myosin heavy chain are positioned in its N-terminal fragment, which may contain several actin-binding sites in tandem. The polymerization of G-actin, the tropomyosin and troponin molecules located in the thin filaments do not hinder the binding of N-terminal fragment of HVLC1 with actin and thin filaments in vitro. The recombinant complex of rat cardiac myosin S1 (RCMS1) with N fragment of HVLC1 greatly decreased actin-activated Mg(2+)-ATPase activity for lack of C fragment. We conclude that the N-fragment is the binding domain of human ventricular LC1, whereas the C-fragment serves as a functional domain, which may be more involved in the modulation of the actin-activated ATPase activity of myosin.
Collapse
Affiliation(s)
- Baotong Xie
- Key Laboratory of Proteomics, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, PR China
| | | | | | | | | |
Collapse
|
23
|
Laevsky G, Knecht DA. Cross-linking of actin filaments by myosin II is a major contributor to cortical integrity and cell motility in restrictive environments. J Cell Sci 2003; 116:3761-70. [PMID: 12890752 DOI: 10.1242/jcs.00684] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells are frequently required to move in a local environment that physically restricts locomotion, such as during extravasation or metastatic invasion. In order to model these events, we have developed an assay in which vegetative Dictyostelium amoebae undergo chemotaxis under a layer of agarose toward a source of folic acid [Laevsky, G. and Knecht, D. A. (2001). Biotechniques 31, 1140-1149]. As the concentration of agarose is increased from 0.5% to 3% the cells are increasingly inhibited in their ability to move under the agarose. The contribution of myosin II and actin cross-linking proteins to the movement of cells in this restrictive environment has now been examined. Cells lacking myosin II heavy chain (mhcA-) are unable to migrate under agarose overlays of greater than 0.5%, and even at this concentration they move only a short distance from the trough. While attempting to move, the cells become stretched and fragmented due to their inability to retract their uropods. At higher agarose concentrations, the mhcA- cells protrude pseudopods under the agarose, but are unable to pull the cell body underneath. Consistent with a role for myosin II in general cortical stability, GFP-myosin dynamically localizes to the lateral and posterior cortex of cells moving under agarose. Cells lacking the essential light chain of myosin II (mlcE-), have no measurable myosin II motor activity, yet were able to move normally under all agarose concentrations. Mutants lacking either ABP-120 or alpha-actinin were also able to move under agarose at rates similar to wild-type cells. We hypothesize that myosin stabilizes the actin cortex through its cross-linking activity rather than its motor function and this activity is necessary and sufficient for the maintenance of cortical integrity of cells undergoing movement in a restrictive environment. The actin cross-linkers alpha-actinin and ABP-120 do not appear to play as major a role as myosin II in providing this cortical integrity.
Collapse
Affiliation(s)
- Gary Laevsky
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
24
|
Abstract
Cytokinesis is the final event of the cell division cycle, and its completion results in irreversible partition of a mother cell into two daughter cells. Cytokinesis was one of the first cell cycle events observed by simple cell biological techniques; however, molecular characterization of cytokinesis has been slowed by its particular resistance to in vitro biochemical approaches. In recent years, the use of genetic model organisms has greatly advanced our molecular understanding of cytokinesis. While the outcome of cytokinesis is conserved in all dividing organisms, the mechanism of division varies across the major eukaryotic kingdoms. Yeasts and animals, for instance, use a contractile ring that ingresses to the cell middle in order to divide, while plant cells build new cell wall outward to the cortex. As would be expected, there is considerable conservation of molecules involved in cytokinesis between yeast and animal cells, while at first glance, plant cells seem quite different. However, in recent years, it has become clear that some aspects of division are conserved between plant, yeast, and animal cells. In this review we discuss the major recent advances in defining cytokinesis, focusing on deciding where to divide, building the division apparatus, and dividing. In addition, we discuss the complex problem of coordinating the division cycle with the nuclear cycle, which has recently become an area of intense research. In conclusion, we discuss how certain cells have utilized cytokinesis to direct development.
Collapse
Affiliation(s)
- David A Guertin
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | |
Collapse
|
25
|
Abstract
This review focuses on selected papers that illustrate an historical perspective and the current knowledge of myosin structure and function in protists. The review contains a general description of myosin structure, a phylogenetic tree of the myosin classes, and descriptions of myosin isoforms identified in protists. Each myosin is discussed within the context of the taxonomic group of the organism in which the myosin has been identified. Domain structure, cellular location, function, and regulation are described for each myosin.
Collapse
Affiliation(s)
- R H Gavin
- Department of Biology, Brooklyn College, City University of New York, New York 11210, USA
| |
Collapse
|
26
|
Xu XS, Lee E, Chen T, Kuczmarski E, Chisholm RL, Knecht DA. During multicellular migration, myosin ii serves a structural role independent of its motor function. Dev Biol 2001; 232:255-64. [PMID: 11254362 DOI: 10.1006/dbio.2000.0132] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have shown previously that cells lacking myosin II are impaired in multicellular motility. We now extend these results by determining whether myosin contractile function is necessary for normal multicellular motility and shape control. Myosin from mutants lacking the essential (mlcE(-)) myosin light chain retains the ability to form bipolar filaments that bind actin, but shows no measurable in vitro or in vivo contractile function. The contractile function is necessary for cell shape control since mlcE(-) cells, like myosin heavy-chain null mutants (mhcA(-)), were defective in their ability to control their three-dimensional shape. When mixed with wild-type cells in chimeric aggregation streams, the mlcE(-) cells were able to move normally, unlike mhcA(-) cells which accumulated at the edges of the stream and became distorted by their interactions with wild-type cells. When mhcA(-) cells were mixed with mlcE(-) streams, the mhcA(-) cells were excluded. The normal behavior of the mlcE(-) cells in this assay suggests that myosin II, in the absence of motor function, is sufficient to allow movement in this constrained, multicellular environment. We hypothesize that myosin II is a major contributor to cortical integrity even in the absence of contractile function.
Collapse
Affiliation(s)
- X S Xu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, 06269, USA
| | | | | | | | | | | |
Collapse
|
27
|
Marée AF, Hogeweg P. How amoeboids self-organize into a fruiting body: multicellular coordination in Dictyostelium discoideum. Proc Natl Acad Sci U S A 2001; 98:3879-83. [PMID: 11274408 PMCID: PMC31146 DOI: 10.1073/pnas.061535198] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2000] [Indexed: 11/18/2022] Open
Abstract
When individual amoebae of the cellular slime mold Dictyostelium discoideum are starving, they aggregate to form a multicellular migrating slug, which moves toward a region suitable for culmination. The culmination of the morphogenesis involves complex cell movements that transform a mound of cells into a globule of spores on a slender stalk. The movement has been likened to a "reverse fountain," whereby prestalk cells in the upper part form a stalk that moves downwards and anchors to the substratum, while prespore cells in the lower part move upwards to form the spore head. So far, however, no satisfactory explanation has been produced for this process. Using a computer simulation that we developed, we now demonstrate that the processes that are essential during the earlier stages of the morphogenesis are in fact sufficient to produce the dynamics of the culmination stage. These processes are cAMP signaling, differential adhesion, cell differentiation, and production of extracellular matrix. Our model clarifies the processes that generate the observed cell movements. More specifically, we show that periodic upward movements, caused by chemotactic motion, are essential for successful culmination, because the pressure waves they induce squeeze the stalk downwards through the cell mass. The mechanisms revealed by our model have a number of self-organizing and self-correcting properties and can account for many previously unconnected and unexplained experimental observations.
Collapse
Affiliation(s)
- A F Marée
- Theoretical Biology and Bioinformatics, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | |
Collapse
|
28
|
Ma S, Fey P, Chisholm RL. Molecular motors and membrane traffic in Dictyostelium. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1525:234-44. [PMID: 11257437 DOI: 10.1016/s0304-4165(01)00109-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phagocytosis and membrane traffic in general are largely dependent on the cytoskeleton and their associated molecular motors. The myosin family of motors, especially the unconventional myosins, interact with the actin cortex to facilitate the internalization of external materials during the early steps of phagocytosis. Members of the kinesin and dynein motor families, which mediate transport along microtubules (MTs), facilitate the intracellular processing of the internalized materials and the movement of membrane. Recent studies indicate that some unconventional myosins are also involved in membrane transport, and that the MT- and actin-dependent transport systems might interact with each other. Studies in Dictyostelium have led to the discovery of many motors involved in critical steps of phagocytosis and membrane transport. With the ease of genetic and biochemical approaches, the established functional analysis to test phagocytosis and vesicle transport, and the effort of the Dictyostelium cDNA and Genome Projects, Dictyostelium will continue to be a superb model system to study phagocytosis in particular and cytoskeleton and motors in general.
Collapse
Affiliation(s)
- S Ma
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | |
Collapse
|
29
|
Slupsky CM, Desautels M, Huebert T, Zhao R, Hemmingsen SM, McIntosh LP. Structure of Cdc4p, a contractile ring protein essential for cytokinesis in Schizosaccharomyces pombe. J Biol Chem 2001; 276:5943-51. [PMID: 11087750 DOI: 10.1074/jbc.m008716200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Schizosaccharomyces pombe Cdc4 protein is required for the formation and function of the contractile ring, presumably acting as a myosin light chain. By using NMR spectroscopy, we demonstrate that purified Cdc4p is a monomeric protein with two structurally independent domains, each exhibiting a fold reminiscent of the EF-hand class of calcium-binding proteins. Although Cdc4p has one potentially functional calcium-binding site, it does not bind calcium in vitro. Three variants of Cdc4p containing single point mutations responsible for temperature-sensitive arrest of the cell cycle at cytokinesis (Gly-19 to Glu, Gly-82 to Asp, and Gly-107 to Ser) were also characterized by NMR and circular dichroism spectroscopy. In each case, the amino acid substitution only leads to small perturbations in the conformation of the protein. Furthermore, thermal unfolding studies indicate that, like wild-type Cdc4p, the three mutant forms are all extremely stable, remaining completely folded at temperatures significantly above those causing failure of cytokinesis in intact cells. Therefore, the altered phenotype must arise directly from a disruption of the function of Cdc4p rather than indirectly through a disruption of its overall structure. Several mutant alleles of Cdc4p also show interallelic complementation in diploid cells. This phenomenon can be explained if Cdcp4 has more than one essential function or, alternatively, if two mutant proteins assemble to form a functional complex. Based on the structure of Cdc4p, possible models for interallelic complementation including interactions with partner proteins and the formation of a myosin complex with Cdc4p fulfilling the role of both an essential and regulatory light chain are proposed.
Collapse
Affiliation(s)
- C M Slupsky
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Maeda M, Kuwayama H, Yokoyama M, Nishio K, Morio T, Urushihara H, Katoh M, Tanaka Y, Saito T, Ochiai H, Takemoto K, Yasukawa H, Takeuchi I. Developmental changes in the spatial expression of genes involved in myosin function in Dictyostelium. Dev Biol 2000; 223:114-9. [PMID: 10864465 DOI: 10.1006/dbio.2000.9736] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We analyzed the spatial expression patterns of the genes involved in myosin function by in situ hybridization at the tipped aggregate and early culmination stages of Dictyostelium. Myosin heavy chain II mRNA was enriched in the anterior prestalk region of the tipped aggregates, whereas it disappeared from there and began to appear in both upper and lower cups of the early culminants. Similarly, mRNAs for essential light chain, regulatory light chain, myosin light chain kinase A, and myosin heavy chain kinase C were enriched in the prestalk region of the tipped aggregates. However, expression of these genes was distinctively regulated in the early culminants. These findings suggest the existence of mechanisms responsible for the expression of particular genes.
Collapse
Affiliation(s)
- M Maeda
- Department of Biology, Graduate School of Science, Osaka University, Machikaneyama 1-16, Toyonaka, Osaka, 560-0043, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Chemotaxis plays a central role in various biological processes, such as the movement of neutrophils and macrophage during wound healing and in the aggregation of Dictyostelium cells. During the past few years, new understanding of the mechanisms controlling chemotaxis has been obtained through molecular genetic and biochemical studies of Dictyostelium and other experimental systems. This review outlines our present understanding of the signaling pathways that allow a cell to sense and respond to a chemoattractant gradient. In response to chemoattractants, cells either become polarized in the direction of the chemoattractant source, which results in the formation of a leading edge, or they reorient their polarity in the direction of the chemoattractant gradient and move with a stronger persistence up the gradient. Models are presented here to explain such directional responses. They include a localized activation of pathways at the leading edge and an "inhibition" of these pathways along the lateral edges of the cell. One of the primary pathways that may be responsible for such localized responses is the activation of phosphatidyl inositol-3 kinase (PI3K). Evidence suggests that a localized formation of binding sites for PH (pleckstrin homology) domain-containing proteins produced by PI3K leads to the formation of "activation domains" at the leading edge, producing a localized response.
Collapse
Affiliation(s)
- R A Firtel
- Section of Cell and Developmental Biology, Division of Biology, Center for Molecular Genetics, University of California, San Diego, La Jolla 92093-0634, USA.
| | | |
Collapse
|
32
|
May KM, Watts FZ, Jones N, Hyams JS. Type II myosin involved in cytokinesis in the fission yeast, Schizosaccharomyces pombe. CELL MOTILITY AND THE CYTOSKELETON 2000; 38:385-96. [PMID: 9415380 DOI: 10.1002/(sici)1097-0169(1997)38:4<385::aid-cm8>3.0.co;2-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have cloned an unique gene encoding the heavy chain of a type II myosin in the fission yeast, Schizosaccharomyces pombe. The myo2+ gene encodes a protein of 1526 amino acids with a predicted molecular weight of 177 kDa and containing consensus binding motifs for both essential and regulatory light chains. The S. pombe myo2+ head domain is 45% identical to myosin IIs from Saccharomyces cerevisiae and Homo sapiens and 40% identical to Drosophila melanogaster Structurally, myo2+ most closely resembles budding yeast MYO1, the tails of both myosin IIs containing a number of proline residues that are predicted to substantially disrupt the ability of these myosins to form coiled coils. The myo2+ gene is located on chromosome III, 8.3 map units from ade6+. Deletion of approximately 70% of the coding sequence of myo2+ is lethal but myo2delta spores can acquire a suppressor mutation that allows them to form viable microcolonies consisting of filaments of branched cells with aberrant septa. Overexpression of myo2+ results in the inhibition of cytokinesis; cells become elongated and multinucleate and fail to assemble a functional cytokinetic actin ring and are either aseptate or form aberrant septa. These results suggest that a contractile actin-myosin based cytokinetic mechanism appeared early in the evolution of eukaryotic cells and further emphasise the utility of fission yeast as a model organism in which to study the molecular and cellular basis of cytokinesis.
Collapse
Affiliation(s)
- K M May
- Department of Biology, University College London, United Kingdom
| | | | | | | |
Collapse
|
33
|
Motegi F, Nakano K, Mabuchi I. Molecular mechanism of myosin-II assembly at the division site in Schizosaccharomyces pombe. J Cell Sci 2000; 113 ( Pt 10):1813-25. [PMID: 10769212 DOI: 10.1242/jcs.113.10.1813] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Schizosaccharomyces pombe cells divide by virtue of the F-actin-based contractile ring (F-actin ring). Two myosin-II heavy chains, Myo2 and Myp2/Myo3, have been localized to the F-actin ring. Here, we investigated the mechanism of myosin-II assembly at the division site in S. pombe cells. First, we showed that Cdc4, an EF-hand protein, appears to be a common myosin light chain associated with both Myo2 and Myo3. Loss of function of both Myo2 and Myo3 caused a defect in F-actin assembly at the division site, like the phenotype of cdc4 null cells. It is suggested that Myo2, Myo3 and Cdc4 function in a cooperative manner in the formation of the F-actin ring during mitosis. Next, we investigated the dynamics of myosin-II during mitosis in S. pombe cells. In early mitosis when accumulation of F-actin cables in the medial region was not yet observed, Myo2 was detected primarily as dots widely located in the medial cortex. Myo2 fibers also became visible following the appearance of the dots. The Myo2 dots and fibers then fused with each other to form a medial cortical network. Some Myo2 dots appeared to be localized with F-actin cables which are also accumulated in the medial region. Finally these structures were packed into a thin contractile ring. In mutant cells that cannot form the F-actin ring such as cdc3(ts), cdc8(ts) and cdc12(ts), Myo2 was able to accumulate as dots in the medial cortex, whereas no accumulation of Myo2 dots was detected in cdc4(ts) cells. Moreover, disruption of F-actin in the cell by applying latrunculin-A did not affect the accumulation of Myo2 dots, suggesting that F-actin is not required for their accumulation. A truncated Myo2 which lacks putative Cdc4-binding sites (Myo2dIQs) was able to rescue myo2 null cells, myo3 null cells, cdc4(ts) mutant cells and cdc4 null cells. The Myo2dIQs could assemble into a normal-shaped ring in these cells. Therefore, its assembly at the division site does not require the function of either Cdc4 or Myo3.
Collapse
Affiliation(s)
- F Motegi
- Division of Biology, Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
34
|
Abstract
The cellular slime mold Dictyostelium discoideum is amenable to biochemical, cell biological, and molecular genetic analyses, and offers a unique opportunity for multifaceted approaches to dissect the mechanism of cytokinesis. One of the important questions that are currently under investigation using Dictyostelium is to understand how cleavage furrows or contractile rings are assembled in the equatorial region. Contractile rings consist of a number of components including parallel filaments of actin and myosin II. Phenotypic analyses and in vivo localization studies of cells expressing mutant myosin IIs have demonstrated that myosin II's transport to and localization at the equatorial region does not require regulation by phosphorylation of myosin II, specific amino acid sequences of myosin II, or the motor activity of myosin II. Rather, the transport appears to depend on a myosin II-independent flow of cortical cytoskeleton. What drives the flow of cortical cytoskeleton is still elusive. However, a growing number of mutants that affect assembly of contractile rings have been accumulated. Analyses of these mutations, identification of more cytokinesis-specific genes, and information deriving from other experimental systems, should allow us to understand the mechanism of contractile ring formation and other aspects of cytokinesis.
Collapse
Affiliation(s)
- T Q Uyeda
- Biomolecular Research Group, National Institute for Advanced Interdisciplinary Research, Tsukuba, Ibaraki 305-8562, Japan.
| | | |
Collapse
|
35
|
Chung CY, Firtel RA. PAKa, a putative PAK family member, is required for cytokinesis and the regulation of the cytoskeleton in Dictyostelium discoideum cells during chemotaxis. J Cell Biol 1999; 147:559-76. [PMID: 10545500 PMCID: PMC2151188 DOI: 10.1083/jcb.147.3.559] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have identified a Dictyostelium discoideum gene encoding a serine/threonine kinase, PAKa, a putative member of the Ste20/PAK family of p21-activated kinases, with a kinase domain and a long NH(2)-terminal regulatory domain containing an acidic segment, a polyproline domain, and a CRIB domain. PAKa colocalizes with myosin II to the cleavage furrow of dividing cells and the posterior of polarized, chemotaxing cells via its NH(2)-terminal domain. paka null cells are defective in completing cytokinesis in suspension. PAKa is also required for maintaining the direction of cell movement, suppressing lateral pseudopod extension, and proper retraction of the posterior of chemotaxing cells. paka null cells are defective in myosin II assembly, as the myosin II cap in the posterior of chemotaxing cells and myosin II assembly into cytoskeleton upon cAMP stimulation are absent in these cells, while constitutively active PAKa leads to an upregulation of myosin II assembly. PAKa kinase activity against histone 2B is transiently stimulated and PAKa incorporates into the cytoskeleton with kinetics similar to those of myosin II assembly in response to chemoattractant signaling. However, PAKa does not phosphorylate myosin II. We suggest that PAKa is a major regulator of myosin II assembly, but does so by negatively regulating myosin II heavy chain kinase.
Collapse
Affiliation(s)
- Chang Y. Chung
- Department of Biology, Center for Molecular Genetics, University of California San Diego, La Jolla, California 92093-0634
| | - Richard A. Firtel
- Department of Biology, Center for Molecular Genetics, University of California San Diego, La Jolla, California 92093-0634
| |
Collapse
|
36
|
Rivero F, Furukawa R, Fechheimer M, Noegel AA. Three actin cross-linking proteins, the 34 kDa actin-bundling protein, alpha-actinin and gelation factor (ABP-120), have both unique and redundant roles in the growth and development of Dictyostelium. J Cell Sci 1999; 112 ( Pt 16):2737-51. [PMID: 10413681 DOI: 10.1242/jcs.112.16.2737] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The contribution of three actin cross-linking proteins, alpha-actinin (alphaA), gelation factor (ABP-120), and the 34 kDa actin-bundling protein to cellular functions has been studied in three single mutant (alphaA-, 120-, and 34-) and three double mutant (alphaA-/120-, 34-/alphaA-, 34-/120-) strains of Dictyostelium generated by homologous recombination. Strains alphaA-/120- and 34-/alphaA- exhibited a reduced rate of pinocytosis, grew to lower saturation densities, and produced small cells in shaking cultures. All strains grew normally in bacterial suspensions and on agar plates with a bacterial lawn. Slow growth under conditions of reduced temperature and increased osmolarity was observed in single mutants 34- and alphaA-, respectively, as well as in some of the double mutant strains. Motility, chemotaxis, and development were largely unaltered in 34-/alphaA- and 34-/120- cells. However, 34-/alphaA- cells showed enhanced aggregation when starved in suspension. Moreover, morphogenesis was impaired in both double mutant strains and fruiting bodies of aberrant morphology were observed. These defects were reverted by re-expression of one of the lacking cross-linking proteins. The additive and synthetic phenotypes of these mutations indicate that actin cross-linking proteins serve both unique and overlapping functions in the actin cytoskeleton.
Collapse
Affiliation(s)
- F Rivero
- Max-Planck-Institut für Biochemie, D-82152 Martinsried, Germany
| | | | | | | |
Collapse
|
37
|
McCollum D, Feoktistova A, Gould KL. Phosphorylation of the myosin-II light chain does not regulate the timing of cytokinesis in fission yeast. J Biol Chem 1999; 274:17691-5. [PMID: 10364209 DOI: 10.1074/jbc.274.25.17691] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proper coordination of cytokinesis with chromosome separation during mitosis is crucial to ensure that each daughter cell inherits an equivalent set of chromosomes. It has been proposed that one mechanism by which this is achieved is through temporally regulated myosin regulatory light chain (RLC) phosphorylation (Satterwhite, L. L., and Pollard, T. D. (1992) Curr. Opin. Cell Biol. 4, 43-52). A variety of evidence is consistent with this model. A direct test of the importance of RLC phosphorylation in vivo has been done only in Dictyostelium and Drosophila; phosphorylation of the RLC is essential in Drosophila (Jordan, P., and Karess, R. (1997) J. Cell Biol. 139, 1805-1819) but not essential in Dictyostelium (Ostrow, B. D., Chen, P., and Chisholm, R. L. (1994) J. Cell Biol. 127, 1945-1955). The Schizosaccharomyces pombe myosin light chain Cdc4p is essential for cytokinesis, but it was unknown whether phosphorylation played a role in its regulation. Here we show that the S. pombe myosin light chain Cdc4p is phosphorylated in vivo on either serine 2 or 6 but not both. Mutation of either or both of these sites to alanine did not effect the ability of Cdc4p to bind the type II myosin Myo2p, and cells expressing only these mutated versions of Cdc4p grew and divided normally. Similarly, mutation of Ser-2, Ser-6, or both residues to aspartic acid did not affect growth or division of cells. Thus we conclude that phosphorylation of Cdc4p is not essential in vivo for the function of the protein.
Collapse
Affiliation(s)
- D McCollum
- Howard Hughes Medical Institute and Department of Cell Biology, Vanderbilt University School of Medicine, Nashville Tennessee 37232, USA
| | | | | |
Collapse
|
38
|
Chaudoir BM, Kowalczyk PA, Chisholm RL. Regulatory light chain mutations affect myosin motor function and kinetics. J Cell Sci 1999; 112 ( Pt 10):1611-20. [PMID: 10212154 DOI: 10.1242/jcs.112.10.1611] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The actin-based motor protein myosin II plays a critical role in many cellular processes in both muscle and non-muscle cells. Targeted disruption of the Dictyostelium regulatory light chain (RLC) caused defects in cytokinesis and multicellular morphogenesis. In contrast, a myosin heavy chain mutant lacking the RLC binding site, and therefore bound RLC, showed normal cytokinesis and development. One interpretation of these apparently contradictory results is that the phenotypic defects in the RLC null mutant results from mislocalization of myosin caused by aggregation of RLC null myosin. To distinguish this from the alternative explanation that the RLC can directly influence myosin activity, we expressed three RLC point mutations (E12T, G18K and N94A) in a Dictyostelium RLC null mutant. The position of these mutations corresponds to the position of mutations that have been shown to result in familial hypertrophic cardiomyopathy in humans. Analysis of purified Dictyostelium myosin showed that while these mutations did not affect binding of the RLC to the MHC, its phosphorylation by myosin light chain kinase or regulation of its activity by phosphorylation, they resulted in decreased myosin function. All three mutants showed impaired cytokinesis in suspension, and one produced defective fruiting bodies with short stalks and decreased spore formation. The abnormal myosin localization seen in the RLC null mutant was restored to wild-type localization by expression of all three RLC mutants. Although two of the mutant myosins had wild-type actin-activated ATPase, they produced in vitro motility rates half that of wild type. N94A myosin showed a fivefold decrease in actin-ATPase and a similar decrease in the rate at which it moved actin in vitro. These results indicate that the RLC can play a direct role in determining the force transmission and kinetic properties of myosin.
Collapse
Affiliation(s)
- B M Chaudoir
- Dept of Cell and Molecular Biology, Northwestern University Medical School, Ward 11-100, Chicago, IL 60611-3008, USA
| | | | | |
Collapse
|
39
|
Tsujioka M, Machesky LM, Cole SL, Yahata K, Inouye K. A unique talin homologue with a villin headpiece-like domain is required for multicellular morphogenesis in Dictyostelium. Curr Biol 1999; 9:389-92. [PMID: 10209124 DOI: 10.1016/s0960-9822(99)80169-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecules involved in the interaction between the extracellular matrix, cell membrane and cytoskeleton are of central importance in morphogenesis. Talin is a large cytoskeletal protein with a modular structure consisting of an amino-terminal membrane-interacting domain, with sequence similarities to members of the band 4.1 family, and a carboxy-terminal region containing F-actin-binding and vinculin-binding domains [1] [2]. It also interacts with the cytoplasmic tail of beta integrins which, on the external face of the membrane, bind to extracellular matrix proteins [3]. The possible roles of talin in multicellular morphogenesis in development remain largely unexplored. In Dictyostelium, a eukaryotic microorganism capable of multicellular morphogenesis, a talin homologue (TALA) has previously been identified and shown to play an important role in cell-to-substrate adhesion and maintenance of normal elastic properties of the cell [4] [5] [6]. Here, we describe a second talin homologue (TALB) that is required for multicellular morphogenesis in the development of Dictyostelium. Unlike any other talin characterised to date, it contains an additional carboxy-terminal domain homologous to the villin headpiece.
Collapse
Affiliation(s)
- M Tsujioka
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- L Wordeman
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle 98195, USA
| | | |
Collapse
|
41
|
Weissbach L, Bernards A, Herion DW. Binding of myosin essential light chain to the cytoskeleton-associated protein IQGAP1. Biochem Biophys Res Commun 1998; 251:269-76. [PMID: 9790945 DOI: 10.1006/bbrc.1998.9371] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 190 kD human IQGAP1 protein, by virtue of its N-terminal calponin-homology domain, is found associated with the actin cytoskeleton, and is capable of cross-linking actin filaments. IQGAP1 complexes with several proteins, including the Rho family GTPases Cdc42 and Rac, as well as calmodulin. It was previously noted that one of the IQ motifs of IQGAP1 displays significant similarity to a myosin heavy chain IQ motif responsible for binding the calmodulin-related myosin essential light chain (ELC). Employing the yeast two-hybrid methodology as well as in vitro binding experiments, we present evidence that a truncated version of IQGAP1 can interact with the myosin ELC. This interaction may have significant consequences for various cellular processes that involve actomyosin contractility, and suggests that the biological targets of the ELC may not be restricted to the myosin heavy chain.
Collapse
Affiliation(s)
- L Weissbach
- Orthopaedic Research Laboratories, Massachusetts General Hospital, Boston, Massachusetts, 02114, USA.
| | | | | |
Collapse
|
42
|
Chen TL, Wolf WA, Chisholm RL. Cell-type-specific rescue of myosin function during Dictyostelium development defines two distinct cell movements required for culmination. Development 1998; 125:3895-903. [PMID: 9729497 DOI: 10.1242/dev.125.19.3895] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutant Dictyostelium cells lacking any of the component polypeptides of myosin II exhibit developmental defects. To define myosin's role in establishing Dictyostelium's developmental pattern, we have rescued myosin function in a myosin regulatory light chain null mutant (mlcR-) using cell-type-specific promoters. While mlcR- cells fail to progress beyond the mound stage, expression of RLC from the prestalk promoter, ecmA, produces culminants with normal stalks but with defects in spore cell localization. When GFP-marked prestalk and prespore cells expressing ecmA-RLC are mixed with wild-type cells, the mislocalization of prestalk cells, but not prespore cells, is rescued. Time-lapse video recording of ecmA-RLC cells showed that the posterior prespore zone failed to undergo a contraction important for the upward movement of prespore cells. Prespore cells marked with green fluorescent protein (GFP) failed to move toward the tip with the spiral motion typical of wild type. In contrast, expression of RLC in prespore cells using the psA promoter produced balloon-like structures reminiscent of sorocarps but lacking stalks. GFP-labeled prespore cells showed a spiral movement toward the top of the structures. Expression of RLC from the psA promoter restores the normal localization of psA-GFP cells, but not ecmA-GFP cells. These results define two distinct, myosin-dependent movements that are required for establishing a Dictyostelium fruiting body: stalk extension and active movement of the prespore zone that ensures proper placement of the spores atop the stalk. The approach used in these studies provides a direct means of testing the role of cell motility in distinct cell types during a morphogenetic program.
Collapse
Affiliation(s)
- T L Chen
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | |
Collapse
|
43
|
Iijima M, Shimizu H, Tanaka Y, Urushihara H. A Dictyostelium discoideum homologue to Tcp-1 is essential for growth and development. Gene 1998; 213:101-6. [PMID: 9630545 DOI: 10.1016/s0378-1119(98)00190-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tcp-1 (t-complex polypeptide 1 gene) was first identified in the mouse as relevant for tail-less and embryonic lethal phenotypes. Since then, its homologous sequences have been isolated in several other species, and the yeast Tcp-1 has been shown to encode a molecular chaperon for actin and tubulin. In a random sample of genes expressed in the gamete of Dictyostelium discoideum (Dd), we encountered a sequence containg the TCP1 motifs. The complete ORF of the gene (DdTcp-1) showed more than 60% similarity to TCP-1 of several organisms, including human. DdTcp-1 was found to be expressed in both sexually mature and immature cells at the growth phase. Although the sexual process itself was not affected, antisense interference of this gene resulted in severe retardation of cell growth, leading to the complete cessation of division. In addition, the antisense transformants stopped asexual development at the finger stage. These results suggest an important function of DdTcp-1 in growth and development of this organism.
Collapse
Affiliation(s)
- M Iijima
- Institute of Biological Sciences, University of Tsukuba, Tsukuba-shi, 305-8572, Japan
| | | | | | | |
Collapse
|
44
|
Shutt DC, Jenkins LM, Carolan EJ, Stapleton J, Daniels KJ, Kennedy RC, Soll DR. T cell syncytia induced by HIV release. T cell chemoattractants: demonstration with a newly developed single cell chemotaxis chamber. J Cell Sci 1998; 111 ( Pt 1):99-109. [PMID: 9394016 DOI: 10.1242/jcs.111.1.99] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A chemotaxis chamber has been developed to analyze both the velocity and the directionality of individual T cells in gradients of high molecular mass molecules over long periods of time. Employing this chamber, it is demonstrated that syncytia induced by HIV in SUP-T1 cell cultures release two T cell chemoattractants with approximate molecular masses of 30 and 120 kDa. Neither uninfected single cells nor polyethylene glycol-induced syncytia release detectable chemoattractant, suggesting that these chemoattractants are linked to HIV infection. Soluble gp120 functions as a T cell chemoattractant and the addition of anti-gp120 antibody to syncytium-conditioned medium blocks the high molecular mass chemoattractant activity but not the low molecular mass activity. The addition of anti-CD4 antibody to syncytium-conditioned medium also blocks the high molecular mass chemoattractant activity but not the low molecular mass activity. These results demonstrate that HIV-induced T cell syncytia release a low and a high molecular mass T cell chemoattractant, and suggest that the high molecular mass factor is gp120 and that it functions through the CD4 receptor.
Collapse
Affiliation(s)
- D C Shutt
- Department of Biological Sciences, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Cell shape, motility and distribution of F-actin in amoebae of the mycetozoans Protostelium mycophaga and Acrasis rosea. A comparison with Dictyostelium discoideum. Eur J Protistol 1997. [DOI: 10.1016/s0932-4739(97)80051-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Tuxworth RI, Cheetham JL, Machesky LM, Spiegelmann GB, Weeks G, Insall RH. Dictyostelium RasG is required for normal motility and cytokinesis, but not growth. J Cell Biol 1997; 138:605-14. [PMID: 9245789 PMCID: PMC2141629 DOI: 10.1083/jcb.138.3.605] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/1997] [Revised: 05/05/1997] [Indexed: 02/04/2023] Open
Abstract
RasG is the most abundant Ras protein in growing Dictyostelium cells and the closest relative of mammalian Ras proteins. We have generated null mutants in which expression of RasG is completely abolished. Unexpectedly, RasG- cells are able to grow at nearly wild-type rates. However, they exhibit defective cell movement and a wide range of defects in the control of the actin cytoskeleton, including a loss of cell polarity, absence of normal lamellipodia, formation of unusual small, punctate polymerized actin structures, and a large number of abnormally long filopodia. Despite their lack of polarity and abnormal cytoskeleton, mutant cells perform normal chemotaxis. However, rasG- cells are unable to perform normal cytokinesis, becoming multinucleate when grown in suspension culture. Taken together, these data suggest a principal role for RasG in coordination of cell movement and control of the cytoskeleton.
Collapse
Affiliation(s)
- R I Tuxworth
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | | | | | | | | | | |
Collapse
|
47
|
Gulick AM, Rayment I. Structural studies on myosin II: communication between distant protein domains. Bioessays 1997; 19:561-9. [PMID: 9230689 DOI: 10.1002/bies.950190707] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Understanding how chemical energy is converted into directed movement is a fundamental problem in biology. In higher organisms this is accomplished through the hydrolysis of ATP by three families of motor proteins: myosin, dynein and kinesin. The most abundant of these is myosin, which operates against actin and plays a central role in muscle contraction. As summarized here, great progress has been made towards understanding the molecular basis of movement through the determination of the three-dimensional structures of myosin and actin and through the establishment of systems for site-directed mutagenesis of this motor protein. It now appears that the generation of movement is coupled to ATP hydrolysis by a series of domain movements within myosin.
Collapse
Affiliation(s)
- A M Gulick
- Institute for Enzyme Research, University of Wisconsin, Madison 53705, USA
| | | |
Collapse
|
48
|
Adachi H, Takahashi Y, Hasebe T, Shirouzu M, Yokoyama S, Sutoh K. Dictyostelium IQGAP-related protein specifically involved in the completion of cytokinesis. J Cell Biol 1997; 137:891-8. [PMID: 9151691 PMCID: PMC2139833 DOI: 10.1083/jcb.137.4.891] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The gapA gene encoding a novel RasGTPase-activating protein (RasGAP)-related protein was found to be disrupted in a cytokinesis mutant of Dictyostelium that grows as giant and multinucleate cells in a dish culture. The predicted sequence of the GAPA protein showed considerable homology to those of Gap1/Sar1 from fission yeast and the COOH-terminal half of mammalian IQGAPs, the similarity extending beyond the RasGAP-related domain. In suspension culture, gapA- cells showed normal growth in terms of the increase in cell mass, but cytokinesis inefficiently occurred to produce spherical giant cells. Time-lapse recording of the dynamics of cell division in a dish culture revealed that, in the case of gapA- cells, cytokinesis was very frequently reversed at the step in which the midbody connecting the daughter cells should be severed. Earlier steps of cytokinesis in the gapA- cells seemed to be normal, since myosin II was accumulated at the cleavage furrow. Upon starvation, gapA- cells developed and formed fruiting bodies with viable spores, like the wild-type cells. These results indicate that the GAPA protein is specifically involved in the completion of cytokinesis. Recently, it was reported that IQGAPs are putative effectors for Rac and CDC42, members of the Rho family of GTPases, and participate in reorganization of the actin cytoskeleton. Thus, it is possible that Dictyostelium GAPA participates in the severing of the midbody by regulating the actin cytoskeleton through an interaction with a member of small GTPases.
Collapse
Affiliation(s)
- H Adachi
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153.
| | | | | | | | | | | |
Collapse
|
49
|
Buczynski G, Grove B, Nomura A, Kleve M, Bush J, Firtel RA, Cardelli J. Inactivation of two Dictyostelium discoideum genes, DdPIK1 and DdPIK2, encoding proteins related to mammalian phosphatidylinositide 3-kinases, results in defects in endocytosis, lysosome to postlysosome transport, and actin cytoskeleton organization. J Cell Biol 1997; 136:1271-86. [PMID: 9087443 PMCID: PMC2132510 DOI: 10.1083/jcb.136.6.1271] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/1996] [Revised: 11/19/1996] [Indexed: 02/04/2023] Open
Abstract
Phosphatidylinositide 3-kinases (PI3-kinases) have been implicated in controlling cell proliferation, actin cytoskeleton organization, and the regulation of vesicle trafficking between intracellular organelles. There are at least three genes in Dictyostelium discoideum. DdPIK1, DdPIK2, and DdPIK3, encoding proteins most closely related to the mammalian 110-kD PI-3 kinase in amino acid sequence within the kinase domain. A mutant disrupted in DdPIK1 and DdPIK2 (delta ddpik1/ddpik2) grows slowly in liquid medium. Using FITC-dextran (FD) as a fluid phase marker, we determined that the mutant strain was impaired in pinocytosis but normal in phagocytosis of beads or bacteria. Microscopic and biochemical approaches indicated that the transport rate of fluid-phase from acidic lysosomes to non-acidic postlysosomal vacuoles was reduced in mutant cells resulting in a reduction in efflux of fluid phase. Mutant cells were also almost completely devoid of large postlysosomal vacuoles as determined by transmission EM. However, delta ddpik1/ddpik2 cells functioned normally in the regulation of other membrane traffic. For instance, radiolabel pulse-chase experiments indicated that the transport rates along the secretory pathway and the sorting efficiency of the lysosomal enzyme alpha-mannosidase were normal in the mutant strain. Furthermore, the contractile vacuole network of membranes (probably connected to the endosomal pathway by membrane traffic) was functionally and morphologically normal in mutant cells. Light microscopy revealed that delta ddpik1/ddpik2 cells appeared smaller and more irregularly shaped than wild-type cells; 1-3% of the mutant cells were also connected by a thin cytoplasmic bridge. Scanning EM indicated that the mutant cells contained numerous filopodia projecting laterally and vertically from the cell surface, and fluorescent microscopy indicated that these filopodia were enriched in F-actin which accumulated in a cortical pattern in control cells. Finally, delta ddpik1/ddpik2 cells responded and moved more rapidly towards cAMP. Together, these results suggest that Dictyostelium DdPIK1 and DdPIK2 gene products regulate multiple steps in the endosomal pathway, and function in the regulation of cell shape and movement perhaps through changes in actin organization.
Collapse
Affiliation(s)
- G Buczynski
- Department of Microbiology and Immunology, Louisiana State University Medical Center, Shreveport 71130, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Ho G, Chisholm RL. Substitution mutations in the myosin essential light chain lead to reduced actin-activated ATPase activity despite stoichiometric binding to the heavy chain. J Biol Chem 1997; 272:4522-7. [PMID: 9020178 DOI: 10.1074/jbc.272.7.4522] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Myosin essential light chain (ELC) wraps around an alpha-helix that extends from the myosin head, where it is believed to play a structural support role. To identify other role(s) of the ELC in myosin function, we have used an alanine scanning mutagenesis approach to convert charged residues in loops I, II, III, and helix G of the Dictyostelium ELC into uncharged alanines. Dictyostelium was used as a host system to study the phenotypic and biochemical consequences associated with the mutations. The ELC carrying loop mutations bound with normal stoichiometry to the myosin heavy chain when expressed in ELC-minus cells. When expressed in wild type cells these mutants competed efficiently with the endogenous ELC for binding, suggesting that the affinity of their interaction with the heavy chain is comparable to that of wild type. However, despite apparently normal association of ELC the cells still exhibited a reduced efficiency to undergo cytokinesis in suspension. Myosin purified from these cells exhibited 4-5-fold reduction in actin-activated ATPase activity and a decrease in motor function as assessed by an in vitro motility assay. These results suggest that the ELC contributes to myosin's enzymatic activity in addition to providing structural support for the alpha-helical neck region of myosin heavy chain.
Collapse
Affiliation(s)
- G Ho
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | |
Collapse
|