1
|
Ma Q, Meng M, Zhou X, Guo W, Feng K, Huang T, Cai YD. Identification of Key Genes in Fetal Gut Development at Single-Cell Level by Exploiting Machine Learning Techniques. Proteomics 2024:e202400104. [PMID: 39324223 DOI: 10.1002/pmic.202400104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
The study of fetal gut development is critical due to its substantial influence on immediate neonatal and long-term adult health. Current research largely focuses on microbiome colonization, gut immunity, and barrier function, alongside the impact of external factors on these phenomena. Limited research has been dedicated to the categorization of developing fetal gut cells. Our study aimed to enhance our understanding of fetal gut development by employing advanced machine-learning techniques on single-cell sequencing data. This dataset consisted of 62,849 samples, each characterized by 33,694 distinct gene features. Four feature ranking algorithms were utilized to sort features according to their significance, resulting in four feature lists. Then, these lists were fed into an incremental feature selection method to extract essential genes, classification rules, and build efficient classifiers. Several important genes were recognized by multiple feature ranking algorithms, such as FGG, MDK, RBP1, RBP2, IGFBP7, and SPON2. These features were key in differentiating specific developing intestinal cells, including epithelial, immune, mesenchymal, and vasculature cells of the colon, duo jejunum, and ileum cells. The classification rules showed special gene expression patterns on some intestinal cell types and the efficient classifiers can be useful tools for identifying intestinal cells.
Collapse
Affiliation(s)
- QingLan Ma
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Mei Meng
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - XianChao Zhou
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - KaiYan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
2
|
Constantin A, Achim F, Spinu D, Socea B, Predescu D. Idiopathic Megacolon-Short Review. Diagnostics (Basel) 2021; 11:diagnostics11112112. [PMID: 34829459 PMCID: PMC8622596 DOI: 10.3390/diagnostics11112112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Idiopathic megacolon (IM) is a rare condition with a more or less known etiology, which involves management challenges, especially therapeutic, and both gastroenterology and surgery services. With insufficiently drawn out protocols, but with occasionally formidable complications, the condition management can be difficult for any general surgery team, either as a failure of drug therapy (in the context of a known case, initially managed by a gastroenterologist) or as a surgical emergency (in which the diagnostic surprise leads additional difficulties to the tactical decision), when the speed imposed by the severity of the case can lead to inadequate strategies, with possibly critical consequences. METHOD With such a motivation, and having available experience limited by the small number of cases (described by all medical teams concerned with this pathology), the revision of the literature with the update of management landmarks from the surgical perspective of the pathology appears as justified by this article. RESULTS If the diagnosis of megacolon is made relatively easily by imaging the colorectal dilation (which is associated with initial and/or consecutive clinical aspects), the establishing of the diagnosis of idiopathic megacolon is based in practice almost exclusively on a principle of exclusion, and after evaluating the absence of some known causes that can lead to the occurrence of these anatomic and clinical changes, mimetically, clinically, and paraclinically, with IM (intramural aganglionosis, distal obstructions, intoxications, etc.). If the etiopathogenic theories, based on an increase in the performance of the arsenal of investigations of the disease, have registered a continuous improvement and an increase of objectivity, unfortunately, the curative surgical treatment options still revolve around the same resection techniques. Moreover, the possibility of developing a form of etiopathogenic treatment seems as remote as ever.
Collapse
Affiliation(s)
- Adrian Constantin
- General and Esophageal Clinic, Sf. Maria Clinical Hospital Bucharest, Carol Davila University of Medicine and Pharmacy, 011172 Bucharest, Romania; (A.C.); (F.A.)
| | - Florin Achim
- General and Esophageal Clinic, Sf. Maria Clinical Hospital Bucharest, Carol Davila University of Medicine and Pharmacy, 011172 Bucharest, Romania; (A.C.); (F.A.)
| | - Dan Spinu
- Department of Urology, Central Military Emergency University Hospital Bucharest, Carol Davila University of Medicine and Pharmacy, 010825 Bucharest, Romania;
| | - Bogdan Socea
- Department of Surgery, Sf. Pantelimon Emergency Clinical Hospital Bucharest, Carol Davila University of Medicine and Pharmacy, 021659 Bucharest, Romania;
| | - Dragos Predescu
- General and Esophageal Clinic, Sf. Maria Clinical Hospital Bucharest, Carol Davila University of Medicine and Pharmacy, 011172 Bucharest, Romania; (A.C.); (F.A.)
- Correspondence:
| |
Collapse
|
3
|
Lima JF, Cerqueira L, Figueiredo C, Oliveira C, Azevedo NF. Anti-miRNA oligonucleotides: A comprehensive guide for design. RNA Biol 2018; 15:338-352. [PMID: 29570036 DOI: 10.1080/15476286.2018.1445959] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression post-transcriptionally. As a consequence of their function towards mRNA, miRNAs are widely associated with the pathogenesis of several human diseases, making miRNAs a target for new therapeutic strategies based on the control of their expression. Indeed, numerous works were published in the past decades showing the potential use of antisense oligonucleotides to target aberrant miRNAs (AMOs) involved in several human pathologies. New classes of chemical-modified-AMOs, including locked nucleic acid oligonucleotides, have recently proved their worth in silencing miRNAs. A correct design of a specific AMOs can help to improve their performance and potency towards the target miRNA by increasing for instance nuclease resistance and target affinity. This review outlines the technologies involved to suppress aberrant miRNAs. From the design strategies used in AMOs to its application in novel miRNA-based therapeutics and detection methodologies.
Collapse
Affiliation(s)
- Joana Filipa Lima
- a LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering , Faculty of Engineering of the University of Porto , R. Dr. Roberto Frias, Porto , Portugal.,b Biomode 2, S. A., INL - Avda. Mestre José Veiga s/n, Braga , Portugal.,c i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto , R. Alfredo Allen, Porto , Portugal.,d IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto , Rua Júlio Amaral de Carvalho, 45, Porto , Portugal
| | - Laura Cerqueira
- a LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering , Faculty of Engineering of the University of Porto , R. Dr. Roberto Frias, Porto , Portugal.,b Biomode 2, S. A., INL - Avda. Mestre José Veiga s/n, Braga , Portugal
| | - Ceu Figueiredo
- c i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto , R. Alfredo Allen, Porto , Portugal.,d IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto , Rua Júlio Amaral de Carvalho, 45, Porto , Portugal.,e FMUP, Faculty of Medicine of the University of Porto , Al. Prof. Hernâni Monteiro, Porto , Portugal
| | - Carla Oliveira
- c i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto , R. Alfredo Allen, Porto , Portugal.,d IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto , Rua Júlio Amaral de Carvalho, 45, Porto , Portugal.,e FMUP, Faculty of Medicine of the University of Porto , Al. Prof. Hernâni Monteiro, Porto , Portugal
| | - Nuno Filipe Azevedo
- a LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering , Faculty of Engineering of the University of Porto , R. Dr. Roberto Frias, Porto , Portugal
| |
Collapse
|
4
|
High resolution methylation analysis of the HoxA5 regulatory region in different somatic tissues of laboratory mouse during development. Gene Expr Patterns 2017; 23-24:59-69. [DOI: 10.1016/j.gep.2017.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/02/2017] [Accepted: 03/26/2017] [Indexed: 11/18/2022]
|
5
|
Alvarado-Ruiz L, Martinez-Silva MG, Torres-Reyes LA, Pina-Sanchez P, Ortiz-Lazareno P, Bravo-Cuellar A, Aguilar-Lemarroy A, Jave-Suarez LF. HOXA9 is Underexpressed in Cervical Cancer Cells and its Restoration Decreases Proliferation, Migration and Expression of Epithelial-to-Mesenchymal Transition Genes. Asian Pac J Cancer Prev 2016; 17:1037-47. [DOI: 10.7314/apjcp.2016.17.3.1037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
6
|
Goto Y, Kato T, Ando T, Goto H, Hamajima N. No association between the CDX2 G543C polymorphism and risk of gastric atrophy and cancer. Asian Pac J Cancer Prev 2013; 13:5691-4. [PMID: 23317240 DOI: 10.7314/apjcp.2012.13.11.5691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Ectopic expression of CDX2 in the stomach is closely associated with chronic Helicobacter pylori (H. pylori) infection and intestinal metaplasia. Whether CDX2 has tumor suppression or tumorigenesis potential remains to be elucidated. In this study, we investigated the association between the CDX2 G543C polymorphism (silent mutation) and the risk for H. pylori-induced gastric atrophy and cancer as well as H. pylori infection, using 454 Japanese subjects undergoing a health checkup and 202 gastric cancer patients. The frequency of the minor allele was the same as previously reported in China, but different from that reported in England. CDX2 G543C was not associated with risk of H. pylori infection, gastric atrophy, or gastric cancer, although the point estimate for non-cardiac differentiated gastric cancer as compared to controls with gastric atrophy was 2.22 (95%CI=0.17-29.4). In conclusion, our results indicate that the CDX2 G543C polymorphism is unlikely to affect the H. pylori infection-gastric atrophy-gastric cancer sequence.
Collapse
Affiliation(s)
- Yasuyuki Goto
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | | | | | | | | |
Collapse
|
7
|
Sukka-Ganesh B, Mohammed KA, Kaye F, Goldberg EP, Nasreen N. Ephrin-A1 inhibits NSCLC tumor growth via induction of Cdx-2 a tumor suppressor gene. BMC Cancer 2012; 12:309. [PMID: 22824143 PMCID: PMC3488573 DOI: 10.1186/1471-2407-12-309] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 06/28/2012] [Indexed: 01/27/2023] Open
Abstract
Background Tumor formation is a complex process which involves constitutive activation of oncogenes and suppression of tumor suppressor genes. Receptor EphA2 and its ligand ephrin-A1 form an important cell communication system with its functional role in cell-cell interaction and tumor growth. Loss of cell-cell adhesion is central to the cellular transformation and acquisition of metastatic potential. Claudins, the integrated tight junction (TJ) cell-cell adhesion proteins located on the apico-lateral portion of epithelial cells, functions in maintaining cell polarity. There is extensive evidence implicating Eph receptors and ephrins in malignancy, but the mechanisms how these molecular players affect TJ proteins and regulate tumor growth are not clear. In the present study we hypothesized that EphA2 signaling modulates claudin-2 gene expression via induction of cdx-2, a tumor suppressor gene in NSCLC cells. Methods The expression of EphA2, claudin-2 was determined in various NSCLC cell lines by using real-time quantitative polymerase chain reaction and Western blot analysis. The claudin-2 expression was also analyzed by immunofluorescence analysis. EphA2 and erk1/erk2 phosphorylation in ephrin-A1 activated cells was evaluated by Western blot analysis. The cell proliferation and tumor colony formation were determined by WST-1 and 3-D matrigel assays respectively. Results NSCLC cells over expressed receptor EphA2 and claudin-2. Ephrin-A1 treatment significantly down regulated the claudin-2 and EphA2 expression in NSCLC cells. The transient transfection of cells with vector containing ephrin-A1 construct (pcDNA-EFNA1) decreased the expression of claudin-2, EphA2 when compared to empty vector. In addition ephrin-A1 activation increased cdx-2 expression in A549 cells. In contrast over-expression of EphA2 with plasmid pcDNA-EphA2 up regulated claudin-2 mRNA expression and decreased cdx-2 expression. The transient transfection of cells with vector containing cdx-2 construct (pcMV-cdx-2) decreased the expression of claudin-2 in A549 cells. Moreover, silencing the expression of receptor EphA2 by siRNA significantly reduced claudin-2 expression and decreased cell proliferation and tumor formation. Furthermore, silencing cdx-2 gene expression before ephrin-A1 treatment increased claudin-2 expression along with increased cell proliferation and tumor growth in A549 cells. Conclusions Our study suggests that EphA2 signaling up-regulates the expression of the TJ-protein claudin-2 that plays an important role in promoting cell proliferation and tumor growth in NSCLC cells. We conclude that receptor EphA2 activation by ephrin-A1 induces tumor suppressor gene cdx-2 expression which attenuates cell proliferation, tumor growth and thus may be a promising therapeutic target against NSCLC.
Collapse
Affiliation(s)
- Bhagyalaxmi Sukka-Ganesh
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA
| | | | | | | | | |
Collapse
|
8
|
Endocrine differentiation of rat enterocytes in long-term three-dimensional co-culture with intestinal myofibroblasts. In Vitro Cell Dev Biol Anim 2011; 47:707-15. [DOI: 10.1007/s11626-011-9458-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 09/15/2011] [Indexed: 11/26/2022]
|
9
|
Arampatzidou M, Mayer K, Iolyeva ME, Asrat SG, Ravichandran M, Günther T, Schüle R, Reinheckel T, Brix K. Studies of intestinal morphology and cathepsin B expression in a transgenic mouse aiming at intestine-specific expression of Cath B-EGFP. Biol Chem 2011; 392:983-93. [PMID: 21871011 DOI: 10.1515/bc.2011.096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cathepsin B has been shown to not only reside within endo-lysosomes of intestinal epithelial cells, but it was also secreted into the extracellular space of intestinal mucosa in physiological and pathological conditions. In an effort to further investigate the function of this protease in the intestine, we generated a transgenic mouse model that would enable us to visualize the localization of cathepsin B in vivo. Previously we showed that the A33-antigen promoter could be successfully used in vitro in order to express cathepsin B-green fluorescent protein chimeras in cells that co-expressed the intestine-specific transcription factor Cdx1. In this study an analog approach was used to express chimeric cathepsin B specifically in the intestine of transgenic animals. No overt phenotype was observed for the transgenic mice that reproduced normally. Biochemical and morphological studies confirmed that the overall intestinal phenotype including the structure and polarity of this tissue as well as cell numbers and differentiation states were not altered in the A33-CathB-EGFP mice when compared to wild type animals. However, transgenic expression of chimeric cathepsin B could not be visualized because it was not translated in situ although the transgene was maintained over several generations.
Collapse
Affiliation(s)
- Maria Arampatzidou
- School of Engineering and Science, Research Center MOLIFE - Molecular Life Science, Jacobs University Bremen, Campus Ring 6, D-28759 Bremen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
DeFalco T, Takahashi S, Capel B. Two distinct origins for Leydig cell progenitors in the fetal testis. Dev Biol 2011; 352:14-26. [PMID: 21255566 DOI: 10.1016/j.ydbio.2011.01.011] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 12/17/2010] [Accepted: 01/07/2011] [Indexed: 12/27/2022]
Abstract
During the differentiation of the mammalian embryonic testis, two compartments are defined: the testis cords and the interstitium. The testis cords give rise to the adult seminiferous tubules, whereas steroidogenic Leydig cells and other less well characterized cell types differentiate in the interstitium (the space between testis cords). Although the process of testis cord formation is essential for male development, it is not entirely understood. It has been viewed as a Sertoli-cell driven process, but growing evidence suggests that interstitial cells play an essential role during testis formation. However, little is known about the origin of the interstitium or the molecular and cellular diversity within this early stromal compartment. To better understand the process of mammalian gonad differentiation, we have undertaken an analysis of developing interstitial/stromal cells in the early mouse testis and ovary. We have discovered molecular heterogeneity in the interstitium and have characterized new markers of distinct cell types in the gonad: MAFB, C-MAF, and VCAM1. Our results show that at least two distinct progenitor lineages give rise to the interstitial/stromal compartment of the gonad: the coelomic epithelium and specialized cells along the gonad-mesonephros border. We demonstrate that both these populations give rise to interstitial precursors that can differentiate into fetal Leydig cells. Our analysis also reveals that perivascular cells migrate into the gonad from the mesonephric border along with endothelial cells and that these vessel-associated cells likely represent an interstitial precursor lineage. This study highlights the cellular diversity of the interstitial cell population and suggests that complex cell-cell interactions among cells in the interstitium are involved in testis morphogenesis.
Collapse
Affiliation(s)
- Tony DeFalco
- The Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
11
|
Shaker A, Swietlicki EA, Wang L, Jiang S, Onal B, Bala S, DeSchryver K, Newberry R, Levin MS, Rubin DC. Epimorphin deletion protects mice from inflammation-induced colon carcinogenesis and alters stem cell niche myofibroblast secretion. J Clin Invest 2010; 120:2081-93. [PMID: 20458144 DOI: 10.1172/jci40676] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 03/03/2010] [Indexed: 01/07/2023] Open
Abstract
Epithelial-mesenchymal interactions regulate normal gut epithelial homeostasis and have a putative role in inflammatory bowel disease and colon cancer pathogenesis. Epimorphin is a mesenchymal and myofibroblast protein with antiproliferative, promorphogenic effects in intestinal epithelium. We previously showed that deletion of epimorphin partially protects mice from acute colitis, associated with an increase in crypt cell proliferation. Here we explored the potential therapeutic utility of modulating epimorphin expression by examining the effects of epimorphin deletion on chronic inflammation-associated colon carcinogenesis using the azoxymethane/dextran sodium sulfate (AOM/DSS) model. We found that mice in which epimorphin expression was absent had a marked reduction in incidence and extent of colonic dysplasia. Furthermore, epimorphin deletion in myofibroblasts altered the morphology and growth of cocultured epithelial cells. Loss of epimorphin affected secretion of soluble mesenchymal regulators of the stem cell niche such as Chordin. Importantly, IL-6 secretion from LPS-treated epimorphin-deficient myofibroblasts was completely inhibited, and stromal IL-6 expression was reduced in vivo. Taken together, these data show that epimorphin deletion inhibits chronic inflammation-associated colon carcinogenesis in mice, likely as a result of increased epithelial repair, decreased myofibroblast IL-6 secretion, and diminished IL-6-induced inflammation. Furthermore, we believe that modulation of epimorphin expression may have therapeutic benefits in appropriate clinical settings.
Collapse
Affiliation(s)
- Anisa Shaker
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
The role of the basement membrane as a modulator of intestinal epithelial-mesenchymal interactions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 96:175-206. [PMID: 21075345 DOI: 10.1016/b978-0-12-381280-3.00008-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intestinal development is a process of continuous dynamic bidirectional crosstalk between epithelial and underlying mesenchymal cells. This crosstalk is mediated by well-dissected signaling pathways. Another crucial actor in the epithelio-mesenchymal interactions is the stromal microenvironment, which is composed of extracellular matrix molecules. Among them, the basement membrane (BM) molecules are secreted by the epithelium and mesenchyme in a complementary manner. These molecules signal back to the cells via the integrins or other specific receptors. In this review, we mainly focus on the BM molecules, particularly laminins. The major BM molecules are organized in a complex molecular network, which is highly variable among organs. Cell culture, coculture, and grafting models have been of great interest in understanding the importance of these molecules. Mouse gene ablation of laminin chains are interesting models, which often lead to embryonic death and are frequently accompanied by compensatory processes. Overall, the BM molecules have a crucial role in the careful maintenance of intestinal homeostasis.
Collapse
|
13
|
Zhang T, Bai YZ, Zhang D, Zhang SW, Wang DJ, Jia HM, Yuan ZW, Wang WL. Temporal and spatial expression of caudal-type homeobox gene-1 in the development of anorectal malformations in rat embryos. J Pediatr Surg 2009; 44:1568-74. [PMID: 19635307 DOI: 10.1016/j.jpedsurg.2008.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 10/01/2008] [Accepted: 10/03/2008] [Indexed: 12/18/2022]
Abstract
PURPOSE The aim of this study was to determine caudal-type homeobox gene-1 (Cdx1) expressions during anorectal development in normal and anorectal malformation (ARMs) embryos and investigate the possible role of Cdx1 in the pathogenesis of ARM. MATERIALS AND METHODS Anorectal malformation was induced by ethylenethiourea on the 10th gestational day (GD10) in rat embryos. Cesarean deliveries were performed to harvest embryos from GD13 to GD21. The temporal and spatial expression of Cdx1 was evaluated in normal rat embryos (n = 334) and ARM embryos (n = 328) from GD13 to GD20 using immunohistochemistry staining, reverse transcriptase polymerase chain reaction (RT-PCR), and Western blot analysis. RESULTS Immunostaining revealed that in normal embryos, on GD13.5, Cdx1 expression was mainly located on the epithelium of the dorsal urorectal septum (URS), cloacal membrane, and the hindgut. On GD15, increased positive tissue staining was noted on the fused tissue of URS, especially in the very thin anal membrane. In the ARM embryos, however, the epithelium of the cloaca, URS, and anorectum was negative or faint for Cdx1. In Western blot and RT-PCR, in the normal group, Cdx1 protein and Cdx1 messenger RNA expression showed time-dependent changes in the developing hindgut, on GD14, GD14.5, and GD15. The expression level reached a peak when the anus was forming. Once the anus was open, Cdx1 expression gradually decreased. In addition, the expression level of Cdx1 in the ARM group from GD13 to GD16 was significant lower than that of the normal group (P < .05). CONCLUSIONS In ARM embryos, an imbalance of spatiotemporal expression of Cdx1 was noted during anorectal morphogenesis from GD13 to GD16. This suggests that downregulation of Cdx1 at the time of cloacal separation into rectum and urethra might be related to the development of ARM.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang 110004, PR China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
No association between the polymorphisms in CDX2 coding regions and colorectal cancer in Chinese. Mol Cell Biochem 2009; 331:27-30. [DOI: 10.1007/s11010-009-0141-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 04/23/2009] [Indexed: 10/20/2022]
|
15
|
Mayer K, Iolyeva ME, Meyer-Grahle U, Brix K. Intestine-specific expression of green fluorescent protein-tagged cathepsin B: proof-of-principle experiments. Biol Chem 2008; 389:1085-96. [PMID: 18979632 DOI: 10.1515/bc.2008.112] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We hypothesized that tissue-specific expression of cathepsin B-enhanced green fluorescent protein (CB-EGFP) can be driven by the A33-antigen promoter that contains positive cis-regulatory elements, including caudal-related homeobox (CDX) binding sites. The intestine-specific transcription factor Cdx1 is crucial for A33-antigen promoter activation and could thereby induce expression of CB-EGFP. This concept was tested by construction of the vector pA33-CathB-EGFP encoding CB-EGFP downstream of the A33-antigen promoter. Its Cdx1 dependence, as an indication of its intestine-specific expression, was tested in Cdx1-negative CHO-K1 cells. Cdx1 expression was achieved upon transfection with pCdx1-DsRed-Express and was indicated by red fluorescence of the simultaneously translated reporter protein. Immunolabeling with Cdx1-specific antibodies showed correct targeting of the transcription factor to its point of action in nuclei of transfected cells. Co-transfection experiments with plasmids pA33-CathB-EGFP and pCdx1-DsRed-Express confirmed the hypothesis that Cdx1 indeed activates CB-EGFP expression in a manner dependent on the A33-antigen promoter. Co-localization with compartment-specific markers and subcellular fractionation confirmed CB-EGFP trafficking along the expected route to endolysosomal compartments. Hence, the A33-antigen promoter represents a potent tool for induction of Cdx1-dependent CB-EGFP expression in vitro. Our proof-of-principle studies confirm the suitability of this approach in visualizing protease transport in Cdx1-positive tissues of the gastrointestinal tract.
Collapse
Affiliation(s)
- Kristina Mayer
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 6, D-28759 Bremen, Germany
| | | | | | | |
Collapse
|
16
|
Barros R, Pereira B, Duluc I, Azevedo M, Mendes N, Camilo V, Jacobs RJ, Paulo P, Santos-Silva F, van Seuningen I, van den Brink GR, David L, Freund JN, Almeida R. Key elements of the BMP/SMAD pathway co-localize with CDX2 in intestinal metaplasia and regulate CDX2 expression in human gastric cell lines. J Pathol 2008; 215:411-20. [PMID: 18498120 DOI: 10.1002/path.2369] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Helicobacter pylori infection induces intestinal metaplasia of the stomach, a preneoplastic lesion associated with an increased risk for gastric cancer development. Intestinal metaplasia is induced by the intestine-specific transcription factor CDX2 but the mechanisms responsible for this ectopic expression have never been described. We hypothesized that the BMP/SMAD pathway has a role in CDX2 regulation, in this context, for the following reasons: (1) the BMP pathway is crucial for normal intestinal differentiation and (2) there is an influx of BMP2 and BMP4-producing cells to the stomach upon Helicobacter pylori infection. We evaluated the expression of key elements of the BMP pathway in human stomach specimens with IM. Growth factor treatments, with BMP2 and BMP4, were performed in cultured cells and a knock-down experiment of SMAD4 was done using RNAi. We showed overexpression in IM of BMP2/4, BMPR1A, and SMAD4 in 56% of IM foci, and pSMAD1/5/8 in 100% of IM foci as compared to adjacent mucosa. In vitro, treatment of AGS cells with BMP2 and BMP4 increased endogenous CDX2 expression as well as the intestinal differentiation markers MUC2 and LI-cadherin. On the other hand, SMAD4 knock-down led to decreased endogenous CDX2, MUC2, and LI-cadherin in AGS. Treatment of the SMAD4 knock-down cells had no influence on CDX2 expression as opposed to wild-type cells. A 9.3 kb CDX2 promoter could be transactivated by SMAD4 and SMAD1 in a cell-dependent manner. In conclusion, we identified for the first time that the BMP pathway is active in intestinal metaplasia and that BMP2 and BMP4 regulate CDX2 expression and promote intestinal differentiation through the canonical signal transducers.
Collapse
Affiliation(s)
- R Barros
- Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Mayer K, Iolyeva ME, Meyer-Grahle U, Brix K. Intestine-specific expression of green fluorescent protein-tagged cathepsin B: proof-of-principle experiments. Biol Chem 2008. [DOI: 10.1515/bc.2008.112_bchm.just-accepted] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Abstract
This leading article refers to the paper by Meier-Ruge WA, Muller-Lobeck H, Stoss F, Bruder E. The pathogenesis of idiopathic megacolon. Eur J Gastroenterol Hepatol 2006; 18:1209-1215. We apologise to all concerned for the dissociation between the two papers, which was due to an administrative error. The pathogenesis of idiopathic megacolon is still unclear. Besides abnormalities of the enteric nervous system, alterations in the function of intestinal smooth muscle cells and connective tissue elements might play an important role. A permanent extension of the bowel diameter without concrete hints to its aetiology is termed idiopathic megacolon. Evidence exists that idiopathic megacolon comprises a heterogeneous group of conditions characterized by alterations of the enteric nervous system, smooth muscle cells and/or connective tissue. Innovative molecular techniques are needed to get further insights into the pathogenesis of these intestinal motility disorders.
Collapse
Affiliation(s)
- Frank Autschbach
- University Heidelberg, Institute of Pathology, Heidelberg, Germany.
| | | |
Collapse
|
19
|
Jurjus A, Barada K, Khoury N, Assef MD, Foltzer CJ, Reimund JM, Kedinger M. Morphological and biochemical alterations in the jejunum following iodoacetamide-induced colitis in rats. Can J Physiol Pharmacol 2007; 84:1191-203. [PMID: 17218984 DOI: 10.1139/y06-069] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This study aims to describe the morphological alterations in the small and large intestines as well as the expression of some enterocyte enzymes and carriers in a rat model of iodoacetamide-induced colitis. Biopsies from the large and small intestines were taken at 1, 2, 4, 8, and 16 days postinduction and studied by light microscopy. The expressions of lactase, sucrase, aminopeptidase, and Glut-5 in the jejunum were studied by immunohistochemistry. Gene expressions of enterocyte lactase and sucrase were determined by RT-PCR using specific oligonucleotides. Microscopic examination of the large intestines revealed manifestations concordant with inflammation. Such alterations peaked at 2 days, were maintained to a lesser extent for 4 days, regressed by 8 days, and healed by 16 days. In the jejunum, the expression of lactase, sucrase, and aminopeptidase decreased 2 days after colitis induction, and recovered 2 days later. Similarly, Glut-5 expression decreased transiently with partial recovery by day 8. Compared with sham, gene expression of jejunal brush border enzymes sucrase and lactase showed a 4-fold increase in lactase and a 9-fold increase in sucrase after 4 days. We conclude that colitis can induce significant functional abnormalities in distant noninflamed small bowel regions.
Collapse
Affiliation(s)
- Abdo Jurjus
- Faculty of Medicine, American University of Beirut, Riad El Solh, Beirut 1107-2020, Lebanon.
| | | | | | | | | | | | | |
Collapse
|
20
|
Benahmed F, Gross I, Guenot D, Jehan F, Martin E, Domon-Dell C, Brabletz T, Kedinger M, Freund JN, Duluc I. The microenvironment controls CDX2 homeobox gene expression in colorectal cancer cells. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:733-44. [PMID: 17255339 PMCID: PMC1851857 DOI: 10.2353/ajpath.2007.060696] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The homeobox gene CDX2 plays a major role in development, especially in the gut, and it also acts as a tumor suppressor in the adult colon. Using orthotopic and heterotopic xenografts of human primary colorectal tumor cells and cell lines in nude mice, we addressed the effect of the microenvironment on CDX2 expression. In cells expressing CDX2 at a high level in culture, this level was maintained in subcutaneous grafts but was reduced when implanted into the cecum wall. Reciprocally, in cells with low CDX2 expression in culture, the level remained low in grafts into the cecum wall but was stimulated subcutaneously. In vitro co-cultures showed that CDX2 expression was activated in cells grown on layers of skin fibroblasts but not on intestinal fibroblasts. The stimulation was transcriptional, as assessed by transfection experiments with reporter plasmids containing the murine Cdx2 promoter. Together, these data demonstrate experimentally that CDX2 expression is adaptable and strongly dependent on the microenvironment surrounding the tumor cells. We exclude a role of the Notch pathway in this regulation. The regulation of CDX2 by the microenvironment might be relevant during the process of metastatic dissemination when the gene is transiently turned down in invasive cells.
Collapse
|
21
|
Li X, Madison BB, Zacharias W, Kolterud A, States D, Gumucio DL. Deconvoluting the intestine: molecular evidence for a major role of the mesenchyme in the modulation of signaling cross talk. Physiol Genomics 2007; 29:290-301. [PMID: 17299133 DOI: 10.1152/physiolgenomics.00269.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Reciprocal cross talk between the endodermally derived epithelium and the underlying mesenchyme is required for regional patterning and proper differentiation of the developing mammalian intestine. Though both epithelium and mesenchyme participate in patterning, the mesenchyme is thought to play a prominent role in the determination of the epithelial phenotype during development and in adult life. However, the molecular basis for this instructional dominance is unclear. In fact, surprisingly little is known about the cellular origins of many of the critical signaling molecules and the gene transcriptional events that they impact. Here, we profile genes that are expressed in the separate mesenchymal and epithelial compartments of the perinatal mouse intestine. The data indicate that the vast majority of soluble inhibitors and modulators of signaling pathways such as Hedgehog, Bmp, Wnt, Fgf, and Igf are expressed predominantly or exclusively by the mesenchyme, accounting for its ability to dominate instructional cross talk. We also catalog the most highly enriched transcription factors in both compartments. The results bolster previous evidence suggesting a major role for Hnf4gamma and Hnf4alpha in the regulation of epithelial genes. Finally, we find that while epithelially enriched genes tend to be highly tissue restricted in their expression, mesenchymally enriched genes tend to be broadly expressed in multiple tissues. Thus, the unique tissue-specific signature that characterizes the intestinal epithelium is instructed and supported by a mesenchyme that itself expresses genes that are largely nontissue specific.
Collapse
Affiliation(s)
- Xing Li
- Bioinformatics Program, Departments of Cell and Developmental Biology and Human Genetics, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | | | | | | | | | | |
Collapse
|
22
|
Furuya S, Furuya K. Subepithelial fibroblasts in intestinal villi: roles in intercellular communication. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 264:165-223. [PMID: 17964923 DOI: 10.1016/s0074-7696(07)64004-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ingestion of food and water induces chemical and mechanical signals that trigger peristaltic reflexes in the gut. Intestinal villi are motile, equipped with chemosensors and mechanosensors, and transduce signaling to sensory neurons, but the exact mechanisms have not yet been elucidated. Subepithelial fibroblasts located under the villous epithelium form contractile cellular networks via gap junctions. The networks ensheathe lamina propria and are in close contact with epithelium, neural and capillary networks, smooth muscles, and immune cells. Unique characteristics of subepithelial fibroblasts have been revealed by primary cultures isolated from rat duodenal villi. They include rapid reversal changes in cell shape by cAMP reagents and endothelins, cell shape-dependent mechanosensitivity that induces ATP release as a paracrine mediator, contractile ability, and expression of various receptors for vasoactive and neuroactive substances. Herein, we review these characteristics that play a key role in the villi. They serve as a barrier/sieve, flexible mechanical frame, mechanosensor, and signal transduction machinery in the intestinal villi, which are regulated locally and dynamically by rapid cell shape conversion.
Collapse
Affiliation(s)
- Sonoko Furuya
- Section of Brain Structure, Center for Brain Experiment, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | | |
Collapse
|
23
|
Kim GH, Lee DH, Kim HW, Cheong JY, Seo SB, Heo J, Kang DH, Song GA, Cho M, Yang US, Park DY, Yoo MA. Relationships between the expressions of CDX1 and CDX2 mRNA and clinicopathologic features in colorectal cancers. Korean J Intern Med 2005; 20:317-24. [PMID: 16491830 PMCID: PMC3891078 DOI: 10.3904/kjim.2005.20.4.317] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND CDX1 and CDX2 are members of the caudal-type homeobox gene family and control the proliferation and differentiation of intestinal mucosal cells. Their expressions are commonly reduced in colorectal cancer, but reports about the relationships between their expressions and clinicopathologic features are rare. The aim of this study was to examine the expressions of CDX1 and CDX2 mRNAs in colorectal cancers and to assess the relationships between their expressions and clinicopathologic features. METHODS CDX1 and CDX2 mRNA expressions were analyzed by real-time polymerase chain reaction in 48 colorectal cancers and in adjacent non-tumorous normal mucosal tissue. RESULTS CDX1 and CDX2 mRNA expressions were significantly reduced in colorectal cancer tissues versus normal mucosal tissues (p=0.001, p=0.042, respectively). As compared with paired normal mucosal tissues, colorectal tissues showed reduced CDX1 mRNA expression in 64.6% (31/48) and reduced CDX2 mRNA expression in 66.7% (32/48) of cases. A statistically significant positive correlation was found between the expressions of CDX1 mRNA and CDX2 mRNA in colorectal cancer (r=0.543, p<0.001). However, the expressions of CDX1 and CDX2 mRNAs were not related to age, sex, cancer location, differentiation, lymphatic or vascular invasion, lymph node metastasis, stage or serum carcinoembryonic antigen level. CONCLUSIONS CDX1 and CDX2 mRNA expressions were found to be significantly reduced in colorectal cancers but these expressional changes were not found to be related to clinicopathologic features.
Collapse
Affiliation(s)
- Gwang Ha Kim
- Department of Internal Medicine, Pusan National University College of Medicine, Busan, Korea
| | - Dong Hyun Lee
- Department of Internal Medicine, Pusan National University College of Medicine, Busan, Korea
| | - Hyung Wook Kim
- Department of Internal Medicine, Pusan National University College of Medicine, Busan, Korea
| | - Jong Yun Cheong
- Department of Internal Medicine, Pusan National University College of Medicine, Busan, Korea
| | - Soo Boon Seo
- Department of Internal Medicine, Pusan National University College of Medicine, Busan, Korea
| | - Jeong Heo
- Department of Internal Medicine, Pusan National University College of Medicine, Busan, Korea
| | - Dae Hwan Kang
- Department of Internal Medicine, Pusan National University College of Medicine, Busan, Korea
| | - Geun Am Song
- Department of Internal Medicine, Pusan National University College of Medicine, Busan, Korea
| | - Mong Cho
- Department of Internal Medicine, Pusan National University College of Medicine, Busan, Korea
| | - Ung Suk Yang
- Department of Internal Medicine, Pusan National University College of Medicine, Busan, Korea
| | - Do Youn Park
- Department of Pathology, Pusan National University College of Medicine, Busan, Korea
| | - Mi Ae Yoo
- Department of Molecular Biology, Pusan National University College of Medicine, Busan, Korea
| |
Collapse
|
24
|
Chan KK, Chen YS, Yau TO, Fu M, Lui VCH, Tam PKH, Sham MH. Hoxb3 vagal neural crest-specific enhancer element for controlling enteric nervous system development. Dev Dyn 2005; 233:473-83. [PMID: 15768390 DOI: 10.1002/dvdy.20347] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The neural and glial cells of the intrinsic ganglia of the enteric nervous system (ENS) are derived from the hindbrain neural crest at the vagal level. The Hoxb3 gene is expressed in the vagal neural crest and in the enteric ganglia of the developing gut during embryogenesis. We have identified a cis-acting enhancer element b3IIIa in the Hoxb3 gene locus. In this study, by transgenic mice analysis, we examined the tissue specificity of the b3IIIa enhancer element using the lacZ reporter gene, with emphasis on the vagal neural crest cells and their derivatives in the developing gut. We found that the b3IIIa-lacZ transgene marks only the vagal region and not the trunk or sacral region. Using cellular markers, we showed that the b3IIIa-lacZ transgene was expressed in a subset of enteric neuroblasts during early development of the gut, and the expression was maintained in differentiated neurons of the myenteric plexus at later stages. The specificity of the b3IIIa enhancer in directing gene expression in the developing ENS was further supported by genetic analysis using the Dom mutant, a spontaneous mouse model of Hirschsprung's disease characterized by the absence of enteric ganglia in the distal gut. The colonization of lacZ-expressing cells in the large intestine was incomplete in all the Dom/b3IIIa-lacZ hybrid mutants we examined. To our knowledge, this is the only vagal neural crest-specific genetic regulatory element identified to date. This element could be used for a variety of genetic manipulations and in establishing transgenic mouse models for studying the development of the ENS.
Collapse
Affiliation(s)
- Kwok Keung Chan
- Department of Biochemistry, The University of Hong Kong, Faculty of Medicine Building, Pokfulam, Hong Kong SAR, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Saad RS, Essig DL, Silverman JF, Liu Y. Diagnostic utility of CDX-2 expression in separating metastatic gastrointestinal adenocarcinoma from other metastatic adenocarcinoma in fine-needle aspiration cytology using cell blocks. Cancer 2004; 102:168-73. [PMID: 15211476 DOI: 10.1002/cncr.20342] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND CDX-2 gene is a transcription factor that is involved in the proliferation and differentiation of intestinal epithelial cells. Recent studies have shown that CDX-2 could be used as an immunohistochemical marker to differentiate metastatic gastrointestinal adenocarcinoma from other metastatic adenocarcinomas in surgical pathology. The objective of the current study was to investigate the diagnostic value of CDX-2 to separate metastatic gastrointestinal adenocarcinoma from other metastatic adenocarcinomas in fine-needle aspiration cytology (FNAC). METHODS Sixty-two FNAC specimens of metastatic adenocarcinomas with corresponding cell blocks were retrieved from the hospital computer system. There were 22 specimens of metastatic gastrointestinal adenocarcinoma, 20 specimens of metastatic pulmonary adenocarcinoma, and 20 specimens of metastatic adenocarcinomas from other sites, including 10 from the breast, 3 from the ovaries, 4 from the pancreas, and 3 from the prostate. Radiology and histologic evaluation confirmed all cases. Sections were immunostained for CDX-2 and thyroid transcription factor-1 (TTF-1) using a heat-induced epitope retrieval technique. RESULTS In metastatic gastrointestinal adenocarcinoma, CDX-2 demonstrated positive nuclear staining in 19 of 22 specimens (86%). Other specimens of metastatic adenocarcinoma were negative for CDX-2. TTF-1 expression was detected in 0%, 80%, and 0% of metastatic gastrointestinal adenocarcinoma, pulmonary adenocarcinoma, and other adenocarcinoma specimens, respectively. CONCLUSIONS The results of the current study demonstrated that CDX-2 is a sensitive and a specific marker to separate metastatic gastrointestinal adenocarcinoma from other metastatic adenocarcinomas in FNAC specimens.
Collapse
Affiliation(s)
- Reda S Saad
- Department of Pathology, Allegheny General Hospital, Pittsburgh, Pennsylvania, USA.
| | | | | | | |
Collapse
|
26
|
Ratineau C, Duluc I, Pourreyron C, Kedinger M, Freund JN, Roche C. Endoderm- and mesenchyme-dependent commitment of the differentiated epithelial cell types in the developing intestine of rat. Differentiation 2003; 71:163-9. [PMID: 12641570 DOI: 10.1046/j.1432-0436.2003.t01-1-710203.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During organogenesis, the intestinal tract progressively acquires a functional regionalization along the antero-posterior axis. Positional information needed for enterocytes has been studied, but the mechanisms that control Paneth and endocrine cell differentiation are poorly understood. We have used a model of endoderm/mesenchyme cross-associations to evaluate the respective roles of endoderm and mesenchyme in the cytodifferentiation of these epithelial cells. Heterotopic cross-associations comprising endoderm and mesenchyme from the presumptive proximal jejunum and colon were developed as xenografts in nude mice. Our results show that endoderm from the presumptive proximal jejunum when associated with colonic mesenchyme generate small intestinal enterocytes. Interestingly, no lysozyme-producing cells were generated. On the other hand, associations comprising colon endoderm and jejunal mesenchyme showed heterodifferentiation with typical small intestinal morphology with sucrase-isomaltase expression and Paneth cell differentiation. Heterotopic associations developed enteroendocrine cell patterns according to the normal fate of the endodermal moiety. As enteroendocrine cell commitment seems to occur before the other intestinal cell types, we cannot exclude a role of instructive signals from the mesenchyme on endocrine cell differentiation earlier in the development. These results identified a complex pattern of cell commitment, dependent of the differentiation type of the epithelial cell, on the regional origin of the endoderm and the associated mesenchyme.
Collapse
Affiliation(s)
- Christelle Ratineau
- INSERM unit 45, Faculté Laennec, 7 rue Guillaume Paradin, 69372 Lyon cedex 8, France
| | | | | | | | | | | |
Collapse
|
27
|
Patterson AP, Chen Z, Rubin DC, Moucadel V, Iovanna JL, Brewer HB, Eggerman TL. Developmental regulation of apolipoprotein B mRNA editing is an autonomous function of small intestine involving homeobox gene Cdx1. J Biol Chem 2003; 278:7600-6. [PMID: 12493769 DOI: 10.1074/jbc.m201601200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Apolipoprotein B mRNA editing is developmentally regulated in the human and rodent small intestine, changing from <1% at day 14 to approximately 90% by day 20 in the rat fetus. This regulation is coincident with the developmental formation of the crypt-to-villus axis functional unit, a continuous and rapidly renewing system involving cell generation, migration, and differentiation. Utilizing small intestine isografts implanted into the subcutaneous tissue of adult recipients, apolipoprotein B mRNA editing was developmentally up-regulated, parallel to that seen with an intact control. In contrast, apoB mRNA expression remains nearly constant in the isograft, unlike the normal intact small intestine. Immunohistochemical analyses demonstrated that apoB-48 protein existed predominantly in well differentiated enterocytes along the villus surface whereas apoB-100 was in the lamina propria and crypts. ApoB mRNA editing levels were very low in the crypt-like rat intestinal cell line, IEC-6 ( approximately 0.3%), but very high in well differentiated enterocytes ( approximately 91.5%). The expression of homeobox gene Cdx1 increased 18-fold in small intestine in vivo during the same time course when apoB mRNA editing increased from approximately 2 to approximately 90%. The overexpression of Cdx1 in IEC-6 cells increased apoB mRNA editing over 10-fold compared with the vector control. This increase was associated with a significant increase of activating factor ACF, a component of the apoB mRNA editing complex. Taken together, these data suggest that the developmental regulation of apoB mRNA editing is an autonomous cytodifferentiation function of small intestine for which homeobox gene Cdx1 may play an important role.
Collapse
Affiliation(s)
- Amy P Patterson
- NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Cdx homeodomain proteins in vertebral patterning. MURINE HOMEOBOX GENE CONTROL OF EMBRYONIC PATTERNING AND ORGANOGENESIS 2003. [DOI: 10.1016/s1569-1799(03)13003-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
29
|
Moucadel V, Totaro MS, Dell CD, Soubeyran P, Dagorn JC, Freund JN, Iovanna JL. The homeobox gene Cdx1 belongs to the p53-p21(WAF)-Bcl-2 network in intestinal epithelial cells. Biochem Biophys Res Commun 2002; 297:607-15. [PMID: 12270138 DOI: 10.1016/s0006-291x(02)02250-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Because the Cdx1 homeobox gene stimulates proliferation and induces transformation and tumorigenesis, it has been investigated whether it is involved in the complex network comprising p53, p21(WAF), and Bcl-2 in intestinal epithelial cells. Non-transformed intestinal IEC-6 cells and colon adenocarcinoma SW480 cells were used to study the putative molecular relationship between Cdx1, p53, p21(WAF), and Bcl-2. Wild-type p53 inhibited the transcriptional activity of the Cdx1 promoter whereas the inactive mutant p53(mut22/23) had no effect. Induction of Cdx1 expression had no direct effect on p53 expression and activity. However, it inhibited the transcriptional activity of the p21(WAF) promoter through Cdx1 binding to the p21(WAF) TATA-box and increased the transcriptional activity of the Bcl-2 promoter P2 through a consensus Cdx-binding site. Finally, compared to control cells, Cdx1-overexpressing cells were more resistant to adriamycin-induced apoptosis, probably because they do not show concomitant decrease in endogenous Bcl-2 level. In conclusion, Cdx1 is a negatively regulated target of p53 in intestinal cells. Its regulation of p21(WAF) and Bcl-2 is opposite to that of p53 and is p53-independent. Cdx1 belongs to the regulatory networks of apoptosis, proliferation, and differentiation. These results emphasize the oncogenic potential of Cdx1.
Collapse
Affiliation(s)
- Virginie Moucadel
- Centre de Recherche INSERM, EMI 0116, 163 av de Luminy, 13009 Marseille, France
| | | | | | | | | | | | | |
Collapse
|
30
|
Kim S, Domon-Dell C, Wang Q, Chung DH, Di Cristofano A, Pandolfi PP, Freund JN, Evers BM. PTEN and TNF-alpha regulation of the intestinal-specific Cdx-2 homeobox gene through a PI3K, PKB/Akt, and NF-kappaB-dependent pathway. Gastroenterology 2002; 123:1163-78. [PMID: 12360479 DOI: 10.1053/gast.2002.36043] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS PTEN (phosphatase and tensin homologue deleted from chromosome 10) is a dual-specificity phosphatase implicated in embryonic development, intestinal cell proliferation and differentiation, and tumor suppression. The transcription factor Cdx-2 is critical in intestinal development and homeostasis, and its expression is altered in colorectal cancers. However, the regulation of the Cdx-2 gene has not been entirely elucidated. Here, we hypothesize that Cdx-2 may be a target of PTEN signaling in the intestine. METHODS The expression patterns for Cdx-2 and PTEN along wild-type mouse colon, as well as in colon tumors occurring in Pten(+/-) mice, were examined. The effect of PTEN or phosphatidylinositol 3-kinase inhibition and tumor necrosis factor alpha on Cdx-2 messenger RNA and protein expression, Cdx-2 DNA binding activity, and the promoter activity of the Cdx-2 gene was analyzed in human colon cancer cell lines. RESULTS Cdx-2 expression correlates with PTEN along the length of the murine colon and in colonic polyps that develop in Pten(+/-) mice. In colon cancer cells, PTEN stimulates Cdx-2 protein expression and the transcriptional activity of the Cdx-2 promoter. Phosphatidylinositol 3-kinase inhibition by wortmannin or by a dominant-negative phosphatidylinositol 3-kinase mimics the Cdx-2 stimulation by PTEN. Inversely, cell treatment by tumor necrosis factor alpha decreases Cdx-2 expression. Phosphatidylinositol 3-kinase inhibition by PTEN or wortmannin has an inverse effect compared with tumor necrosis factor alpha on the balance between the p50 and p65 subunits of nuclear factor kappaB. p65 inhibits the activity of the Cdx-2 promoter, whereas p50 prevents p65 action. CONCLUSIONS Our results suggest that the intestinal Cdx-2 homeobox gene is a target of PTEN/phosphatidylinositol 3-kinase signaling and tumor necrosis factor alpha signaling via nuclear factor kappaB-dependent pathways.
Collapse
Affiliation(s)
- Sunghoon Kim
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Yuasa H, Inada KI, Watanabe H, Tatematsu M. A Phenotypic Shift from Gastric-Intestinal to Solely Intestinal Cell Types in Intestinal Metaplasia in Rat Stomach Following Treatment with X-rays. J Toxicol Pathol 2002. [DOI: 10.1293/tox.15.85] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Hirofumi Yuasa
- Division of Oncological Pathology, Aichi Cancer Center Research Institute
- Safety Research Laboratory, Tanabe Seiyaku Co., Ltd
| | - Ken-ichi Inada
- Division of Oncological Pathology, Aichi Cancer Center Research Institute
| | - Hiromitsu Watanabe
- Department of Environment and Mutation, Research Institute for Radiation Biology and Medicine, Hiroshima University
| | - Masae Tatematsu
- Division of Oncological Pathology, Aichi Cancer Center Research Institute
| |
Collapse
|
32
|
Dang DT, Mahatan CS, Dang LH, Agboola IA, Yang VW. Expression of the gut-enriched Krüppel-like factor (Krüppel-like factor 4) gene in the human colon cancer cell line RKO is dependent on CDX2. Oncogene 2001; 20:4884-90. [PMID: 11521200 PMCID: PMC2268091 DOI: 10.1038/sj.onc.1204645] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2000] [Revised: 05/10/2001] [Accepted: 05/17/2001] [Indexed: 02/07/2023]
Abstract
Gut-enriched Krüppel-like factor (GKLF or KLF4) is a zinc finger-containing, epithelial-specific transcription factor, that functions as a suppressor of cell proliferation. We previously showed that GKLF expression is decreased in intestinal and colonic adenomas, respectively, from multiple intestinal neoplasia (Min) mice and familial adenomatous polyposis (FAP) patients. This study shows that GKLF is induced upon activation of the adenomatous polyposis coli (APC) gene. However, among several human colon cancer cell lines surveyed, expression of GKLF is lowest in RKO, a line with wild-type APC and beta-catenin. RKO contains a mutated allele that encodes the putative tumor suppressor homeodomain protein, CDX2. We show that wild-type CDX2 activates the GKLF promoter and that the mutated CDX2 has a dominant negative effect on wild-type function. Our results may help explain the exceedingly low levels of GKLF expression detected in this cell line, which may in turn contribute to the tumor phenotype.
Collapse
Affiliation(s)
- Duyen T Dang
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, MD 21205, USA
| | - Channing S Mahatan
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, MD 21205, USA
| | - Long H Dang
- The Oncology Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, MD 21205, USA
| | - Iyabode A Agboola
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, MD 21205, USA
| | - Vincent W Yang
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, MD 21205, USA
- The Oncology Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, MD 21205, USA
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, MD 21205, USA
- *Correspondence: VW Yang, The Johns Hopkins University School of Medicine, Division of Gastroenterology, 720 Rutland Avenue, Ross 918, Baltimore, MD 21205, USA; E-mail:
| |
Collapse
|
33
|
Soubeyran P, Haglund K, Garcia S, Barth BU, Iovanna J, Dikic I. Homeobox gene Cdx1 regulates Ras, Rho and PI3 kinase pathways leading to transformation and tumorigenesis of intestinal epithelial cells. Oncogene 2001; 20:4180-7. [PMID: 11464284 DOI: 10.1038/sj.onc.1204551] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2000] [Revised: 03/20/2001] [Accepted: 04/12/2001] [Indexed: 02/07/2023]
Abstract
The Cdx1 homeobox gene encodes for an intestine-specific transcription factor involved in the control of proliferation and differentiation of epithelial cells. Although it has been indicated that Cdx1 may act as a proto-oncogene in cultured fibroblasts, its direct role in the regulation of intestinal tumorigenesis has not been demonstrated. Here we show that expression of Cdx1 in an intestinal epithelial cell line (IEC-6) induces anchorage-independent growth in soft agar and promotes the formation of adenocarcinoma in vivo. The phenotype of Cdx1-induced tumors was exacerbated when IEC-6/Cdx1 cells were injected together with matrigel containing mitogens and extracellular matrix components. These changes were correlated with an increase in the GTP-bound form of Ras, modulation of Cdc42 and Rho-A activities, and accumulation of phosphatidyl inositol 3 (PI3) kinase products. Moreover, combined inhibition of Ras/Rho and PI3 kinase signaling by synthethic inhibitors blocked colony formation of IEC-6/Cdx1 cells in soft agar. Taken together, these results demonstrate a direct involvement of Cdx1, and its collaboration with Ras, Rho and PI3 kinase pathways, in transformation and tumorigenesis of intestinal epithelial cells.
Collapse
Affiliation(s)
- P Soubeyran
- U.315 INSERM, Laboratoire de Physiologie et Pathologie Digestives, 46 Boulevard de la Gaye, F 13009 Marseille, France
| | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Lickert H, Domon C, Huls G, Wehrle C, Duluc I, Clevers H, Meyer BI, Freund JN, Kemler R. Wnt/(beta)-catenin signaling regulates the expression of the homeobox gene Cdx1 in embryonic intestine. Development 2000; 127:3805-13. [PMID: 10934025 DOI: 10.1242/dev.127.17.3805] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During mammalian development, the Cdx1 homeobox gene exhibits an early period of expression when the embryonic body axis is established, and a later period where expression is restricted to the embryonic intestinal endoderm. Cdx1 expression is maintained throughout adulthood in the proliferative cell compartment of the continuously renewed intestinal epithelium, the crypts. In this study, we provide evidence in vitro and in vivo that Cdx1 is a direct transcriptional target of the Wnt/(beta)-catenin signaling pathway. Upon Wnt stimulation, expression of Cdx1 can be induced in mouse embryonic stem (ES) cells as well as in undifferentiated rat embryonic endoderm. Tcf4-deficient mouse embryos show abrogation of Cdx1 protein in the small intestinal epithelium, making Tcf4 the likely candidate to transduce Wnt signal in this part of gut. The promoter region of the Cdx1 gene contains several Tcf-binding motifs, and these bind Tcf/Lef1/(beta)-catenin complexes and mediate (beta)-catenin-dependent transactivation. The transcriptional regulation of the homeobox gene Cdx1 in the intestinal epithelium by Wnt/(beta)-catenin signaling underlines the importance of this signaling pathway in mammalian endoderm development.
Collapse
Affiliation(s)
- H Lickert
- Department of Molecular Embryology, Max-Planck Institute of Immunobiology, Stübeweg 51, D-79108 Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The gut of vertebrates exhibits a common anteroposterior regional differentiation. The role of homeobox genes in establishing this pattern is inferred by their sites of expression. It is suggested that the primary source of positional information is in the endoderm, which subsequently establishes a 'dialogue' with the surrounding visceral layer of the lateral plate mesoderm. This results in the anatomical and physiological specialization of the adult gut.
Collapse
Affiliation(s)
- F Beck
- Department of Biochemistry, University of Leicester, United Kingdom.
| | | | | |
Collapse
|
37
|
Traber PG. Transcriptional regulation in intestinal development. Implications for colorectal cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 470:1-14. [PMID: 10709669 DOI: 10.1007/978-1-4615-4149-3_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Deciphering the complex mechanisms of intestinal epithelial development will require multiple cell and molecular approaches in both in vitro and whole animal systems. Additionally, the use of model organisms such as D. melanogaster, C. elegans, and zebrafish will help describe paradigms that may be investigated in mammals as well as serve as test systems for findings from mammals. This manuscript reviewed only one approach to understanding intestinal development. However, the Cdx story and the information to be mined from an understanding of SI gene transcription is not at an end. As the other pieces of the transcriptional puzzle of the SI gene are assembled there will be new information to generate hypotheses on the relationship of transcriptional mechanisms to cancer pathogenesis.
Collapse
Affiliation(s)
- P G Traber
- Department of Medicine, University of Pennsylvania, Philadelphia 19104-4283, USA
| |
Collapse
|
38
|
Lynch J, Suh ER, Silberg DG, Rulyak S, Blanchard N, Traber PG. The caudal-related homeodomain protein Cdx1 inhibits proliferation of intestinal epithelial cells by down-regulation of D-type cyclins. J Biol Chem 2000; 275:4499-506. [PMID: 10660624 DOI: 10.1074/jbc.275.6.4499] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cdx1 is a homeodomain transcription factor that regulates intestine-specific gene expression. Experimental evidence suggests that Cdx1 may be involved in cell cycle regulation, but its role is ill defined and the mechanisms have not been explored. We used stable transfection of inducible constructs and transient expression with a replication-deficient adenovirus to induce Cdx1 expression in rat IEC6 cells, a non-transformed intestinal epithelial cell line that does not express Cdx1 protein. Expression of Cdx1 markedly reduced proliferation of IEC6 cells with accumulation of cells in the G(0)/G(1) phase of the cell cycle. Cell cycle arrest was accompanied by an increase in the hypophosphorylated forms of the retinoblastoma protein (pRb) and the pRb-related p130 protein. Protein levels of multiple cyclin-dependent kinase inhibitors were either unchanged (p16, p18, p21, p27, and p57) or were not detected (p15 and p19). Most significantly, levels of cyclins D1 and D2 were markedly diminished with Cdx1 expression, but not cyclins D3, E, or the G(1) kinases. Additionally, cyclin-dependent kinase-4 activity was decreased in association with decreased cyclin D protein. We conclude that Cdx1 regulates intestinal epithelial cell proliferation by inhibiting progression through G(0)/G(1), most likely via modulation of cyclin D1 and D2 protein levels.
Collapse
Affiliation(s)
- J Lynch
- Division of Gastroenterology, Department of Medicine and Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
39
|
Pitera JE, Smith VV, Thorogood P, Milla PJ. Coordinated expression of 3' hox genes during murine embryonal gut development: an enteric Hox code. Gastroenterology 1999; 117:1339-51. [PMID: 10579975 DOI: 10.1016/s0016-5085(99)70284-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Hox genes are highly conserved developmental control genes that may be organized and expressed in the form of a code required for correct morphogenesis. Little is known about their control of the embryonal gut. However, Hox paralogues 4 and 5, which are expressed at the sites of origin of vagal neural crest cells and splanchnic mesoderm, are likely to be important. We have studied the expression domains of these genes in the gut both spatially and temporally. METHODS CD1 mice embryos of embryonic days E8.5-E17.5 were studied. The spatial and temporal expression patterns of messenger RNA of Hoxa4, b4, c4, d4, a5, c5, and b5 homeoprotein were determined by in situ hybridization and immunohistochemistry in whole embryos, whole gastrointestinal tracts, and vibratome sections. RESULTS There were different spatial, temporal, and combinatorial expression patterns in different morphological regions: foregut, prececal gut, cecum, and postcecal gut. Two dynamic gradients, rostral and caudal, were coordinated with nested expression domains along the gut primordium. Region-specific domains were present in the stomach and cecum. CONCLUSIONS The expression patterns of genes in paralogous groups 4 and 5 suggest that they are organized to form a specific enteric Hox code required for correct enteric development.
Collapse
Affiliation(s)
- J E Pitera
- Gastroenterology Unit, Institute of Child Health, University College London, London, England.
| | | | | | | |
Collapse
|
40
|
Aubin J, Chailler P, Ménard D, Jeannotte L. Loss of Hoxa5 gene function in mice perturbs intestinal maturation. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:C965-73. [PMID: 10564089 DOI: 10.1152/ajpcell.1999.277.5.c965] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Hox gene family of transcription factors constitutes candidate regulators in the molecular cascade of events that governs establishment of normal terminal differentiation along the duodenum to colon axis. One member of this family, Hoxa5, displays a dynamic pattern of expression during gut development. Hoxa5 transcripts are present in midgut mesenchyme at the time of remodeling, supporting a role for this gene in digestive tract specification. To study the role of Hoxa5 in proper intestinal development and maturation, we examined whether Hoxa5 mutant mice exhibit any defect in this process. We report here that even though Hoxa5 is not required for midgut morphogenesis, its loss of function perturbs the acquisition of adult mode of digestion, which normally is temporally coordinated with the process of spontaneous weaning. Impaired maturation of the digestive tract might be related to altered specification of intestinal epithelial cells. Our findings provide evidence that Hoxa5 expression in the gut mesoderm is important for the region-specific differentiation of the adjacent endoderm.
Collapse
Affiliation(s)
- J Aubin
- Centre de Recherche en Cancérologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, Pavillon de L'Hôtel-Dieu de Québec, Québec G1R 2J6, Canada J1H 5N4
| | | | | | | |
Collapse
|
41
|
Slorach EM, Campbell FC, Dorin JR. A mouse model of intestinal stem cell function and regeneration. J Cell Sci 1999; 112 Pt 18:3029-38. [PMID: 10462519 DOI: 10.1242/jcs.112.18.3029] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We present here an in vivo mouse model for intestinal stem cell function and differentiation that uses postnatal intestinal epithelial cell aggregates to generate a differentiated murine small intestinal mucosa with full crypt-villus architecture. The process of neomucosal formation is highly similar to that of intestinal regeneration. Both in vivo grafting and primary culture of these cells reveal two different epithelial cell populations, which display properties consistent with intestinal epithelial transit amplifying and stem cell populations. Using this model system with a mixture of wild-type and transgene marked cells, we have shown that neomucosae originally develop from single aggregates, but that over time the mucosae fuse to form chimaeric mucosae. Despite fusion, the chimaeric mucosae maintain crypt clonality and villus polyclonality, demonstrating that clonal segregation persists during intestinal epithelial regeneration.
Collapse
Affiliation(s)
- E M Slorach
- Molecular Genetics Section, MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK. . uk
| | | | | |
Collapse
|
42
|
Freund JN, Domon-Dell C, Kedinger M, Duluc I. The Cdx-1 and Cdx-2 homeobox genes in the intestine. Biochem Cell Biol 1999; 76:957-69. [PMID: 10392709 DOI: 10.1139/o99-001] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The past years have witnessed an increasing number of reports relative to homeobox genes in endoderm-derived tissues. In this review, we focus on the caudal-related Cdx-1 and Cdx-2 homeobox genes to give an overview of the in vivo, in vitro, and ex vivo approaches that emphasize their primary role in intestinal development and in the control of intestinal cell proliferation, differentiation, and identity. The participation of these genes in colon tumorigenesis and their identification as important actors of the oncogenic process are also discussed.
Collapse
Affiliation(s)
- J N Freund
- Institut National de la Santé et de la Recherche Médicale, Unité 381, Strasbourg, France.
| | | | | | | |
Collapse
|
43
|
Abstract
Homeobox-containing genes are a family of regulatory genes encoding transcription factors that primarily play a crucial role during development. Several indications suggest their involvement in the control of cell growth and, when dysregulated, in oncogenesis. We will describe the implications, in tumor origin and evolution, of members of the homeobox gene families HOX, EMX, PAX, and MSX as well as of other divergent homeobox genes. We will also propose a model for the function of the HOX gene network in controlling cell identity to account for the involvement of some HOX genes in both normal development and oncogenesis.
Collapse
Affiliation(s)
- C Cillo
- Department of Clinical and Experimental Medicine, Federico II University Medical School, Via S. Pansini 5, Naples, 80131, Italy
| | | | | | | |
Collapse
|
44
|
Lorentz O, Suh ER, Taylor JK, Boudreau F, Traber PG. CREB-binding [corrected] protein interacts with the homeodomain protein Cdx2 and enhances transcriptional activity. J Biol Chem 1999; 274:7196-9. [PMID: 10066780 DOI: 10.1074/jbc.274.11.7196] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cdx2 encodes for a homeodomain protein that is expressed in intestinal epithelial cells. The Cdx2 protein triggers intestinal differentiation in cell lines and is necessary for maintenance of the intestinal phenotype in mice. CBP (cAMP response element-binding protein) is a transcriptional co-activator that interacts with many transcription factors and components of the basal transcriptional machinery. In this study, we demonstrate that CBP is markedly induced upon differentiation of the Caco-2 intestinal cell line and augments Cdx2-dependent transcriptional activity. Cdx2 interacts with the amino-terminal domain of CBP, and the two proteins coexist in vivo within the same nuclear protein complex. Moreover, expression of the CBP domain that interacts with Cdx2 acts as a dominant-negative inhibitor of transcriptional activation by Cdx2. These findings demonstrate a direct interaction between an intestinal homeodomain protein and CBP and suggest that CBP participates in the network of transcriptional proteins that direct intestinal differentiation.
Collapse
Affiliation(s)
- O Lorentz
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
45
|
Lorentz O, Cadoret A, Duluc I, Capeau J, Gespach C, Cherqui G, Freund JN. Downregulation of the colon tumour-suppressor homeobox gene Cdx-2 by oncogenic ras. Oncogene 1999; 18:87-92. [PMID: 9926923 DOI: 10.1038/sj.onc.1202280] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Downregulation of the colon tumour-suppressor homeobox gene Cdx-2 by oncogenic ras Constitutive activation of the ras proto-oncogene is a frequent and early event in colon cancers, but the downstream nuclear targets are not fully understood. The Cdx-1 and Cdx-2 homeobox genes play crucial roles in intestinal cell proliferation and differentiation. In addition, Cdx-2 is a colonic tumour-suppressor gene, whereas Cdx-1 has oncogenic potential. Here, we show that constitutive activation of ras alters Cdx-1 and Cdx-2 expression in human colonic Caco-2 and HT-29 cells that harbour a normal ras proto-oncogene. Oncogenic ras downregulates Cdx-2 through activation of the PKC pathway and a decline in activity of the Cdx-2 promoter AP-1 site. This decline results from a PKC-dependent decrease in the relative expression of c-Jun, an activator of Cdx-2 transcription, compared to c-Fos, an inhibitor of Cdx-2. Unlike Cdx-2, Cdx-1 is upregulated by oncogenic ras and this effect is mediated by activation of the MEK1 pathway. These results indicate that oncogenic ras activation has opposite effects on Cdx-1 and Cdx-2 expression through distinct signalling pathways and they provide the first evidence for a functional link between ras activation and the downregulation of the Cdx-2 tumour-suppressor gene in colon cancer cells.
Collapse
Affiliation(s)
- O Lorentz
- INSERM Unité 381, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
46
|
Schroeder DF, McGhee JD. Anterior-posterior patterning within the Caenorhabditis elegans endoderm. Development 1998; 125:4877-87. [PMID: 9811572 DOI: 10.1242/dev.125.24.4877] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The endoderm of higher organisms is extensively patterned along the anterior/posterior axis. Although the endoderm (gut or E lineage) of the nematode Caenorhabditis elegans appears to be a simple uniform tube, cells in the anterior gut show several molecular and anatomical differences from cells in the posterior gut. In particular, the gut esterase ges-1 gene, which is normally expressed in all cells of the endoderm, is expressed only in the anterior-most gut cells when certain sequences in the ges-1 promoter are deleted. Using such a deleted ges-1 transgene as a biochemical marker of differentiation, we have investigated the basis of anterior-posterior gut patterning in C. elegans. Although homeotic genes are involved in endoderm patterning in other organisms, we show that anterior gut markers are expressed normally in C. elegans embryos lacking genes of the homeotic cluster. Although signalling from the mesoderm is involved in endoderm patterning in other organisms, we show that ablation of all non-gut blastomeres from the C. elegans embryo does not affect anterior gut marker expression; furthermore, ectopic guts produced by genetic transformation express anterior gut markers generally in the expected location and in the expected number of cells. We conclude that anterior gut fate requires no specific cell-cell contact but rather is produced autonomously within the E lineage. Cytochalasin D blocking experiments fully support this conclusion. Finally, the HMG protein POP-1, a downstream component of the Wnt signalling pathway, has recently been shown to be important in many anterior/posterior fate decisions during C. elegans embryogenesis (Lin, R., Hill, R. J. and Priess, J. R. (1998) Cell 92, 229–239). When RNA-mediated interference is used to eliminate pop-1 function from the embryo, gut is still produced but anterior gut marker expression is abolished. We suggest that the C. elegans endoderm is patterned by elements of the Wnt/pop-1 signalling pathway acting autonomously within the E lineage.
Collapse
Affiliation(s)
- D F Schroeder
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, CANADA T2N 4N1
| | | |
Collapse
|
47
|
Kedinger M, Duluc I, Fritsch C, Lorentz O, Plateroti M, Freund JN. Intestinal epithelial-mesenchymal cell interactions. Ann N Y Acad Sci 1998; 859:1-17. [PMID: 9928366 DOI: 10.1111/j.1749-6632.1998.tb11107.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intestinal morphogenesis, as well as maintenance of the stem cell population and of the steady state between cell proliferation and differentiation, results from controlled cell interactions. There is growing evidence that the mesenchymal cells control epithelial cell behavior via their own expression and induction in the epithelial cells of key regulatory genes. This heterologous cross talk involves basement membrane molecules and paracrine factors. New in vitro/in vivo cellular models allowed us to analyze various mesenchymal cell phenotypes and to show that they exhibit different inductive properties on epithelial cells and that their proliferation and metabolic properties are differentially modulated by cytokines. Finally the epithelial-mesenchymal unit is controlled by hormonal and exogenous factors.
Collapse
Affiliation(s)
- M Kedinger
- INSERM, Unit 381 Ontogenesis and Pathology of the Gut, Strasbourg, France.
| | | | | | | | | | | |
Collapse
|
48
|
Kedinger M, Lefebvre O, Duluc I, Freund JN, Simon-Assmann P. Cellular and molecular partners involved in gut morphogenesis and differentiation. Philos Trans R Soc Lond B Biol Sci 1998; 353:847-56. [PMID: 9684282 PMCID: PMC1692284 DOI: 10.1098/rstb.1998.0249] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The intestinal mucosa represents an interesting model to study the cellular and molecular basis of epithelial-mesenchymal cross-talk participating in the development and maintenance of the digestive function. This cross-talk involves extracellular matrix molecules, cell-cell and cell-matrix adhesion molecules as well as paracrine factors and their receptors. The cellular and molecular unit is additionally regulated by hormonal, immune and neural inputs. Such integrated cell interactions are involved in pattern formation, in proximodistal regionalization, in maintenance of a gradient of epithelial proliferation and differentiation, and in epithelial cell migration. We focus predominantly on two aspects of these integrated interactions in this paper: (i) the role of basement membrane molecules, namely laminins, in the developmental and spatial epithelial behaviour; and (ii) the importance of the mesenchymal cell compartment in these processes.
Collapse
Affiliation(s)
- M Kedinger
- INSERM Unit 381, Development and Pathology of the Digestive Tract, Strasbourg, France.
| | | | | | | | | |
Collapse
|
49
|
Plateroti M, Rubin DC, Duluc I, Singh R, Foltzer-Jourdainne C, Freund JN, Kedinger M. Subepithelial fibroblast cell lines from different levels of gut axis display regional characteristics. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:G945-54. [PMID: 9612277 DOI: 10.1152/ajpgi.1998.274.5.g945] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The intestine is characterized by morphofunctional differences along the proximodistal axis. The aim of this study was to derive mesenchymal cell lines representative of the gut axis. We isolated and cloned rat intestinal subepithelial myofibroblasts raised from 8-day proximal jejunum, distal ileum, and proximal colon lamina propria. Two clonal cell lines from each level of the gut were characterized. They 1) express the specific markers vimentin, smooth muscle alpha-actin, and smooth muscle myosin heavy chain, revealed by immunofluorescence microscopy and 2) distinctly support endodermal cell growth in a coculture model, depending on their regional origin, and 3) the clones raised from the various proximodistal regions maintain the same pattern of morphogenetic and growth and/or differentiation factor gene expression as in vivo: hepatocyte growth and/or scatter factor and transforming growth factor-beta 1 mRNAs analyzed by RT-PCR were more abundant, in the colon and ileal clones and mucosal connective tissue, respectively. In addition, epimorphin mRNA studied by Northern blot was also the highest in one ileal clone, in which it was selectively upregulated by all-trans retinoic acid (RA) treatment. Epimorphin expression in isolated 8-day intestinal lamina propria was higher in the distal small intestine and proximal colon than in the proximal small intestine. In conclusion, we isolated and characterized homogeneous cell subtypes that can now be used to approach the molecular regulation of the epithelium-mesenchyme-dependent regional specificity along the gut.
Collapse
Affiliation(s)
- M Plateroti
- Institut National de la Santé et de la Recherche Médicale Unité 381, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
50
|
Lorentz O, Duluc I, Arcangelis AD, Simon-Assmann P, Kedinger M, Freund JN. Key role of the Cdx2 homeobox gene in extracellular matrix-mediated intestinal cell differentiation. J Biophys Biochem Cytol 1997; 139:1553-65. [PMID: 9396760 PMCID: PMC2132620 DOI: 10.1083/jcb.139.6.1553] [Citation(s) in RCA: 217] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To explore the role of homeobox genes in the intestine, the human colon adenocarcinoma cell line Caco2-TC7 has been stably transfected with plasmids synthesizing Cdx1 and Cdx2 sense and antisense RNAs. Cdx1 overexpression or inhibition by antisense RNA does not markedly modify the cell differentiation markers analyzed in this study. In contrast, Cdx2 overexpression stimulates two typical markers of enterocytic differentiation: sucrase-isomaltase and lactase. Cells in which the endogenous expression of Cdx2 is reduced by antisense RNA attach poorly to the substratum. Conversely, Cdx2 overexpression modifies the expression of molecules involved in cell-cell and cell-substratum interactions and in transduction process: indeed, E-cadherin, integrin-beta4 subunit, laminin-gamma2 chain, hemidesmosomal protein, APC, and alpha-actinin are upregulated. Interestingly, most of these molecules are preferentially expressed in vivo in the differentiated villi enterocytes rather than in crypt cells. Cdx2 overexpression also results in the stimulation of HoxA-9 mRNA expression, an homeobox gene selectively expressed in the colon. In contrast, Cdx2-overexpressing cells display a decline of Cdx1 mRNA, which is mostly found in vivo in crypt cells. When implanted in nude mice, Cdx2-overexpressing cells produce larger tumors than control cells, and form glandular and villus-like structures. Laminin-1 is known to stimulate intestinal cell differentiation in vitro. In the present study, we demonstrate that the differentiating effect of laminin-1 coatings on Caco2-TC7 cells is accompanied by an upregulation of Cdx2. To further document this observation, we analyzed a series of Caco2 clones in which the production of laminin-alpha1 chain is differentially inhibited by antisense RNA. We found a positive correlation between the level of Cdx2 expression, that of endogenous laminin-alpha1 chain mRNA and that of sucrase-isomaltase expression in these cell lines. Taken together, these results suggest (a) that Cdx1 and Cdx2 homeobox genes play distinct roles in the intestinal epithelium, (b) that Cdx2 provokes pleiotropic effects triggering cells towards the phenotype of differentiated villus enterocytes, and (c) that Cdx2 expression is modulated by basement membrane components. Hence, we conclude that Cdx2 plays a key role in the extracellular matrix-mediated intestinal cell differentiation.
Collapse
Affiliation(s)
- O Lorentz
- Institut National de la Santé et de la Recherche Médicale, Unité 381, 67200 Strasbourg, France
| | | | | | | | | | | |
Collapse
|