1
|
The role of tumour microenvironment-driven miRNAs in the chemoresistance of muscle-invasive bladder cancer-a review. Urol Oncol 2022; 40:133-148. [PMID: 35246373 DOI: 10.1016/j.urolonc.2022.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 12/27/2022]
Abstract
Successful treatment for muscle-invasive bladder cancer is challenged by the ability of cancer cells to resist chemotherapy. While enormous progress has been made toward understanding the divergent molecular mechanisms underlying chemoresistance, the heterogenous interplay between the bladder tumour and its microenvironment presents significant challenges in comprehending the occurrence of chemoresistance. The last decade has seen exponential interest in the exploration of microRNA (miRNA) as a tool in the management of chemoresistance. In this review, we highlight the miRNAs involved in the tumour microenvironment crosstalk that contributes to the chemoresistance in bladder cancer. Decrypting the role of miRNAs in the interplay beholds scope for future clinical translational application in managing the long-standing concerns of chemoresistance in muscle-invasive bladder cancer.
Collapse
|
2
|
Competing Endogenous RNA Network in Non-Keloid-Prone Individuals During Wound Healing. J Craniofac Surg 2021; 33:29-34. [PMID: 34882650 DOI: 10.1097/scs.0000000000007824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
ABSTRACT To study the interaction between differentially expressed long non-coding RNAs (lncRNAs), microRNAs, and messenger RNAs during wound healing in normal individuals. The GSE113621 dataset was downloaded from gene expression matrix, specimens regarding non-keloid-prone individuals were selected, including items before and 6 weeks after injury. A Pearson correlation coefficient of > 0.95 was selected as the index to screen targeting relationships among different RNAs. Cytoscape was used to construct a network diagram. The expression of 2547 lncRNAs was changed during the wound healing process-1479 were upregulated and 1068 were downregulated. After analyzing competitive endogenous RNA network, 4 upregulated (MEG8, MEG3, MIR181A1HG, MIR4435-2HG) lncRNAs were found expressed during wound healing. MEG8/MEG3 may regulate fibroblast proliferation, differentiation, and apoptosis through hsa-miR-296-3p/miR-6763-5p. In-depth mining of gene expression matrix data indicated that lncRNAs and a competitive endogenous RNA regulatory network participate in the wound healing process, possibly providing novel intervention targets and treatment options for delayed wound healing.
Collapse
|
3
|
Jacob B, Jüllig M, Middleditch M, Payne L, Broom N, Sarojini V, Thambyah A. Protein Levels and Microstructural Changes in Localized Regions of Early Cartilage Degeneration Compared with Adjacent Intact Cartilage. Cartilage 2021; 12:192-210. [PMID: 30486653 PMCID: PMC7970373 DOI: 10.1177/1947603518809401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE It was hypothesized that the respective protein profiles of bovine cartilage from sites of localized mild to moderate (GI to GII) degeneration versus adjacent sites of intact tissue would vary in accordance with the tissue microstructural changes associated with a pre-osteoarthritic state. METHODS A total of 15 bovine patellae were obtained for this study. Paired samples of tissue were collected from the lateral region of each patella. If the patella contained a site of degeneration, a paired tissue set involved taking one sample each from the degenerated site and the intact tissue adjacent to it. Sufficient tissue was collected to facilitate 2 arms of investigation: microstructural imaging and proteome analysis. The microstructural analysis used a bespoke tissue preparation technique imaged with differential interference contrast optical microscopy to assess fibrillar scale destructuring and underlying bone spicule formation. An iTRAQ-based proteome analysis was performed using liquid chromatography-tandem mass spectrometry to identify the differential levels of proteins across the intact and degenerated cartilage and further, the results were validated with multiple reaction monitoring assay. RESULTS In the healthy cartilage pairs, there was no significant variation in protein profiles between 2 adjacent sample sites. In pairs of tissue that contained a sample of GI/GII tissue, there were both significant microstructural changes as well as the difference in abundance levels of 24 proteins. CONCLUSIONS From the known functions of the 24 proteins, found to be strongly aligned with the specific microstructural changes observed, a unique "proteins ensemble" involved in the initiation and progression of early cartilage degeneration is proposed.
Collapse
Affiliation(s)
- Bincy Jacob
- School of Biological Sciences, The
University of Auckland, Auckland, New Zealand
| | - Mia Jüllig
- School of Biological Sciences, The
University of Auckland, Auckland, New Zealand
| | - Martin Middleditch
- School of Biological Sciences, The
University of Auckland, Auckland, New Zealand
| | - Leo Payne
- School of Biological Sciences, The
University of Auckland, Auckland, New Zealand
| | - Neil Broom
- Department of Chemical and Materials
Engineering, Experimental Tissue Mechanics Laboratory, University of Auckland,
Auckland, New Zealand
| | | | - Ashvin Thambyah
- Department of Chemical and Materials
Engineering, Experimental Tissue Mechanics Laboratory, University of Auckland,
Auckland, New Zealand,Ashvin Thambyah, Department of Chemical and
Materials Engineering, Experimental Tissue Mechanics Laboratory, University of
Auckland, 20 Symonds Street, Auckland, 1010, New Zealand.
| |
Collapse
|
4
|
Tenascin-C Function in Glioma: Immunomodulation and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1272:149-172. [PMID: 32845507 DOI: 10.1007/978-3-030-48457-6_9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
First identified in the 1980s, tenascin-C (TNC) is a multi-domain extracellular matrix glycoprotein abundantly expressed during the development of multicellular organisms. TNC level is undetectable in most adult tissues but rapidly and transiently induced by a handful of pro-inflammatory cytokines in a variety of pathological conditions including infection, inflammation, fibrosis, and wound healing. Persistent TNC expression is associated with chronic inflammation and many malignancies, including glioma. By interacting with its receptor integrin and a myriad of other binding partners, TNC elicits context- and cell type-dependent function to regulate cell adhesion, migration, proliferation, and angiogenesis. TNC operates as an endogenous activator of toll-like receptor 4 and promotes inflammatory response by inducing the expression of multiple pro-inflammatory factors in innate immune cells such as microglia and macrophages. In addition, TNC drives macrophage differentiation and polarization predominantly towards an M1-like phenotype. In contrast, TNC shows immunosuppressive function in T cells. In glioma, TNC is expressed by tumor cells and stromal cells; high expression of TNC is correlated with tumor progression and poor prognosis. Besides promoting glioma invasion and angiogenesis, TNC has been found to affect the morphology and function of tumor-associated microglia/macrophages in glioma. Clinically, TNC can serve as a biomarker for tumor progression; and TNC antibodies have been utilized as an adjuvant agent to deliver anti-tumor drugs to target glioma. A better mechanistic understanding of how TNC impacts innate and adaptive immunity during tumorigenesis and tumor progression will open new therapeutic avenues to treat brain tumors and other malignancies.
Collapse
|
5
|
Myojin S, Yoshimura T, Yoshida S, Takeda A, Murakami Y, Kawano Y, Oshima Y, Ishibashi T, Sonoda KH. Gene Expression Analysis of the Irrigation Solution Samples Collected during Vitrectomy for Idiopathic Epiretinal Membrane. PLoS One 2016; 11:e0164355. [PMID: 27736918 PMCID: PMC5063277 DOI: 10.1371/journal.pone.0164355] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/24/2016] [Indexed: 02/03/2023] Open
Abstract
Purpose The analysis of gene expression in idiopathic epiretinal membranes (iERMs) may help elucidate ERM formation and its pathology. Here, we conducted a case-control study, in order to determine the expression levels of cytokines and other genes in eyes with macular hole (MH) or iERM. Methods Twenty eyes, obtained from seven male and 13 female patients, were included in the study. The average age of the study subjects was 69.1 ± 7.67 years, and 15 eyes had iERM, while five eyes had MH. Irrigation solution samples were collected during vitrectomy, centrifuged, and the levels of cytokine and other mRNAs in the sediment were assessed using real-time PCR. The expression level of 11 cytokine genes, four transcription factor genes, two cytoskeletal genes, and genes encoding two extracellular matrix proteins in eyes with MH or iERM were determined and compared. Results The expression levels of interleukin 6 (IL6), tumor growth factor B2 (TGFB2), vascular endothelial growth factor A (VEGFA), chemokine C-X-C motif ligand 1 (CXCL1), v-rel avian reticuloendotheliosis viral oncogene homolog A (RELA), glial fibrillary acidic protein (GFAP), and tenascin C (TNC) were significantly higher in eyes with iERM than in eyes with MH. The expression of these genes was not associated with the preoperative visual acuity of the investigated patients. Conclusions The obtained results indicate that real-time PCR analysis of irrigation solution samples collected during vitrectomy can help assess the expression levels of several genes, and that iERM is associated with the expression of pro-inflammatory genes and the genes expressed during angiogenesis and wound healing process (IL6, TGFB2, VEGFA, CXCL1, RELA, GFAP, and TNC).
Collapse
Affiliation(s)
- Sayaka Myojin
- Department of Ophthalmology, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takeru Yoshimura
- Department of Ophthalmology, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- * E-mail:
| | - Shigeo Yoshida
- Department of Ophthalmology, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Atsunobu Takeda
- Department of Ophthalmology, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yusuke Murakami
- Department of Ophthalmology, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoichi Kawano
- Section of Ophthalmology, Department of Medicine, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Yuji Oshima
- Department of Ophthalmology, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tatsuro Ishibashi
- Department of Ophthalmology, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
6
|
Helal-Neto E, Brandão-Costa RM, Saldanha-Gama R, Ribeiro-Pereira C, Midlej V, Benchimol M, Morandi V, Barja-Fidalgo C. Priming Endothelial Cells With a Melanoma-Derived Extracellular Matrix Triggers the Activation of αvβ3/VEGFR2 Axis. J Cell Physiol 2016; 231:2464-73. [DOI: 10.1002/jcp.25358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/22/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Edward Helal-Neto
- Laboratório de Farmacologia Celular e Molecular, IBRAG; Universidade do Estado do Rio de Janeiro; Rio de Janeiro Brazil
- Laboratório de Biologia da Célula Endotelial e da Angiogênese, IBRAG; Universidade do Estado do Rio de Janeiro; Rio de Janeiro Brazil
| | - Renata M. Brandão-Costa
- Laboratório de Farmacologia Celular e Molecular, IBRAG; Universidade do Estado do Rio de Janeiro; Rio de Janeiro Brazil
| | - Roberta Saldanha-Gama
- Laboratório de Farmacologia Celular e Molecular, IBRAG; Universidade do Estado do Rio de Janeiro; Rio de Janeiro Brazil
| | - Cristiane Ribeiro-Pereira
- Laboratório de Farmacologia Celular e Molecular, IBRAG; Universidade do Estado do Rio de Janeiro; Rio de Janeiro Brazil
| | - Victor Midlej
- Instituto de Biofísica Carlos Chagas Filho; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - Marlene Benchimol
- Instituto de Biofísica Carlos Chagas Filho; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
- Unigranrio; Universidade do Grande Rio; Rio de Janeiro Brazil
| | - Verônica Morandi
- Laboratório de Biologia da Célula Endotelial e da Angiogênese, IBRAG; Universidade do Estado do Rio de Janeiro; Rio de Janeiro Brazil
| | - Christina Barja-Fidalgo
- Laboratório de Farmacologia Celular e Molecular, IBRAG; Universidade do Estado do Rio de Janeiro; Rio de Janeiro Brazil
| |
Collapse
|
7
|
Abstract
The extracellular matrix protein tenascin C (TNC) is a large glycoprotein expressed in connective tissues and stem cell niches. TNC over-expression is repeatedly observed in cancer, often at the invasive tumor front, and is associated with poor clinical outcome in several malignancies. The link between TNC expression and poor survival in cancer patients suggests a role for TNC in metastatic progression, which is responsible for the majority of cancer related deaths. Indeed, functional studies using mouse models are revealing new roles of TNC in cancer progression and underscore its important contribution to the development of metastasis. TNC has a pleiotropic role in advancing metastasis by promoting migratory and invasive cell behavior, angiogenesis and cancer cell viability under stress. TNC is an essential component of the metastatic niche and modulates stem cell signaling within the niche. This may be crucial for the fitness of disseminated cancer cells confronted with a foreign environment in secondary organs, that can exert a strong selective pressure on invading cells. TNC is a compelling example of how an extracellular matrix protein can provide a molecular context that is imperative to cancer cell fitness in metastasis.
Collapse
Affiliation(s)
- Camille M Lowy
- a Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH) ; Heidelberg , Germany
| | | |
Collapse
|
8
|
Abstract
Tenascins are a family of extracellular matrix molecules that are mainly expressed in embryonic development and down-regulated in adulthood. A re-expression in the adult occurs under pathological conditions such as inflammation, regeneration or neoplasia. As the most prominent member of the tenascin family, TN-C, is highly expressed in glioma tissue and rising evidence suggests that TN-C plays a crucial role in cell migration or invasion - the most fatal characteristics of glioma - also the other members of this protein family have been investigated with regard to their impact on glioma biology. For all tenascins correlations between the expression levels of the different family members and the degree of malignancy and invasiveness of glial tumors could be detected. Overall, the former and recent results in the research on glioma and tenascins point at distinct roles of each of the molecules in glioma biology and the devastating properties of these tumors.
Collapse
Affiliation(s)
- Nicole Brösicke
- a Department of Cell Morphology and Molecular Neurobiology ; Ruhr-University Bochum ; Bochum , Germany
| | | |
Collapse
|
9
|
Zuliani-Alvarez L, Midwood KS. Fibrinogen-Related Proteins in Tissue Repair: How a Unique Domain with a Common Structure Controls Diverse Aspects of Wound Healing. Adv Wound Care (New Rochelle) 2015; 4:273-285. [PMID: 26005593 DOI: 10.1089/wound.2014.0599] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 10/14/2014] [Indexed: 12/23/2022] Open
Abstract
Significance: Fibrinogen-related proteins (FRePs) comprise an intriguing collection of extracellular molecules, each containing a conserved fibrinogen-like globe (FBG). This group includes the eponymous fibrinogen as well as the tenascin, angiopoietin, and ficolin families. Many of these proteins are upregulated during tissue repair and exhibit diverse roles during wound healing. Recent Advances: An increasing body of evidence highlights the specific expression of a number of FRePs following tissue injury and infection. Upon induction, each FReP uses its FBG domain to mediate quite distinct effects that contribute to different stages of tissue repair, such as driving coagulation, pathogen detection, inflammation, angiogenesis, and tissue remodeling. Critical Issues: Despite a high degree of homology among FRePs, each contains unique sequences that enable their diversification of function. Comparative analysis of the structure and function of FRePs and precise mapping of regions that interact with a variety of ligands has started to reveal the underlying molecular mechanisms by which these proteins play very different roles using their common domain. Future Directions: Fibrinogen has long been used in the clinic as a synthetic matrix serving as a scaffold or a delivery system to aid tissue repair. Novel therapeutic strategies are now emerging that harness the use of other FRePs to improve wound healing outcomes. As we learn more about the underlying mechanisms by which each FReP contributes to the repair response, specific blockade, or indeed potentiation, of their function offers real potential to enable regulation of distinct processes during pathological wound healing.
Collapse
Affiliation(s)
- Lorena Zuliani-Alvarez
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Kim S. Midwood
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Aird AL, Nevitt CD, Christian K, Williams SK, Hoying JB, LeBlanc AJ. Adipose-derived stromal vascular fraction cells isolated from old animals exhibit reduced capacity to support the formation of microvascular networks. Exp Gerontol 2015; 63:18-26. [PMID: 25617825 DOI: 10.1016/j.exger.2015.01.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/14/2015] [Accepted: 01/20/2015] [Indexed: 01/30/2023]
Abstract
UNLABELLED Adipose-derived regenerative and stem cells, defined collectively as the stromal vascular fraction (SVF), support the formation of neovascular networks at the site of implantation. The effect of advancing age on SVF cell population effectiveness towards stimulated neovascularization was evaluated. METHODS SVF was enzymatically isolated from adipose of young (ySVF, 4 months) or old (oSVF, 24 months) Fisher-344 rats, combined with type I collagen and polymerized. Encapsulated SVF was implanted subcutaneously into young Rag1 mice for two or four weeks. Angiogenic function of age-dependent SVF was also extensively evaluated in vitro using standard assays. RESULTS In vitro studies indicated no difference in angiogenic function between ySVF and oSVF (viability, proliferation, migration, and tube-formation). At two weeks post-implantation, there was no age-related difference in percent apoptosis in explanted constructs. By four weeks post-implantation, oSVF implants displayed 36% less total vessels/mm(2), 43% less perfused vessels/mm(2), and exhibited greater percent apoptosis compared to ySVF (n ≥ 12). Blocking thrombospondin-1 (Thbs-1), a protein found to be highly expressed in oSVF but not ySVF, increased the percent of perfused vascular volume and vessel diameters in oSVF constructs after two weeks compared to oSVF implants treated with control antibody. CONCLUSIONS Advancing donor age reduces the potential of adipose-derived SVF to derive a mature microcirculation, but does not hinder initial angiogenesis. However, modulation of Thbs-1 may improve this outcome. This data suggests that greater pruning, dysfunctional structural adaptation and/or poor maturation with initiation of blood flow may occur in oSVF.
Collapse
Affiliation(s)
- Allison L Aird
- Cardiovascular Innovation Institute, Jewish Hospital and University of Louisville, Louisville, KY 40202, United States
| | - Christopher D Nevitt
- Cardiovascular Innovation Institute, Jewish Hospital and University of Louisville, Louisville, KY 40202, United States; Department of Biochemistry and Molecular Biology, Jewish Hospital and University of Louisville, Louisville, KY 40202, United States
| | - Katelyn Christian
- Cardiovascular Innovation Institute, Jewish Hospital and University of Louisville, Louisville, KY 40202, United States
| | - Stuart K Williams
- Cardiovascular Innovation Institute, Jewish Hospital and University of Louisville, Louisville, KY 40202, United States; Department of Physiology and Biophysics, Jewish Hospital and University of Louisville, Louisville, KY 40202, United States
| | - James B Hoying
- Cardiovascular Innovation Institute, Jewish Hospital and University of Louisville, Louisville, KY 40202, United States; Department of Physiology and Biophysics, Jewish Hospital and University of Louisville, Louisville, KY 40202, United States
| | - Amanda J LeBlanc
- Cardiovascular Innovation Institute, Jewish Hospital and University of Louisville, Louisville, KY 40202, United States; Department of Physiology and Biophysics, Jewish Hospital and University of Louisville, Louisville, KY 40202, United States.
| |
Collapse
|
11
|
Semeraro F, Cancarini A, dell'Omo R, Rezzola S, Romano MR, Costagliola C. Diabetic Retinopathy: Vascular and Inflammatory Disease. J Diabetes Res 2015; 2015:582060. [PMID: 26137497 PMCID: PMC4475523 DOI: 10.1155/2015/582060] [Citation(s) in RCA: 263] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 05/03/2015] [Accepted: 05/13/2015] [Indexed: 02/06/2023] Open
Abstract
Diabetic retinopathy (DR) is the leading cause of visual impairment in the working-age population of the Western world. The pathogenesis of DR is complex and several vascular, inflammatory, and neuronal mechanisms are involved. Inflammation mediates structural and molecular alterations associated with DR. However, the molecular mechanisms underlying the inflammatory pathways associated with DR are not completely characterized. Previous studies indicate that tissue hypoxia and dysregulation of immune responses associated with diabetes mellitus can induce increased expression of numerous vitreous mediators responsible for DR development. Thus, analysis of vitreous humor obtained from diabetic patients has made it possible to identify some of the mediators (cytokines, chemokines, and other factors) responsible for DR pathogenesis. Further studies are needed to better understand the relationship between inflammation and DR. Herein the main vitreous-related factors triggering the occurrence of retinal complication in diabetes are highlighted.
Collapse
Affiliation(s)
- F. Semeraro
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - A. Cancarini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - R. dell'Omo
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - S. Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - M. R. Romano
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples, Italy
| | - C. Costagliola
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
- ICRRS Neuromed, Pozzilli, Isernia, Italy
- *C. Costagliola:
| |
Collapse
|
12
|
Abstract
Tenascins are large glycoproteins found in embryonic and adult extracellular matrices. Of the four family members, two have been shown to be overexpressed in the microenvironment of solid tumours: tenascin-C and tenascin-W. The regular presence of these proteins in tumours suggests a role in tumourigenesis, which has been investigated intensively for tenascin-C and recently for tenascin-W as well. In this review, we follow a malignant cell starting from its birth through its potential metastatic journey and describe how tenascin-C and tenascin-W contribute to these successive steps of tumourigenesis. We consider the importance of the mechanical aspect in tenascin signalling. Furthermore, we discuss studies describing tenascin-C as an important component of stem cell niches and present examples reporting its role in cancer therapy resistance.
Collapse
Affiliation(s)
- Florence Brellier
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Basel, Switzerland
| | | |
Collapse
|
13
|
Hielscher AC, Qiu C, Gerecht S. Breast cancer cell-derived matrix supports vascular morphogenesis. Am J Physiol Cell Physiol 2012; 302:C1243-56. [PMID: 22277754 DOI: 10.1152/ajpcell.00011.2012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The extracellular matrix (ECM), important for maintaining tissue homeostasis, is abnormally expressed in mammary tumors and additionally plays a crucial role in angiogenesis. We hypothesize that breast cancer cells (BCCs) deposit ECM that supports unique patterns of vascular morphogenesis of endothelial cells (ECs). Evaluation of ECM expression revealed that a nontumorigenic cell line (MCF10A), a tumorigenic cell line (MCF7), and a metastatic cell line (MDA-MB-231) express collagens I and IV, fibronectin, and laminin, with tenascin-C limited to MCF10A and MCF7. The amount of ECM deposited by BCCs was found to be higher in MCF10A compared with MCF7 and MDA231, with all ECM differing in their gross structure but similar in mean fiber diameter. Nonetheless, deposition of ECM from BCC lines was overall difficult to detect and insufficient to support capillary-like structure (CLS) formation of ECs. Therefore, a coculture approach was undertaken in which individual BCC lines were cocultured with fibroblasts. Variation in abundance of deposited ECM, deposition of ECM proteins, such as absent collagen I deposition from MDA231-fibroblast cocultures, and fibril organization was found. Deposited ECM from fibroblasts and each coculture supported rapid CLS formation of ECs. Evaluation of capillary properties revealed that CLS grown on ECM deposited from MDA231-fibroblast cocultures possessed significantly larger lumen diameters, occupied the greatest percentage of area, expressed the highest levels of von Willebrand factor, and expressed the greatest amount of E-selectin, which was upregulated independent of exposure to TNF-α. To our knowledge, this is the first study to report tumor cell ECM-mediated differences in vascular capillary features, and thus offers the framework for future investigations interrogating the role of the tumor ECM in supporting vascular morphogenesis.
Collapse
Affiliation(s)
- Abigail C Hielscher
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
14
|
Angiogenic response of endothelial cells to fibronectin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 749:131-51. [PMID: 22695843 DOI: 10.1007/978-1-4614-3381-1_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
15
|
Lin XD, Chen SQ, Qi YL, Zhu JW, Tang Y, Lin JY. Polymorphism of THBS1 rs1478604 A>G in 5-untranslated region is associated with lymph node metastasis of gastric cancer in a Southeast Chinese population. DNA Cell Biol 2011; 31:511-9. [PMID: 22011138 DOI: 10.1089/dna.2011.1344] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Thrombospondin-1 plays an important role in cancer development and progression. This study investigated if a correlation exists between single-nucleotide polymorphisms (SNPs) in the Thrombospondin-1 gene (THBS1) and gastric cancer. We conducted a case-control study on a randomly recruited population of 283 patients and 283 healthy individuals from the city of Fuzhou in Southeast China. Individuals were genotyped for four SNPs (rs1478604 A>G, rs2228261 C>T, rs2292305 T>C, and rs3743125 C>T) in THBS1 using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. THBS1 genotypic distributions between the case and control groups were tested for correlations with cancer development. Comparisons between the case and control groups showed no significant differences in the genotypic distributions of rs1478604 A>G, rs2228261 C>T, and rs3743125 C>T. However, we found a statistically significant association between homozygous CC of THBS1 rs2292305 T>C and development of highly differentiated carcinoma (HDC). The rs1478604 A>G variant was found to be associated with invasion and lymph node metastasis in gastric cancer. After logistic regression and stratification analysis, rs1478604 A>G was more strongly associated with lymph node metastasis in HDC gastric cancer. The power to detect an effect for rs1478604 A>G in HDC was 90%. These findings indicate that the THBS1 rs1478604 A>G variant is linked with differential risks for gastric cancer nodal metastasis. These results support further investigation of THBS1 as a potential therapeutic target in gastric cancer.
Collapse
Affiliation(s)
- Xian-Dong Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Research Center of Molecular Medicine, Fujian Medical University, Fuzhou, China
| | | | | | | | | | | |
Collapse
|
16
|
Golledge J, Clancy P, Maguire J, Lincz L, Koblar S. The role of tenascin C in cardiovascular disease. Cardiovasc Res 2011; 92:19-28. [PMID: 21712412 DOI: 10.1093/cvr/cvr183] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The extracellular matrix protein tenascin C (TnC) is expressed in a variety of embryonic tissues, but its expression in adult arteries is co-incident with sites of vascular disease. TnC expression has been linked to the development and complications of intimal hyperplasia, pulmonary artery hypertension, atherosclerosis, myocardial infarction, and heart failure. This review identifies the growing collection of evidence linking TnC with cardiovascular disease development. The transient upregulation of this extracellular matrix protein at sites of vascular disease could provide a means to target TnC in the development of diagnostics and new therapies. Studies in TnC-deficient mice have implicated this protein in the development of intimal hyperplasia. Further animal and human studies are required to thoroughly assess the role of TnC in some of the other pathologies it has been linked with, such as atherosclerosis and pulmonary hypertension. Large population studies are also warranted to clarify the diagnostic value of this extracellular matrix protein in cardiovascular disease, for example by targeting its expression using radiolabelled antibodies or measuring circulating concentrations of TnC.
Collapse
Affiliation(s)
- Jonathan Golledge
- Vascular Biology Unit, Department of Surgery, School of Medicine and Dentistry, James Cook University, Townsville QLD 4811, Australia.
| | | | | | | | | |
Collapse
|
17
|
Wu LE, Hocking SL, James DE. Macrophage infiltration and cytokine release in adipose tissue: angiogenesis or inflammation? Diabetol Int 2010. [DOI: 10.1007/s13340-010-0003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Pesesse L, Sanchez C, Henrotin Y. Osteochondral plate angiogenesis: a new treatment target in osteoarthritis. Joint Bone Spine 2010; 78:144-9. [PMID: 20851653 DOI: 10.1016/j.jbspin.2010.07.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2010] [Indexed: 01/05/2023]
Abstract
Healthy adult joint cartilage contains neither blood vessels nor nerves. Osteoarthritic cartilage, in contrast, may be invaded by blood vessels from the subchondral bone. The mechanisms underlying cartilage angiogenesis in osteoarthritis are unclear but may involve hypertrophic chondrocyte differentiation. Active research is under way to identify the factors involved in cartilage angiogenesis. Here, we discuss the pathophysiological mechanisms of osteoarthritic cartilage angiogenesis based on evidence from a systematic literature review of articles retrieved via PubMed and ISI Web of Knowledge. Our conclusions suggest new research perspectives and treatment options.
Collapse
Affiliation(s)
- Laurence Pesesse
- Unité de Recherche Sur l'Os et le Cartilage, Institut de Pathologie, Université de Liège, CHU Sart-Tilman, 4000 Liège, Belgium
| | | | | |
Collapse
|
19
|
Grutzmacher C, Park S, Elmergreen TL, Tang Y, Scheef EA, Sheibani N, Sorenson CM. Opposing effects of bim and bcl-2 on lung endothelial cell migration. Am J Physiol Lung Cell Mol Physiol 2010; 299:L607-20. [PMID: 20656893 DOI: 10.1152/ajplung.00390.2009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Integration of cell adhesive, survival, and proliferative processes is essential for capillary morphogenesis of endothelial cells (EC) in vitro and vascular development and function in vivo. Unfortunately, the molecular and cellular mechanisms that impact these processes are poorly defined. Here we examined how lack of bim and/or bcl-2 expression impact lung EC function. The absence of bcl-2 or bim had a significant impact on EC adhesion and migration. Lack of bcl-2 expression decreased lung EC migration, whereas lack of bim expression increased migration compared with their wild-type counterparts. Decreased adhesion to fibronectin and vitronectin was observed in both bcl-2-/- and bim-/- lung EC, with bcl-2-/- EC having very little adhesion to either matrix protein. Capillary morphogenesis was greatly diminished in bcl-2-/- EC, which correlated with decreased lung alveolarization in vivo, an angiogenesis-dependent process. We also observed aberrant production of extracellular matrix proteins, eNOS expression, and nitric oxide production in bcl-2-/- lung EC, which could contribute to inability to undergo capillary morphogenesis. The changes in cell adhesion and migration noted in the absence of bim or bcl-2 were independent of their impact on apoptosis. We observed no significant affect on the steady-state rate of apoptosis of lung EC in the absence of bim or bcl-2. Thus, bcl-2 family members, bim and bcl-2, play a central role in modulation of EC proangiogenic properties, which goes beyond their role as simple mediators of mitochondrial homeostasis and apoptosis.
Collapse
Affiliation(s)
- Cathy Grutzmacher
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792-4108, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Babiker AA, Magnusson PU, Ronquist G, Nilsson B, Ekdahl KN. Mapping pro- and antiangiogenic factors on the surface of prostasomes of normal and malignant cell origin. Prostate 2010; 70:834-47. [PMID: 20127731 DOI: 10.1002/pros.21117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Angiogenesis is the formation of new blood vessels by capillary sprouting from pre-existing vessels. Tumor growth is angiogenesis-dependent and the formation of new blood vessels is associated with the increased expression of angiogenic factors. Prostasomes are secretory granules produced, stored and released by the glandular epithelial cells of the prostate. We investigated the expression of selected angiogenic and anti-angiogenic factors on the surface of prostasomes of different origins as well as the direct effect of prostasomes on angiogenesis. METHODS VEGF, endothelin-1, endostatin, and thrombospondin-1 were determined on prostasomes from seminal fluid and human prostate cancer cell lines (DU145,PC-3,LNCaP) using different immunochemical techniques. Human dermal microvascular endothelial cells were incubated with seminal and DU145 cell-prostasomes and with radioactive thymidine. The effect of prostasomes on angiogenesis was judged by measuring the uptake of labeled thymidine. The presence of any deleterious effects of prostasomes on the endothelial cells was investigated using thymidine assay and confocal laser microscopy. RESULTS VEGF and endothelin-1 were determined on malignant cell-prostasomes (no difference between cell lines) but not determined on seminal prostasomes. The same applies for the expression of endostatin but with much higher expression on malignant cell-prostasomes with obvious differences between them. Seminal and DU145 cell-prostasomes were found to have anti-angiogenic effect which was more expressed by DU145 cell-prostasomes. No deleterious effect of prostasomes on endothelial function was detected using either thymidine assay or microscopy. CONCLUSIONS Prostasomes contain pro- and anti-angiogenic factors that function to counteract each other unless the impact from one side exceeds the other to bring about dysequilibrium.
Collapse
Affiliation(s)
- Adil A Babiker
- Rudbeck Laboratory C5, Department of Oncology, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
21
|
Aberrant methylation of thrombospondin-1 and its association with reduced expression in gastric cardia adenocarcinoma. J Biomed Biotechnol 2010; 2010:721485. [PMID: 20300551 PMCID: PMC2838370 DOI: 10.1155/2010/721485] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 12/08/2009] [Accepted: 12/31/2009] [Indexed: 11/18/2022] Open
Abstract
AIM Investigate the promoter methylation of the Thrombospondin-1 (TSP1) gene in gastric cardia adenocarcinoma (GCA). METHODS MSP approach, immunohistochemistry method, and RT-PCR were used respectively to examine the promoter methylation of TSP1, its protein and mRNA expression in tumors and corresponding normal tissues. The expression and concentration of TGF-beta1 were examined respectively by immunohistochemistry and ELISA method. The status of T cell immunity was examined by Flow cytometry analysis. RESULTS TSP1 was methylated in 34/96 (35.4%) tumor specimens, which was significantly higher than that in corresponding normal tissues (P < .001). Protein and mRNA expression of TSP1 in GCA tumor tissues were reduced significantly and were associated with TSP1 methylation. The protein expression of TGF-beta1 was significantly higher in tumor tissues (P < .001) and was associated with TNM stage and histological differentiation. The concentration of active and total TGF-beta1 did not show significant difference between the GCA patients with hypermethylation of TSP1 and without methylation of TSP1 (P > .05). The function of T cell immunity was significantly different between the GCA patients with hypermethylation of TSP1 and without methylation of TSP1. CONCLUSIONS Epigenetic silencing of TSP1 gene by promoter hypermethylation may play an important role in GCA.
Collapse
|
22
|
Martina E, Degen M, Rüegg C, Merlo A, Lino MM, Chiquet-Ehrismann R, Brellier F. Tenascin-W is a specific marker of glioma-associated blood vessels and stimulates angiogenesis in vitro. FASEB J 2009; 24:778-87. [PMID: 19884327 PMCID: PMC2830132 DOI: 10.1096/fj.09-140491] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The microenvironment hosting a tumor actively participates in regulating tumor cell proliferation, migration, and invasion. Among the extracellular matrix proteins enriched in the stroma of carcinomas are the tenascin family members tenascin-C and tenascin-W. Whereas tenascin-C overexpression in gliomas is known to correlate with poor prognosis, the status of tenascin-W in brain tumors has not been investigated so far. In the present study, we analyzed protein levels of tenascin-W in 38 human gliomas and found expression of tenascin-W in 80% of the tumor samples, whereas no tenascin-W could be detected in control, nontumoral brain tissues. Double immunohistochemical staining of tenascin-W and von Willebrand factor revealed that tenascin-W is localized around blood vessels, exclusively in tumor samples. In vitro, the presence of tenascin-W increased the proportion of elongated human umbilical vein endothelial cells (HUVECs) and augmented the mean speed of cell migration. Furthermore, tenascin-W triggered sprouting of HUVEC spheroids to a similar extent as the proangiogenic factor tenascin-C. In conclusion, our study identifies tenascin-W as a candidate biomarker for brain tumor angiogenesis that could be used as a molecular target for therapy irrespective of the glioma subtype.—Martina, E., Degen, M., Rüegg, C., Merlo, A., Lino, M. M., Chiquet-Ehrismann, R., Brellier, F. Tenascin-W is a specific marker of glioma-associated blood vessels and stimulates angiogenesis in vitro.
Collapse
Affiliation(s)
- Enrico Martina
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The extracellular matrix molecule tenascin-C is highly expressed during embryonic development, tissue repair and in pathological situations such as chronic inflammation and cancer. Tenascin-C interacts with several other extracellular matrix molecules and cell-surface receptors, thus affecting tissue architecture, tissue resilience and cell responses. Tenascin-C modulates cell migration, proliferation and cellular signaling through induction of pro-inflammatory cytokines and oncogenic signaling molecules amongst other mechanisms. Given the causal role of inflammation in cancer progression, common mechanisms might be controlled by tenascin-C during both events. Drugs targeting the expression or function of tenascin-C or the tenascin-C protein itself are currently being developed and some drugs have already reached advanced clinical trials. This generates hope that increased knowledge about tenascin-C will further improve management of diseases with high tenascin-C expression such as chronic inflammation, heart failure, artheriosclerosis and cancer.
Collapse
|
24
|
Midwood KS, Orend G. The role of tenascin-C in tissue injury and tumorigenesis. J Cell Commun Signal 2009; 3:287-310. [PMID: 19838819 PMCID: PMC2778592 DOI: 10.1007/s12079-009-0075-1] [Citation(s) in RCA: 317] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 09/30/2009] [Indexed: 01/14/2023] Open
Abstract
The extracellular matrix molecule tenascin-C is highly expressed during embryonic development, tissue repair and in pathological situations such as chronic inflammation and cancer. Tenascin-C interacts with several other extracellular matrix molecules and cell-surface receptors, thus affecting tissue architecture, tissue resilience and cell responses. Tenascin-C modulates cell migration, proliferation and cellular signaling through induction of pro-inflammatory cytokines and oncogenic signaling molecules amongst other mechanisms. Given the causal role of inflammation in cancer progression, common mechanisms might be controlled by tenascin-C during both events. Drugs targeting the expression or function of tenascin-C or the tenascin-C protein itself are currently being developed and some drugs have already reached advanced clinical trials. This generates hope that increased knowledge about tenascin-C will further improve management of diseases with high tenascin-C expression such as chronic inflammation, heart failure, artheriosclerosis and cancer.
Collapse
Affiliation(s)
- Kim S. Midwood
- Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College of Science, Technology and Medicine, 65 Aspenlea Road, Hammersmith, London, W6 8LH UK
| | - Gertraud Orend
- Inserm U682, Strasbourg, 67200 France
- University of Strasbourg, UMR-S682, Strasbourg, 67081 France
- Department of Molecular Biology, CHRU Strasbourg, Strasbourg, 67200 France
| |
Collapse
|
25
|
Soucy PA, Romer LH. Endothelial cell adhesion, signaling, and morphogenesis in fibroblast-derived matrix. Matrix Biol 2009; 28:273-83. [DOI: 10.1016/j.matbio.2009.04.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 04/07/2009] [Accepted: 04/07/2009] [Indexed: 10/20/2022]
|
26
|
Kondo S, Tang Y, Scheef EA, Sheibani N, Sorenson CM. Attenuation of retinal endothelial cell migration and capillary morphogenesis in the absence of bcl-2. Am J Physiol Cell Physiol 2008; 294:C1521-30. [PMID: 18417716 DOI: 10.1152/ajpcell.90633.2007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Apoptosis plays a critical role during development and in the maintenance of the vascular system. B-cell leukemia lymphoma 2 (bcl-2) protects endothelial cells (EC) from apoptosis in response to a variety of stimuli. Previous work from this laboratory demonstrated attenuation of postnatal retinal vascular development and retinal neovascularization during oxygen-induced ischemic retinopathy in bcl-2-deficient (bcl-2-/-) mice. To gain further insight into the function of bcl-2 in the endothelium, we isolated retinal EC from bcl-2+/+ and bcl-2-/- mice. Retinal EC lacking bcl-2 demonstrated reduced cell migration, tenascin-C expression, and adhesion to vitronectin and fibronectin. The bcl-2-/- retinal EC also failed to undergo capillary morphogenesis in Matrigel. In addition, using an ex vivo angiogenesis assay, we observed reduced sprouting from aortic rings grown in culture from bcl-2-/- mice compared with bcl-2+/+ mice. Furthermore, reexpression of bcl-2 was sufficient to restore migration and capillary morphogenesis defects observed in bcl-2-/- retinal EC. Mechanistically, bcl-2-/- cells expressed significantly less endothelial nitric oxide synthase, an important downstream effecter of proangiogenic signaling. This may be attributed to increased oxidative stress in the absence of bcl-2. In fact, incubation of retinal EC or aortic rings from bcl-2-/- mice with the antioxidant N-acetylcysteine rescued their capillary morphogenesis and sprouting defects. Thus, bcl-2-mediated cellular functions play important roles not only in survival but also in proangiogenic phenotype of EC with a significant impact on vascular development and angiogenesis.
Collapse
Affiliation(s)
- Shuji Kondo
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792-4108, USA
| | | | | | | | | |
Collapse
|
27
|
Bhattacharyya S, Marinic TE, Krukovets I, Hoppe G, Stenina OI. Cell type-specific post-transcriptional regulation of production of the potent antiangiogenic and proatherogenic protein thrombospondin-1 by high glucose. J Biol Chem 2007; 283:5699-707. [PMID: 18096704 DOI: 10.1074/jbc.m706435200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hyperglycemia is an independent risk factor for development of vascular diabetic complications. Vascular dysfunction in diabetics manifests in a tissue-specific manner; macrovasculature is affected by atherosclerotic lesions, and microvascular complications are described as "aberrant angiogenesis": in the same patient angiogenesis is increased in some tissues (e.g. retinal neovascularization) and decreased in others (e.g. in skin). Molecular cell- and tissue-specific mechanisms regulating the response of vasculature to hyperglycemia remain unclear. Thrombospondin-1 (TSP-1), a potent antiangiogenic and proatherogenic protein, has been implicated in the development of several vascular diabetic complications (atherosclerosis, nephropathy, and cardiomyopathy). This study examines cell type-specific regulation of production of thrombospondin-1 by high glucose. We previously reported the increased expression of TSP-1 in the large arteries of diabetic animals. mRNA and protein levels were up-regulated in response to high glucose. Unlike in macrovascular cells, TSP-1 protein levels are dramatically decreased in response to high glucose in microvascular endothelial cells and retinal pigment epithelial cells (RPE). This down-regulation is post-transcriptional; mRNA levels are increased. In situ mRNA hybridization and immunohistochemistry revealed that the level of mRNA is up-regulated in RPE of diabetic rats, whereas the protein level is decreased. This cell type-specific posttranscriptional suppression of TSP-1 production in response to high glucose in microvascular endothelial cells and RPE is controlled by untranslated regions of TSP-1 mRNA that regulate coupling of TSP-1 mRNA to polysomes and its translation. The cell-specific regulation of TSP-1 suggests a potential mechanism for the aberrant angiogenesis in diabetics and TSP-1 involvement in development of various vascular diabetic complications.
Collapse
Affiliation(s)
- Sanghamitra Bhattacharyya
- Department of Molecular Cardiology and Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Cleveland Clinic, Cleveland, Ohio 44026, USA
| | | | | | | | | |
Collapse
|
28
|
Brunner A, Tzankov A. The role of structural extracellular matrix proteins in urothelial bladder cancer (review). Biomark Insights 2007; 2:418-27. [PMID: 19662222 PMCID: PMC2717820 DOI: 10.4137/bmi.s294] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The extracellular matrix (ECM) plays a key role in the modulation of cancer cell invasion. In urothelial carcinoma of the bladder (UC) the role of ECM proteins has been widely studied. The mechanisms, which are involved in the development of invasion, progression and generalization, are complex, depending on the interaction of ECM proteins with each other as well as with cancer cells. The following review will focus on the pathogenetic role and prognostic value of structural proteins, such as laminins, collagens, fibronectin (FN), tenascin (Tn-C) and thrombospondin 1 (TSP1) in UC. In addition, the role of integrins mediating the interaction of ECM molecules and cancer cells will be addressed, since integrin-mediated FN, Tn-C and TSP1 interactions seem to play an important role during tumor cell invasion and angiogenesis.
Collapse
Affiliation(s)
- Andrea Brunner
- Institute of Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
29
|
Zhang SX, Ma JX. Ocular neovascularization: Implication of endogenous angiogenic inhibitors and potential therapy. Prog Retin Eye Res 2007; 26:1-37. [PMID: 17074526 DOI: 10.1016/j.preteyeres.2006.09.002] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ocular neovascularization (NV) is the primary cause of blindness in a wide range of ocular diseases, such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). The exact mechanism underlying the pathogenesis of ocular NV is not yet well understood, and as a consequence, there is no satisfactory therapy for ocular NV. In the last 10 years, a number of studies provided increasing evidence demonstrating that the imbalance between angiogenic stimulating factors and angiogenic inhibitors is a major contributor to the angiogenesis induced by various insults, such as hypoxia or ischemia, inflammation and tumor. The angiogenic inhibitors alone or in combination with other existing therapies are, therefore, believed to be promising in the treatment of ocular NV in the near future. This article reviews recent progress in studies on the mechanisms and treatment of ocular NV, focusing on the implication and therapeutic potential of endogenous angiogenic inhibitors in ocular NV.
Collapse
Affiliation(s)
- Sarah X Zhang
- Department of Medicine Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | |
Collapse
|
30
|
Abu El-Asrar AM, Al-Kharashi SA, Missotten L, Geboes K. Expression of growth factors in the conjunctiva from patients with active trachoma. Eye (Lond) 2006; 20:362-9. [PMID: 15818386 DOI: 10.1038/sj.eye.6701884] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
PURPOSE The blinding complications of trachoma are associated with progressive conjunctival fibrosis due to excessive accumulation of extracellular matrix (ECM) components. We studied the processes involved in the regulation of fibrosis in trachoma by investigating the expression of the fibrogenic and angiogenic connective tissue growth factor (CTGF) and basic fibroblast growth factor (bFGF), the angiogenic vascular endothelial growth factor (VEGF), the angiogenesis-associated endothelial cell marker CD105 (endoglin), and the ECM protein tenascin in the conjunctiva. METHODS Conjunctival biopsy specimens from six patients with active trachoma, and six control subjects were studied by immunohistochemical techniques using monoclonal and polyclonal antibodies directed against CTGF, bFGF, VEGF, CD105, and tenascin. RESULTS In the normal conjunctiva, weak immunoreactivity for VEGF was observed in epithelial cells. There was no immunoreactivity for the other antibodies. In all trachoma specimens, immunoreactivity for CTGF and bFGF was localized in monocytes/macrophages, positive for the CD68 marker. Strong immunoreactivity for VEGF was observed in epithelial cells and on vascular endothelial cells. CD105 immunoreactivity was observed on vascular endothelial cells. Immunoreactivity for tenascin was noted in the upper substantia propria. CONCLUSIONS These findings suggest that macrophages play an active role in conjunctival scarring, upregulated local production of CTGF, bFGF, and VEGF contributes to both fibrous tissue growth and angiogenesis, vascular endothelial cells are activated and are undergoing active angiogenesis, and deposition of tenascin reflect remodelling of the conjunctiva in trachomatous conjunctivitis.
Collapse
Affiliation(s)
- A M Abu El-Asrar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | | | | | | |
Collapse
|
31
|
Abstract
The composition of the extracellular matrix in tumors is vastly different from that found in the normal tissue counterparts. As the extracellular matrix can signal to cells via integrin binding and activation, which is known to modulate cell proliferation, survival and migration, it may influence the response of both tumor and endothelial cells to anticancer therapies. Certain tumor-associated extracellular matrix proteins have been shown to confer resistance to chemotherapeutic drugs, radiation and anti-angiogenic factors. The current literature regarding this phenomenon and the potential therapeutic modalities to overcome extracellular matrix-induced resistance will be discussed.
Collapse
Affiliation(s)
- Christina L Addison
- Center for Cancer Therapeutics, Ottawa Health Research Institute, Box 926, 501 Smyth Road, Ottawa, ON, Canada.
| |
Collapse
|
32
|
Ioachim E, Michael MC, Salmas M, Damala K, Tsanou E, Michael MM, Malamou-Mitsi V, Stavropoulos NE. Thrombospondin-1 expression in urothelial carcinoma: prognostic significance and association with p53 alterations, tumour angiogenesis and extracellular matrix components. BMC Cancer 2006; 6:140. [PMID: 16732887 PMCID: PMC1538616 DOI: 10.1186/1471-2407-6-140] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Accepted: 05/29/2006] [Indexed: 12/18/2022] Open
Abstract
Background Thrombospondin-1 (TSP-1) is an extracellular matrix component glycoprotein, which is known to be a potent inhibitor of angiogenesis and may be important in cancer invasiveness. We examined the TSP-1 expression in correlation with conventional clinicopathological parameters to clarify its prognostic significance in bladder cancer. In addition, the possible correlation of TSP-1 expression with microvessel count, VEGF expression, p53 expression as well as with the expression of the extracellular matrix components was studied to explore its implication in vascularization and tumour stroma remodeling. Methods The immunohistochemical expression of TSP-1 in tumour cells and in the tumour stroma was studied in 148 formalin-fixed paraffin-embedded urothelial cell carcinoma tissue samples. Results TSP-1 was detected in perivascular tissue, at the epithelial-stromal junction, in the stroma and in tumour cells in the majority of the cases. In tumour cells, low TSP-1 expression was observed in 43% of the cases, moderate and high in 7%, while 50% showed absence of TSP expression. A higher TSP-1 immunoreactivity in well and moderately differentiated tumours compared to poorly differentiated was noted. PT1 tumours showed decreased TSP-1 expression in comparison to pTa and pT2–4 tumours. Increased tumour cell TSP-1 expression was related to increased microvessel density. In the tumour stroma, 37% of the cases showed small amount of TSP-1 expression, 7.5% moderate and high, while 55% of the cases showed absence of TSP-1 stromal immunoreactivity. Stromal TSP-1 expression was inversely correlated with tumour stage and tumour size. This expression was also positively correlated with microvessel density, VEGF expression and extracellular matrix components tenascin and fibronectin. Using univariate and multivariate analysis we didn't find any significant correlation of TSP-1 expression in superficial tumours in both tumour cells and tumour stroma in terns of the risk of recurrence and disease progression Conclusion Our data suggest that both tumour and stromal TSP-1 expression may play a role in tumour aggressiveness and angiogenesis. In addition, the correlation of stromal TSP-1 expression with extracellular matrix components fibronectin and tenascin indicate its possible implication in tumour stroma remodeling.
Collapse
Affiliation(s)
- E Ioachim
- Departments of Pathology and Cytology, University Hospital of Ioannina, Ioannina, Greece
| | - MC Michael
- Departments of Pathology and Cytology, University Hospital of Ioannina, Ioannina, Greece
| | - M Salmas
- Department of Anatomy, University of Athens, Athens, Greece
| | - K Damala
- Departments of Pathology and Cytology, University Hospital of Ioannina, Ioannina, Greece
| | - E Tsanou
- Departments of Pathology and Cytology, University Hospital of Ioannina, Ioannina, Greece
| | - MM Michael
- Red Cross Hospital (I.C.U.) Athens, Greece
| | - V Malamou-Mitsi
- Departments of Pathology and Cytology, University Hospital of Ioannina, Ioannina, Greece
| | - NE Stavropoulos
- Department of Urology, 'G. Hatzikosta' General Hospital, Ioannina, Greece
| |
Collapse
|
33
|
Delaney CE, Weagant BT, Addison CL. The inhibitory effects of endostatin on endothelial cells are modulated by extracellular matrix. Exp Cell Res 2006; 312:2476-89. [PMID: 16725139 DOI: 10.1016/j.yexcr.2006.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 04/13/2006] [Accepted: 04/14/2006] [Indexed: 01/10/2023]
Abstract
We investigated the ability of extracellular matrix (ECM) proteins to modulate the response of endothelial cells to both promoters and inhibitors of angiogenesis. Using human dermal microvascular endothelial cells (HDMEC), we found that cells demonstrated different adhesive properties and proliferative responses to the growth factor VEGF depending upon which ECM protein with which they were in contact, with fibronectin having the most impact on VEGF-induced HDMEC proliferation and survival. More importantly, we observed that ECM could modulate the ability of the angiogenic inhibitor endostatin to prevent endothelial cell proliferation, survival and migration. We observed that growth on vitronectin or fibronectin impaired the ability of endostatin to inhibit VEGF-induced HDMEC proliferation to the greatest extent as determined by BrdU incorporation. We found that, following growth on collagen I or collagen IV, endostatin only inhibited VEGF-induced HDMEC proliferation at the highest dose tested (2500 ng/ml). In a similar manner, we observed that growth on ECM proteins modulated the ability of endostatin to induce endothelial cell apoptosis, with growth on collagen I, fibronectin and collagen IV impairing endostatin-induced apoptosis. Interestingly, endostatin inhibited VEGF-induced HDMEC migration following culture on collagen I, collagen IV and laminin, while migration was not inhibited by endostatin following HDMEC culture on other matrices including vitronectin, fibronectin and tenascin-C. These results suggest that different matrix proteins may affect different mechanisms of endostatin inhibition of angiogenesis. Taken together, our results suggest that the ECM may have a profound impact on the ability of angiostatic molecules such as endostatin to inhibit angiogenesis and thus may have impact on the clinical efficacy of such inhibitors.
Collapse
Affiliation(s)
- Christie E Delaney
- Division of Cancer Therapeutics, Ottawa Health Research Institute, 3rd Floor TOHRCC, Box 926, 501 Smyth Road, Ottawa, ON, Canada K1H 8L6
| | | | | |
Collapse
|
34
|
Harada C, Mitamura Y, Harada T. The role of cytokines and trophic factors in epiretinal membranes: Involvement of signal transduction in glial cells. Prog Retin Eye Res 2006; 25:149-64. [PMID: 16377232 DOI: 10.1016/j.preteyeres.2005.09.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Idiopathic epiretinal membranes (ERMs) in the macular region can cause a reduction in vision and sometimes recurs after surgical removal, but its pathogenic mechanisms are still unknown. On the other hand, the presence of secondary ERMs has been associated with various clinical conditions including proliferative diabetic retinopathy (PDR) and proliferative vitreoretinopathy (PVR). Recent studies have shown a significant association between clinical grades of PDR or PVR, and the expression levels of specific cytokines and/or growth factors in the vitreous fluid. Expression of these factors and their receptors are also observed in secondary ERMs. ERMs are composed of many cell types such as retinal pigment epithelial cells and vascular endothelial cells, however the role of glial cells is yet unclear. Interestingly, glial cells in ERMs express some trophic factor receptors and transcription factors, such as NF-kappaB, suggesting an involvement of glial signal transduction in the pathogenesis of ERMs. In this review, we summarize recent progress regarding the clinical and laboratory findings of ERMs.
Collapse
Affiliation(s)
- Chikako Harada
- Department of Molecular Neurobiology, Tokyo Metropolitan Institute for Neuroscience, Fuchu, Tokyo, Japan
| | | | | |
Collapse
|
35
|
Rizzieri DA, Wadleigh M, Wikstrand CJ, Mann KP, Sen F, Peterson BL, Niedzwiecki D, Proia AD, Bigner DD. Tenascin and microvessel stromal changes in patients with non-Hodgkin's lymphoma are isolated to the sites of disease and vary in correlation to disease activity. Leuk Lymphoma 2005; 46:1455-62. [PMID: 16194891 DOI: 10.1080/10428190500158060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This study investigated stromal changes in expression of tenascin and vasculogenesis in lymphoma. Documenting the dynamic nature of the stromal changes in lymphoma in relation to response to therapy is helpful in planning new therapies directed at these targets. Two hundred and sixty one samples from 111 patients with varying types of non-Hodgkin's lymphoma were reviewed and examined using immunohistochemistry techniques. Samples were stained for factor VIII - related antigen for microvessel density (MVD) analysis and anti-tenascin antibody for qualitative assessment of the stromal expression. Multiple samples from the same patient were taken at the same point in time to assess whether stromal changes were limited to sites of disease. Multiple samples were examined over the course of a patient's illness to assess whether the stromal changes were modulated according to disease activity. There was a significant increase in tenascin expression and MVD in the sites of disease compared with uninvolved sites (p = 0.01 and p < 0.0001, respectively). In patients who responded to therapy, there was a decrease in the expression of tenascin (p = 0.0049) and MVD (p < 0.0001), and in those with disease progression there was an increase in the tenascin expression (p = 0.0050) and MVD (p < 0.0001). Our results suggest stromal changes are isolated to the sites of disease within patients, allowing targeted therapies to be developed. Further, stromal changes correlate with disease response over the course of the patient's disease. This new finding may have implications for the timing of anti-stromally directed therapies.
Collapse
Affiliation(s)
- David A Rizzieri
- Department of Medicine, Division of Oncology and Stem Cell Transplantation, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Tumours are dependent on angiogenesis for growth and inhibition of angiogenesis has become a target for antineoplastic therapy. In the pituitary, unlike other tissues, vascularization is lower in adenomas compared to the normal gland. Despite this finding, a relationship between increased vascularity and several aspects of prolactinoma behaviour such as size, invasiveness, surgical outcome and malignancy, has been demonstrated. The process of angiogenesis is the result of a balance of stimulating and inhibiting factors. It is likely that an interaction between gene expression (such as pituitary tumour transforming gene (PTTG) and a novel gene located within the Edpm5 quantitative trait locus), hormonal stimuli including oestrogens, dopamine, 16 kDa fragments of prolactin and proangiogenic and antiangiogenic growth factors (for example, vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF-2), determine the final angiogenic phenotype of prolactinomas, and thus subsequent tumour behaviour. The elucidation of all the factors involved in the regulation of angiogenesis and their interactions might open new possibilities in the treatment of prolactinomas, especially in those cases with resistance or intolerance to dopamine agonists.
Collapse
Affiliation(s)
- N Garcia de la Torre
- Servicio de Endocrinología, Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040, Madrid, Spain
| | | | | |
Collapse
|
37
|
Esemuede N, Lee T, Pierre-Paul D, Sumpio BE, Gahtan V. The role of thrombospondin-1 in human disease. J Surg Res 2004; 122:135-42. [PMID: 15522326 DOI: 10.1016/j.jss.2004.05.015] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2003] [Indexed: 12/16/2022]
Abstract
Thrombospondin-1 (TSP-1) is a large matricellular glycoprotein secreted by many cell types. It is a component of the extracellular matrix during active and subacute processes. Due to TSP-1's ability to interact with a variety of matrix proteins and cell-surface receptors, controversy exists about its conflicting functions. In this review, we will discuss the role of TSP-1 in human disease.
Collapse
|
38
|
Stenina OI, Byzova TV, Adams JC, McCarthy JJ, Topol EJ, Plow EF. Coronary artery disease and the thrombospondin single nucleotide polymorphisms. Int J Biochem Cell Biol 2004; 36:1013-30. [PMID: 15094117 DOI: 10.1016/j.biocel.2004.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Revised: 01/13/2004] [Accepted: 01/13/2004] [Indexed: 11/18/2022]
Abstract
GeneQuest was a high throughput, large-scale analysis of single nucleotide polymorphisms (SNPs) to identify gene associated with familial, premature coronary artery disease and myocardial infarction. The three SNPs showing the highest and most significant associations with disease were all members of the thrombospondin gene family, thrombospondin-1, thrombospondin-2 and thrombospondin-4. These unanticipated associations have kindled efforts to understand how the three SNPs influence the structures and functions of the thrombospondins. The SNP in thrombospondin-1 and thrombospondin-4 reside in their coding regions and result in single amino acid changes: in thrombospondin-1, the predominant asparagine at position 700 is changed to a serine while, in thrombospondin-4, it is a change of an alanine to a proline at position 387. The SNP in thrombospondin-2 is a base change in the 3'-untranslated region of the mRNA. At this early stage of investigation, predictive analyses suggest that the substitutions in thrombospondin-2 and thrombospondin-4 should alter structure, and there is direct evidence to indicate that the thrombospondin-1 SNP alters conformational stability. In addition, profound differences in the function of the thrombospondin-4 SNP variants have been identified with respect to their capacity to support endothelial cell adhesion and proliferation. While substantial additional information is needed to understand if and how the polymorphic forms of the thrombospondins affect coronary artery disease, the data assembled to date suggest marked effects of these SNPs on the structures and functions of the thrombospondins, which are consistent with induction of a proatherogenic and prothrombotic phenotype.
Collapse
Affiliation(s)
- Olga I Stenina
- Joseph J. Jacobs Center for Thrombosis and Vascular Biology and Department of Molecular Cardiology/NB50, Cleveland Clinic Foundation/Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | | | | | |
Collapse
|
39
|
Schedin P, Mitrenga T, McDaniel S, Kaeck M. Mammary ECM composition and function are altered by reproductive state. Mol Carcinog 2004; 41:207-20. [PMID: 15468292 DOI: 10.1002/mc.20058] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To address whether reproductive state alters mammary gland extracellular matrix (ECM) composition and function, ECM was isolated from nulliparous, pregnant, lactating, involuting, and regressed rat mammary glands. The ECM composition of fibronectin, tenascin, laminin, clusterin, and MMPs was found to vary dramatically with reproductive state. In 3-dimensional (3-D) culture, we identified novel effects of these endogenous mammary matrices on mammary epithelial cells. Specifically we found that (1) matrix isolated from nulliparous animals promoted the formation of epithelial ducts with bifurcation, (2) matrix isolated from mid-involuting mammary glands induced cell death, (3) matrix isolated from late-stage involuting glands restored glandular development, while (4) matrix isolated from parous animals restricted glandular morphogenesis. Our data were consistent with mammary gland ECM facilitating epithelial cell proliferation, differentiation, death, and glandular reorganization that occur during the pregnancy and involution cycle. Further, we show that the parous gland has persistent changes in ECM function. Cumulatively, our data demonstrated that the microenvironment of the normal adult mammary gland is highly plastic, which has important implications for mammary tumor cell progression and dormancy. These data also raised the possibility of targeting mammary matrix production with preventive or therapeutic interventions.
Collapse
Affiliation(s)
- Pepper Schedin
- Division of Medical Oncology, Department of Medicine, University of Colorado Health Sciences Center, Aurora, Colorado 80045, USA
| | | | | | | |
Collapse
|
40
|
Sottile J. Regulation of angiogenesis by extracellular matrix. Biochim Biophys Acta Rev Cancer 2004; 1654:13-22. [PMID: 14984764 DOI: 10.1016/j.bbcan.2003.07.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2003] [Accepted: 07/04/2003] [Indexed: 10/26/2022]
Abstract
During angiogenesis, endothelial cell growth, migration, and tube formation are regulated by pro- and anti-angiogenic factors, matrix-degrading proteases, and cell-extracellular matrix interactions. Temporal and spatial regulation of extracellular matrix remodeling events allows for local changes in net matrix deposition or degradation, which in turn contributes to control of cell growth, migration, and differentiation during different stages of angiogenesis. Remodeling of the extracellular matrix can have either pro- or anti-angiogenic effects. Extracellular matrix remodeling by proteases promotes cell migration, a critical event in the formation of new vessels. Matrix-bound growth factors released by proteases and/or by angiogenic factors promote angiogenesis by enhancing endothelial migration and growth. Extracellular matrix molecules, such as thrombospondin-1 and -2, and proteolytic fragments of matrix molecules, such as endostatin, can exert anti-angiogenic effects by inhibiting endothelial cell proliferation, migration and tube formation. In contrast, other matrix molecules promote endothelial cell growth and morphogenesis, and/or stabilize nascent blood vessels. Hence, extracellular matrix molecules and extracellular matrix remodelling events play a key role in regulating angiogenesis.
Collapse
Affiliation(s)
- Jane Sottile
- Center for Cardiovascular Research, Department of Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Box 679, Rochester, NY 14642, USA.
| |
Collapse
|
41
|
Maschler S, Grunert S, Danielopol A, Beug H, Wirl G. Enhanced tenascin-C expression and matrix deposition during Ras/TGF-beta-induced progression of mammary tumor cells. Oncogene 2004; 23:3622-33. [PMID: 15116096 DOI: 10.1038/sj.onc.1207403] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Overexpression of tenascin-C (TN-C) in breast carcinomas has been associated with a migratory or even invasive tumor cell phenotype. The mechanisms regulating expression and matrix deposition of TN-C in normal and cancerous breast tissues are, however, little understood. Here, we demonstrate that mouse mammary epithelial cells (EpH4) transformed by oncogenic Ha-Ras (EpRas) overexpress TN-C, which accumulates in the cytoplasm. When EpRas cells undergo epithelial-mesenchymal transition (EMT) in response to TGFbeta1, they secrete TN-C into the culture medium. In EpRas cells undergoing TGFbeta1-induced EMT in three-dimensional (3D)-collagen gel cultures, TN-C was deposited into an extracellular matrix (ECM) already containing fibronectin and perlecan. Under less physiological 2D plastic cultures, EpRas cells undergoing EMT failed to deposit TN-C into an (apparently incomplete) ECM. Ras-downstream signaling was dissected by pharmacological inhibitors and effector-specific Ras mutants (V12S35, V12C40), specifically inhibiting or activating ERK/MAPK or PI3K signaling, respectively. We showed that TN-C overexpression required a hyperactive ERK/MAPK-signaling pathway, while elevated PI3K signaling did not enhance TN-C expression. Similarly, tumors induced by cells exhibiting hyperactive ERK/MAPK signaling showed expression of TN-C in the tumor cells themselves, while only endothelial cells expressed TN-C in tumors caused by the V12C40 mutant (incapable of EMT in vivo). Taken together, our data indicate that hyperactive ERK/MAPK signaling causes enhanced expression of TN-C, while its secretion is induced by TGFbeta1 and both signals cooperate in TN-C matrix deposition. Importantly, both signals also cooperate to induce EMT in vitro and tumor progression/metastasis in vivo.
Collapse
Affiliation(s)
- Sabine Maschler
- Institute of Molecular Pathology, Dr. Bohrgasse 7, 1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
42
|
Ihida-Stansbury K, McKean DM, Gebb SA, Martin JF, Stevens T, Nemenoff R, Akeson A, Vaughn J, Jones PL. Paired-related homeobox gene Prx1 is required for pulmonary vascular development. Circ Res 2004; 94:1507-14. [PMID: 15117820 DOI: 10.1161/01.res.0000130656.72424.20] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Herein, we show that the paired-related homeobox gene, Prx1, is required for lung vascularization. Initial studies revealed that Prx1 localizes to differentiating endothelial cells (ECs) within the fetal lung mesenchyme, and later within ECs forming vascular networks. To begin to determine whether Prx1 promotes EC differentiation, fetal lung mesodermal cells were transfected with full-length Prx1 cDNA, resulting in their morphological transformation to an endothelial-like phenotype. In addition, Prx1-transformed cells acquired the ability to form vascular networks on Matrigel. Thus, Prx1 might function by promoting pulmonary EC differentiation within the fetal lung mesoderm, as well as their subsequent incorporation into vascular networks. To understand how Prx1 participates in network formation, we focused on tenascin-C (TN-C), an extracellular matrix (ECM) protein induced by Prx1. Immunocytochemistry/histochemistry showed that a TN-C-rich ECM surrounds Prx1-positive pulmonary vascular networks both in vivo and in tissue culture. Furthermore, antibody-blocking studies showed that TN-C is required for Prx1-dependent vascular network formation on Matrigel. Finally, to determine whether these results were relevant in vivo, we examined newborn Prx1-wild-type (+/+) and Prx1-null (-/-) mice and showed that Prx1 is critical for expression of TN-C and lung vascularization. These studies provide a framework to understand how Prx1 controls EC differentiation and their subsequent incorporation into functional pulmonary vascular networks.
Collapse
Affiliation(s)
- Kaori Ihida-Stansbury
- Department of Pediatrics, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Szekanecz Z, Koch AE. Vascular endothelium and immune responses: implications for inflammation and angiogenesis. Rheum Dis Clin North Am 2004; 30:97-114. [PMID: 15061570 DOI: 10.1016/s0889-857x(03)00116-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ECs are involved in several mechanisms during the immune response, particularly in inflammation. These cells are able to produce vasodilatory mediators and several factors lead to increased vascular permeability. ECs play a central role in leukocyte extravasation, a key feature of inflammation. Several adhesion molecules, termed integrins, selectins, immunoglobulins, and others, act in concert and regulate the sequence of distinct steps. Leukocyte-EC adhesion is regulated by the interactions of receptor-ligand CAM pairs, as well as by soluble mediators, such as proinflammatory cytokines. ECs are active participants in angiogenesis. The outcome of neovascularization is highly dependent on the balance or imbalance between angiogenic mediators and inhibitors. Angiogenic mediators form a complex interactive network that regulates the perpetuation of angiogenesis. Naturally-produced or administered angiostatic agents downregulate the effects of angiogenic factors. There have been several attempts to therapeutically interfere with the cellular and molecular mechanisms described above. Most studies were performed using animal models of various types of inflammation. A limited number of human clinical trials, such as the one using anti-ICAM-1 antibody in RA, had promising results. Specific targeting of pathologic endothelial function may be useful for the future management of various inflammatory diseases.
Collapse
Affiliation(s)
- Zoltán Szekanecz
- Division of Rheumatology, Third Department of Medicine, University of Debrecen Medical and Health Sciences Center, 22 Moricz Street, Debrecen H-4004, Hungary.
| | | |
Collapse
|
44
|
Abu El-Asrar AM, Meersschaert A, Al-Kharashi SA, Missotten L, Geboes K. Immuno-histochemical evaluation of conjunctival remodelling in vernal keratoconjunctivitis. Eye (Lond) 2003; 17:767-71. [PMID: 12928693 DOI: 10.1038/sj.eye.6700453] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To study the expression of the extracellular matrix (ECM) proteins, tenascin, laminin, and fibronectin in the conjunctiva of patients with active vernal keratoconjunctivitis (VKC). METHODS Conjunctival biopsy specimens were obtained from nine patients with active VKC and 6 normal control subjects. The presence and distribution of tenascin, laminin, and fibronectin were assessed microscopically with immunohistochemical techniques and a panel of monoclonal and polyclonal antibodies directed against tenascin, laminin, and fibronectin. RESULTS In normal conjunctiva, weak immunoreactivity for tenascin was localized to the walls of blood vessels in the upper substantia propria. Weak immunoreactivity for laminin was located at the epithelial-stromal junction and in the walls of blood vessels. Staining for fibronectin was absent. In VKC specimens, intense immunoreactivity for tenascin was noted in the substantia propria associated with the inflammatory infiltrate and in the perivascular stroma. Intense immunoreactivity for laminin around all stromal vessels and fibrillar immunoreactivity among basal epithelial cells were noted. There was no immunoreactivity for fibronectin. CONCLUSION Our data indicate increased deposition of tenascin and laminin in the conjunctiva from patients with active VKC. Our findings suggest that tenascin and laminin might play distinct roles in chronic inflammation seen in VKC.
Collapse
Affiliation(s)
- A M Abu El-Asrar
- Department of Ophthalmology College of Medicine King Saud University Riyadh, Saudi Arabia.
| | | | | | | | | |
Collapse
|
45
|
Akabani G, McLendon RE, Bigner DD, Zalutsky MR. Vascular targeted endoradiotherapy of tumors using alpha-particle-emitting compounds: theoretical analysis. Int J Radiat Oncol Biol Phys 2002; 54:1259-75. [PMID: 12419456 DOI: 10.1016/s0360-3016(02)03794-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE To establish the theoretical framework and study the feasibility of (211)At-labeled anti-tenascin chimeric 81C6 monoclonal antibody (mAb) as anti-vascular endoradiotherapy for the treatment of glioblastoma multiforme (GBM) tumors. METHODS AND MATERIALS The morphology of blood vessels from histologic images was analyzed and used along with reaction-diffusion equations to assess the activity concentration of (211)At-labeled chimeric 81C6 mAb in GBM tumor and normal-brain tissue. Alpha particle microdosimetry was then used to assess the survival probability and average absorbed dose for tumor and normal tissue endothelial cells (ECs) per unit vascular cumulated activity concentration q(source) (MBq-s g(-1)). In turn, these survival probabilities were used to assess the probability of failure Phi for a single vessel. Furthermore, using the vessel density, the specific tumor control probability per unit mass of tumor tissue (tcp) and the specific normal-tissue complication probability per unit mass of normal-brain tissue (ntcp) were estimated. The specific tumor control probability, tcp, was used to assess the overall tumor control probability (TCP) as a function of tumor mass. RESULTS The levels of (211)At-labeled ch81C6 mAb cumulated activity concentration in GBM tumor tissue were approximately five times higher than that in normal-brain tissue. Thus, the average absorbed dose to tumor ECs was higher than that of normal tissue ECs, and the survival probability for GBM ECs was lower than for normal-brain tissue ECs. Consequently, the resulting vessel-failure probability, Phi, for GBM tumor and for normal-brain tissue differ considerably, yielding a q(source) range between 10(3) and 10(4) MBq-s g(-1). CONCLUSIONS This theoretical analysis demonstrated that (211)At-labeled chimeric 81C6 is an effective anti-vascular therapy for the treatment of GBM tumors, yielding a tcp higher than 0.999 for vascular cumulated activity concentrations q(source) higher than 1 x 10(4) MBq-s g(-1), while yielding a low probability for normal-brain tissue damage.
Collapse
Affiliation(s)
- Gamal Akabani
- Department of Radiology, Duke University Medical Center, Box 3808, Durham, NC 27710, USA.
| | | | | | | |
Collapse
|
46
|
Booth C, Harnden P, Selby PJ, Southgate J. Towards defining roles and relationships for tenascin-C and TGFbeta-1 in the normal and neoplastic urinary bladder. J Pathol 2002; 198:359-68. [PMID: 12375269 DOI: 10.1002/path.1214] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Tenascin-C (TN-C) is an extracellular matrix glycoprotein expressed along epithelial/stromal boundaries during tissue remodelling events, such as those that occur during morphogenesis, wound healing, and tumour invasion. Using clinical specimens and a range of in vitro models that simulate homeostasis, wound healing, and malignant progression, this study sought to establish the patterns of TN-C expression in normal and neoplastic bladder and to determine the role of exogenous transforming growth factor beta-1 (TGFbeta-1), interleukin-4 (IL-4), basic fibroblast growth factor (bFGF), tumour necrosis factor alpha (TNFalpha), and interferon gamma (IFNgamma) in the induction of TN-C expression by bladder uro-epithelial cells. The findings indicate that normal urothelial cells may express TN-C, with both TGFbeta-1 and IL-4 able to induce expression. TN-C was not expressed in neoplastic urothelium, although both TN-C and TGFbeta-1 may be involved in tissue remodelling during papillary tumour formation and invasion. Furthermore, the urothelium of high-grade papillary tumours and carcinoma in situ specimens exhibited little TGFbeta-1 immunoreactivity, compared with the urothelium of low-grade tumours and normal specimens, suggesting an association between TGFbeta-1 expression and urothelial differentiation. A tumour invasion model, in which established bladder cancer cell lines were seeded onto a normal bladder stroma, corroborated the evidence from the clinical specimens and demonstrated that TN-C was strongly expressed around foci of stromal invasion. Thus, TN-C immunoreactivity may provide an additional tool in the assessment of early stromal invasion in bladder cancer.
Collapse
Affiliation(s)
- Catherine Booth
- Jack Birch Unit of Molecular Carcinogenesis, Department of Biology, University of York YO10 5YW, UK
| | | | | | | |
Collapse
|
47
|
Mitamura Y, Takeuchi S, Ohtsuka K, Matsuda A, Hiraiwa N, Kusakabe M. Tenascin-C levels in the vitreous of patients with proliferative diabetic retinopathy. Diabetes Care 2002; 25:1899. [PMID: 12351514 DOI: 10.2337/diacare.25.10.1899] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
48
|
Abstract
Inhibition of angiogenesis has become a target for antineoplastic therapy and for treatment of retinal neovascularization. The presence of somatostatin receptors on tumour cells and on the proliferating vascular endothelium has led to several in vitro and in vivo studies to investigate the antiproliferative and antiangiogenic effects of somatostatin analogues. Currently available data suggest that somatostatin analogues might inhibit angiogenesis directly through somatostatin receptors present on endothelial cells and also indirectly through the inhibition of growth factor secretion such as IGF-I and vascular endothelial growth factor (VEGF) and reducing monocyte chemotaxis. However, beneficial effects on inhibition of neovascularization have been questioned by some studies. More work is therefore required to firmly establish the role of somatostatin analogues as potential antiangiogenic therapy. The currently available somatostatin analogues have high affinity for somatostatin receptor subtype 2 (sst2) and, to a lesser extent, sst5 and sst3. However, because vascular endothelial cells express several types of somatostatin receptors, it will be important to investigate somatostatin analogues with different receptor subtype affinities, which might increase the spectrum of available therapy for tumours.
Collapse
Affiliation(s)
- N García de la Torre
- Department of Endocrinology, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Infirmary, Woodstock Road, Oxford OX2 6HE, UK
| | | | | |
Collapse
|
49
|
Haas TL. Molecular control of capillary growth in skeletal muscle. CANADIAN JOURNAL OF APPLIED PHYSIOLOGY = REVUE CANADIENNE DE PHYSIOLOGIE APPLIQUEE 2002; 27:491-515. [PMID: 12429896 DOI: 10.1139/h02-027] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Angiogenesis, the growth of new capillaries, enhances the oxygen delivery capacity of an existing vascular network. This adaptation is a well-documented occurrence in exercising skeletal muscle. The purpose of this review is to summarize our current understanding of the various stimuli that are involved in the initiation of capillary growth in skeletal muscle. The roles of humoral and mechanical signals in the cellular regulation of several key angiogenic players, vascular endothelial cell growth factor and matrix metalloproteinases, will be discussed. Evidence will be presented supporting the existence of angiogenesis processes that are distinct from the "classically" defined process. Determining how specific angiogenic stimuli can initiate unique patterns of capillary growth will provide insight into the complex task of developing effective pro-angiogenic therapies.
Collapse
Affiliation(s)
- Tara L Haas
- Department of Kinesiology and Health Sciences, York University, Toronto, Ontario, Canada
| |
Collapse
|
50
|
Abstract
A malignant process interferes with the normal 'programme' of extracellular matrix biosynthesis and can modify extensively the structure and composition of the matrix. This effect appears to be attributable to several processes such as direct production of some selected matrix macromolecules by malignant cells or indirectly by the production of factors by malignant cells interfering with the regulation of normal matrix production. Other possibilities may also exist, such as the direct action of an environmental carcinogen on otherwise normal mesenchymal cells. The result is a more or less profound modification of tissue structure and composition with possible feedback effects on the malignant process. Some examples will be discussed such as elastin production by some tumours as well as the biosynthesis of some other selected matrix macromolecules as tenascin and osteopontin by breast tumours. Although the detailed mechanisms of these specific matrix productions is not yet completely elucidated, the rapidly increasing knowledge on the regulation of specific matrix production process and deranged matrix production might represent a new area of crosstalk between cancer research and matrix biology.
Collapse
Affiliation(s)
- Anna Kadar
- 2nd Department of Pathology, Semmelweis University of Medicine, Ulloi ut 93, 1091 Budapest, Hungary.
| | | | | | | |
Collapse
|