1
|
Singh S, Tehseen A, Dahiya S, Singh YJ, Sarkar R, Sehrawat S. Rab8a restores diverse innate functions in CD11c +CD11b + dendritic cells from aged mice. Nat Commun 2024; 15:10300. [PMID: 39604443 PMCID: PMC11603169 DOI: 10.1038/s41467-024-54757-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/17/2024] [Indexed: 11/29/2024] Open
Abstract
Age-related alterations of the immune system compromise the host's ability to respond to pathogens, but how immune aging is regulated is still poorly understood. Here, we identify via transcriptomic analysis of splenic DCs and bone marrow derived dendritic cells (BMDC) of young and aged mice, the small GTPase Rab8a as a regulator of dendritic cell (DC) functions in mice. CD11c+CD11b+ DCs of aged in comparison to young host exhibit a diminished type I IFN response upon viral stimulation and inefficiently present exogenous antigens to CD8+ T cells in vitro and in vivo. Rab8a overexpression, which is accompanied by the upregulation of Rab11, restores the functionality of these aged DCs, whereas knockdown of Rab8a reduces functionality of DCs from young mice. Mechanistically, Rab8a and Rab11 cooperate to induce efficient trafficking of peptide loaded class I MHC molecules from the ER to the cell surface. We propose that targeting Rab8a might serve as a strategy to restore DC functionality in the context of immune aging.
Collapse
Affiliation(s)
- Sudhakar Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar Knowledge City PO Manauli, Mohali, 140306, Punjab, India
| | - Azeez Tehseen
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar Knowledge City PO Manauli, Mohali, 140306, Punjab, India
| | - Surbhi Dahiya
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar Knowledge City PO Manauli, Mohali, 140306, Punjab, India
| | - Yuviana J Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar Knowledge City PO Manauli, Mohali, 140306, Punjab, India
| | - Roman Sarkar
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar Knowledge City PO Manauli, Mohali, 140306, Punjab, India
| | - Sharvan Sehrawat
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar Knowledge City PO Manauli, Mohali, 140306, Punjab, India.
| |
Collapse
|
2
|
Kitamura A, Numazawa R, Kinjo M. Conformational stabilization of optineurin by the dynamic interaction of linear polyubiquitin. Biochem Biophys Res Commun 2021; 559:203-209. [PMID: 33951500 DOI: 10.1016/j.bbrc.2021.04.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 11/20/2022]
Abstract
Optineurin produces intracellular multi-functions involving autophagy, vesicular trafficking, and negative regulation of inflammation signaling through interaction with various proteins such as ATG8/LC3, Rab8, and polyubiquitin. Optineurin is a component of cytoplasmic inclusion bodies (IBs) in motor neurons from amyotrophic lateral sclerosis (ALS), and its mutation E478G, has been identified in patients with ALS. However, the mechanism by which polyubiquitin binding modulates the interaction partners of OPTN and ALS-associated IB formation is still unclear. To address this issue, we analyzed the interaction of Optineurin with Rab8 and LC3 in the absence and presence of linear polyubiquitin chains using fluorescence cross-correlation spectroscopy and IB formation efficiency of the E478G mutant of Optineurin during Rab8 depletion using fluorescence microscopy. Here, we hypothesize that linear polyubiquitin binding to Optineurin dynamically induces LC3 association and Rab8 dissociation, likely through a conformational change of Optineurin, and the dynamic conformational change may prevent the aggregate formation of mutant Optineurin.
Collapse
Affiliation(s)
- Akira Kitamura
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan.
| | - Rika Numazawa
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Masataka Kinjo
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
3
|
Tong SJ, Wall AA, Hung Y, Luo L, Stow JL. Guanine nucleotide exchange factors activate Rab8a for Toll-like receptor signalling. Small GTPases 2021; 12:27-43. [PMID: 30843452 PMCID: PMC7781844 DOI: 10.1080/21541248.2019.1587278] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/08/2019] [Accepted: 02/20/2019] [Indexed: 02/03/2023] Open
Abstract
Macrophages are important immune sentinels that detect and clear pathogens and initiate inflammatory responses through the activation of surface receptors, including Toll-like receptors (TLRs). Activated TLRs employ complex cellular trafficking and signalling pathways to initiate transcription for inflammatory cytokine programs. We have previously shown that Rab8a is activated by multiple TLRs and regulates downstream Akt/mTOR signalling by recruiting the effector PI3Kγ, but the guanine nucleotide exchange factors (GEF) canonically required for Rab8a activation in TLR pathways is not known. Using GST affinity pull-downs and mass spectrometry analysis, we identified a Rab8 specific GEF, GRAB, as a Rab8a binding partner in LPS-activated macrophages. Co-immunoprecipitation and fluorescence microscopy showed that both GRAB and a structurally similar GEF, Rabin8, undergo LPS-inducible binding to Rab8a and are localised on cell surface ruffles and macropinosomes where they coincide with sites of Rab8a mediated signalling. Rab nucleotide activation assays with CRISPR-Cas9 mediated knock-out (KO) cell lines of GRAB, Rabin8 and double KOs showed that both GEFs contribute to TLR4 induced Rab8a GTP loading, but not membrane recruitment. In addition, measurement of signalling profiles and live cell imaging with the double KOs revealed that either GEF is individually sufficient to mediate PI3Kγ-dependent Akt/mTOR signalling at macropinosomes during TLR4-driven inflammation, suggesting a redundant relationship between these proteins. Thus, both GRAB and Rabin8 are revealed as key positive regulators of Rab8a nucleotide exchange for TLR signalling and inflammatory programs. These GEFs may be useful as potential targets for manipulating inflammation. Abbreviations: TLR: Toll-like Receptor; OCRL: oculocerebrorenal syndrome of Lowe protein; PI3Kγ: phosphoinositol-3-kinase gamma; LPS: lipopolysaccharide; GEF: guanine nucleotide exchange factor; GST: glutathione S-transferases; BMMs: bone marrow derived macrophages; PH: pleckstrin homology; GAP: GTPase activating protein; ABCA1: ATP binding cassette subfamily A member 1; GDI: GDP dissociation inhibitor; LRP1: low density lipoprotein receptor-related protein 1.
Collapse
Affiliation(s)
- Samuel J. Tong
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research (CIDR), The University of Queensland, Brisbane, QLD, Australia
| | - Adam A. Wall
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research (CIDR), The University of Queensland, Brisbane, QLD, Australia
| | - Yu Hung
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research (CIDR), The University of Queensland, Brisbane, QLD, Australia
| | - Lin Luo
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research (CIDR), The University of Queensland, Brisbane, QLD, Australia
| | - Jennifer L. Stow
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research (CIDR), The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
4
|
Lara Ordónez AJ, Fernández B, Fdez E, Romo-Lozano M, Madero-Pérez J, Lobbestael E, Baekelandt V, Aiastui A, López de Munaín A, Melrose HL, Civiero L, Hilfiker S. RAB8, RAB10 and RILPL1 contribute to both LRRK2 kinase-mediated centrosomal cohesion and ciliogenesis deficits. Hum Mol Genet 2019; 28:3552-3568. [PMID: 31428781 PMCID: PMC6927464 DOI: 10.1093/hmg/ddz201] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 02/03/2023] Open
Abstract
Mutations in the LRRK2 kinase are the most common cause of familial Parkinson's disease, and variants increase risk for the sporadic form of the disease. LRRK2 phosphorylates multiple RAB GTPases including RAB8A and RAB10. Phosphorylated RAB10 is recruited to centrosome-localized RILPL1, which may interfere with ciliogenesis in a disease-relevant context. Our previous studies indicate that the centrosomal accumulation of phosphorylated RAB8A causes centrosomal cohesion deficits in dividing cells, including in peripheral patient-derived cells. Here, we show that both RAB8 and RAB10 contribute to the centrosomal cohesion deficits. Pathogenic LRRK2 causes the centrosomal accumulation not only of phosho-RAB8 but also of phospho-RAB10, and the effects on centrosomal cohesion are dependent on RAB8, RAB10 and RILPL1. Conversely, the pathogenic LRRK2-mediated ciliogenesis defects correlate with the centrosomal accumulation of both phospho-RAB8 and phospho-RAB10. LRRK2-mediated centrosomal cohesion and ciliogenesis alterations are observed in patient-derived peripheral cells, as well as in primary astrocytes from mutant LRRK2 mice, and are reverted upon LRRK2 kinase inhibition. These data suggest that the LRRK2-mediated centrosomal cohesion and ciliogenesis defects are distinct cellular readouts of the same underlying phospho-RAB8/RAB10/RILPL1 nexus and highlight the possibility that either centrosomal cohesion and/or ciliogenesis alterations may serve as cellular biomarkers for LRRK2-related PD.
Collapse
Affiliation(s)
- Antonio Jesús Lara Ordónez
- Institute of Parasitology and Biomedicine ‘López-Neyra’, Consejo Superior de Investigaciones Científicas (CSIC), Avda del Conocimiento s/n, Granada 18016, Spain
| | - Belén Fernández
- Institute of Parasitology and Biomedicine ‘López-Neyra’, Consejo Superior de Investigaciones Científicas (CSIC), Avda del Conocimiento s/n, Granada 18016, Spain
| | - Elena Fdez
- Institute of Parasitology and Biomedicine ‘López-Neyra’, Consejo Superior de Investigaciones Científicas (CSIC), Avda del Conocimiento s/n, Granada 18016, Spain
| | - María Romo-Lozano
- Institute of Parasitology and Biomedicine ‘López-Neyra’, Consejo Superior de Investigaciones Científicas (CSIC), Avda del Conocimiento s/n, Granada 18016, Spain
| | - Jesús Madero-Pérez
- Institute of Parasitology and Biomedicine ‘López-Neyra’, Consejo Superior de Investigaciones Científicas (CSIC), Avda del Conocimiento s/n, Granada 18016, Spain
| | - Evy Lobbestael
- Laboratory for Neurobiology and Gene Therapy, KU Leuven, Leuven 3000, Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, KU Leuven, Leuven 3000, Belgium
| | - Ana Aiastui
- Division of Neurosciences, Instituto Biodonostia, San Sebastián, Spain
- Department of Neurology, Hospital Universitario Donostia, San Sebastián, Spain
| | - Adolfo López de Munaín
- Division of Neurosciences, Instituto Biodonostia, San Sebastián, Spain
- Department of Neurology, Hospital Universitario Donostia, San Sebastián, Spain
| | - Heather L Melrose
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Laura Civiero
- Laboratory of Cellular Physiology and Molecular Biophysics, Department of Biology, University of Padua, Padua 35121, Italy
| | - Sabine Hilfiker
- Institute of Parasitology and Biomedicine ‘López-Neyra’, Consejo Superior de Investigaciones Científicas (CSIC), Avda del Conocimiento s/n, Granada 18016, Spain
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
5
|
Wojnacki J, Galli T. Membrane traffic during axon development. Dev Neurobiol 2016; 76:1185-1200. [PMID: 26945675 DOI: 10.1002/dneu.22390] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/01/2016] [Accepted: 03/01/2016] [Indexed: 12/21/2022]
Abstract
Brain formation requires the establishment of complex neural circuits between a diverse array of neuronal subtypes in an intricate and ever changing microenvironment and yet with a large degree of specificity and reproducibility. In the last three decades, mounting evidence has established that neuronal development relies on the coordinated regulation of gene expression, cytoskeletal dynamics, and membrane trafficking. Membrane trafficking has been considered important in that it brings new membrane and proteins to the plasma membrane of developing neurons and because it also generates and maintains the polarized distribution of proteins into neuronal subdomains. More recently, accumulating evidence suggests that membrane trafficking may have an even more active role during development by regulating the distribution and degree of activation of a wide variety of proteins located in plasma membrane subdomains and endosomes. In this article the evidence supporting the different roles of membrane trafficking during axonal development, particularly focusing on the role of SNAREs and Rabs was reviewed. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1185-1200, 2016.
Collapse
Affiliation(s)
- José Wojnacki
- Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR 7592, Membrane Traffic in Health & Disease, INSERM ERL U950, Paris, F-75013, France
| | - Thierry Galli
- Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR 7592, Membrane Traffic in Health & Disease, INSERM ERL U950, Paris, F-75013, France.
| |
Collapse
|
6
|
Zhang D, Dubey J, Koushika SP, Rongo C. RAB-6.1 and RAB-6.2 Promote Retrograde Transport in C. elegans. PLoS One 2016; 11:e0149314. [PMID: 26891225 PMCID: PMC4758642 DOI: 10.1371/journal.pone.0149314] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/30/2016] [Indexed: 12/25/2022] Open
Abstract
Retrograde transport is a critical mechanism for recycling certain membrane cargo. Following endocytosis from the plasma membrane, retrograde cargo is moved from early endosomes to Golgi followed by transport (recycling) back to the plasma membrane. The complete molecular and cellular mechanisms of retrograde transport remain unclear. The small GTPase RAB-6.2 mediates the retrograde recycling of the AMPA-type glutamate receptor (AMPAR) subunit GLR-1 in C. elegans neurons. Here we show that RAB-6.2 and a close paralog, RAB-6.1, together regulate retrograde transport in both neurons and non-neuronal tissue. Mutants for rab-6.1 or rab-6.2 fail to recycle GLR-1 receptors, resulting in GLR-1 turnover and behavioral defects indicative of diminished GLR-1 function. Loss of both rab-6.1 and rab-6.2 results in an additive effect on GLR-1 retrograde recycling, indicating that these two C. elegans Rab6 isoforms have overlapping functions. MIG-14 (Wntless) protein, which undergoes retrograde recycling, undergoes a similar degradation in intestinal epithelia in both rab-6.1 and rab-6.2 mutants, suggesting a broader role for these proteins in retrograde transport. Surprisingly, MIG-14 is localized to separate, spatially segregated endosomal compartments in rab-6.1 mutants compared to rab-6.2 mutants. Our results indicate that RAB-6.1 and RAB-6.2 have partially redundant functions in overall retrograde transport, but also have their own unique cellular- and subcellular functions.
Collapse
Affiliation(s)
- Donglei Zhang
- The Waksman Institute, Department of Genetics, Rutgers The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Jyoti Dubey
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, India
- Institute for Stem Cell Biology and Regenerative Medicine (InStem), Bangalore, India
- Manipal University, Karnataka, India
| | - Sandhya P. Koushika
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, India
| | - Christopher Rongo
- The Waksman Institute, Department of Genetics, Rutgers The State University of New Jersey, Piscataway, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
7
|
Patrussi L, Baldari CT. The Rab GTPase Rab8 as a shared regulator of ciliogenesis and immune synapse assembly: From a conserved pathway to diverse cellular structures. Small GTPases 2015; 7:16-20. [PMID: 26587735 DOI: 10.1080/21541248.2015.1111852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Rab GTPases, which form the largest branch of the Ras GTPase superfamily, regulate almost every step of vesicle-mediated trafficking. Among them, Rab8 is an essential participant in primary cilium formation. In a report recently published in the Journal of Cell Science, Finetti and colleagues identify Rab8 as a novel player in vesicular traffic in the non-ciliated T lymphocytes, which contributes to the assembly of the specialized signaling platform known as the immune synapse. By interacting with the v-SNARE VAMP-3, Rab8 is indeed responsible for the final docking/fusion step in T cell receptor (TCR) recycling to the immune synapse. A second important take-home message which comes to light from this work is that VAMP-3 also interacts with Rab8 at the base of the cilium in NIH-3T3 cells, where it regulates ciliary growth and targeting of Smoothened at the plasma membrane. Hence the data presented in this report, in addition to identifying Rab8 as a novel player in vesicular traffic to the immune synapse, reveal how both ciliated and non-ciliated cells take advantage of a conserved pathway to build highly specific cellular structures.
Collapse
Affiliation(s)
- Laura Patrussi
- a Department of Life Sciences , University of Siena , Siena , Italy
| | - Cosima T Baldari
- a Department of Life Sciences , University of Siena , Siena , Italy
| |
Collapse
|
8
|
Sato T, Iwano T, Kunii M, Matsuda S, Mizuguchi R, Jung Y, Hagiwara H, Yoshihara Y, Yuzaki M, Harada R, Harada A. Rab8a and Rab8b are essential for several apical transport pathways but insufficient for ciliogenesis. J Cell Sci 2013; 127:422-31. [PMID: 24213529 PMCID: PMC3898603 DOI: 10.1242/jcs.136903] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The small GTP-binding protein Rab8 is known to play an essential role in intracellular transport and cilia formation. We have previously demonstrated that Rab8a is required for localising apical markers in various organisms. Rab8a has a closely related isoform, Rab8b. To determine whether Rab8b can compensate for Rab8a, we generated Rab8b-knockout mice. Although the Rab8b-knockout mice did not display an overt phenotype, Rab8a and Rab8b double-knockout mice exhibited mislocalisation of apical markers and died earlier than Rab8a-knockout mice. The apical markers accumulated in three intracellular patterns in the double-knockout mice. However, the localisation of basolateral and/or dendritic markers of the double-knockout mice seemed normal. The morphology and the length of various primary and/or motile cilia, and the frequency of ciliated cells appeared to be identical in control and double-knockout mice. However, an additional knockdown of Rab10 in double-knockout cells greatly reduced the percentage of ciliated cells. Our results highlight the compensatory effect of Rab8a and Rab8b in apical transport, and the complexity of the apical transport process. In addition, neither Rab8a nor Rab8b are required for basolateral and/or dendritic transport. However, simultaneous loss of Rab8a and Rab8b has little effect on ciliogenesis, whereas additional loss of Rab10 greatly affects ciliogenesis.
Collapse
Affiliation(s)
- Takashi Sato
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Peränen J. Rab8 GTPase as a regulator of cell shape. Cytoskeleton (Hoboken) 2011; 68:527-39. [PMID: 21850707 DOI: 10.1002/cm.20529] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 08/08/2011] [Accepted: 08/09/2011] [Indexed: 12/14/2022]
Abstract
Endogenous Rab8 is found in dynamic cell structures like filopodia, lamellipodia, protrusions, ruffles, and primary cilia. Activation of Rab8 is linked to the formation of these actin containing structures, whereas inhibition of Rab8 affects negatively their appearance. The activity of Rab8 is controlled by specific guanine nucleotide exchange factors and GTPase activating proteins. Rab8 regulates a membrane recycling pathway that is linked to Arf6, EHD1, Myo5, and Rab11. A hypothesis is presented on the role of Rab8 in the formation of new cell surface domains. The review focuses on the function of Rab8 in cell migration, epithelial polarization, neuron differentiation, and ciliogenesis.
Collapse
Affiliation(s)
- Johan Peränen
- Institute of Biotechnology, University of Helsinki, Finland.
| |
Collapse
|
10
|
Schollenberger L, Gronemeyer T, Huber CM, Lay D, Wiese S, Meyer HE, Warscheid B, Saffrich R, Peränen J, Gorgas K, Just WW. RhoA regulates peroxisome association to microtubules and the actin cytoskeleton. PLoS One 2010; 5:e13886. [PMID: 21079737 PMCID: PMC2975642 DOI: 10.1371/journal.pone.0013886] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 10/18/2010] [Indexed: 11/24/2022] Open
Abstract
The current view of peroxisome inheritance provides for the formation of new peroxisomes by both budding from the endoplasmic reticulum and autonomous division. Here we investigate peroxisome-cytoskeleton interactions and show by proteomics, biochemical and immunofluorescence analyses that actin, non-muscle myosin IIA (NMM IIA), RhoA, Rho kinase II (ROCKII) and Rab8 associate with peroxisomes. Our data provide evidence that (i) RhoA in its inactive state, maintained for example by C. botulinum toxin exoenzyme C3, dissociates from peroxisomes enabling microtubule-based peroxisomal movements and (ii) dominant-active RhoA targets to peroxisomes, uncouples the organelles from microtubules and favors Rho kinase recruitment to peroxisomes. We suggest that ROCKII activates NMM IIA mediating local peroxisomal constrictions. Although our understanding of peroxisome-cytoskeleton interactions is still incomplete, a picture is emerging demonstrating alternate RhoA-dependent association of peroxisomes to the microtubular and actin cytoskeleton. Whereas association of peroxisomes to microtubules clearly serves bidirectional, long-range saltatory movements, peroxisome-acto-myosin interactions may support biogenetic functions balancing peroxisome size, shape, number, and clustering.
Collapse
Affiliation(s)
- Lukas Schollenberger
- Heidelberg Center of Biochemistry, University of Heidelberg, Heidelberg, Germany
| | - Thomas Gronemeyer
- Medical Proteom-Center, University of Bochum, Bochum, Germany
- Department for Molecular Genetics and Cell Biology, University of Ulm, Ulm, Germany
| | - Christoph M. Huber
- Heidelberg Center of Biochemistry, University of Heidelberg, Heidelberg, Germany
| | - Dorothee Lay
- Heidelberg Center of Biochemistry, University of Heidelberg, Heidelberg, Germany
| | - Sebastian Wiese
- Medical Proteom-Center, University of Bochum, Bochum, Germany
| | - Helmut E. Meyer
- Medical Proteom-Center, University of Bochum, Bochum, Germany
| | | | - Rainer Saffrich
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Johan Peränen
- Institute of Biotechnology, University of Helsinki, Finland
| | - Karin Gorgas
- Department of Anatomy and Medical Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Wilhelm W. Just
- Heidelberg Center of Biochemistry, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
11
|
Hall SL, Hester S, Griffin JL, Lilley KS, Jackson AP. The organelle proteome of the DT40 lymphocyte cell line. Mol Cell Proteomics 2009; 8:1295-305. [PMID: 19181659 DOI: 10.1074/mcp.m800394-mcp200] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A major challenge in eukaryotic cell biology is to understand the roles of individual proteins and the subcellular compartments in which they reside. Here, we use the localization of organelle proteins by isotope tagging technique to complete the first proteomic analysis of the major organelles of the DT40 lymphocyte cell line. This cell line is emerging as an important research tool because of the ease with which gene knockouts can be generated. We identify 1090 proteins through the analysis of preparations enriched for integral membrane or soluble and peripherally associated proteins and localize 223 proteins to the endoplasmic reticulum, Golgi, lysosome, mitochondrion, or plasma membrane by matching their density gradient distributions to those of known organelle residents. A striking finding is that within the secretory and endocytic pathway a high proportion of proteins are not uniquely localized to a single organelle, emphasizing the dynamic steady-state nature of intracellular compartments in eukaryotic cells.
Collapse
Affiliation(s)
- Stephanie L Hall
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB21QW, United Kingdom
| | | | | | | | | |
Collapse
|
12
|
Fransen M, Amery L, Hartig A, Brees C, Rabijns A, Mannaerts GP, Van Veldhoven PP. Comparison of the PTS1- and Rab8b-binding properties of Pex5p and Pex5Rp/TRIP8b. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:864-73. [PMID: 18346465 DOI: 10.1016/j.bbamcr.2008.02.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 02/11/2008] [Accepted: 02/13/2008] [Indexed: 11/26/2022]
Abstract
Tetratricopeptide (TPR)-domain proteins are involved in various cellular processes. The TPR domain is known to be responsible for interaction with other proteins commonly recognizing sequence motifs at the C-termini. One such TPR-protein, TRIP8b, was originally identified in rat as an interaction partner of Rab8b, and its human orthologue as a protein related to the peroxisomal targeting signal 1 (PTS1) receptor Pex5p (Pex5Rp). Somewhat later, the mouse orthologue was reported to bind the hyperpolarization-activated, cyclic nucleotide-regulated HCN channels, and, very recently, the rat orthologue was shown to interact with latrophilin 1, the calcium-independent receptor of alpha-latrotoxin. Here we employed various methodological approaches to investigate and compare the binding specificities of the human PTS1 receptor Pex5p and the related protein Pex5Rp/TRIP8b towards a subset of targets, including Rab8b and various C-termini resembling PTS1. The results show that the TPR domains of Pex5p and Pex5Rp/TRIP8b have distinct but overlapping substrate specificities. This suggests that selectivity in the recognition of substrates by the TPR domains of Pex5p and Pex5Rp/TRIP8b is a matter of considerable complexity, and that no single determinant appears to be sufficient in unambiguously defining a binding target for either protein. This idea is further corroborated by our observations that changes in the surrounding residues or the conformational state of one of the binding partners can profoundly alter their binding activities. The implications of these findings for the possible peroxisome-related functions of Pex5Rp/TRIP8b are discussed.
Collapse
Affiliation(s)
- Marc Fransen
- Katholieke Universiteit Leuven, Campus Gasthuisberg (O&N 1), Departement Moleculaire Celbiologie, LIPIT, Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
13
|
Leung KF, Baron R, Ali BR, Magee AI, Seabra MC. Rab GTPases containing a CAAX motif are processed post-geranylgeranylation by proteolysis and methylation. J Biol Chem 2007; 282:1487-1497. [PMID: 17114793 DOI: 10.1074/jbc.m605557200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Post-translational modification by protein prenylation is required for membrane targeting and biological function of monomeric GTPases. Ras and Rho proteins possess a C-terminal CAAX motif (C is cysteine, A is usually an aliphatic residue, and X is any amino acid), in which the cysteine is prenylated, followed by proteolytic cleavage of the AAX peptide and carboxyl methylation by the Rce1 CAAX protease and Icmt methyltransferase, respectively. Rab GTPases usually undergo double geranylgeranylation within CC or CXC motifs. However, very little is known about processing and membrane targeting of Rabs that naturally contain a CAAX motif. We show here that a variety of Rab-CAAX proteins undergo carboxyl methylation, both in vitro and in vivo, with one exception. Rab38(CAKS) is not methylated in vivo, presumably because of the inhibitory action of the lysine residue within the AAX motif for cleavage by Rce1. Unlike farnesylated Ras proteins, we observed no targeting defects of overexpressed Rab-CAAX proteins in cells deficient in Rce1 or Icmt, as reported for geranylgeranylated Rho proteins. However, endogenous geranylgeranylated non-methylated Rab-CAAX and Rab-CXC proteins were significantly redistributed to the cytosol at steady-state levels and redistribution correlates with higher affinity of RabGDI for non-methylated Rabs in Icmt-deficient cells. Our data suggest a role for methylation in Rab function by regulating the cycle of Rab membrane recruitment and retrieval. Our findings also imply that those Rabs that undergo post-prenylation processing follow an indirect targeting pathway requiring initial endoplasmic reticulum membrane association prior to specific organelle targeting.
Collapse
Affiliation(s)
- Ka Fai Leung
- Molecular and Cellular Medicine Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | | | | | |
Collapse
|
14
|
Hattula K, Furuhjelm J, Tikkanen J, Tanhuanpää K, Laakkonen P, Peränen J. Characterization of the Rab8-specific membrane traffic route linked to protrusion formation. J Cell Sci 2006; 119:4866-77. [PMID: 17105768 DOI: 10.1242/jcs.03275] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Rab8 has a drastic effect on cell shape, but the membrane trafficking route it regulates is poorly defined. Here, we show that endogenous and ectopically expressed Rab8 is associated with macropinosomes generated at ruffling membrane domains. These macropinosomes fuse or transform into tubules that move toward the cell center, from where they are recycled back to the leading edge. The biogenesis of these tubules is dependent on actin and microtubular dynamics. Expression of dominant-negative Rab8 mutants or depletion of Rab8 by RNA interference inhibit protrusion formation, but promote cell-cell adhesion and actin stress fiber formation, whereas expression of the constitutively active Rab8-Q67L has the opposite effect. Rab8 localization overlaps with both Rab11 and Arf6, and is functionally linked to Arf6. We also demonstrate that Rab8 activity is needed for the transport of transferrin and the transferrin receptor to the pericentriolar region and to cell protrusions, and that Rab8 controls the traffic of cholera toxin B to the Golgi compartment. Finally, Rab8 colocalizes and binds specifically to a synaptotagmin-like protein (Slp1/JFC1), which is involved in controlling Rab8 membrane dynamics. We propose that Rab8 regulates a membrane-recycling pathway that mediates protrusion formation.
Collapse
Affiliation(s)
- Katarina Hattula
- Institute of Biotechnology, PO Box 56 (Viikinkaari 9), FIN-00014 University of Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
15
|
Hattula K, Peränen J. Purification and functional properties of a Rab8-specific GEF (Rabin3) in action remodeling and polarized transport. Methods Enzymol 2006; 403:284-95. [PMID: 16473595 DOI: 10.1016/s0076-6879(05)03024-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Considering the large number of Rab proteins, only a few Rab-specific exchange factors have been found and characterized. Rab8 is involved in mediating polarized membrane traffic through reorganization of actin and microtubules. It is possible to use the yeast two-hybrid technique to find potential Rab activators. A human protein (Rabin8) and its rat equivalent (Rabin3) were found to bind Rab8 and function as nucleotide exchange factors for Rab8 but not for Rab3A and Rab5. Endogenous and ectopically expressed Rabin8 frequently colocalize with cortical actin. This association is increased by cytochalasin D and phorbol esters that also induced the translocation of both Rabin8 and Rab8 to lamellipodia-like structures. We also show that a GFP-fused Rabin8 behaves identically in this respect. Furthermore, coexpression of Rabin8 with the dominant negative mutant of Rab8 leads to translocation of Rabin8 onto vesicular structures enriched in cell protrusions, indicating that both Rab8 and Rabin8 are involved in mediating polarized membrane transport. This chapter presents a detailed description of the methods and protocols developed to find and characterize a Rab8-specific activator.
Collapse
|
16
|
Mruk DD, Lau ASN, Conway AM. Crosstalk between Rab GTPases and cell junctions. Contraception 2006; 72:280-90. [PMID: 16181972 DOI: 10.1016/j.contraception.2005.03.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 02/28/2005] [Accepted: 03/26/2005] [Indexed: 11/26/2022]
Abstract
For the past several years, studies from other laboratories, as well as ours, have begun to unravel the mechanism of germ cell movement in the testis by using several in vitro and in vivo models of tight and adherens junction assembly and disassembly, two cellular phenomena that confer cell movement. However, for cell movement to be fully appreciated, the importance of "intracellular" cell movements, such as those involving actin and microtubule filaments, must be better understood. Recent research on Rab GTPases has shown that members of this superfamily function in the trafficking of vesicles containing cargo to distinct subcellular sites such as the plasma membrane while utilizing actin and microtubule filaments as tracks. In this mini-review, we provide an overview of Rab GTPase structure, function, and regulation, while placing added emphasis on the role of Rabs in cell junction dynamics in the testis.
Collapse
Affiliation(s)
- Dolores D Mruk
- Population Council, Center for Biomedical Research 1230 York Ave., New York, NY 10021, USA.
| | | | | |
Collapse
|
17
|
Mruk DD, Cheng CY. Sertoli-Sertoli and Sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocr Rev 2004; 25:747-806. [PMID: 15466940 DOI: 10.1210/er.2003-0022] [Citation(s) in RCA: 628] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Spermatogenesis is the process by which a single spermatogonium develops into 256 spermatozoa, one of which will fertilize the ovum. Since the 1950s when the stages of the epithelial cycle were first described, reproductive biologists have been in pursuit of one question: How can a spermatogonium traverse the epithelium, while at the same time differentiating into elongate spermatids that remain attached to the Sertoli cell throughout their development? Although it was generally agreed upon that junction restructuring was involved, at that time the types of junctions present in the testis were not even discerned. Today, it is known that tight, anchoring, and gap junctions are found in the testis. The testis also has two unique anchoring junction types, the ectoplasmic specialization and tubulobulbar complex. However, attention has recently shifted on identifying the regulatory molecules that "open" and "close" junctions, because this information will be useful in elucidating the mechanism of germ cell movement. For instance, cytokines have been shown to induce Sertoli cell tight junction disassembly by shutting down the production of tight junction proteins. Other factors such as proteases, protease inhibitors, GTPases, kinases, and phosphatases also come into play. In this review, we focus on this cellular phenomenon, recapping recent developments in the field.
Collapse
Affiliation(s)
- Dolores D Mruk
- Population Council, Center for Biomedical Research, New York, New York 10021, USA.
| | | |
Collapse
|
18
|
Hattula K, Furuhjelm J, Arffman A, Peränen J. A Rab8-specific GDP/GTP exchange factor is involved in actin remodeling and polarized membrane transport. Mol Biol Cell 2002; 13:3268-80. [PMID: 12221131 PMCID: PMC124888 DOI: 10.1091/mbc.e02-03-0143] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2002] [Revised: 05/16/2002] [Accepted: 06/28/2002] [Indexed: 01/27/2023] Open
Abstract
The mechanisms mediating polarized delivery of vesicles to cell surface domains are poorly understood in animal cells. We have previously shown that expression of Rab8 promotes the formation of new cell surface domains through reorganization of actin and microtubules. To unravel the function of Rab8, we used the yeast two-hybrid system to search for potential Rab8-specific activators. We identified a coil-coiled protein (Rabin8), homologous to the rat Rabin3 that stimulated nucleotide exchange on Rab8 but not on Rab3A and Rab5. Furthermore, we show that rat Rabin3 has exchange activity on Rab8 but not on Rab3A, supporting the view that rat Rabin3 is the rat equivalent of human Rabin8. Rabin8 localized to the cortical actin and expression of Rabin8 resulted in remodeling of actin and the formation of polarized cell surface domains. Activation of PKC by phorbol esters enhanced translocation of both Rabin8 and Rab8-specific vesicles to the outer edge of lamellipodial structures. Moreover, coexpression of Rabin8 with dominant negative Rab8 (T22N) redistributes Rabin8 from cortical actin to Rab8-specific vesicles and promotes their polarized transport to cell protrusions. The C-terminal region of Rabin8 plays an essential role in this transport. We propose that Rabin8 is a Rab8-specific activator that is connected to processes that mediate polarized membrane traffic to dynamic cell surface structures.
Collapse
Affiliation(s)
- Katarina Hattula
- Institute of Biotechnology, Program in Cellular Biotechnology, FIN-00014 University of Helsinki, Finland
| | | | | | | |
Collapse
|
19
|
Chen S, Liang MC, Chia JN, Ngsee JK, Ting AE. Rab8b and its interacting partner TRIP8b are involved in regulated secretion in AtT20 cells. J Biol Chem 2001; 276:13209-16. [PMID: 11278749 DOI: 10.1074/jbc.m010798200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rab proteins are a family of small GTPases that regulate intracellular vesicle traffic. Rab8b, because of its homology with Rab8, has been suggested to function in vesicle transport to the plasma membrane. Using the yeast two-hybrid system, we identified a Rab8b interacting clone, termed TRIP8b, from a rat brain cDNA library. The gene encodes a 66-kDa protein with homology to the peroxisomal targeting signal 1 receptor. The interaction between Rab8b and TRIP8b was further verified by in vitro binding assays and co-immunoprecipitation studies. Additional experiments with Rab8b mutants demonstrated that Rab8b requires a guanine nucleotide but not prenylation for its interaction with TRIP8b. Western immunoblot analysis showed that TRIP8b was primarily expressed in brain. Subcellular fractionation of AtT20 cells revealed that TRIP8b was present in both cytosolic and membrane fractions. To investigate the function of Rab8b and TRIP8b in secretion, we examined the release of ACTH from AtT20 cells. Results from stable cell lines expressing Rab8b or TRIP8b indicated that both proteins had a stimulatory effect on cAMP-induced secretion of ACTH. In summary, these data suggest that Rab8b and TRIP8b interact with each other and are involved in the regulated secretory pathway in AtT20 cells.
Collapse
Affiliation(s)
- S Chen
- Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609, Republic of Singapore
| | | | | | | | | |
Collapse
|
20
|
Carroll K, Ray K, Helm B, Carey E. Differential expression of Rab3 isoforms in high- and low-secreting mast cell lines. Eur J Cell Biol 2001; 80:295-302. [PMID: 11370744 DOI: 10.1078/0171-9335-00161] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The expression of several isoforms of the small-molecular-weight Rab3 GTP-binding proteins is a characteristic feature of all cell types undergoing regulated exocytosis, in which Rab3 proteins are considered to regulate the assembly/disassembly of a fusion complex between granule and plasma membrane in a positive and negative manner through interaction with effector proteins. The pattern of Rab3 protein expression may, therefore, provide a subtle means of regulating exocytosis. To investigate the relationship between Rab3 expression and secretory activity, we assessed the differential expression of individual Rab3 proteins in high- and low-secreting clones of the rat basophilic (RBL) cell line. mRNAs for Rab3 isoforms (a-d) were analyzed by constructing cDNA libraries of high- and low-secreting RBL clones. The relative abundance of mRNAs for Rab3 isoforms was initially determined from the clonal frequency of corresponding cDNA clones. RT-PCR using isoform-specific primers was successfully applied to the quantitation of Rab3a mRNA. The presence of individual Rab3 proteins was revealed by SDS-PAGE and immunoblotting, and also by in situ immunofluorescence confocal microscopy. We present evidence that Rab3a and Rab3c are expressed at high levels in the low-secreting variant, while Rab3d is predominant in the high secretor. Levels of the Rab3 effector proteins, Rabphilin and Noc2, are similar in both RBL cell lines. Subcellular fractionation of unstimulated high and low secretor RBL clones revealed that in both cell types Rab3a has a cytoplasmic location while Rab3d is present in a membrane/organelle fraction containing secretory vesicles. Differences in the pattern of expression of Rab3 isoforms in the two RBL cell lines and their localisation may influence the secretory potential. Furthermore, the presence of Rab3 and effector proteins indicates that the mechanism for regulated exocytosis in cells of mast cells/basophil lineage appears similar to that in pre-synaptic vesicles and pancreatic beta-cells.
Collapse
Affiliation(s)
- K Carroll
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, UK.
| | | | | | | |
Collapse
|
21
|
Peränen J, Furuhjelm J. Expression, purification, and properties of Rab8 function in actin cortical skeleton organization and polarized transport. Methods Enzymol 2001; 329:188-96. [PMID: 11210535 DOI: 10.1016/s0076-6879(01)29079-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- J Peränen
- Institute of Biotechnology, PB56, University of Helsinki, Helsinki FIN 00014, Finland
| | | |
Collapse
|
22
|
Hattula K, Peränen J. FIP-2, a coiled-coil protein, links Huntingtin to Rab8 and modulates cellular morphogenesis. Curr Biol 2000; 10:1603-6. [PMID: 11137014 DOI: 10.1016/s0960-9822(00)00864-2] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Huntington's disease is characterised by the death of cortical and striatal neurons, and is the result of an expanded polyglutamine tract in the Huntingtin protein [1]. Huntingtin is present on both endocytic and secretory membrane organelles but its function is unclear [2,3]. Rab GTPases regulate both of these transport pathways [4]. We have previously shown that Rab8 controls polarised membrane transport by modulating cell morphogenesis [5]. To understand Rab8-mediated processes, we searched for Rab8-interacting proteins by the yeast two-hybrid system. Here, we report that Huntingtin is linked to the Rab8 protein through FIP-2, a tumour necrosis factor-alpha (TNF-alpha)-inducible coiled-coil protein related to the NEMO protein [6,7]. The activated form of Rab8 interacted with the amino-terminal region of FIP-2, whereas dominant-negative Rab8 did not. Huntingtin bound to the carboxy-terminal region of FIP-2. Coexpressed FIP-2 and Huntingtin enhanced the recruitment of Huntingtin to Rab8-positive vesicular structures, and FIP-2 promoted cell polarisation in a similar way to Rab8. We propose a model in which Huntingtin, together with FIP-2 and Rab8, are part of a protein network that regulates membrane trafficking and cellular morphogenesis.
Collapse
Affiliation(s)
- K Hattula
- Institute of Biotechnology, Program in Cellular Biotechnology, P.O. Box 56 (Viikinkaari 9), FIN-00014, University of Helsinki, Finland
| | | |
Collapse
|
23
|
Opdam FJ, Echard A, Croes HJ, van den Hurk JA, van de Vorstenbosch RA, Ginsel LA, Goud B, Fransen JA. The small GTPase Rab6B, a novel Rab6 subfamily member, is cell-type specifically expressed and localised to the Golgi apparatus. J Cell Sci 2000; 113 ( Pt 15):2725-35. [PMID: 10893188 DOI: 10.1242/jcs.113.15.2725] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the Rab subfamily of small GTPases play an important role in the regulation of intracellular transport routes. Rab6A has been shown to be a regulator of membrane traffic from the Golgi apparatus towards the endoplasmic reticulum (ER). Here, we report on the identification of a Rab6 isoform, termed Rab6B. The corresponding full-length cDNA was isolated from a Caco-2 cell library. The deduced amino acid sequence showed 91% identity with the Rab6A protein and revealed that sequence divergence is dispersed over a large region of the COOH-terminal domain. Rab6B is encoded by an independent gene which is located on chromosome 3 region q21-q23. In contrast to Rab6A whose expression is ubiquitous, northern blot analysis, immunohistochemistry, and immunofluorescence demonstrated that Rab6B is expressed in a tissue and cell-type specific manner. Rab6B is predominantly expressed in brain and the neuroblastoma cell line SK-N-SH. In brain, Rab6B was found to be specifically expressed in microglia, pericytes and Purkinje cells. Endogenous Rab6B localises to the Golgi apparatus and to ERGIC-53-positive vesicles. Comparable studies between Rab6A and Rab6B revealed distinct biochemical and cellular properties. Rab6B displayed lower GTP-binding activities and in overexpression studies, the protein is distributed over Golgi and ER membranes, whereas Rab6A is more restricted to the Golgi apparatus. Since the GTP-bound form of Rab6B (Rab6B Q72L) does interact with all known Rab6A effectors, including Rabkinesin-6, the results suggest a cell-type specific role for Rab6B in retrograde membrane traffic at the level of the Golgi complex.
Collapse
Affiliation(s)
- F J Opdam
- Department of Cell Biology, Institute of Cellular Signalling, University of Nijmegen, PO Box 9101, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Bouverat BP, Krueger WH, Coetzee T, Bansal R, Pfeiffer SE. Expression of rab GTP-binding proteins during oligodendrocyte differentiation in culture. J Neurosci Res 2000; 59:446-53. [PMID: 10679782 DOI: 10.1002/(sici)1097-4547(20000201)59:3<446::aid-jnr20>3.0.co;2-l] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Oligodendrocytes (OLs) synthesize and transport vast amounts of proteins and lipids from the cell body to the morphologically and biochemically distinct domains of the myelin membrane. From our prediction that regulators of vesicular transport should be up-regulated at the time of myelin production, we hypothesized that the up-regulated and unidentified small GTPases found by Huber et al. [1994a] may be Rab proteins. We have analyzed the mRNA expression of rabs in OLs, and have detected rabs 10, 11b, 18, 24, 26, and 28 in addition to rabs that were found previously. Our data show that among the Rabs so far detected during differentiation, only Rabs 5a and 8a exhibited up-regulation in addition to the previously published Rab3a (Madison et al. [1999], J. Neurochem. 72:988-998). We discuss the limited extent of up-regulation of rabs in the context of the presumed necessity for an increase in Rab activity during myelin assembly.
Collapse
Affiliation(s)
- B P Bouverat
- University of Connecticut Health Center, Department of Microbiology and Program in Neurological Sciences, Farmington, Connecticut 06030-3205, USA
| | | | | | | | | |
Collapse
|
25
|
Rowe J, Corradi N, Malosio ML, Taverna E, Halban P, Meldolesi J, Rosa P. Blockade of membrane transport and disassembly of the Golgi complex by expression of syntaxin 1A in neurosecretion-incompetent cells: prevention by rbSEC1. J Cell Sci 1999; 112 ( Pt 12):1865-77. [PMID: 10341206 DOI: 10.1242/jcs.112.12.1865] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The t-SNAREs syntaxin1A and SNAP-25, i.e. the members of the complex involved in regulated exocytosis at synapses and neurosecretory cells, are delivered to their physiological site, the plasma membrane, when transfected into neurosecretion-competent cells, such as PC12 and AtT20. In contrast, when transfection is made into cells incompetent for neurosecretion, such as those of a defective PC12 clone and the NRK fibroblasts, which have no endogenous expression of these t-SNAREs, syntaxin1A (but neither two other syntaxin family members nor SNAP-25) remains stuck in the Golgi-TGN area with profound consequences to the cell: blockade of both membrane (SNAP-25, GAT-1) and secretory (chromogranin B) protein transport to the cell surface; progressive disassembly of the Golgi complex and TGN; ultimate disappearance of the latter structures, with intermixing of their markers (mannosidase II; TGN-38) with those of the endoplasmic reticulum (calreticulin) and with syntaxin1A itself. When, however, syntaxin 1A is transfected together with rbSec1, a protein known to participate in neurosecretory exocytosis via its dynamic interaction with the t-SNARE, neither the blockade nor the alterations of the Golgi complex take place. Our results demonstrate that syntaxin1A, in addition to its role in exocytosis at the cell surface, possesses a specific potential to interfere with intracellular membrane transport and that its interaction with rbSec1 is instrumental to its physiological function not only at the plasma membrane but also within the cell. At the latter site, the rbSec1-induced conversion of syntaxin1A into a form that can be transported and protects the cell from the development of severe structural and membrane traffic alterations.
Collapse
Affiliation(s)
- J Rowe
- CNR-Cellular and Molecular Pharmacology Center, Department of Medical Pharmacology, Via Vanvitelli 32, Italy
| | | | | | | | | | | | | |
Collapse
|
26
|
Leaf DS, Blum LD. Analysis of rab10 localization in sea urchin embryonic cells by three-dimensional reconstruction. Exp Cell Res 1998; 243:39-49. [PMID: 9716447 DOI: 10.1006/excr.1997.3917] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rabs are a subfamily of ras-like GTPases required for membrane traffic in eukaryotic cells. In this report we describe the analysis of a rab10 GTPase expressed during sea urchin development. Protein distance measurements suggest that rab10 is less evolutionarily conserved than rabs 1, 2, and 3, particularly in the hypervariable C-terminus responsible for membrane targeting. Immunoblots and immunofluorescent stainings show that rab10 protein (rab10p) is expressed during all stages of sea urchin early development and in all embryonic cell types. Iterative deconvolutions of immunofluorescently stained embryos reveal that rab10p is localized to an extensive tubular network. Rab10p is not exclusively localized to the endoplasmic reticulum, as identified by anti-calsequestrin immunofluorescence. Double-labeling experiments with anti-rab10 antisera and wheat germ agglutinin, a trans-Golgi and trans-Golgi network (TGN) marker, demonstrate that rab10p is not localized to the trans-Golgi/TGN. Three-dimensional reconstructions of immunofluorescently labeled sea urchin embryonic cells show that tubules with greater concentrations of rab10p are closely apposed to trans-Golgi/TGN in a cis orientation-suggesting localization of rab10p to the cis-Golgi network. In mammalian cell lines, Rab10 has been localized to the trans-Golgi/trans-Golgi network (Y.-T. Chen et al., 1993, Proc. Natl. Acad. Sci. USA 90, 6508-6512). The localization of rab10 may not have been evolutionarily conserved between echinoderms and mammals because of the high rate of change in the hypervariable domain.
Collapse
Affiliation(s)
- D S Leaf
- Department of Biology, Western Washington University, Bellingham, Washington, 98225, USA.
| | | |
Collapse
|
27
|
Abstract
Small GTPases of the Rab subfamily have been known to be key regulators of intracellular membrane traffic since the late 1980s. Today this protein group amounts to more than 40 members in mammalian cells which localize to distinct membrane compartments and exert functions in different trafficking steps on the biosynthetic and endocytic pathways. Recent studies indicate that cycles of GTP binding and hydrolysis by the Rab proteins are linked to the recruitment of specific effector molecules on cellular membranes, which in turn impact on membrane docking/fusion processes. Different Rabs may, nevertheless, have slightly different principles of action. Studies performed in yeast suggest that connections between the Rabs and the SNARE machinery play a central role in membrane docking/fusion. Further elucidation of this linkage is required in order to fully understand the functional mechanisms of Rab GTPases in membrane traffic.
Collapse
Affiliation(s)
- V M Olkkonen
- National Public Health Institute, Helsinki, Finland
| | | |
Collapse
|