1
|
Mohammed AS, Uversky VN. Intrinsic Disorder as a Natural Preservative: High Levels of Intrinsic Disorder in Proteins Found in the 2600-Year-Old Human Brain. BIOLOGY 2022; 11:1704. [PMID: 36552214 PMCID: PMC9775155 DOI: 10.3390/biology11121704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Proteomic analysis revealed the preservation of many proteins in the Heslington brain (which is at least 2600-year-old brain tissue uncovered within the skull excavated in 2008 from a pit in Heslington, Yorkshire, England). Five of these proteins-"main proteins": heavy, medium, and light neurofilament proteins (NFH, NFM, and NFL), glial fibrillary acidic protein (GFAP), and myelin basic (MBP) protein-are engaged in the formation of non-amyloid protein aggregates, such as intermediate filaments and myelin sheath. We used a wide spectrum of bioinformatics tools to evaluate the prevalence of functional disorder in several related sets of proteins, such as the main proteins and their 44 interactors, all other proteins identified in the Heslington brain, as well as the entire human proteome (20,317 manually curated proteins), and 10,611 brain proteins. These analyses revealed that all five main proteins, half of their interactors and almost one third of the Heslington brain proteins are expected to be mostly disordered. Furthermore, most of the remaining Heslington brain proteins are expected to contain sizable levels of disorder. This is contrary to the expected substantial (if not complete) elimination of the disordered proteins from the Heslington brain. Therefore, it seems that the intrinsic disorder of NFH, NFM, NFL, GFAP, and MBP, their interactors, and many other proteins might play a crucial role in preserving the Heslington brain by forming tightly folded brain protein aggregates, in which different parts are glued together via the disorder-to-order transitions.
Collapse
Affiliation(s)
- Aaron S. Mohammed
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL 33612, USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL 33612, USA
- USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
2
|
Hawley ZCE, Campos-Melo D, Droppelmann CA, Strong MJ. MotomiRs: miRNAs in Motor Neuron Function and Disease. Front Mol Neurosci 2017; 10:127. [PMID: 28522960 PMCID: PMC5415563 DOI: 10.3389/fnmol.2017.00127] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 04/18/2017] [Indexed: 12/12/2022] Open
Abstract
MiRNAs are key regulators of the mammalian transcriptome that have been increasingly linked to degenerative diseases of the motor neurons. Although many of the miRNAs currently incriminated as participants in the pathogenesis of these diseases are also important to the normal development and function of motor neurons, at present there is no knowledge of the complete miRNA profile of motor neurons. In this review, we examine the current understanding with respect to miRNAs that are specifically required for motor neuron development, function and viability, and provide evidence that these should be considered as a functional network of miRNAs which we have collectively termed MotomiRs. We will also summarize those MotomiRs currently known to be associated with both amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), and discuss their potential use as biomarkers.
Collapse
Affiliation(s)
- Zachary C E Hawley
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western UniversityLondon, ON, Canada
| | - Danae Campos-Melo
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western UniversityLondon, ON, Canada
| | - Cristian A Droppelmann
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western UniversityLondon, ON, Canada
| | - Michael J Strong
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western UniversityLondon, ON, Canada.,Department of Pathology, Schulich School of Medicine and Dentistry, Western UniversityLondon, ON, Canada.,Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western UniversityLondon, ON, Canada
| |
Collapse
|
3
|
Yuan A, Rao MV, Veeranna, Nixon RA. Neurofilaments and Neurofilament Proteins in Health and Disease. Cold Spring Harb Perspect Biol 2017; 9:9/4/a018309. [PMID: 28373358 DOI: 10.1101/cshperspect.a018309] [Citation(s) in RCA: 467] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SUMMARYNeurofilaments (NFs) are unique among tissue-specific classes of intermediate filaments (IFs) in being heteropolymers composed of four subunits (NF-L [neurofilament light]; NF-M [neurofilament middle]; NF-H [neurofilament heavy]; and α-internexin or peripherin), each having different domain structures and functions. Here, we review how NFs provide structural support for the highly asymmetric geometries of neurons and, especially, for the marked radial expansion of myelinated axons crucial for effective nerve conduction velocity. NFs in axons extensively cross-bridge and interconnect with other non-IF components of the cytoskeleton, including microtubules, actin filaments, and other fibrous cytoskeletal elements, to establish a regionally specialized network that undergoes exceptionally slow local turnover and serves as a docking platform to organize other organelles and proteins. We also discuss how a small pool of oligomeric and short filamentous precursors in the slow phase of axonal transport maintains this network. A complex pattern of phosphorylation and dephosphorylation events on each subunit modulates filament assembly, turnover, and organization within the axonal cytoskeleton. Multiple factors, and especially turnover rate, determine the size of the network, which can vary substantially along the axon. NF gene mutations cause several neuroaxonal disorders characterized by disrupted subunit assembly and NF aggregation. Additional NF alterations are associated with varied neuropsychiatric disorders. New evidence that subunits of NFs exist within postsynaptic terminal boutons and influence neurotransmission suggests how NF proteins might contribute to normal synaptic function and neuropsychiatric disease states.
Collapse
Affiliation(s)
- Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York 10962.,Department of Psychiatry, New York University School of Medicine, New York, New York 10016
| | - Mala V Rao
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York 10962.,Department of Psychiatry, New York University School of Medicine, New York, New York 10016
| | - Veeranna
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York 10962.,Department of Psychiatry, New York University School of Medicine, New York, New York 10016
| | - Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York 10962.,Department of Psychiatry, New York University School of Medicine, New York, New York 10016.,Cell Biology, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
4
|
Cheng K, Jones MEB, Jancovich JK, Burchell J, Schrenzel MD, Reavill DR, Imai DM, Urban A, Kirkendall M, Woods LW, Chinchar VG, Pessier AP. Isolation of a Bohle-like iridovirus from boreal toads housed within a cosmopolitan aquarium collection. DISEASES OF AQUATIC ORGANISMS 2014; 111:139-152. [PMID: 25266901 DOI: 10.3354/dao02770] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A captive 'survival assurance' population of 56 endangered boreal toads Anaxyrus boreas boreas, housed within a cosmopolitan collection of amphibians originating from Southeast Asia and other locations, experienced high mortality (91%) in April to July 2010. Histological examination demonstrated lesions consistent with ranaviral disease, including multicentric necrosis of skin, kidney, liver, spleen, and hematopoietic tissue, vasculitis, and myriad basophilic intracytoplasmic inclusion bodies. Initial confirmation of ranavirus infection was made by Taqman real-time PCR analysis of a portion of the major capsid protein (MCP) gene and detection of iridovirus-like particles by transmission electron microscopy. Preliminary DNA sequence analysis of the MCP, DNA polymerase, and neurofilament protein (NFP) genes demonstrated highest identity with Bohle iridovirus (BIV). A virus, tentatively designated zoo ranavirus (ZRV), was subsequently isolated, and viral protein profiles, restriction fragment length polymorphism analysis, and next generation DNA sequencing were performed. Comparison of a concatenated set of 4 ZRV genes, for which BIV sequence data are available, with sequence data from representative ranaviruses confirmed that ZRV was most similar to BIV. This is the first report of a BIV-like agent outside of Australia. However, it is not clear whether ZRV is a novel North American variant of BIV or whether it was acquired by exposure to amphibians co-inhabiting the same facility and originating from different geographic locations. Lastly, several surviving toads remained PCR-positive 10 wk after the conclusion of the outbreak. This finding has implications for the management of amphibians destined for use in reintroduction programs, as their release may inadvertently lead to viral dissemination.
Collapse
Affiliation(s)
- Kwang Cheng
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Lee J, Kim S, Chang R, Jayanthi L, Gebremichael Y. Effects of molecular model, ionic strength, divalent ions, and hydrophobic interaction on human neurofilament conformation. J Chem Phys 2013; 138:015103. [DOI: 10.1063/1.4773297] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
6
|
Jayanthi L, Stevenson W, Kwak Y, Chang R, Gebremichael Y. Conformational properties of interacting neurofilaments: Monte Carlo simulations of cylindrically grafted apposing neurofilament brushes. J Biol Phys 2012; 39:343-62. [PMID: 23860913 DOI: 10.1007/s10867-012-9293-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 11/04/2012] [Indexed: 10/27/2022] Open
Abstract
Neurofilaments are essential cytoskeletal filaments that impart mechanical stability to axons. They are mostly assembled from three neurofilament proteins that form the core of the filament and its sidearms. Adjacent neurofilaments interact with each other through their apposing sidearms and attain unique conformations depending on the ionic condition, phosphorylation state, and interfilament separations. To understand the conformational properties of apposing sidearms under various conditions and gain insight into interfilament interactions, we performed Monte Carlo simulations of neurofilament pairs. We employed a sequence-based coarse-grained model of apposing NF sidearms that are end-tethered to cylindrical geometries according to the stoichiometry of the three neurofilament subunits. Monte Carlo simulations were conducted under different conditions such as phosphorylation state, ionic condition, and interfilament separations. Under salt-free conditions, apposing sidearms are found to adopt mutually excluding stretched but bent away conformations that are reminiscent of a repulsive type of interaction. Under physiological conditions, apposing sidearms are found to be in a coiled conformation, suggesting a short-range steric repulsive type of interaction. Increased sidearm mutual interpenetration and a simultaneous decrease in the individual brush heights were observed as the interfilament separation was reduced from 60 to 40 nm. The observed conformations suggest entropic interaction as a likely mechanism for sidearm-mediated interfilament interactions under physiological conditions.
Collapse
Affiliation(s)
- Lakshmi Jayanthi
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
7
|
Arsenic-induced neurotoxicity in relation to toxicokinetics: effects on sciatic nerve proteins. Chem Biol Interact 2008; 176:188-95. [PMID: 18674524 DOI: 10.1016/j.cbi.2008.07.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 06/30/2008] [Accepted: 07/03/2008] [Indexed: 11/21/2022]
Abstract
In our previous study in rats acutely exposed to As, we observed an effect of As on neurofilaments in the sciatic nerve. This study deals with the effects of inorganic As in Wistar rats on the cytoskeletal protein composition of the sciatic nerve after subchronic intoxication. Sodium meta-arsenite (NaAsO2) dissolved in phosphate-buffered saline (PBS) was administered daily in doses of 0, 3 and 10 mg/kg body weight/day (n=9 rats/group) by intragastric route for 4, 8 and 12 week periods. Toxicokinetic measurements revealed a saturation of blood As in the 3- and 10-mg/kg dose groups at approximately 14 microg/ml, with an increase in renal clearance of As at increasing doses. After exsanguination, sciatic nerves were excised and the protein composition was analyzed. Analysis of the sciatic nerves showed compositional changes in their proteins. Protein expression of neurofilament Medium (NF-M) and High (NF-H) was unchanged. Neurofilament protein Low (NF-L) expression was reduced, while mu- and m-calpain protein expression was increased, both in a dose/time pattern. Furthermore, NF-H protein was hypophosphorylated, while NF-L and microtubule-associated protein tau (MAP-tau) proteins were (hyper)-phosphorylated. In conclusion, we show that expression of mu- and m-calpain protein is increased by exposure to As, possibly leading to increased NF-L degradation. In addition, hyperphosphorylation of NF-L and MAP-tau by As also contribute to destabilization and disruption of the cytoskeletal framework, which eventually may lead to axonal degeneration.
Collapse
|
8
|
Abstract
Arsenic (As) is one of the oldest poisons known to men. Its applications throughout history are wide and varied: murder, make-up, paint and even as a pesticide. Chronic As toxicity is a global environmental health problem, affecting millions of people in the USA and Germany to Bangladesh and Taiwan. Worldwide, As is released into the environment by smelting of various metals, combustion of fossil fuels, as herbicides and fungicides in agricultural products. The drinking water in many countries, which is tapped from natural geological resources, is also contaminated as a result of the high level of As in groundwater. The environmental fate of As is contamination of surface and groundwater with a contaminant level higher than 10 particle per billion (ppb) as set by World Health Organization (WHO). Arsenic exists in both organic and inorganic species and either form can also exist in a trivalent or pentavalent oxidation state. Long-term health effects of exposure to these As metabolites are severe and highly variable: skin and lung cancer, neurological effects, hypertension and cardiovascular diseases. Neurological effects of As may develop within a few hours after ingestion, but usually are seen in 2-8 weeks after exposure. It is usually a symmetrical sensorimotor neuropathy, often resembling the Guillain-Barré syndrome. The predominant clinical features of neuropathy are paresthesias, numbness and pain, particularly in the soles of the feet. Electrophysiological studies performed on patients with As neuropathy have revealed a reduced nerve conduction velocity, typical of those seen in axonal degeneration. Most of the adverse effects of As, are caused by inactivated enzymes in the cellular energy pathway, whereby As reacts with the thiol groups of proteins and enzymes and inhibits their catalytic activity. Furthermore, As-induced neurotoxicity, like many other neurodegenerative diseases, causes changes in cytoskeletal protein composition and hyperphosphorylation. These changes may lead to disorganization of the cytoskeletal framework, which is a potential mechanism of As-induced neurotoxicity.
Collapse
Affiliation(s)
- A Vahidnia
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | |
Collapse
|
9
|
Vahidnia A, van der Straaten RJHM, Romijn F, van Pelt J, van der Voet GB, de Wolff FA. Mechanism of arsenic-induced neurotoxicity may be explained through cleavage of p35 to p25 by calpain. Toxicol In Vitro 2007; 22:682-7. [PMID: 18242949 DOI: 10.1016/j.tiv.2007.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 12/07/2007] [Accepted: 12/21/2007] [Indexed: 11/18/2022]
Abstract
In recent studies we have demonstrated that arsenic (As) metabolites change the composition of neuronal cytoskeletal proteins in vivo and in vitro. To further examine the mechanism of arsenic-induced neurotoxicity with various arsenate metabolites (iAsV, MMAV and DMAV) and arsenite metabolites (iAsIII, MMAIII and DMAIII), we investigated the role of the proteolytic enzyme calpain and its involvement in the cleavage of p35 protein to p25, and also mRNA expression levels of calpain, cyclin-dependent kinase 5 (cdk5) and glycogen synthase kinase 3 beta (gsk3ss). A HeLa cell line transfected with a p35 construct (HeLa-p35) was used as a model, since all other proteins such as calpain, CDK5 and GSK3beta are already present in HeLa cells as they are in neuronal cells. HeLa-p35 cells were incubated with various As metabolites and concentrations of 0, 10 and 30 microM for duration of 4 h. Subsequently the cells were either lysed to study their relative quantification levels of these genes or to be examined on their p35-protein expression. P35-RNA expression levels were significantly (p<0.01) increased by arsenite metabolites, while p35 protein was cleaved to p25 (and p10) after incubation with these metabolites. The cleavage of p35 is caused by calcium (Ca2+) induced activation of calpain. Inhibition of calpain activity by calpeptin prevents cleavage of p35 to p25. These results suggest that cleavage of p35 to p25 by calpain, probably As-induced Ca2+-influx, may explain the mechanism by which arsenic induces its neurotoxic effects.
Collapse
Affiliation(s)
- A Vahidnia
- Department of Clinical Pharmacy and Toxicology, L1-p, Albinusdreef 2, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
10
|
Vahidnia A, van der Straaten RJHM, Romijn F, van Pelt J, van der Voet GB, de Wolff FA. Arsenic metabolites affect expression of the neurofilament and tau genes: An in-vitro study into the mechanism of arsenic neurotoxicity. Toxicol In Vitro 2007; 21:1104-12. [PMID: 17553662 DOI: 10.1016/j.tiv.2007.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 03/23/2007] [Accepted: 04/16/2007] [Indexed: 10/23/2022]
Abstract
Neurological studies indicate that the central (CNS) and peripheral nervous system (PNS) may be affected by arsenic (As). As-exposed patients show significantly lower nerve conduction velocities (NCVs) in their peripheral nerves in comparison to healthy subjects. As may play a role in the disruption of neuroskeletal integrity, but the mechanisms by which it exerts a toxic effect on the peripheral and central nervous system are still unclear. In the present study, we examined the neurotoxic effects of various arsenic metabolites (iAs(III), iAs(V), MMA(V) and DMA(V)) on two different cell lines derived from the peripheral (ST-8814) and central (SK-N-SH) nervous system. The effects of the arsenic metabolites were examined on the relative quantification levels of the cytoskeletal genes, neurofilament-light (NEFL), neurofilament-medium (NEF3), neurofilament-heavy (NEFH) and microtubule-associated protein-tau (MAPT), using real-time PCR. Our results show that iAs(III) and iAs(V) have no significant effects on either cell lines. On the other hand, MMA(V) and DMA(V) cause significant changes in expression levels of NEF3 and NEFL genes, while the expression level of the NEFH gene is significantly increased in both cell lines.
Collapse
Affiliation(s)
- A Vahidnia
- Department of Clinical Pharmacy and Toxicology, L1-p, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
11
|
Van Geel WJA, Rosengren LE, Verbeek MM. An enzyme immunoassay to quantify neurofilament light chain in cerebrospinal fluid. J Immunol Methods 2004; 296:179-85. [PMID: 15680162 DOI: 10.1016/j.jim.2004.11.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Revised: 10/28/2004] [Accepted: 11/11/2004] [Indexed: 11/21/2022]
Abstract
Neurofilament light chain is a component of the axonal cytoskeleton. The concentration of the neurofilament light chain in cerebrospinal fluid may reflect axonal damage or the extent of white matter damage. In this study we describe a sensitive immunoassay for the detection of neurofilament light chain in cerebrospinal fluid using commercially available materials. The detection limit of the assay was 5 ng/l and the assay was linear up to 390 ng/l. Mean recovery was 91.5% and inter-assay and intra-assay coefficients of variation were below 18%. Strongly increased levels of neurofilament light chain were observed in patients with cerebrovascular accidents, subarachnoid hemorrhage and severe traumatic brain injury, suggesting the occurrence of axonal damage in these conditions.
Collapse
Affiliation(s)
- W J A Van Geel
- Laboratory of Pediatrics and Neurology, University Medical Centre Nijmegen, The Netherlands
| | | | | |
Collapse
|
12
|
Affiliation(s)
- Richard M Robson
- Muscle Biology Group, Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | | | |
Collapse
|
13
|
Saifi GM, Szigeti K, Snipes GJ, Garcia CA, Lupski JR. Molecular Mechanisms, Diagnosis, and Rational Approaches to Management of and Therapy for Charcot-Marie-Tooth Disease and Related Peripheral Neuropathies. J Investig Med 2003. [DOI: 10.1177/108155890305100514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During the last decade, 18 genes and 11 additional loci harboring candidate genes have been associated with Charcot-Marie-Tooth disease (CMT) and related peripheral neuropathies. Ten of these 18 genes have been identified in the last 2 years. This phenomenal pace of CMT gene discovery has fomented an unprecedented explosion of information regarding peripheral nerve biology and its pathologic manifestations in CMT. This review integrates molecular genetics with the clinical phenotypes and provides a flowchart for molecular-based diagnostics. In addition, we discuss rational approaches to molecular therapeutics, including novel biologic molecules (eg, small interfering ribonucleic acid [siRNA], antisense RNA, and ribozymes) that potentially could be used as drugs in the future. These may be applicable in attempts to normalize gene expression in cases of CMT type 1A, wherein a 1.5 Mb genomic duplication causes an increase in gene dosage that is associated with the majority of CMT cases. Aggresome formation by the PMP22 gene product, the disease-associated gene in the duplication cases, could thus be avoided. We also discuss alternative therapeutics, in light of other neurodegenerative disorders, to disrupt such aggresomes. Finally, we review rational therapeutic approaches, including the use of antioxidants such as vitamin E, coenzyme Q10, or lipoic acid to relax potential oxidative stress in peripheral nerves, for CMT management.
Collapse
Affiliation(s)
- Gulam Mustafa Saifi
- Departments of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Kinga Szigeti
- Departments of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | | | - Carlos A. Garcia
- Departments of Neurology and Pathology, Tulane University Health Sciences Center, New Orleans, LA
| | - James R. Lupski
- Departments of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children's Hospital, Houston, TX
| |
Collapse
|
14
|
|
15
|
Rahner N, Holzmann C, Krüger R, Schöls L, Berger K, Riess O. Neurofilament L gene is not a genetic factor of sporadic and familial Parkinson's disease. Brain Res 2002; 951:82-6. [PMID: 12231460 DOI: 10.1016/s0006-8993(02)03138-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mutations in two genes, alpha-synuclein and parkin, have been identified as some rare causes for familial Parkinson's disease (PD). alpha-Synuclein and parkin protein have subsequently been identified in Lewy bodies (LB). To gain further insight into the pathogenesis of PD we investigated the role of neurofilament light (NF-L), another component of LB aggregation. A detailed mutation search of the NF-L gene in 328 sporadic and familial PD patients of German ancestry revealed three silent DNA changes (G163A, C224T, C487T) in three unrelated patients. Analysis of the promoter region of the NF-L gene identified a total of three base pair substitutions defining five haplotypes. Association studies based on these haplotypes revealed no significant differences between PD patients and 344 control individuals. Therefore, NF-L is unlikely to play a major role in the pathogenesis of PD.
Collapse
Affiliation(s)
- Nils Rahner
- Department of Medical Genetics, Children's Hospital, University Rostock, Rembrandt Strasse 16/17, 18055, Rostock, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Boerkoel CF, Takashima H, Lupski JR. The genetic convergence of Charcot-Marie-Tooth disease types 1 and 2 and the role of genetics in sporadic neuropathy. Curr Neurol Neurosci Rep 2002; 2:70-7. [PMID: 11898586 DOI: 10.1007/s11910-002-0056-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Charcot-Marie-Tooth (CMT) disease represents a clinically and genetically heterogeneous group of inherited neuropathies caused by aberration of the intimate relationship between the myelin sheath and the axon; disorders causing demyelination are classified as CMT1 and those causing axonal loss as CMT2. The mechanisms by which mutations disturb the relationship of the myelin sheath and axon are not fully understood; however, we hypothesize that some mutations affect this relationship more profoundly than others, and thus account for the paradox that mutation of a "myelin gene" can present with electrophysiologic features of CMT2 and vice versa. Also, contrary to popular understanding, inherited neuropathies account for a substantial number of chronic peripheral neuropathies. Because of this observation, we propose that molecular diagnosis is a necessary adjunct for differentiating genetic and acquired peripheral neuropathies, even in sporadic chronic neuropathy.
Collapse
Affiliation(s)
- Cornelius F Boerkoel
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Room 604B, Houston, TX 77030, USA
| | | | | |
Collapse
|
17
|
Brown, Troncoso, Hoh. Neurofilament‐L homopolymers are less mechanically stable than native neurofilaments. J Microsc 2001. [DOI: 10.1046/j.1365-2818.1998.00373.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Brown
- Department of Pathology, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, U.S.A.,
| | - Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, U.S.A.,
| | - Hoh
- Department of Physiology, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, U.S.A
| |
Collapse
|
18
|
Bellin RM, Huiatt TW, Critchley DR, Robson RM. Synemin may function to directly link muscle cell intermediate filaments to both myofibrillar Z-lines and costameres. J Biol Chem 2001; 276:32330-7. [PMID: 11418616 DOI: 10.1074/jbc.m104005200] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Synemin is a large intermediate filament (IF) protein that has been identified in all types of muscle cells in association with desmin- and/or vimentin-containing IFs. Our previous studies (Bellin, R. M., Sernett, S. W., Becker, B., Ip, W., Huiatt, T. W., and Robson, R. M. (1999) J. Biol. Chem. 274, 29493-29499) demonstrated that synemin forms heteropolymeric IFs with major IF proteins and contains a binding site for the myofibrillar Z-line protein alpha-actinin. By utilizing blot overlay assays, we show herein that synemin also interacts with the costameric protein vinculin. Furthermore, extensive assays utilizing the Gal4 yeast two-hybrid system demonstrate interactions of synemin with desmin and vimentin and additionally define more precisely the protein subdomains involved in the synemin/alpha-actinin and synemin/vinculin interactions. The C-terminal approximately 300-amino acid region of synemin binds to the N-terminal head and central rod domains of alpha-actinin and the approximately 150-amino acid C-terminal tail of vinculin. Overall, these interactions indicate that synemin may anchor IFs to myofibrillar Z-lines via interactions with alpha-actinin and to costameres at the sarcolemma via interactions with vinculin and/or alpha-actinin. These linkages would enable the IFs to directly link all cellular myofibrils and to anchor the peripheral layer of myofibrils to the costameres.
Collapse
Affiliation(s)
- R M Bellin
- Muscle Biology Group, Department of Biochemistry, Iowa State University, Ames, Iowa 50011-3260, USA
| | | | | | | |
Collapse
|
19
|
Hase ME, Kuznetsov NV, Cordes VC. Amino acid substitutions of coiled-coil protein Tpr abrogate anchorage to the nuclear pore complex but not parallel, in-register homodimerization. Mol Biol Cell 2001; 12:2433-52. [PMID: 11514627 PMCID: PMC58605 DOI: 10.1091/mbc.12.8.2433] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Tpr is a protein component of nuclear pore complex (NPC)-attached intranuclear filaments. Secondary structure predictions suggest a bipartite structure, with a large N-terminal domain dominated by heptad repeats (HRs) typical for coiled-coil--forming proteins. Proposed functions for Tpr have included roles as a homo- or heteropolymeric architectural element of the nuclear interior. To gain insight into Tpr's ultrastructural properties, we have studied recombinant Tpr segments by circular dichroism spectroscopy, chemical cross-linking, and rotary shadowing electron microscopy. We show that polypeptides of the N-terminal domain homodimerize in vitro and represent alpha-helical molecules of extended rod-like shape. With the use of a yeast two-hybrid approach, arrangement of the coiled-coil is found to be in parallel and in register. To clarify whether Tpr can self-assemble further into homopolymeric filaments, the full-length protein and deletion mutants were overexpressed in human cells and then analyzed by confocal immunofluorescence microscopy, cell fractionation, and immuno-electron microscopy. Surplus Tpr, which does not bind to the NPC, remains in a soluble state of approximately 7.5 S and occasionally forms aggregates of entangled molecules but neither self-assembles into extended linear filaments nor stably binds to other intranuclear structures. Binding to the NPC is shown to depend on the integrity of individual HRs; amino acid substitutions within these HRs abrogate NPC binding and render the protein soluble but do not abolish Tpr's general ability to homodimerize. Possible contributions of Tpr to the structural organization of the nuclear periphery in somatic cells are discussed.
Collapse
Affiliation(s)
- M E Hase
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institutet, S-17177 Stockholm, Sweden
| | | | | |
Collapse
|
20
|
Gupta RP, Abdel-Rahman A, Jensen KF, Abou-Donia MB. Altered expression of neurofilament subunits in diisopropyl phosphorofluoridate-treated hen spinal cord and their presence in axonal aggregations. Brain Res 2000; 878:32-47. [PMID: 10996134 DOI: 10.1016/s0006-8993(00)02642-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Diisopropyl phosphorofluoridate (DFP) is an organophosphorus ester, which produces organophosphorus ester-induced delayed neuropathy (OPIDN) in hen and other sensitive species. A single dose of DFP (1.7 mg/kg, sc.) produces mild ataxia in 7-14 days in hens, which develops into severe ataxia or paralysis with the progression of disease. OPIDN is associated with axonal swellings and degeneration of axons. This study was carried out to investigate the expression of neurofilament (NF) subunits in the spinal cord of DFP-treated hens. Hens were treated with a single dose of DFP and sacrificed 1, 5, 10, and 20 days post-treatment. Western blot analysis showed increased expression of middle molecular weight neurofilament protein (NF-M), and decreased expression of high molecular weight (NF-H) and low molecular weight (NF-L) neurofilament proteins in the 2 M urea extracts of spinal cord particulate fraction. These changes were observed within 24 h of DFP administration and persisted for 10-20 days. Thus, there was increase in the stoichiometry of NF-M:NF-L in the spinal cord of DFP-treated hens. Immunoprecipitation, cross-linking, and two-dimensional polyacrylamide gel electrophoresis showed the presence of heterodimers, but not heterotetramers, in the hen spinal cord extract. Immunohistochemical staining revealed the presence of all three NF subunits in the cytoskeletal inclusions in DFP-treated hen spinal cord cross-sections. The results suggested that each NF subunit might be accumulated by a different mechanism in the axonal aggregations of DFP-treated hen.
Collapse
Affiliation(s)
- R P Gupta
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, P.O. Box 3813, Durham, NC, USA
| | | | | | | |
Collapse
|
21
|
Hall GF, Chu B, Lee S, Liu Y, Yao J. The single neurofilament subunit of the lamprey forms filaments and regulates axonal caliber and neuronal size in vivo. CELL MOTILITY AND THE CYTOSKELETON 2000; 46:166-82. [PMID: 10913964 DOI: 10.1002/1097-0169(200007)46:3<166::aid-cm2>3.0.co;2-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Neurofilaments (NFs) are composed of a heteropolymer of three related subunits in mammalian neurons, where they are a major component of the cytoskeleton in large neurons and are thought to regulate axonal diameter. NFs in the lamprey, while ultrastructurally and functionally indistinguishable from mammalian NFs, are polymers of a single subunit protein, NF180. In this study, we use the simplicity of lamprey NFs and the accessibility of the lamprey central nervous system (CNS) to examine the effects of overproducing NFs in an identified giant neuron in vivo, and thus to elucidate the role of NFs in regulating neuronal size and axonal caliber in the vertebrate CNS. We show that overexpression of NF180 tagged with a variant of Green Fluorescent Protein (EYFP) in identified lamprey neurons (ABCs) and in human neuroblastoma (NB2a) cells results in the assembly of exogenous NF180 into ultrastructurally normal NFs that are tightly packed and unphosphorylated. These accumulate in the somata of NB2a cells and produce somatic swelling by 3 days post-transfection. NF180 overexpression in lamprey ABCs in vivo causes exogenous NFs to accumulate in ABC axons, somata, and dendrites, and induces a significant increase in axonal diameter without increasing axonal NF packing density. Overexpression of EYFP alone has none of these effects. We conclude that NF180 normally plays a critical role in determining axonal caliber in ABCs and may influence neuronal size in situations where NFs accumulate in the soma, such as after axonal injury.
Collapse
Affiliation(s)
- G F Hall
- Center for Cellular Neuroscience and Neurodegeneration Research, Department of Biological Sciences, University of Massachusetts, Lowell 02115, USA.
| | | | | | | | | |
Collapse
|
22
|
Lupski JR. Axonal Charcot-Marie-Tooth disease and the neurofilament light gene (NF-L). Am J Hum Genet 2000; 67:8-10. [PMID: 10848490 PMCID: PMC1287104 DOI: 10.1086/302986] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/18/2000] [Accepted: 05/19/2000] [Indexed: 11/04/2022] Open
|
23
|
Mersiyanova IV, Perepelov AV, Polyakov AV, Sitnikov VF, Dadali EL, Oparin RB, Petrin AN, Evgrafov OV. A new variant of Charcot-Marie-Tooth disease type 2 is probably the result of a mutation in the neurofilament-light gene. Am J Hum Genet 2000; 67:37-46. [PMID: 10841809 PMCID: PMC1287099 DOI: 10.1086/302962] [Citation(s) in RCA: 287] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2000] [Accepted: 04/26/2000] [Indexed: 01/30/2023] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is the most common inherited motor and sensory neuropathy. The axonal form of the disease is designated as "CMT type 2" (CMT2). Although four loci known to be implicated in autosomal dominant CMT2 have been mapped thus far (on 1p35-p36, 3q13. 1, 3q13-q22, and 7p14), no one causative gene is yet known. A large Russian family with CMT2 was found in the Mordovian Republic (Russia). Affected members had the typical CMT2 phenotype. Additionally, several patients suffered from hyperkeratosis, although the association, if any, between the two disorders is not clear. Linkage with the CMT loci already known (CMT1A, CMT1B, CMT2A, CMT2B, CMT2D, and a number of other CMT-related loci) was excluded. Genomewide screening pinpointed the disease locus in this family to chromosome 8p21, within a 16-cM interval between markers D8S136 and D8S1769. A maximum two-point LOD score of 5.93 was yielded by a microsatellite from the 5' region of the neurofilament-light gene (NF-L). Neurofilament proteins play an important role in axonal structure and are implicated in several neuronal disorders. Screening of affected family members for mutations in the NF-L gene and in the tightly linked neurofilament-medium gene (NF-M) revealed the only DNA alteration linked with the disease: a A998C transversion in the first exon of NF-L, which converts a conserved Gln333 amino acid to proline. This alteration was not found in 180 normal chromosomes. Twenty unrelated CMT2 patients, as well as 26 others with an undetermined form of CMT, also were screened for mutations in NF-L, but no additional mutations were found. It is suggested that Gln333Pro represents a rare disease-causing mutation, which results in the CMT2 phenotype.
Collapse
|
24
|
Brown A. Visualization of single neurofilaments by immunofluorescence microscopy of splayed axonal cytoskeletons. CELL MOTILITY AND THE CYTOSKELETON 2000; 38:133-45. [PMID: 9331218 DOI: 10.1002/(sici)1097-0169(1997)38:2<133::aid-cm3>3.0.co;2-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Treatment of cultured neurons with non-ionic detergents under certain conditions causes the axonal microtubules to splay apart from each other, allowing individual microtubules to be visualized by immunofluorescence microscopy [Brown et al., 1993, J. Cell Sci. 104: 339-352]. I have investigated whether axonal neurofilaments separate from each other under similar conditions. Cultures of dissociated dorsal root ganglion (DRG) neurons from fetal rats were treated with non-ionic detergent and fixed with formaldehyde. Neurofilaments were visualized by immunofluorescence microscopy using a polyclonal antiserum specific for NF-L. Treatment of the neurons with Triton X-100 or saponin caused filamentous structures to splay apart from each other along the entire length of the axon. Quantitative analysis of fluorescence intensity along the filamentous structures indicated that many of them represent single neurofilaments and that single and bundled neurofilaments can be distinguished based on their fluorescence intensity. The extent of this splaying phenomenon was dependent on time and detergent concentration. Temporal analysis indicated that short portions of single neurofilaments initially loop out from the axonal bundle and then subsequently splay apart further along their length and adhere to the polylysine/laminin coated substrate. The maximum observed length for a single axonal neurofilament was 183 microm in neurons after only 1 day in culture, which indicates that neurofilaments can attain remarkable lengths in these young cultured neurons. The splayed axonal cytoskeleton preparation described here allows individual axonal neurofilaments to be visualized by immunofluorescence microscopy, which is not possible in conventional preparations due to the dense packing of these polymers in axons.
Collapse
Affiliation(s)
- A Brown
- Neurobiology Program, Department of Biological Sciences, Ohio University, Athens 45701, USA.
| |
Collapse
|
25
|
Terry-Lorenzo RT, Inoue M, Connor JH, Haystead TA, Armbruster BN, Gupta RP, Oliver CJ, Shenolikar S. Neurofilament-L is a protein phosphatase-1-binding protein associated with neuronal plasma membrane and post-synaptic density. J Biol Chem 2000; 275:2439-46. [PMID: 10644697 DOI: 10.1074/jbc.275.4.2439] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Far Westerns with digoxigenin-conjugated protein phosphatase-1 (PP1) catalytic subunit identified PP1-binding proteins in extracts from bovine, rat, and human brain. A major 70-kDa PP1-binding protein was purified from bovine brain cortex plasma membranes, using affinity chromatography on the immobilized phosphatase inhibitor, microcystin-LR. Mixed peptide sequencing following cyanogen bromide digestion identified the 70-kDa membrane-bound PP1-binding protein as bovine neurofilament-L (NF-L). NF-L was the major PP1-binding protein in purified preparations of bovine spinal cord neurofilaments and the cytoskeletal compartment known as post-synaptic density, purified from rat brain cortex. Bovine neurofilaments, at nanomolar concentrations, inhibited the phosphorylase phosphatase activity of rabbit skeletal muscle PP1 catalytic subunit but not the activity of PP2A, another major serine/threonine phosphatase. PP1 binding to bovine NF-L was mapped to the head region. This was confirmed by both binding and inhibition of PP1 by recombinant human NF-L fragments. Together, these studies indicate that NF-L fulfills many of the biochemical criteria established for a PP1-targeting subunit and suggest that NF-L may target the functions of PP1 in membranes and cytoskeleton of mammalian neurons.
Collapse
Affiliation(s)
- R T Terry-Lorenzo
- Department of Pharmacology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Ching GY, Liem RK. Analysis of the roles of the head domains of type IV rat neuronal intermediate filament proteins in filament assembly using domain-swapped chimeric proteins. J Cell Sci 1999; 112 ( Pt 13):2233-40. [PMID: 10362553 DOI: 10.1242/jcs.112.13.2233] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type IV neuronal intermediate filament proteins consist of alpha-internexin, which can self-assemble into filaments and the neurofilament triplet proteins, which are obligate heteropolymers, at least in rodents. These IF proteins therefore provide good systems for elucidating the mechanism of intermediate filament assembly. To analyze the roles of the head domains of these proteins in contributing to their differential assembly properties, we generated chimeric proteins by swapping the head domains between rat alpha-internexin and either rat NF-L or NF-M and examined their assembly properties in transfected cells that lack their own cytoplasmic intermediate filament network. Lalphaalpha and Malphaalpha, the chimeric proteins generated by replacing the head domain of alpha-internexin with those of NF-L and NF-M, respectively, were unable to self-assemble into filaments. In contrast, alphaLL, a chimeric NF-L protein generated by replacing the head domain of NF-L with that of alpha-internexin, was able to self-assemble into filaments, whereas MLL, a chimeric NF-L protein containing the NF-M head domain, was unable to do so. These results demonstrate that the alpha-internexin head domain is essential for alpha-internexin's ability to self-assemble. While coassembly of Lalphaalpha with NF-M and coassembly of Malphaalpha with NF-L resulted in formation of filaments, coassembly of Lalphaalpha with NF-L and coassembly of Malphaalpha with NF-M yielded punctate patterns. These coassembly results show that heteropolymeric filament formation requires that one partner has the NF-L head domain and the other partner has the NF-M head domain. Thus, the head domains of rat NF-L and NF-M play important roles in determining the obligate heteropolymeric nature of filament formation. The data obtained from these self-assembly and coassembly studies provide some new insights into the mechanism of intermediate filament assembly.
Collapse
Affiliation(s)
- G Y Ching
- Department of Pathology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | |
Collapse
|
27
|
Tong X, Chen J, Liu J, Pang S, Zhai Z. Assembly and structure of neurofilaments isolated from bovine spinal cord. SCIENCE IN CHINA. SERIES C, LIFE SCIENCES 1999; 42:233-9. [PMID: 20229336 DOI: 10.1007/bf03183598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/1998] [Indexed: 10/19/2022]
Abstract
Neurofilaments (NFs) are neuron-specific intermediate filaments. The NFs were isolated from bovine spinal cord by differential centrifugation. The NFs were detected with electron microscopy and scanning tunneling microscopy (STM). Under STM, two kinds of sidearm of NFs were revealed: one was short, the other was long. They were arrayed along the 10-nm width core filaments one by one. The intervals between two adjacent long sidearms or two short sidearms were 20-22 nm, while those between two adjacent long and short sidearms were 10-11 nm. It was proposed that the rod domain of NF triplet proteins was 3/4-staggered. The assembly properties of NF triplet proteins were also studied. Immuno-colloidal-gold labeling assay showed that NF-M and NF-H are able to co-assemble into long filaments with NF-L. NF-M and NF-H can also co-constitute into winding filaments.
Collapse
Affiliation(s)
- X Tong
- College of Life Sciences, Peking University, 100871, Beijing, China
| | | | | | | | | |
Collapse
|
28
|
Steinert PM, Chou YH, Prahlad V, Parry DA, Marekov LN, Wu KC, Jang SI, Goldman RD. A high molecular weight intermediate filament-associated protein in BHK-21 cells is nestin, a type VI intermediate filament protein. Limited co-assembly in vitro to form heteropolymers with type III vimentin and type IV alpha-internexin. J Biol Chem 1999; 274:9881-90. [PMID: 10092680 DOI: 10.1074/jbc.274.14.9881] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BHK-21 fibroblasts contain type III vimentin/desmin intermediate filament (IF) proteins that typically co-isolate and co-cycle in in vitro experiments with certain high molecular weight proteins. Here, we report purification of one of these and demonstrate that it is in fact the type VI IF protein nestin. Nestin is expressed in several fibroblastic but not epithelioid cell lines. We show that nestin forms homodimers and homotetramers but does not form IF by itself in vitro. In mixtures, nestin preferentially co-assembles with purified vimentin or the type IV IF protein alpha-internexin to form heterodimer coiled-coil molecules. These molecules may co-assemble into 10 nm IF provided that the total amount of nestin does not exceed about 25%. However, nestin does not dimerize with types I/II keratin IF chains. The bulk of the nestin protein consists of a long carboxyl-terminal tail composed of various highly charged peptide repeats. By analogy with the larger neurofilament chains, we postulate that these sequences serve as cross-bridgers or spacers between IF and/or other cytoskeletal constituents. In this way, we propose that direct incorporation of modest amounts of nestin into the backbone of cytoplasmic types III and IV IFs affords a simple yet flexible method for the regulation of their dynamic supramolecular organization and function in cells.
Collapse
Affiliation(s)
- P M Steinert
- Laboratory of Skin Biology, NIAMS, National Institutes of Health, Bethesda, Maryland 20892-2752, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Steinert PM, Marekov LN, Parry DA. Molecular parameters of type IV alpha-internexin and type IV-type III alpha-internexin-vimentin copolymer intermediate filaments. J Biol Chem 1999; 274:1657-66. [PMID: 9880545 DOI: 10.1074/jbc.274.3.1657] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During neuronal development, a dynamic replacement mechanism occurs in which the type VI nestin and type III vimentin intermediate filament proteins are replaced by a series of type IV proteins beginning with alpha-internexin. We have explored molecular details of how the type III to type IV replacement process may occur. First, we have demonstrated by cross-linking experiments that bacterially expressed forms of alpha-internexin and vimentin form heterodimer molecules in vitro that assemble into copolymer intermediate filaments. We show using a urea disassembly assay that alpha-internexin molecules are likely to be more stable than those of vimentin. Second, by analyses of the induced cross-links, we have determined the axial lengths of alpha-internexin homodimer and alpha-internexin-vimentin heterodimer molecules and their modes of alignments in filaments. We report that these dimensions are the same as those reported earlier for vimentin homopolymer molecules and, by implication, are also the same for the other neuronal type IV proteins. These data suggest that during neuronal development, alpha-internexin molecules are readily assimilated onto the pre-existing vimentin cytoskeletal intermediate filament network because the axial lengths and axial alignments of their molecules are the same. Furthermore, the dynamic replacement process may be driven by a positive equilibrium due to the increased stability of the alpha-internexin network.
Collapse
Affiliation(s)
- P M Steinert
- Laboratory of Skin Biology, NIAMS, National Institutes of Health, Bethesda, Maryland 20892-2752, USA.
| | | | | |
Collapse
|
30
|
Structure of neurofilaments studied with scanning tunneling microscopy. CHINESE SCIENCE BULLETIN-CHINESE 1998. [DOI: 10.1007/bf02883377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Schnabel J, Weber K, Hatzfeld M. Protein-protein interactions between keratin polypeptides expressed in the yeast two-hybrid system. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1403:158-68. [PMID: 9630597 DOI: 10.1016/s0167-4889(98)00036-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Keratin filaments are obligatory heteropolymers of type I and type II keratin polypeptides. Specific type I/type II pairs are coexpressed in vivo. In contrast, all type I/type II pairs assemble into filaments in vitro, but the different pairs have different stabilities as demonstrated by treatment with increasing concentrations of urea. We have used the yeast two-hybrid system to analyse type I/type II interactions in a cellular context. We measured interactions between two different keratin pairs and we confirm the findings that K6+K17 form very stable heterodimers whereas K8+K18 interactions were weaker. The deletion of head domains did not reduce the strength of type I/type II interactions. Rather, the affinities were increased and the differences between the two pairs were retained in headless mutants. These findings argue against a major role of the head domains in directing heterodimer interactions and in defining heterodimer stabilities.
Collapse
Affiliation(s)
- J Schnabel
- Department of Biochemistry, Max-Planck-Institute for Biophysical Chemistry, D-37070 Göttingen, Germany
| | | | | |
Collapse
|
32
|
Herrmann H, Aebi U. Intermediate filament assembly: fibrillogenesis is driven by decisive dimer-dimer interactions. Curr Opin Struct Biol 1998; 8:177-85. [PMID: 9631290 DOI: 10.1016/s0959-440x(98)80035-3] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intermediate filaments are built from one to several members of a multigene family encoding fibrous proteins that share a highly conserved hierarchic assembly plan for the formation of multistranded filaments from distinctly structured extended coiled coils. Despite the rather low primary sequence identity, intermediate filaments form apparently similar filaments with regard to their spatial dimensions and physical properties. Over the past few years, substantial progress has been made in the elucidation of the complex expression patterns and clinically relevant phenotypes of intermediate filaments. The key question of how these filaments assemble and what the molecular architecture of their distinct assembly intermediates comprises, however, has still not been answered to the extent that has been achieved for microfilaments and microtubules.
Collapse
Affiliation(s)
- H Herrmann
- Division of Cell Biology, German Cancer Research Center, Heidelberg, Germany.
| | | |
Collapse
|
33
|
Hemken PM, Bellin RM, Sernett SW, Becker B, Huiatt TW, Robson RM. Molecular characteristics of the novel intermediate filament protein paranemin. Sequence reveals EAP-300 and IFAPa-400 are highly homologous to paranemin. J Biol Chem 1997; 272:32489-99. [PMID: 9405460 DOI: 10.1074/jbc.272.51.32489] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Paranemin was initially found to copurify with the intermediate filament (IF) proteins vimentin and desmin from embryonic chick skeletal muscle and was described as an IF-associated protein (IFAP). We have purified paranemin from embryonic chick skeletal muscle, prepared antibodies, and demonstrated that they label at the Z-lines of both adult avian and porcine cardiac and skeletal muscle myofibrils. We determined the cDNA sequence of paranemin by immunoscreening a lambdagt22A cDNA library from embryonic chick skeletal muscle. Northern blot analysis revealed a single transcript of 5.3 kilobases, which is much smaller than predicted from the size of paranemin (280 kDa) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The derived amino acid sequence of paranemin (1,606 residues; 178,161 kDa) contains the conserved IF rod domain (308 amino acids), which has highest homology to the rod domains of nestin and tanabin. Thus, paranemin is an IF protein rather than an IFAP. Sequence analysis also revealed that the partial cDNA sequences of two proteins, namely EAP-300 and IFAPa-400, are almost identical to regions of the cDNA sequence of paranemin. The complete paranemin cDNA was expressed in a cell line (SW13) with, and without, detectable cytoplasmic IFs. Antibody labeling of these cells suggests that paranemin does not form IFs by itself, but rather is incorporated into heteropolymeric IFs with vimentin.
Collapse
Affiliation(s)
- P M Hemken
- Muscle Biology Group, Departments of Biochemistry and Biophysics and of Animal Science, Iowa State University, Ames, Iowa 50011-3260, USA
| | | | | | | | | | | |
Collapse
|
34
|
Athlan ES, Mushynski WE. Heterodimeric associations between neuronal intermediate filament proteins. J Biol Chem 1997; 272:31073-8. [PMID: 9388258 DOI: 10.1074/jbc.272.49.31073] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Formation of protein dimers involving alpha-internexin, peripherin, and the neurofilament (NF) proteins NFH, NFM, and NFL was investigated by partial renaturation of various combinations of individually purified subunits in buffered 2 M urea. Oligomers that were formed were resolved by "blue" native electrophoresis (Schägger, H., Cramer, W. A., and von Jagow, G. (1994) Anal. Biochem. 217, 220-230) modified to include urea in the polyacrylamide gels. Combining this method with Western blot analysis, disulfide cross-linking, and SDS-polyacrylamide gel electrophoresis in the second dimension showed that NFL readily forms significant amounts of heterodimer with NFH, NFM, alpha-internexin, or peripherin in the presence of 2 M urea. alpha-Internexin and peripherin also formed heterodimers with NFH or NFM under these conditions. The modified version of blue native gel electrophoresis described here may be useful in monitoring the impact of post-translational modifications and mutations on the dimerization of intermediate filament proteins.
Collapse
Affiliation(s)
- E S Athlan
- Department of Biochemistry, McGill University, 3655 Drummond Street, Montreal, Quebec H3G 1Y6, Canada
| | | |
Collapse
|
35
|
Meng JJ, Bornslaeger EA, Green KJ, Steinert PM, Ip W. Two-hybrid analysis reveals fundamental differences in direct interactions between desmoplakin and cell type-specific intermediate filaments. J Biol Chem 1997; 272:21495-503. [PMID: 9261168 DOI: 10.1074/jbc.272.34.21495] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Desmosomes are cell junctions that act as sites of strong intercellular adhesion and also serve to anchor the intermediate filament (IF) cytoskeleton to the plasma membrane of a variety of cell types. Previous studies demonstrated that the COOH terminus of the desmosomal plaque protein, desmoplakin (DP), is required for the association of DP with IF networks in cultured cells and that this domain interacts directly with type II epidermal keratin polypeptides in vitro. However, these studies left open the question of how desmosomes might anchor other IF types known to associate with these junctions. In this report we used yeast two-hybrid and in vitro dot blot assays to further examine the requirements for direct interactions between desmoplakin and various IF types. Our results confirm the ability of the DP COOH terminus (DPCT) to interact with at least two regions of the head domain of the type II epidermal keratin K1 and also demonstrate that DPCT can interact with the type III IF family members, vimentin and desmin, as well as simple epithelial keratins. Unlike the situation for type II epidermal keratins, the interaction between DPCT and simple epithelial keratins appears to depend on heterodimerization of the type I and II keratin polypeptides, since both are required to detect an interaction. Furthermore, although the interaction between DPCT and K1 requires the keratin head domain, deletion of this domain from the simple epithelial keratins does not compromise interaction with DPCT. The interaction between DPCT and type III or simple epithelial keratins also appeared to be less robust than that between DPCT and K1. In the case of K8/K18, however, the interaction as assessed by yeast two-hybrid assays increased 9-fold when a serine located in a protein kinase A consensus phosphorylation site 23 residues from the end of DP was altered to a glycine. Taken together, these data indicate that DP interacts directly with different IF types in specific ways.
Collapse
Affiliation(s)
- J J Meng
- Department of Cell Biology, Neurobiology and Anatomy, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0521, USA
| | | | | | | | | |
Collapse
|