1
|
Moens TG, Da Cruz S, Neumann M, Shelkovnikova TA, Shneider NA, Van Den Bosch L. Amyotrophic lateral sclerosis caused by FUS mutations: advances with broad implications. Lancet Neurol 2025; 24:166-178. [PMID: 39862884 DOI: 10.1016/s1474-4422(24)00517-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/25/2024] [Accepted: 12/11/2024] [Indexed: 01/27/2025]
Abstract
Autosomal dominant mutations in the gene encoding the DNA and RNA binding protein FUS are a cause of amyotrophic lateral sclerosis (ALS), and about 0·3-0·9% of patients with ALS are FUS mutation carriers. FUS-mutation-associated ALS (FUS-ALS) is characterised by early onset and rapid progression, compared with other forms of ALS. However, different pathogenic mutations in FUS can result in markedly different age at symptom onset and rate of disease progression. Most FUS mutations disrupt its nuclear localisation, leading to its cytoplasmic accumulation in the CNS. FUS also forms inclusions in around 5% of patients with the related neurodegenerative condition frontotemporal dementia. However, there are key differences between the two diseases at the genetic and neuropathological level, which suggest distinct pathogenic processes. Experimental models have uncovered potential pathogenic mechanisms in FUS-ALS and informed therapeutic strategies that are currently in development, including the silencing of FUS expression using an intrathecally administered antisense oligonucleotide.
Collapse
Affiliation(s)
- Thomas G Moens
- Department of Neurosciences, and Leuven Brain Institute, University of Leuven, Leuven, Belgium; Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, Leuven, Belgium; CRUK Scotland Institute, Glasgow, UK
| | - Sandrine Da Cruz
- Department of Neurosciences, and Leuven Brain Institute, University of Leuven, Leuven, Belgium; Laboratory of Neurophysiology in Neurodegenerative Disorders, Center for Brain & Disease Research, VIB, Leuven, Belgium
| | - Manuela Neumann
- German Center for Neurodegenerative Diseases, Tübingen, Germany; Department of Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Tatyana A Shelkovnikova
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute (SITraN), University of Sheffield, Sheffield, UK
| | - Neil A Shneider
- Department of Neurology, Center for Motor Neuron Biology and Disease and Eleanor and Lou Gehrig ALS Center, Columbia University, New York, NY, USA
| | - Ludo Van Den Bosch
- Department of Neurosciences, and Leuven Brain Institute, University of Leuven, Leuven, Belgium; Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, Leuven, Belgium.
| |
Collapse
|
2
|
Akaree N, Secco V, Levy-Adam F, Younis A, Carra S, Shalgi R. Regulation of physiological and pathological condensates by molecular chaperones. FEBS J 2025. [PMID: 39756021 DOI: 10.1111/febs.17390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/17/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
Biomolecular condensates are dynamic membraneless compartments that regulate a myriad of cellular functions. A particular type of physiological condensate called stress granules (SGs) has gained increasing interest due to its role in the cellular stress response and various diseases. SGs, composed of several hundred RNA-binding proteins, form transiently in response to stress to protect mRNAs from translation and disassemble when the stress subsides. Interestingly, SGs contain several aggregation-prone proteins, such as TDP-43, FUS, hnRNPA1, and others, which are typically found in pathological inclusions seen in autopsy tissues from amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) patients. Moreover, mutations in these genes lead to the familial form of ALS and FTD. This has led researchers to propose that pathological aggregation is seeded by aberrant SGs: SGs that fail to properly disassemble, lose their dynamic properties, and become pathological condensates which finally 'mature' into aggregates. Here, we discuss the evidence supporting this model for various ALS/FTD-associated proteins. We further continue to focus on molecular chaperone-mediated regulation of ALS/FTD-associated physiological condensates on one hand, and pathological condensates on the other. In addition to SGs, we review ALS/FTD-relevant nuclear condensates, namely paraspeckles, anisosomes, and nucleolar amyloid bodies, and discuss their emerging regulation by chaperones. As the majority of chaperoning mechanisms regulate physiological condensate disassembly, we highlight parallel themes of physiological and pathological condensation regulation across different chaperone families, underscoring the potential for early disease intervention.
Collapse
Affiliation(s)
- Nadeen Akaree
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Valentina Secco
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy
| | - Flonia Levy-Adam
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Amal Younis
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy
| | - Reut Shalgi
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
3
|
Kaul M, Mukherjee D, Weiner HL, Cox LM. Gut microbiota immune cross-talk in amyotrophic lateral sclerosis. Neurotherapeutics 2024; 21:e00469. [PMID: 39510899 PMCID: PMC11585889 DOI: 10.1016/j.neurot.2024.e00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/18/2024] [Accepted: 10/04/2024] [Indexed: 11/15/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by the loss of motor neurons. While there has been significant progress in defining the genetic contributions to ALS, greater than 90 % of cases are sporadic, which suggests an environmental component. The gut microbiota is altered in ALS and is an ecological factor that contributes to disease by modulating immunologic, metabolic, and neuronal signaling. Depleting the microbiome worsens disease in the SOD1 ALS animal model, while it ameliorates disease in the C9orf72 model of ALS, indicating critical subtype-specific interactions. Furthermore, administering beneficial microbiota or microbial metabolites can slow disease progression in animal models. This review discusses the current state of microbiome research in ALS, including interactions with different ALS subtypes, evidence in animal models and human studies, key immunologic and metabolomic mediators, and a path toward microbiome-based therapies for ALS.
Collapse
Affiliation(s)
- Megha Kaul
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, 02115, USA
| | - Debanjan Mukherjee
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, 02115, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, 02115, USA.
| | - Laura M Cox
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
4
|
Moreira-Gomes T, Nóbrega C. From the disruption of RNA metabolism to the targeting of RNA-binding proteins: The case of polyglutamine spinocerebellar ataxias. J Neurochem 2024; 168:1442-1459. [PMID: 37990934 DOI: 10.1111/jnc.16010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/04/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023]
Abstract
Polyglutamine spinocerebellar ataxias (PolyQ SCAs) represent a group of monogenetic diseases in which the expanded polyglutamine repeats give rise to a mutated protein. The abnormally expanded polyglutamine protein produces aggregates and toxic species, causing neuronal dysfunction and neuronal death. The main symptoms of these disorders include progressive ataxia, motor dysfunction, oculomotor impairment, and swallowing problems. Nowadays, the current treatments are restricted to symptomatic alleviation, and no existing therapeutic strategies can reduce or stop the disease progression. Even though the origin of these disorders has been associated with polyglutamine-induced toxicity, RNA toxicity has recently gained relevance in polyQ SCAs molecular pathogenesis. Therefore, the research's focus on RNA metabolism has been increasing, especially on RNA-binding proteins (RBPs). The present review summarizes RNA metabolism, exposing the different processes and the main RBPs involved. We also explore the mechanisms by which RBPs are dysregulated in PolyQ SCAs. Finally, possible therapies targeting the RNA metabolism are presented as strategies to reverse neuropathological anomalies and mitigate physical symptoms.
Collapse
Affiliation(s)
- Tiago Moreira-Gomes
- ABC-RI, Algarve Biomedical Center Research Institute, Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
- Doctoral Program in Biomedical Sciences, Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
| | - Clévio Nóbrega
- ABC-RI, Algarve Biomedical Center Research Institute, Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
| |
Collapse
|
5
|
Fakim H, Vande Velde C. The implications of physiological biomolecular condensates in amyotrophic lateral sclerosis. Semin Cell Dev Biol 2024; 156:176-189. [PMID: 37268555 DOI: 10.1016/j.semcdb.2023.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/04/2023]
Abstract
In recent years, there has been an emphasis on the role of phase-separated biomolecular condensates, especially stress granules, in neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). This is largely due to several ALS-associated mutations occurring in genes involved in stress granule assembly and observations that pathological inclusions detected in ALS patient neurons contain stress granule proteins, including the ALS-linked proteins TDP-43 and FUS. However, protein components of stress granules are also found in numerous other phase-separated biomolecular condensates under physiological conditions which are inadequately discussed in the context of ALS. In this review, we look beyond stress granules and describe the roles of TDP-43 and FUS in physiological condensates occurring in the nucleus and neurites, such as the nucleolus, Cajal bodies, paraspeckles and neuronal RNA transport granules. We also discuss the consequences of ALS-linked mutations in TDP-43 and FUS on their ability to phase separate into these stress-independent biomolecular condensates and perform their respective functions. Importantly, biomolecular condensates sequester multiple overlapping protein and RNA components, and their dysregulation could contribute to the observed pleiotropic effects of both sporadic and familial ALS on RNA metabolism.
Collapse
Affiliation(s)
- Hana Fakim
- Department of Neurosciences, Université de Montréal, and CHUM Research Center, Montréal, QC, Canada
| | - Christine Vande Velde
- Department of Neurosciences, Université de Montréal, and CHUM Research Center, Montréal, QC, Canada.
| |
Collapse
|
6
|
Rezvykh A, Shteinberg D, Bronovitsky E, Ustyugov A, Funikov S. Animal Models of FUS-Proteinopathy: A Systematic Review. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S34-S56. [PMID: 38621743 DOI: 10.1134/s0006297924140037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 04/17/2024]
Abstract
Mutations that disrupt the function of the DNA/RNA-binding protein FUS could cause amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. One of the key features in ALS pathogenesis is the formation of insoluble protein aggregates containing aberrant isoforms of the FUS protein in the cytoplasm of upper and lower motor neurons. Reproduction of human pathology in animal models is the main tool for studying FUS-associated pathology and searching for potential therapeutic agents for ALS treatment. In this review, we provide a systematic analysis of the role of FUS protein in ALS pathogenesis and an overview of the results of modelling FUS-proteinopathy in animals.
Collapse
Affiliation(s)
- Alexander Rezvykh
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Daniil Shteinberg
- Institute of Physiologically Active Compounds, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | | | - Aleksey Ustyugov
- Institute of Physiologically Active Compounds, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | - Sergei Funikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
7
|
Kour S, Fortuna T, Anderson EN, Mawrie D, Bilstein J, Sivasubramanian R, Ward C, Roy R, Rajasundaram D, Sterneckert J, Pandey UB. Drosha-dependent microRNAs modulate FUS-mediated neurodegeneration in vivo. Nucleic Acids Res 2023; 51:11258-11276. [PMID: 37791873 PMCID: PMC10639082 DOI: 10.1093/nar/gkad774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/03/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023] Open
Abstract
Mutations in the Fused in Sarcoma (FUS) gene cause the familial and progressive form of amyotrophic lateral sclerosis (ALS). FUS is a nuclear RNA-binding protein involved in RNA processing and the biogenesis of a specific set of microRNAs. Here we report that Drosha and two previously uncharacterized Drosha-dependent miRNAs are strong modulators of FUS expression and prevent the cytoplasmic segregation of insoluble mutant FUS in vivo. We demonstrate that depletion of Drosha mitigates FUS-mediated degeneration, survival and motor defects in Drosophila. Mutant FUS strongly interacts with Drosha and causes its cytoplasmic mis-localization into the insoluble FUS inclusions. Reduction in Drosha levels increases the solubility of mutant FUS. Interestingly, we found two Drosha dependent microRNAs, miR-378i and miR-6832-5p, which differentially regulate the expression, solubility and cytoplasmic aggregation of mutant FUS in iPSC neurons and mammalian cells. More importantly, we report different modes of action of these miRNAs against mutant FUS. Whereas miR-378i may regulate mutant FUS inclusions by preventing G3BP-mediated stress granule formation, miR-6832-5p may affect FUS expression via other proteins or pathways. Overall, our research reveals a possible association between ALS-linked FUS mutations and the Drosha-dependent miRNA regulatory circuit, as well as a useful perspective on potential ALS treatment via microRNAs.
Collapse
Affiliation(s)
- Sukhleen Kour
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Tyler Fortuna
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Eric N Anderson
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Darilang Mawrie
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Jessica Bilstein
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, 01307, Germany
| | - Ramakrishnan Sivasubramanian
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, 01307, Germany
| | - Caroline Ward
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Rishit Roy
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Division of Health Informatics, Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Jared Sterneckert
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, 01307, Germany
- Medical Faculty Carl Gustav Carus of TU Dresden, Dresden, 01307, Germany
| | - Udai Bhan Pandey
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
- Children's Neuroscience Institute, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| |
Collapse
|
8
|
Elmansy MF, Reidl CT, Rahaman M, Özdinler PH, Silverman RB. Small molecules targeting different cellular pathologies for the treatment of amyotrophic lateral sclerosis. Med Res Rev 2023; 43:2260-2302. [PMID: 37243319 PMCID: PMC10592673 DOI: 10.1002/med.21974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 02/28/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease in which the motor neuron circuitry displays progressive degeneration, affecting mostly the motor neurons in the brain and in the spinal cord. There are no effective cures, albeit three drugs, riluzole, edaravone, and AMX0035 (a combination of sodium phenylbutyrate and taurursodiol), have been approved by the Food and Drug Administration, with limited improvement in patients. There is an urgent need to build better and more effective treatment strategies for ALS. Since the disease is very heterogenous, numerous approaches have been explored, such as targeting genetic mutations, decreasing oxidative stress and excitotoxicity, enhancing mitochondrial function and protein degradation mechanisms, and inhibiting neuroinflammation. In addition, various chemical libraries or previously identified drugs have been screened for potential repurposing in the treatment of ALS. Here, we review previous drug discovery efforts targeting a variety of cellular pathologies that occur from genetic mutations that cause ALS, such as mutations in SOD1, C9orf72, FUS, and TARDP-43 genes. These mutations result in protein aggregation, which causes neuronal degeneration. Compounds used to target cellular pathologies that stem from these mutations are discussed and comparisons among different preclinical models are presented. Because the drug discovery landscape for ALS and other motor neuron diseases is changing rapidly, we also offer recommendations for a novel, more effective, direction in ALS drug discovery that could accelerate translation of effective compounds from animals to patients.
Collapse
Affiliation(s)
- Mohamed F. Elmansy
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois, USA
- Department of Organometallic and Organometalloid Chemistry, National Research Centre, Cairo, Egypt
| | - Cory T. Reidl
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois, USA
| | - Mizzanoor Rahaman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois, USA
| | - P. Hande Özdinler
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Richard B. Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
9
|
Yang W, Chen X, Zhou Y, Tang X, Sun Y, Dong Y, Yang H, Chen Y, Zhang M. Investigation of a Fused in Sarcoma Splicing Mutation in a Chinese Amyotrophic Lateral Sclerosis Patient. Can J Neurol Sci 2023; 50:891-896. [PMID: 36511129 DOI: 10.1017/cjn.2022.336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Genetic mutations of fused in sarcoma (FUS) causing amyotrophic lateral sclerosis (ALS) may disrupt mRNA splicing events. For example, the FUS c.1394-2delA variant was reported in two western ALS patients, but its molecular mechanism is unclear. In this study, we aim to investigate FUS splice site mutations in Chinese ALS patients. METHODS Sanger sequencing was used to identify FUS splicing mutations in Chinese ALS patients. We combined a deep learning tool (SpliceAI), RNA sequencing, and RT-PCR/RT-qPCR to analyze the effect of FUS c.1394-2delA mutation on RNA splicing and expression. AlphaFold was used to predict the protein structure of mutant FUS. In transfected cell lines, we used immunofluorescence to assess cytoplasmic mislocalization of mutant FUS protein. RESULTS We identified a de novo FUS splice acceptor site mutation (c.1394-2delA, p. Gly466Valfs*14) in one Chinese sporadic ALS patient, which is linked to exon 14 skipping, and upregulated total FUS mRNA expression. The FUS splice site mutation was predicted to be translated into a truncated protein product at C-terminal. In vitro studies revealed that the FUS mutation increased cytoplasmic mislocalization in both HEK293T and SH-SY5Y cells. CONCLUSIONS We identified a de novo FUS splicing mutation (c.1394-2delA, p. Gly466Valfs*14) in 1 out of 233 Chinese ALS patients. It caused abnormal RNA splicing, upregulated gene expression, truncated FUS translation, and cytosolic mislocalization. Our findings suggested that FUS splice site mutation is rare in Chinese ALS patients and extended our knowledge of molecular mechanisms of the FUS c.1394-2delA mutation.
Collapse
Affiliation(s)
- Wanli Yang
- The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, Shanghai, China
| | - Xi Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu Zhou
- The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, Shanghai, China
| | - Xuelin Tang
- The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, Shanghai, China
| | - Yimin Sun
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi Dong
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Hong Yang
- The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, Shanghai, China
| | - Yan Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Ming Zhang
- The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, Shanghai, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, China
- Institute for Advanced Study, Tongji University, Shanghai, China
| |
Collapse
|
10
|
Zhu L, Li S, Li XJ, Yin P. Pathological insights from amyotrophic lateral sclerosis animal models: comparisons, limitations, and challenges. Transl Neurodegener 2023; 12:46. [PMID: 37730668 PMCID: PMC10510301 DOI: 10.1186/s40035-023-00377-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/01/2023] [Indexed: 09/22/2023] Open
Abstract
In order to dissect amyotrophic lateral sclerosis (ALS), a multigenic, multifactorial, and progressive neurodegenerative disease with heterogeneous clinical presentations, researchers have generated numerous animal models to mimic the genetic defects. Concurrent and comparative analysis of these various models allows identification of the causes and mechanisms of ALS in order to finally obtain effective therapeutics. However, most genetically modified rodent models lack overt pathological features, imposing challenges and limitations in utilizing them to rigorously test the potential mechanisms. Recent studies using large animals, including pigs and non-human primates, have uncovered important events that resemble neurodegeneration in patients' brains but could not be produced in small animals. Here we describe common features as well as discrepancies among these models, highlighting new insights from these models. Furthermore, we will discuss how to make rodent models more capable of recapitulating important pathological features based on the important pathogenic insights from large animal models.
Collapse
Affiliation(s)
- Longhong Zhu
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Shihua Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
| | - Peng Yin
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
11
|
Alshalfie W, Fotouhi M, Ayoubi R, You Z, Southern K, McPherson PS, Laflamme C. The identification of high-performing antibodies for RNA-binding protein FUS for use in Western Blot, immunoprecipitation, and immunofluorescence. F1000Res 2023; 12:376. [PMID: 37384305 PMCID: PMC10293799 DOI: 10.12688/f1000research.133220.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/22/2023] [Indexed: 06/30/2023] Open
Abstract
RNA-binding protein Fused-in Sarcoma (FUS) plays an essential role in various cellular processes. Mutations in the C-terminal domain region, where the nuclear localization signal (NLS) is located, causes the redistribution of FUS from the nucleus to the cytoplasm. In neurons, neurotoxic aggregates are formed as a result, contributing to neurogenerative diseases. Well-characterized anti-FUS antibodies would enable the reproducibility of FUS research, thereby benefiting the scientific community. In this study, we characterized ten FUS commercial antibodies for Western Blot, immunoprecipitation, and immunofluorescence using a standardized experimental protocol based on comparing read-outs in knockout cell lines and isogenic parental controls. We identified many high-performing antibodies and encourage readers to use this report as a guide to select the most appropriate antibody for their specific needs.
Collapse
Affiliation(s)
- Walaa Alshalfie
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Québec, H3A 2B4, Canada
| | - Maryam Fotouhi
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Québec, H3A 2B4, Canada
| | - Riham Ayoubi
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Québec, H3A 2B4, Canada
| | - Zhipeng You
- The Neuro’s Early Drug Discovery Unit (EDDU), Structural Genomics Consortium, McGill University, Montreal, Québec, H3A 2B4, Canada
| | - Kathleen Southern
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Québec, H3A 2B4, Canada
| | - Peter S. McPherson
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Québec, H3A 2B4, Canada
| | - Carl Laflamme
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Québec, H3A 2B4, Canada
| | - NeuroSGC/YCharOS/EDDU collaborative group
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Québec, H3A 2B4, Canada
- The Neuro’s Early Drug Discovery Unit (EDDU), Structural Genomics Consortium, McGill University, Montreal, Québec, H3A 2B4, Canada
| |
Collapse
|
12
|
Guo CM, Tang L, Li X, Huang LY. TATA-box-binding protein-associated factor 15 is a novel biomarker that promotes cell proliferation and migration in gastrointestinal stromal tumor. World J Gastroenterol 2023; 29:2932-2949. [PMID: 37274797 PMCID: PMC10237090 DOI: 10.3748/wjg.v29.i19.2932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/06/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND Gastrointestinal stromal tumor (GIST) is a common neoplasm with high rates of recurrence and metastasis, and its therapeutic efficacy is still not ideal. There is an unmet need to find new molecular therapeutic targets for GIST. TATA-box-binding protein-associated factor 15 (TAF15) contributes to the progress of various tumors, while the role and molecular mechanism of TAF15 in GIST progression are still unknown.
AIM To explore new molecular therapeutic targets for GIST and understand the biological role and underlying mechanisms of TAF15 in GIST progression.
METHODS Proteomic analysis was performed to explore the differentially expressed proteins in GIST. Western blotting and immunohistochemical analysis were used to verify the expression level of TAF15 in GIST tissues and cell lines. Cell counting kit-8, colony formation, wound-healing and transwell assay were executed to detect the ability of TAF15 on cell proliferation, migration and invasion. A xenograft mouse model was applied to explore the role of TAF15 in the progression of GIST. Western blotting was used to detect the phosphorylation level and total level of RAF1, MEK and ERK1/2.
RESULTS A total of 1669 proteins were identified as differentially expressed proteins with 762 upregulated and 907 downregulated in GIST. TAF15 was selected for the further study because of its important role in cell proliferation and migration. TAF15 was significantly over expressed in GIST tissues and cell lines. Overexpression of TAF15 was associated with larger tumor size and higher risk stage of GIST. TAF15 knockdown significantly inhibited the cell proliferation and migration of GIST in vitro and suppressed tumor growth in vivo. Moreover, the inhibition of TAF15 expression significantly decreased the phosphorylation level of RAF1, MEK and ERK1/2 in GIST cells and xenograft tissues, while the total RAF1, MEK and ERK1/2 had no significant change.
CONCLUSION TAF15 is over expressed in GIST tissues and cell lines. Overexpression of TAF15 was associated with a poor prognosis of GIST patients. TAF15 promotes cell proliferation and migration in GIST via the activation of the RAF1/MEK/ERK signaling pathway. Thus, TAF15 is expected to be a novel latent molecular biomarker or therapeutic target of GIST.
Collapse
Affiliation(s)
- Cheng-Ming Guo
- Department of Gastroenterology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong Province, China
| | - Li Tang
- Department of Gastroenterology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong Province, China
| | - Xu Li
- Department of Gastroenterology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong Province, China
| | - Liu-Ye Huang
- Department of Gastroenterology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong Province, China
| |
Collapse
|
13
|
Rey F, Berardo C, Maghraby E, Mauri A, Messa L, Esposito L, Casili G, Ottolenghi S, Bonaventura E, Cuzzocrea S, Zuccotti G, Tonduti D, Esposito E, Paterniti I, Cereda C, Carelli S. Redox Imbalance in Neurological Disorders in Adults and Children. Antioxidants (Basel) 2023; 12:antiox12040965. [PMID: 37107340 PMCID: PMC10135575 DOI: 10.3390/antiox12040965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Oxygen is a central molecule for numerous metabolic and cytophysiological processes, and, indeed, its imbalance can lead to numerous pathological consequences. In the human body, the brain is an aerobic organ and for this reason, it is very sensitive to oxygen equilibrium. The consequences of oxygen imbalance are especially devastating when occurring in this organ. Indeed, oxygen imbalance can lead to hypoxia, hyperoxia, protein misfolding, mitochondria dysfunction, alterations in heme metabolism and neuroinflammation. Consequently, these dysfunctions can cause numerous neurological alterations, both in the pediatric life and in the adult ages. These disorders share numerous common pathways, most of which are consequent to redox imbalance. In this review, we will focus on the dysfunctions present in neurodegenerative disorders (specifically Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis) and pediatric neurological disorders (X-adrenoleukodystrophies, spinal muscular atrophy, mucopolysaccharidoses and Pelizaeus-Merzbacher Disease), highlighting their underlining dysfunction in redox and identifying potential therapeutic strategies.
Collapse
Affiliation(s)
- Federica Rey
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Clarissa Berardo
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Erika Maghraby
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Alessia Mauri
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Letizia Messa
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, 20133 Milano, Italy
| | - Letizia Esposito
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Sara Ottolenghi
- Department of Medicine and Surgery, University of Milano Bicocca, 20126 Milano, Italy
| | - Eleonora Bonaventura
- Child Neurology Unit, Buzzi Children's Hospital, 20154 Milano, Italy
- Center for Diagnosis and Treatment of Leukodystrophies and Genetic Leukoencephalopathies (COALA), Buzzi Children's Hospital, 20154 Milano, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Gianvincenzo Zuccotti
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Davide Tonduti
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Child Neurology Unit, Buzzi Children's Hospital, 20154 Milano, Italy
- Center for Diagnosis and Treatment of Leukodystrophies and Genetic Leukoencephalopathies (COALA), Buzzi Children's Hospital, 20154 Milano, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Cristina Cereda
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Stephana Carelli
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| |
Collapse
|
14
|
Lee HJ, Alirzayeva H, Koyuncu S, Rueber A, Noormohammadi A, Vilchez D. Cold temperature extends longevity and prevents disease-related protein aggregation through PA28γ-induced proteasomes. NATURE AGING 2023; 3:546-566. [PMID: 37118550 DOI: 10.1038/s43587-023-00383-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 02/17/2023] [Indexed: 04/30/2023]
Abstract
Aging is a primary risk factor for neurodegenerative disorders that involve protein aggregation. Because lowering body temperature is one of the most effective mechanisms to extend longevity in both poikilotherms and homeotherms, a better understanding of cold-induced changes can lead to converging modifiers of pathological protein aggregation. Here, we find that cold temperature (15 °C) selectively induces the trypsin-like activity of the proteasome in Caenorhabditis elegans through PSME-3, the worm orthologue of human PA28γ/PSME3. This proteasome activator is required for cold-induced longevity and ameliorates age-related deficits in protein degradation. Moreover, cold-induced PA28γ/PSME-3 diminishes protein aggregation in C. elegans models of age-related diseases such as Huntington's and amyotrophic lateral sclerosis. Notably, exposure of human cells to moderate cold temperature (36 °C) also activates trypsin-like activity through PA28γ/PSME3, reducing disease-related protein aggregation and neurodegeneration. Together, our findings reveal a beneficial role of cold temperature that crosses evolutionary boundaries with potential implications for multi-disease prevention.
Collapse
Affiliation(s)
- Hyun Ju Lee
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Hafiza Alirzayeva
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Seda Koyuncu
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Amirabbas Rueber
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Alireza Noormohammadi
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - David Vilchez
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, Cologne, Germany.
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Institute for Genetics, University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
15
|
Gawade K, Plewka P, Häfner SJ, Lund AH, Marchand V, Motorin Y, Szczesniak MW, Raczynska KD. FUS regulates a subset of snoRNA expression and modulates the level of rRNA modifications. Sci Rep 2023; 13:2974. [PMID: 36806717 PMCID: PMC9941101 DOI: 10.1038/s41598-023-30068-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
FUS is a multifunctional protein involved in many aspects of RNA metabolism, including transcription, splicing, translation, miRNA processing, and replication-dependent histone gene expression. In this work, we show that FUS depletion results in the differential expression of numerous small nucleolar RNAs (snoRNAs) that guide 2'-O methylation (2'-O-Me) and pseudouridylation of specific positions in ribosomal RNAs (rRNAs) and small nuclear RNAs (snRNAs). Using RiboMeth-seq and HydraPsiSeq for the profiling of 2'-O-Me and pseudouridylation status of rRNA species, we demonstrated considerable hypermodification at several sites in HEK293T and SH-SY5Y cells with FUS knockout (FUS KO) compared to wild-type cells. We observed a similar direction of changes in rRNA modification in differentiated SH-SY5Y cells with the FUS mutation (R495X) related to the severe disease phenotype of amyotrophic lateral sclerosis (ALS). Furthermore, the pattern of modification of some rRNA positions was correlated with the abundance of corresponding guide snoRNAs in FUS KO and FUS R495X cells. Our findings reveal a new role for FUS in modulating the modification pattern of rRNA molecules, that in turn might generate ribosome heterogeneity and constitute a fine-tuning mechanism for translation efficiency/fidelity. Therefore, we suggest that increased levels of 2'-O-Me and pseudouridylation at particular positions in rRNAs from cells with the ALS-linked FUS mutation may represent a possible new translation-related mechanism that underlies disease development and progression.
Collapse
Affiliation(s)
- Kishor Gawade
- Laboratory of RNA Processing, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, 61-614, Poznan, Poland
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, 61-614, Poznan, Poland
| | - Patrycja Plewka
- Laboratory of RNA Processing, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, 61-614, Poznan, Poland
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, 61-614, Poznan, Poland
| | - Sophia J Häfner
- Biotech Research and Innovation Centre, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Anders H Lund
- Biotech Research and Innovation Centre, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Virginie Marchand
- Université de Lorraine, UAR2008/US40 IBSLor CNRS-INSERM and UMR7365 IMoPA CNRS, Nancy, France
| | - Yuri Motorin
- Université de Lorraine, UAR2008/US40 IBSLor CNRS-INSERM and UMR7365 IMoPA CNRS, Nancy, France
| | - Michal W Szczesniak
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University in Poznan, 61-614, Poznan, Poland
| | - Katarzyna D Raczynska
- Laboratory of RNA Processing, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, 61-614, Poznan, Poland.
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, 61-614, Poznan, Poland.
| |
Collapse
|
16
|
Jeon YM, Kwon Y, Lee S, Kim HJ. Potential roles of the endoplasmic reticulum stress pathway in amyotrophic lateral sclerosis. Front Aging Neurosci 2023; 15:1047897. [PMID: 36875699 PMCID: PMC9974850 DOI: 10.3389/fnagi.2023.1047897] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/16/2023] [Indexed: 02/17/2023] Open
Abstract
The endoplasmic reticulum (ER) is a major organelle involved in protein quality control and cellular homeostasis. ER stress results from structural and functional dysfunction of the organelle, along with the accumulation of misfolded proteins and changes in calcium homeostasis, it leads to ER stress response pathway such as unfolded protein response (UPR). Neurons are particularly sensitive to the accumulation of misfolded proteins. Thus, the ER stress is involved in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, prion disease and motor neuron disease (MND). Recently, the complex involvement of ER stress pathways has been demonstrated in experimental models of amyotrophic lateral sclerosis (ALS)/MND using pharmacological and genetic manipulation of the unfolded protein response (UPR), an adaptive response to ER stress. Here, we aim to provide recent evidence demonstrating that the ER stress pathway is an essential pathological mechanism of ALS. In addition, we also provide therapeutic strategies that can help treat diseases by targeting the ER stress pathway.
Collapse
Affiliation(s)
- Yu-Mi Jeon
- Dementia Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Younghwi Kwon
- Dementia Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Shinrye Lee
- Dementia Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Hyung-Jun Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu, Republic of Korea.,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| |
Collapse
|
17
|
Chowdhury MN, Jin H. The RGG motif proteins: Interactions, functions, and regulations. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1748. [PMID: 35661420 PMCID: PMC9718894 DOI: 10.1002/wrna.1748] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 01/31/2023]
Abstract
Proteins with motifs rich in arginines and glycines were discovered decades ago and are functionally involved in a staggering range of essential processes in the cell. Versatile, specific, yet adaptable molecular interactions enabled by the unique combination of arginine and glycine, combined with multiplicity of molecular recognition conferred by repeated di-, tri-, and multiple peptide motifs, allow RGG motif proteins to interact with a broad range of proteins and nucleic acids. Furthermore, posttranslational modifications at the arginines in the motif extend the RGG protein's capacity for a fine-tuned regulation. In this review, we focus on the biochemical properties of the RGG motif, its molecular interactions with RNAs and proteins, and roles of the posttranslational modification in modulating their interactions. We discuss current knowledge of the RGG motif proteins involved in mRNA transport and translation, highlight our merging understanding of their molecular functions in translational regulation and summarize areas of research in the future critical in understanding this important family of proteins. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Mechanisms.
Collapse
Affiliation(s)
- Mashiat N. Chowdhury
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801
| | - Hong Jin
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801,Carl R. Woese Institute for Genomic Biology, 1206 West Gregory Drive, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801,Corresponding author: Phone: (217)244-9493, Fax: (217)244-5858,
| |
Collapse
|
18
|
Younger DS. Neurogenetic motor disorders. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:183-250. [PMID: 37562870 DOI: 10.1016/b978-0-323-98818-6.00003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Advances in the field of neurogenetics have practical applications in rapid diagnosis on blood and body fluids to extract DNA, obviating the need for invasive investigations. The ability to obtain a presymptomatic diagnosis through genetic screening and biomarkers can be a guide to life-saving disease-modifying therapy or enzyme replacement therapy to compensate for the deficient disease-causing enzyme. The benefits of a comprehensive neurogenetic evaluation extend to family members in whom identification of the causal gene defect ensures carrier detection and at-risk counseling for future generations. This chapter explores the many facets of the neurogenetic evaluation in adult and pediatric motor disorders as a primer for later chapters in this volume and a roadmap for the future applications of genetics in neurology.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
19
|
Abstract
The scientific landscape surrounding amyotrophic lateral sclerosis has shifted immensely with a number of well-defined ALS disease-causing genes, each with related phenotypical and cellular motor neuron processes that have come to light. Yet in spite of decades of research and clinical investigation, there is still no etiology for sporadic amyotrophic lateral sclerosis, and treatment options even for those with well-defined familial syndromes are still limited. This chapter provides a comprehensive review of the genetic basis of amyotrophic lateral sclerosis, highlighting factors that contribute to its heritability and phenotypic manifestations, and an overview of past, present, and upcoming therapeutic strategies.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| | - Robert H Brown
- Department of Neurology, UMass Chan Medical School, Donna M. and Robert J. Manning Chair in Neurosciences and Director in Neurotherapeutics, Worcester, MA, United States
| |
Collapse
|
20
|
Mehta M, Raguraman R, Ramesh R, Munshi A. RNA binding proteins (RBPs) and their role in DNA damage and radiation response in cancer. Adv Drug Deliv Rev 2022; 191:114569. [PMID: 36252617 PMCID: PMC10411638 DOI: 10.1016/j.addr.2022.114569] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 01/24/2023]
Abstract
Traditionally majority of eukaryotic gene expression is influenced by transcriptional and post-transcriptional events. Alterations in the expression of proteins that act post-transcriptionally can affect cellular signaling and homeostasis. RNA binding proteins (RBPs) are a family of proteins that specifically bind to RNAs and are involved in post-transcriptional regulation of gene expression and important cellular processes such as cell differentiation and metabolism. Deregulation of RNA-RBP interactions and any changes in RBP expression or function can lead to various diseases including cancer. In cancer cells, RBPs play an important role in regulating the expression of tumor suppressors and oncoproteins involved in various cell-signaling pathways. Several RBPs such as HuR, AUF1, RBM38, LIN28, RBM24, tristetrapolin family and Musashi play critical roles in various types of cancers and their aberrant expression in cancer cells makes them an attractive therapeutic target for cancer treatment. In this review we provide an overview of i). RBPs involved in cancer progression and their mechanism of action ii). the role of RBPs, including HuR, in breast cancer progression and DNA damage response and iii). explore RBPs with emphasis on HuR as therapeutic target for breast cancer therapy.
Collapse
Affiliation(s)
- Meghna Mehta
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Rajeswari Raguraman
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Rajagopal Ramesh
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Anupama Munshi
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA.
| |
Collapse
|
21
|
Zou H, Wang JY, Ma GM, Xu MM, Luo F, Zhang L, Wang WY. The function of FUS in neurodevelopment revealed by the brain and spinal cord organoids. Mol Cell Neurosci 2022; 123:103771. [PMID: 36064132 DOI: 10.1016/j.mcn.2022.103771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 12/30/2022] Open
Abstract
The precise control of proliferation and differentiation of neural progenitors is crucial for the development of the central nervous system. Fused in sarcoma (FUS) is an RNA-binding protein pathogenetically linked to Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Lobar Degeneration (FTLD) disease, yet the function of FUS on neurodevelopment is remained to be defined. Here we report a pivotal role of FUS in regulating the human cortical brain and spinal cord development via the human iPSCs-derived organoids. We found that depletion of FUS via CRISPR/CAS9 leads to an enhancement of neural proliferation and differentiation in cortical brain-organoids, but intriguingly an impairment of these phenotypes in spinal cord-organoids. In addition, FUS binds to the mRNA of a Trk tyrosine kinase receptor of neurotrophin-3 (Ntrk3) and regulates the expression of the different isoforms of Ntrk3 in a tissue-specific manner. Finally, alleviated Ntrk3 level via shRNA rescued the effects of FUS-knockout on the development of the brain- and spinal cord-organoids, suggesting that Ntrk3 is involved in FUS-regulated organoids developmental changes. Our findings uncovered the role of FUS in the neurodevelopment of the human CNS.
Collapse
Affiliation(s)
- Huan Zou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun-Ying Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guo-Ming Ma
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei-Mei Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Luo
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai 200032, China
| | - Lin Zhang
- Obstetrics Department, International Peace Maternity and Child Health Hospital of China, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Yuan Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai 200032, China; Department of Rehabilitation Medicine, Hua-Shan Hospital, Fudan University, Shanghai 200040, China; Animal Center of Zoology, Institute of Neuroscience, Kunming medical University, Kunming, China.
| |
Collapse
|
22
|
Chakraborty A, Diwan A. Biomarkers and molecular mechanisms of Amyotrophic Lateral Sclerosis. AIMS Neurosci 2022; 9:423-443. [PMID: 36660079 PMCID: PMC9826749 DOI: 10.3934/neuroscience.2022023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease in adults involving non-demyelinating motor disorders. About 90% of ALS cases are sporadic, while 10-12% of cases are due to some genetic reasons. Mutations in superoxide dismutase 1 (SOD1), TAR, c9orf72 (chromosome 9 open reading frame 72) and VAPB genes are commonly found in ALS patients. Therefore, the mechanism of ALS development involves oxidative stress, endoplasmic reticulum stress, glutamate excitotoxicity and aggregation of proteins, neuro-inflammation and defective RNA function. Cholesterol and LDL/HDL levels are also associated with ALS development. As a result, sterols could be a suitable biomarker for this ailment. The main mechanisms of ALS development are reticulum stress, neuroinflammation and RNA metabolism. The multi-nature development of ALS makes it more challenging to pinpoint a treatment.
Collapse
|
23
|
Strohm L, Hu Z, Suk Y, Rühmkorf A, Sternburg E, Gattringer V, Riemenschneider H, Berutti R, Graf E, Weishaupt JH, Brill MS, Harbauer AB, Dormann D, Dengjel J, Edbauer D, Behrends C. Multi-omics profiling identifies a deregulated FUS-MAP1B axis in ALS/FTD-associated UBQLN2 mutants. Life Sci Alliance 2022; 5:5/11/e202101327. [PMID: 35777956 PMCID: PMC9258132 DOI: 10.26508/lsa.202101327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022] Open
Abstract
Analysis of ALS patient-derived and engineered cells revealed that mutant UBQLN2 increases mRNA and protein of MAP1B which is mediated by dephosphorylation of FUS within its RNA-binding domain. Ubiquilin-2 (UBQLN2) is a ubiquitin-binding protein that shuttles ubiquitinated proteins to proteasomal and autophagic degradation. UBQLN2 mutations are genetically linked to the neurodegenerative disorders amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). However, it remains elusive how UBQLN2 mutations cause ALS/FTD. Here, we systematically examined proteomic and transcriptomic changes in patient-derived lymphoblasts and CRISPR/Cas9–engineered HeLa cells carrying ALS/FTD UBQLN2 mutations. This analysis revealed a strong up-regulation of the microtubule-associated protein 1B (MAP1B) which was also observed in UBQLN2 knockout cells and primary rodent neurons depleted of UBQLN2, suggesting that a UBQLN2 loss-of-function mechanism is responsible for the elevated MAP1B levels. Consistent with MAP1B’s role in microtubule binding, we detected an increase in total and acetylated tubulin. Furthermore, we uncovered that UBQLN2 mutations result in decreased phosphorylation of MAP1B and of the ALS/FTD–linked fused in sarcoma (FUS) protein at S439 which is critical for regulating FUS-RNA binding and MAP1B protein abundance. Together, our findings point to a deregulated UBQLN2-FUS-MAP1B axis that may link protein homeostasis, RNA metabolism, and cytoskeleton dynamics, three molecular pathomechanisms of ALS/FTD.
Collapse
Affiliation(s)
- Laura Strohm
- Munich Cluster for Systems Neurology, Medical Faculty, Ludwig-Maximilians-University München, Munich, Germany
| | - Zehan Hu
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Yongwon Suk
- Institute for Molecular Physiology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Alina Rühmkorf
- Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Erin Sternburg
- Institute for Molecular Physiology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Vanessa Gattringer
- Munich Cluster for Systems Neurology, Medical Faculty, Ludwig-Maximilians-University München, Munich, Germany
| | - Henrick Riemenschneider
- Munich Cluster for Systems Neurology, Medical Faculty, Ludwig-Maximilians-University München, Munich, Germany.,German Center for Neurodegenerative Diseases Munich, Munich, Germany
| | - Riccardo Berutti
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Elisabeth Graf
- Institut für Humangenetik, Klinikum Rechts der Isar der Technischen Universität München, Munich, Germany
| | - Jochen H Weishaupt
- Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | | | - Angelika B Harbauer
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany.,Max Planck Institute of Neurobiology, Martinsried, Germany.,Munich Cluster for Systems Neurology, Munich, Germany
| | - Dorothee Dormann
- Institute for Molecular Physiology, Johannes Gutenberg-University Mainz, Mainz, Germany.,Institute of Molecule Biology, Mainz, Germany
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Dieter Edbauer
- Munich Cluster for Systems Neurology, Medical Faculty, Ludwig-Maximilians-University München, Munich, Germany.,German Center for Neurodegenerative Diseases Munich, Munich, Germany
| | - Christian Behrends
- Munich Cluster for Systems Neurology, Medical Faculty, Ludwig-Maximilians-University München, Munich, Germany
| |
Collapse
|
24
|
Gelon PA, Dutchak PA, Sephton CF. Synaptic dysfunction in ALS and FTD: anatomical and molecular changes provide insights into mechanisms of disease. Front Mol Neurosci 2022; 15:1000183. [PMID: 36263379 PMCID: PMC9575515 DOI: 10.3389/fnmol.2022.1000183] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022] Open
Abstract
Synaptic loss is a pathological feature of all neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). ALS is a disease of the cortical and spinal motor neurons resulting in fatal paralysis due to denervation of muscles. FTD is a form of dementia that primarily affects brain regions controlling cognition, language and behavior. Once classified as two distinct diseases, ALS and FTD are now considered as part of a common disease spectrum based on overlapping clinical, pathological and genetic evidence. At the cellular level, aggregation of common proteins and overlapping gene susceptibilities are shared in both ALS and FTD. Despite the convergence of these two fields of research, the underlying disease mechanisms remain elusive. However, recent discovers from ALS and FTD patient studies and models of ALS/FTD strongly suggests that synaptic dysfunction is an early event in the disease process and a unifying hallmark of these diseases. This review provides a summary of the reported anatomical and cellular changes that occur in cortical and spinal motor neurons in ALS and FTD tissues and models of disease. We also highlight studies that identify changes in the proteome and transcriptome of ALS and FTD models and provide a conceptual overview of the processes that contribute to synaptic dysfunction in these diseases. Due to space limitations and the vast number of publications in the ALS and FTD fields, many articles have not been discussed in this review. As such, this review focuses on the three most common shared mutations in ALS and FTD, the hexanucleuotide repeat expansion within intron 1 of chromosome 9 open reading frame 72 (C9ORF72), transactive response DNA binding protein 43 (TARDBP or TDP-43) and fused in sarcoma (FUS), with the intention of highlighting common pathways that promote synaptic dysfunction in the ALS-FTD disease spectrum.
Collapse
|
25
|
Murakami K, Ono K. Interactions of amyloid coaggregates with biomolecules and its relevance to neurodegeneration. FASEB J 2022; 36:e22493. [PMID: 35971743 DOI: 10.1096/fj.202200235r] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 01/16/2023]
Abstract
The aggregation of amyloidogenic proteins is a pathological hallmark of various neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. In these diseases, oligomeric intermediates or toxic aggregates of amyloids cause neuronal damage and degeneration. Despite the substantial effort made over recent decades to implement therapeutic interventions, these neurodegenerative diseases are not yet understood at the molecular level. In many cases, multiple disease-causing amyloids overlap in a sole pathological feature or a sole disease-causing amyloid represents multiple pathological features. Various amyloid pathologies can coexist in the same brain with or without clinical presentation and may even occur in individuals without disease. From sparse data, speculation has arisen regarding the coaggregation of amyloids with disparate amyloid species and other biomolecules, which are the same characteristics that make diagnostics and drug development challenging. However, advances in research related to biomolecular condensates and structural analysis have been used to overcome some of these challenges. Considering the development of these resources and techniques, herein we review the cross-seeding of amyloidosis, for example, involving the amyloids amyloid β, tau, α-synuclein, and human islet amyloid polypeptide, and their cross-inhibition by transthyretin and BRICHOS. The interplay of nucleic acid-binding proteins, such as prions, TAR DNA-binding protein 43, fused in sarcoma/translated in liposarcoma, and fragile X mental retardation polyglycine, with nucleic acids in the pathology of neurodegeneration are also described, and we thereby highlight the potential clinical applications in central nervous system therapy.
Collapse
Affiliation(s)
- Kazuma Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kenjiro Ono
- Department of Neurology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
26
|
Johnson MA, Nuckols TA, Merino P, Bagchi P, Nandy S, Root J, Taylor G, Seyfried NT, Kukar T. Proximity-based labeling reveals DNA damage-induced phosphorylation of fused in sarcoma (FUS) causes distinct changes in the FUS protein interactome. J Biol Chem 2022; 298:102135. [PMID: 35709984 PMCID: PMC9372748 DOI: 10.1016/j.jbc.2022.102135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 01/18/2023] Open
Abstract
Accumulation of cytoplasmic inclusions containing fused in sarcoma (FUS), an RNA/DNA-binding protein, is a common hallmark of frontotemporal lobar degeneration and amyotrophic lateral sclerosis neuropathology. We have previously shown that DNA damage can trigger the cytoplasmic accumulation of N-terminally phosphorylated FUS. However, the functional consequences of N-terminal FUS phosphorylation are unknown. To gain insight into this question, we utilized proximity-dependent biotin labeling via ascorbate peroxidase 2 aired with mass spectrometry to investigate whether N-terminal phosphorylation alters the FUS protein-protein interaction network (interactome), and subsequently, FUS function. We report the first analysis comparing the interactomes of three FUS variants: homeostatic wildtype FUS (FUS WT), phosphomimetic FUS (FUS PM; a proxy for N-terminally phosphorylated FUS), and the toxic FUS proline 525 to leucine mutant (FUS P525L) that causes juvenile amyotrophic lateral sclerosis. We found that the phosphomimetic FUS interactome is uniquely enriched for a group of cytoplasmic proteins that mediate mRNA metabolism and translation, as well as nuclear proteins involved in the spliceosome and DNA repair functions. Furthermore, we identified and validated the RNA-induced silencing complex RNA helicase MOV10 as a novel interacting partner of FUS. Finally, we provide functional evidence that N-terminally phosphorylated FUS may disrupt homeostatic translation and steady-state levels of specific mRNA transcripts. Taken together, these results highlight phosphorylation as a unique modulator of the interactome and function of FUS.
Collapse
Affiliation(s)
- Michelle A. Johnson
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta, Georgia, USA,Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, Georgia, USA
| | - Thomas A. Nuckols
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta, Georgia, USA,Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, Georgia, USA
| | - Paola Merino
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta, Georgia, USA,Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, Georgia, USA
| | - Pritha Bagchi
- Emory Integrated Proteomics Core, Emory University, School of Medicine, Atlanta, Georgia, USA
| | - Srijita Nandy
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta, Georgia, USA,Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, Georgia, USA
| | - Jessica Root
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta, Georgia, USA,Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, Georgia, USA
| | - Georgia Taylor
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta, Georgia, USA,Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, Georgia, USA
| | - Nicholas T. Seyfried
- Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, Georgia, USA,Emory Integrated Proteomics Core, Emory University, School of Medicine, Atlanta, Georgia, USA,Department of Neurology, Emory University, School of Medicine, Atlanta, Georgia, USA,Department of Biochemistry, Emory University, School of Medicine, Atlanta, Georgia, USA
| | - Thomas Kukar
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta, Georgia, USA,Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, Georgia, USA,Department of Neurology, Emory University, School of Medicine, Atlanta, Georgia, USA,For correspondence: Thomas Kukar
| |
Collapse
|
27
|
Disease Modeling of Rare Neurological Disorders in Zebrafish. Int J Mol Sci 2022; 23:ijms23073946. [PMID: 35409306 PMCID: PMC9000079 DOI: 10.3390/ijms23073946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 02/06/2023] Open
Abstract
Rare diseases are those which affect a small number of people compared to the general population. However, many patients with a rare disease remain undiagnosed, and a large majority of rare diseases still have no form of viable treatment. Approximately 40% of rare diseases include neurologic and neurodevelopmental disorders. In order to understand the characteristics of rare neurological disorders and identify causative genes, various model organisms have been utilized extensively. In this review, the characteristics of model organisms, such as roundworms, fruit flies, and zebrafish, are examined, with an emphasis on zebrafish disease modeling in rare neurological disorders.
Collapse
|
28
|
Nicolas G, Sévigny M, Lecoquierre F, Marguet F, Deschênes A, del Pelaez MC, Feuillette S, Audebrand A, Lecourtois M, Rousseau S, Richard AC, Cassinari K, Deramecourt V, Duyckaerts C, Boland A, Deleuze JF, Meyer V, Clarimon Echavarria J, Gelpi E, Akiyama H, Hasegawa M, Kawakami I, Wong TH, Van Rooij JGJ, Van Swieten JC, Campion D, Dutchak PA, Wallon D, Lavoie-Cardinal F, Laquerrière A, Rovelet-Lecrux A, Sephton CF. A postzygotic de novo NCDN mutation identified in a sporadic FTLD patient results in neurochondrin haploinsufficiency and altered FUS granule dynamics. Acta Neuropathol Commun 2022; 10:20. [PMID: 35151370 PMCID: PMC8841087 DOI: 10.1186/s40478-022-01314-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/18/2022] [Indexed: 12/19/2022] Open
Abstract
Frontotemporal dementia (FTD) is a heterogeneous clinical disorder characterized by progressive abnormalities in behavior, executive functions, personality, language and/or motricity. A neuropathological subtype of FTD, frontotemporal lobar degeneration (FTLD)-FET, is characterized by protein aggregates consisting of the RNA-binding protein fused in sarcoma (FUS). The cause of FTLD-FET is not well understood and there is a lack of genetic evidence to aid in the investigation of mechanisms of the disease. The goal of this study was to identify genetic variants contributing to FTLD-FET and to investigate their effects on FUS pathology. We performed whole-exome sequencing on a 50-year-old FTLD patient with ubiquitin and FUS-positive neuronal inclusions and unaffected parents, and identified a de novo postzygotic nonsense variant in the NCDN gene encoding Neurochondrin (NCDN), NM_014284.3:c.1206G > A, p.(Trp402*). The variant was associated with a ~ 31% reduction in full-length protein levels in the patient’s brain, suggesting that this mutation leads to NCDN haploinsufficiency. We examined the effects of NCDN haploinsufficiency on FUS and found that depleting primary cortical neurons of NCDN causes a reduction in the total number of FUS-positive cytoplasmic granules. Moreover, we found that these granules were significantly larger and more highly enriched with FUS. We then examined the effects of a loss of FUS function on NCDN in neurons and found that depleting cells of FUS leads to a decrease in NCDN protein and mRNA levels. Our study identifies the NCDN protein as a likely contributor of FTLD-FET pathophysiology. Moreover, we provide evidence for a negative feedback loop of toxicity between NCDN and FUS, where loss of NCDN alters FUS cytoplasmic dynamics, which in turn has an impact on NCDN expression.
Collapse
|
29
|
Jablonka S, Hennlein L, Sendtner M. Therapy development for spinal muscular atrophy: perspectives for muscular dystrophies and neurodegenerative disorders. Neurol Res Pract 2022; 4:2. [PMID: 34983696 PMCID: PMC8725368 DOI: 10.1186/s42466-021-00162-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/21/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Major efforts have been made in the last decade to develop and improve therapies for proximal spinal muscular atrophy (SMA). The introduction of Nusinersen/Spinraza™ as an antisense oligonucleotide therapy, Onasemnogene abeparvovec/Zolgensma™ as an AAV9-based gene therapy and Risdiplam/Evrysdi™ as a small molecule modifier of pre-mRNA splicing have set new standards for interference with neurodegeneration. MAIN BODY Therapies for SMA are designed to interfere with the cellular basis of the disease by modifying pre-mRNA splicing and enhancing expression of the Survival Motor Neuron (SMN) protein, which is only expressed at low levels in this disorder. The corresponding strategies also can be applied to other disease mechanisms caused by loss of function or toxic gain of function mutations. The development of therapies for SMA was based on the use of cell culture systems and mouse models, as well as innovative clinical trials that included readouts that had originally been introduced and optimized in preclinical studies. This is summarized in the first part of this review. The second part discusses current developments and perspectives for amyotrophic lateral sclerosis, muscular dystrophies, Parkinson's and Alzheimer's disease, as well as the obstacles that need to be overcome to introduce RNA-based therapies and gene therapies for these disorders. CONCLUSION RNA-based therapies offer chances for therapy development of complex neurodegenerative disorders such as amyotrophic lateral sclerosis, muscular dystrophies, Parkinson's and Alzheimer's disease. The experiences made with these new drugs for SMA, and also the experiences in AAV gene therapies could help to broaden the spectrum of current approaches to interfere with pathophysiological mechanisms in neurodegeneration.
Collapse
Affiliation(s)
- Sibylle Jablonka
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Versbacher Str. 5, 97078, Wuerzburg, Germany.
| | - Luisa Hennlein
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Versbacher Str. 5, 97078, Wuerzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Versbacher Str. 5, 97078, Wuerzburg, Germany.
| |
Collapse
|
30
|
Genetic architecture of motor neuron diseases. J Neurol Sci 2021; 434:120099. [PMID: 34965490 DOI: 10.1016/j.jns.2021.120099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/26/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022]
Abstract
Motor neuron diseases (MNDs) are rare and frequently fatal neurological disorders in which motor neurons within the brainstem and spinal cord regions slowly die. MNDs are primarily caused by genetic mutations, and > 100 different mutant genes in humans have been discovered thus far. Given the fact that many more MND-related genes have yet to be discovered, the growing body of genetic evidence has offered new insights into the diverse cellular and molecular mechanisms involved in the aetiology and pathogenesis of MNDs. This search may aid in the selection of potential candidate genes for future investigation and, eventually, may open the door to novel interventions to slow down disease progression. In this review paper, we have summarized detailed existing research findings of different MNDs, such as amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), spinal bulbar muscle atrophy (SBMA) and hereditary spastic paraplegia (HSP) in relation to their complex genetic architecture.
Collapse
|
31
|
Vanneste J, Van Den Bosch L. The Role of Nucleocytoplasmic Transport Defects in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2021; 22:12175. [PMID: 34830069 PMCID: PMC8620263 DOI: 10.3390/ijms222212175] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 12/24/2022] Open
Abstract
There is ample evidence that nucleocytoplasmic-transport deficits could play an important role in the pathology of amyotrophic lateral sclerosis (ALS). However, the currently available data are often circumstantial and do not fully clarify the exact causal and temporal role of nucleocytoplasmic transport deficits in ALS patients. Gaining this knowledge will be of great significance in order to be able to target therapeutically nucleocytoplasmic transport and/or the proteins involved in this process. The availability of good model systems to study the nucleocytoplasmic transport process in detail will be especially crucial in investigating the effect of different mutations, as well as of other forms of stress. In this review, we discuss the evidence for the involvement of nucleocytoplasmic transport defects in ALS and the methods used to obtain these data. In addition, we provide an overview of the therapeutic strategies which could potentially counteract these defects.
Collapse
Affiliation(s)
- Joni Vanneste
- Experimental Neurology, Department of Neurosciences and Leuven Brain Institute (LBI), KU Leuven–University of Leuven, B-3000 Leuven, Belgium;
- Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, B-3000 Leuven, Belgium
| | - Ludo Van Den Bosch
- Experimental Neurology, Department of Neurosciences and Leuven Brain Institute (LBI), KU Leuven–University of Leuven, B-3000 Leuven, Belgium;
- Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, B-3000 Leuven, Belgium
| |
Collapse
|
32
|
Laneve P, Tollis P, Caffarelli E. RNA Deregulation in Amyotrophic Lateral Sclerosis: The Noncoding Perspective. Int J Mol Sci 2021; 22:10285. [PMID: 34638636 PMCID: PMC8508793 DOI: 10.3390/ijms221910285] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 12/18/2022] Open
Abstract
RNA metabolism is central to cellular physiopathology. Almost all the molecular pathways underpinning biological processes are affected by the events governing the RNA life cycle, ranging from transcription to degradation. The deregulation of these processes contributes to the onset and progression of human diseases. In recent decades, considerable efforts have been devoted to the characterization of noncoding RNAs (ncRNAs) and to the study of their role in the homeostasis of the nervous system (NS), where they are highly enriched. Acting as major regulators of gene expression, ncRNAs orchestrate all the steps of the differentiation programs, participate in the mechanisms underlying neural functions, and are crucially implicated in the development of neuronal pathologies, among which are neurodegenerative diseases. This review aims to explore the link between ncRNA dysregulation and amyotrophic lateral sclerosis (ALS), the most frequent motoneuron (MN) disorder in adults. Notably, defective RNA metabolism is known to be largely associated with this pathology, which is often regarded as an RNA disease. We also discuss the potential role that these transcripts may play as diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Pietro Laneve
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy
| | - Paolo Tollis
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy;
| | - Elisa Caffarelli
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy
| |
Collapse
|
33
|
Owen I, Yee D, Wyne H, Perdikari TM, Johnson V, Smyth J, Kortum R, Fawzi NL, Shewmaker F. The oncogenic transcription factor FUS-CHOP can undergo nuclear liquid-liquid phase separation. J Cell Sci 2021; 134:272045. [PMID: 34357401 DOI: 10.1242/jcs.258578] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/24/2021] [Indexed: 11/20/2022] Open
Abstract
Myxoid liposarcoma is caused by a chromosomal translocation resulting in a fusion protein comprised of the N terminus of FUS (fused in sarcoma) and the full-length transcription factor CHOP (CCAAT/enhancer-binding protein homologous protein, also known as DDIT3). FUS functions in RNA metabolism, and CHOP is a stress-induced transcription factor. The FUS-CHOP fusion protein causes unique gene expression and oncogenic transformation. Although it is clear that the FUS segment is required for oncogenic transformation, the mechanism of FUS-CHOP-induced transcriptional activation is unknown. Recently, some transcription factors and super enhancers have been proposed to undergo liquid-liquid phase separation and form membraneless compartments that recruit transcription machinery to gene promoters. Since phase separation of FUS depends on its N terminus, transcriptional activation by FUS-CHOP could result from the N terminus driving nuclear phase transitions. Here, we characterized FUS-CHOP in cells and in vitro, and observed novel phase-separating properties relative to unmodified CHOP. Our data indicate that FUS-CHOP forms phase-separated condensates that colocalize with BRD4, a marker of super enhancer condensates. We provide evidence that the FUS-CHOP phase transition is a novel oncogenic mechanism and potential therapeutic target for myxoid liposarcoma. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Izzy Owen
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Debra Yee
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Hala Wyne
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814, USA
| | | | - Victoria Johnson
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Jeremy Smyth
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, MD 20814, USA
| | - Robert Kortum
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, Bethesda, MD 20814, USA
| | - Nicolas L Fawzi
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Frank Shewmaker
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814, USA
| |
Collapse
|
34
|
Fortuna TR, Kour S, Anderson EN, Ward C, Rajasundaram D, Donnelly CJ, Hermann A, Wyne H, Shewmaker F, Pandey UB. DDX17 is involved in DNA damage repair and modifies FUS toxicity in an RGG-domain dependent manner. Acta Neuropathol 2021; 142:515-536. [PMID: 34061233 DOI: 10.1007/s00401-021-02333-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/07/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022]
Abstract
Mutations in the RNA binding protein, Fused in Sarcoma (FUS), lead to amyotrophic lateral sclerosis (ALS), the most frequent form of motor neuron disease. Cytoplasmic aggregation and defective DNA repair machinery are etiologically linked to mutant FUS-associated ALS. Although FUS is involved in numerous aspects of RNA processing, little is understood about the pathophysiological mechanisms of mutant FUS. Here, we employed RNA-sequencing technology in Drosophila brains expressing FUS to identify significantly altered genes and pathways involved in FUS-mediated neurodegeneration. We observed the expression levels of DEAD-Box Helicase 17 (DDX17) to be significantly downregulated in response to mutant FUS in Drosophila and human cell lines. Mutant FUS recruits nuclear DDX17 into cytoplasmic stress granules and physically interacts with DDX17 through the RGG1 domain of FUS. Ectopic expression of DDX17 reduces cytoplasmic mislocalization and sequestration of mutant FUS into cytoplasmic stress granules. We identified DDX17 as a novel regulator of the DNA damage response pathway whose upregulation repairs defective DNA damage repair machinery caused by mutant neuronal FUS ALS. In addition, we show DDX17 is a novel modifier of FUS-mediated neurodegeneration in vivo. Our findings indicate DDX17 is downregulated in response to mutant FUS, and restoration of DDX17 levels suppresses FUS-mediated neuropathogenesis and toxicity in vivo.
Collapse
|
35
|
Tejido C, Pakravan D, Bosch LVD. Potential Therapeutic Role of HDAC Inhibitors in FUS-ALS. Front Mol Neurosci 2021; 14:686995. [PMID: 34434087 PMCID: PMC8380926 DOI: 10.3389/fnmol.2021.686995] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/29/2021] [Indexed: 01/05/2023] Open
Abstract
Mutations in the FUS gene cause amyotrophic lateral sclerosis (ALS-FUS). However, the exact pathogenic mechanism of mutant fused in sarcoma (FUS) protein is not completely understood. FUS is an RNA binding protein (RBP) localized predominantly in the nucleus, but ALS-linked FUS mutations can affect its nuclear localization signal impairing its import into the nucleus. This mislocalization to the cytoplasm facilitates FUS aggregation in cytoplasmic inclusions. Therapies targeting post translational modifications are rising as new treatments for ALS, in particular acetylation which could have a role in the dynamics of RBPs. Research using histone deacetylase (HDAC) inhibitors in FUS-ALS models showed that HDACs can influence cytoplasmic FUS localization. Inhibition of HDACs could promote acetylation of the FUS RNA binding domain (RRM) and altering its RNA interactions resulting in FUS maintenance in the nucleus. In addition, acetylation of FUS RRMs might also favor or disfavor its incorporation into pathological inclusions. In this review, we summarize and discuss the evidence for the potential role of HDACs in the context of FUS-ALS and we propose a new hypothesis based on this overview.
Collapse
Affiliation(s)
- Clara Tejido
- Vlaams Instituut voor Biotechnologie (VIB), Center for Brain and Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Donya Pakravan
- Vlaams Instituut voor Biotechnologie (VIB), Center for Brain and Disease Research, Laboratory of Neurobiology, Leuven, Belgium.,Department of Neurosciences, Experimental Neurology, Leuven Brain Institute, Katholieke Universiteit Leuven (KU Leuven)-University of Leuven, Leuven, Belgium
| | - Ludo Van Den Bosch
- Vlaams Instituut voor Biotechnologie (VIB), Center for Brain and Disease Research, Laboratory of Neurobiology, Leuven, Belgium.,Department of Neurosciences, Experimental Neurology, Leuven Brain Institute, Katholieke Universiteit Leuven (KU Leuven)-University of Leuven, Leuven, Belgium
| |
Collapse
|
36
|
Two distinct skeletal muscle microRNA signatures revealing the complex mechanism of sporadic ALS. Acta Neurol Belg 2021; 122:1499-1509. [PMID: 34241798 DOI: 10.1007/s13760-021-01743-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
Skeletal muscle pathology is thought to have an important role in the onset and/or progression of amyotrophic lateral sclerosis (ALS), which is a neurodegenerative disorder characterized by progressive muscle weakness. Since miRNAs are recognized as important regulatory factors of essential biological processes, we aimed to identify differentially expressed miRNAs in the skeletal muscle of sporadic ALS patients through the combination of molecular-omic technologies and bioinformatic tools. We analyzed the miRnome profiles of skeletal muscle biopsies acquired from ten sALS patients and five controls with Affymetrix GeneChip miRNA 4.0 Array. To find out differentially expressed miRNAs in patients, data were analyzed by The Institute for Genomic Research-Multi Experiment Viewer (MeV) and miRNAs whose expression difference were statistically significant were identified as candidates. The potential target genes of these miRNAs were predicted by miRWalk 2.0 and were functionally enriched by gene ontology (GO) analysis. The expression level of priority candidates was validated by quantitative real-time PCR (qRT-PCR) analysis. We identified ten differentially expressed miRNAs in patients with a fold change threshold ≥ 2.0, FDR = 0. We identified ten differentially expressed miRNAs in patients with a fold change threshold ≥ 2.0, FDR = 0. Nine out of the ten miRNAs were found to be related to top three enriched ALS-related terms. Based on the qRT-PCR validation of candidate miRNAs, patients were separated into two groups: those with upregulated miR-4429 and miR-1825 expression and those with downregulated miR-638 expression. The different muscle-specific miRNA profiles in sALS patients may indicate the involvement of etiologic heterogeneity, which may allow the development of novel therapeutic strategies.
Collapse
|
37
|
Amyotrophic Lateral Sclerosis: Molecular Mechanisms, Biomarkers, and Therapeutic Strategies. Antioxidants (Basel) 2021; 10:antiox10071012. [PMID: 34202494 PMCID: PMC8300638 DOI: 10.3390/antiox10071012] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with the progressive loss of motor neurons, leading to a fatal paralysis. According to whether there is a family history of ALS, ALS can be roughly divided into two types: familial and sporadic. Despite decades of research, the pathogenesis of ALS is still unelucidated. To this end, we review the recent progress of ALS pathogenesis, biomarkers, and treatment strategies, mainly discuss the roles of immune disorders, redox imbalance, autophagy dysfunction, and disordered iron homeostasis in the pathogenesis of ALS, and introduce the effects of RNA binding proteins, ALS-related genes, and non-coding RNA as biomarkers on ALS. In addition, we also mention other ALS biomarkers such as serum uric acid (UA), cardiolipin (CL), chitotriosidase (CHIT1), and neurofilament light chain (NFL). Finally, we discuss the drug therapy, gene therapy, immunotherapy, and stem cell-exosomal therapy for ALS, attempting to find new therapeutic targets and strategies. A challenge is to study the various mechanisms of ALS as a syndrome. Biomarkers that have been widely explored are indispensable for the diagnosis, treatment, and prevention of ALS. Moreover, the development of new genes and targets is an urgent task in this field.
Collapse
|
38
|
ALS-linked FUS mutants affect the localization of U7 snRNP and replication-dependent histone gene expression in human cells. Sci Rep 2021; 11:11868. [PMID: 34088960 PMCID: PMC8178370 DOI: 10.1038/s41598-021-91453-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 05/18/2021] [Indexed: 11/24/2022] Open
Abstract
Genes encoding replication-dependent histones lack introns, and the mRNAs produced are a unique class of RNA polymerase II transcripts in eukaryotic cells that do not end in a polyadenylated tail. Mature mRNAs are thus formed by a single endonucleolytic cleavage that releases the pre-mRNA from the DNA and is the only processing event necessary. U7 snRNP is one of the key factors that determines the cleavage site within the 3ʹUTR of replication-dependent histone pre-mRNAs. We have previously showed that the FUS protein interacts with U7 snRNA/snRNP and regulates the expression of histone genes by stimulating transcription and 3ʹ end maturation. Mutations in the FUS gene first identified in patients with amyotrophic lateral sclerosis (ALS) lead to the accumulation of the FUS protein in cytoplasmic inclusions. Here, we report that mutations in FUS lead to disruption of the transcriptional activity of FUS and mislocalization of U7 snRNA/snRNP in cytoplasmic aggregates in cellular models and primary neurons. As a consequence, decreased transcriptional efficiency and aberrant 3ʹ end processing of histone pre-mRNAs were observed. This study highlights for the first time the deregulation of replication-dependent histone gene expression and its involvement in ALS.
Collapse
|
39
|
Klaric JA, Wüst S, Panier S. New Faces of old Friends: Emerging new Roles of RNA-Binding Proteins in the DNA Double-Strand Break Response. Front Mol Biosci 2021; 8:668821. [PMID: 34026839 PMCID: PMC8138124 DOI: 10.3389/fmolb.2021.668821] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions. To protect genomic stability and ensure cell homeostasis, cells mount a complex signaling-based response that not only coordinates the repair of the broken DNA strand but also activates cell cycle checkpoints and, if necessary, induces cell death. The last decade has seen a flurry of studies that have identified RNA-binding proteins (RBPs) as novel regulators of the DSB response. While many of these RBPs have well-characterized roles in gene expression, it is becoming increasingly clear that they also have non-canonical functions in the DSB response that go well beyond transcription, splicing and mRNA processing. Here, we review the current understanding of how RBPs are integrated into the cellular response to DSBs and describe how these proteins directly participate in signal transduction, amplification and repair at damaged chromatin. In addition, we discuss the implications of an RBP-mediated DSB response for genome instability and age-associated diseases such as cancer and neurodegeneration.
Collapse
Affiliation(s)
- Julie A Klaric
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Stas Wüst
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Stephanie Panier
- Max Planck Institute for Biology of Ageing, Cologne, Germany.,Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD) Research Center, University of Cologne, Cologne, Germany
| |
Collapse
|
40
|
Sanders DW, Jumper CC, Ackerman PJ, Bracha D, Donlic A, Kim H, Kenney D, Castello-Serrano I, Suzuki S, Tamura T, Tavares AH, Saeed M, Holehouse AS, Ploss A, Levental I, Douam F, Padera RF, Levy BD, Brangwynne CP. SARS-CoV-2 requires cholesterol for viral entry and pathological syncytia formation. eLife 2021; 10:e65962. [PMID: 33890572 PMCID: PMC8104966 DOI: 10.7554/elife.65962] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/01/2021] [Indexed: 12/27/2022] Open
Abstract
Many enveloped viruses induce multinucleated cells (syncytia), reflective of membrane fusion events caused by the same machinery that underlies viral entry. These syncytia are thought to facilitate replication and evasion of the host immune response. Here, we report that co-culture of human cells expressing the receptor ACE2 with cells expressing SARS-CoV-2 spike, results in synapse-like intercellular contacts that initiate cell-cell fusion, producing syncytia resembling those we identify in lungs of COVID-19 patients. To assess the mechanism of spike/ACE2-driven membrane fusion, we developed a microscopy-based, cell-cell fusion assay to screen ~6000 drugs and >30 spike variants. Together with quantitative cell biology approaches, the screen reveals an essential role for biophysical aspects of the membrane, particularly cholesterol-rich regions, in spike-mediated fusion, which extends to replication-competent SARS-CoV-2 isolates. Our findings potentially provide a molecular basis for positive outcomes reported in COVID-19 patients taking statins and suggest new strategies for therapeutics targeting the membrane of SARS-CoV-2 and other fusogenic viruses.
Collapse
Affiliation(s)
- David W Sanders
- Department of Chemical and Biological Engineering, Princeton University, Princeton, United States
| | - Chanelle C Jumper
- Department of Chemical and Biological Engineering, Princeton University, Princeton, United States
| | - Paul J Ackerman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, United States
| | - Dan Bracha
- Department of Chemical and Biological Engineering, Princeton University, Princeton, United States
| | - Anita Donlic
- Department of Chemical and Biological Engineering, Princeton University, Princeton, United States
| | - Hahn Kim
- Princeton University Small Molecule Screening Center, Princeton University, Princeton, United States
- Department of Chemistry, Princeton University, Princeton, United States
| | - Devin Kenney
- Department of Microbiology, Boston University School of Medicine, Boston, United States
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, United States
| | - Ivan Castello-Serrano
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, United States
| | - Saori Suzuki
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Tomokazu Tamura
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Alexander H Tavares
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, United States
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| | - Mohsan Saeed
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, United States
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, United States
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, United States
| | - Florian Douam
- Department of Microbiology, Boston University School of Medicine, Boston, United States
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, United States
| | - Robert F Padera
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, United States
| | - Bruce D Levy
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, United States
- Howard Hughes Medical Institute, Princeton, United States
| |
Collapse
|
41
|
Volkening K, Farhan SMK, Kao J, Leystra-Lantz C, Ang LC, McIntyre A, Wang J, Hegele RA, Strong MJ. Evidence of synergism among three genetic variants in a patient with LMNA-related lipodystrophy and amyotrophic lateral sclerosis leading to a remarkable nuclear phenotype. Mol Cell Biochem 2021; 476:2633-2650. [PMID: 33661429 PMCID: PMC8192393 DOI: 10.1007/s11010-021-04103-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 02/06/2021] [Indexed: 11/25/2022]
Abstract
Neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), can be clinically heterogeneous which may be explained by the co-inheritance of multiple genetic variants that modify the clinical course. In this study we examine variants in three genes in a family with one individual presenting with ALS and lipodystrophy. Sequencing revealed a p.Gly602Ser variant in LMNA, and two additional variants, one each in SETX (g.intron10-13delCTT) and FUS (p.Gly167_Gly168del). These latter genes have been linked to ALS. All family members were genotyped and each variant, and each combination of variants detected, were functionally evaluated in vitro regarding effects on cell survival, expression patterns and cellular phenotype. Muscle biopsy retrieved from the individual with ALS showed leakage of chromatin from the nucleus, a phenotype that was recapitulated in vitro with expression of all three variants simultaneously. Individually expressed variants gave cellular phenotypes there were unremarkable. Interestingly the FUS variant appears to be protective against the effects of the SETX and the LMNA variants on cell viability and may indicate loss of interaction of FUS with SETX and/or R-loops. We conclude that these findings support genetic modifications as an explanation of the clinical heterogeneity observed in human disease.
Collapse
Affiliation(s)
- Kathryn Volkening
- Molecular Medicine, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Sali M K Farhan
- Analytic and Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Jessica Kao
- Molecular Medicine, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Cheryl Leystra-Lantz
- Molecular Medicine, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Lee Cyn Ang
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Pathology and Laboratory Medicine, London Health Sciences Centre-University Hospital, London, ON, Canada
| | - Adam McIntyre
- Blackburn Cardiovascular Genetics Lab, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jian Wang
- Blackburn Cardiovascular Genetics Lab, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Robert A Hegele
- Department of Pathology and Laboratory Medicine, London Health Sciences Centre-University Hospital, London, ON, Canada
- Blackburn Cardiovascular Genetics Lab, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Biochemistry, Western University, London, ON, Canada
| | - Michael J Strong
- Molecular Medicine, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| |
Collapse
|
42
|
Arenas A, Kuang L, Zhang J, Kingren MS, Zhu H. FUS regulates autophagy by mediating the transcription of genes critical to the autophagosome formation. J Neurochem 2021; 157:752-763. [PMID: 33354770 DOI: 10.1111/jnc.15281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 12/17/2022]
Abstract
Fused in sarcoma (FUS) is a ubiquitously expressed RNA/DNA-binding protein that plays different roles in the cell. FUS pathology has been reported in neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Mutations in FUS have also been linked to a subset of familial ALS. FUS is mainly localized in the nucleus although it shuttles between the nucleus and the cytoplasm. ALS-linked mutations cause the accumulation of the FUS protein in cytoplasm where it forms stress granule-like inclusions. The protein- and RNA-containing inclusions are reported to be positive of autophagosome markers and degraded by the autophagy pathway. However, the role of FUS in the autophagy pathway remains to be better understood. Using immunoblot and confocal imaging techniques in this study, we found that FUS knockout (KO) cells showed a decreased basal autophagy level. Rapamycin and bafilomycin A1 treatment showed that FUS KO cells were not able to initiate autophagy as efficiently as wild-type cells, suggesting that the autophagosome formation is affected in the absence of FUS. Moreover, using immunoblot and quantitative PCR techniques, we found that the mRNA and protein levels of the genes critical in the initial steps of the autophagy pathway (FIP200, ATG16L1 and ATG12) were significantly lower in FUS KO cells. Re-expressing FUS in the KO cells restored the expression of FIP200 and ATG16L1. Our findings demonstrate a novel role of FUS in the autophagy pathway, that is, regulating the transcription of genes involved in early stages of autophagy such as the initiation and elongation of autophagosomes.
Collapse
Affiliation(s)
- Alexandra Arenas
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Lisha Kuang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.,Lexington VA Medical Center, Research and Development, Lexington, KY, USA
| | - Jiayu Zhang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Meagan S Kingren
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Haining Zhu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA.,Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.,Lexington VA Medical Center, Research and Development, Lexington, KY, USA
| |
Collapse
|
43
|
Kim G, Gautier O, Tassoni-Tsuchida E, Ma XR, Gitler AD. ALS Genetics: Gains, Losses, and Implications for Future Therapies. Neuron 2020; 108:822-842. [PMID: 32931756 PMCID: PMC7736125 DOI: 10.1016/j.neuron.2020.08.022] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/01/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder caused by the loss of motor neurons from the brain and spinal cord. The ALS community has made remarkable strides over three decades by identifying novel familial mutations, generating animal models, elucidating molecular mechanisms, and ultimately developing promising new therapeutic approaches. Some of these approaches reduce the expression of mutant genes and are in human clinical trials, highlighting the need to carefully consider the normal functions of these genes and potential contribution of gene loss-of-function to ALS. Here, we highlight known loss-of-function mechanisms underlying ALS, potential consequences of lowering levels of gene products, and the need to consider both gain and loss of function to develop safe and effective therapeutic strategies.
Collapse
Affiliation(s)
- Garam Kim
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Neurosciences Interdepartmental Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Olivia Gautier
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Neurosciences Interdepartmental Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Eduardo Tassoni-Tsuchida
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - X Rosa Ma
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
44
|
Johnson MA, Deng Q, Taylor G, McEachin ZT, Chan AWS, Root J, Bassell GJ, Kukar T. Divergent FUS phosphorylation in primate and mouse cells following double-strand DNA damage. Neurobiol Dis 2020; 146:105085. [PMID: 32950644 PMCID: PMC8064403 DOI: 10.1016/j.nbd.2020.105085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022] Open
Abstract
Fused in sarcoma (FUS) is a RNA/DNA protein involved in multiple nuclear and cytoplasmic functions including transcription, splicing, mRNA trafficking, and stress granule formation. To accomplish these many functions, FUS must shuttle between cellular compartments in a highly regulated manner. When shuttling is disrupted, FUS abnormally accumulates into cytoplasmic inclusions that can be toxic. Disrupted shuttling of FUS into the nucleus is a hallmark of ~10% of frontotemporal lobar degeneration (FTLD) cases, the neuropathology that underlies frontotemporal dementia (FTD). Multiple pathways are known to disrupt nuclear/cytoplasmic shuttling of FUS. In earlier work, we discovered that double-strand DNA breaks (DSBs) trigger DNA-dependent protein kinase (DNA-PK) to phosphorylate FUS (p-FUS) at N-terminal residues leading to the cytoplasmic accumulation of FUS. Therefore, DNA damage may contribute to the development of FTLD pathology with FUS inclusions. In the present study, we examined how DSBs effect FUS phosphorylation in various primate and mouse cellular models. All cell lines derived from human and non-human primates exhibit N-terminal FUS phosphorylation following calicheamicin γ1 (CLM) induced DSBs. In contrast, we were unable to detect FUS phosphorylation in mouse-derived primary neurons or immortalized cell lines regardless of CLM treatment, duration, or concentration. Despite DNA damage induced by CLM treatment, we find that mouse cells do not phosphorylate FUS, likely due to reduced levels and activity of DNA-PK compared to human cells. Taken together, our work reveals that mouse-derived cellular models regulate FUS in an anomalous manner compared to primate cells. This raises the possibility that mouse models may not fully recapitulate the pathogenic cascades that lead to FTLD with FUS pathology.
Collapse
Affiliation(s)
- Michelle A Johnson
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta, GA, United States of America; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, GA, United States of America
| | - Qiudong Deng
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta, GA, United States of America; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, GA, United States of America
| | - Georgia Taylor
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta, GA, United States of America; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, GA, United States of America
| | - Zachary T McEachin
- Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, GA, United States of America; Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, United States of America; Laboratory of Translational Cell Biology, Emory University, School of Medicine, Atlanta, GA, United States of America
| | - Anthony W S Chan
- Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, GA, United States of America; Department of Human Genetics, Emory University, School of Medicine, Atlanta, GA, United States of America; Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, 954 Gatewood Rd, NE, Atlanta, GA, United States of America
| | - Jessica Root
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta, GA, United States of America; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, GA, United States of America
| | - Gary J Bassell
- Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, GA, United States of America; Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, United States of America; Laboratory of Translational Cell Biology, Emory University, School of Medicine, Atlanta, GA, United States of America
| | - Thomas Kukar
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta, GA, United States of America; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, GA, United States of America; Department of Neurology, Emory University, School of Medicine, Atlanta, GA, United States of America.
| |
Collapse
|
45
|
The role of hnRNPs in frontotemporal dementia and amyotrophic lateral sclerosis. Acta Neuropathol 2020; 140:599-623. [PMID: 32748079 PMCID: PMC7547044 DOI: 10.1007/s00401-020-02203-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022]
Abstract
Dysregulated RNA metabolism is emerging as a crucially important mechanism underpinning the pathogenesis of frontotemporal dementia (FTD) and the clinically, genetically and pathologically overlapping disorder of amyotrophic lateral sclerosis (ALS). Heterogeneous nuclear ribonucleoproteins (hnRNPs) comprise a family of RNA-binding proteins with diverse, multi-functional roles across all aspects of mRNA processing. The role of these proteins in neurodegeneration is far from understood. Here, we review some of the unifying mechanisms by which hnRNPs have been directly or indirectly linked with FTD/ALS pathogenesis, including their incorporation into pathological inclusions and their best-known roles in pre-mRNA splicing regulation. We also discuss the broader functionalities of hnRNPs including their roles in cryptic exon repression, stress granule assembly and in co-ordinating the DNA damage response, which are all emerging pathogenic themes in both diseases. We then present an integrated model that depicts how a broad-ranging network of pathogenic events can arise from declining levels of functional hnRNPs that are inadequately compensated for by autoregulatory means. Finally, we provide a comprehensive overview of the most functionally relevant cellular roles, in the context of FTD/ALS pathogenesis, for hnRNPs A1-U.
Collapse
|
46
|
Bourefis AR, Campanari ML, Buee-Scherrer V, Kabashi E. Functional characterization of a FUS mutant zebrafish line as a novel genetic model for ALS. Neurobiol Dis 2020; 142:104935. [PMID: 32380281 DOI: 10.1016/j.nbd.2020.104935] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/22/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Mutations in Fused in sarcoma (FUS), an RNA-binding protein, are known to cause Amyotrophic Lateral Sclerosis (ALS). However, molecular mechanisms due to loss of FUS function remain unclear and controversial. Here, we report the characterization and phenotypic analysis of a deletion mutant of the unique FUS orthologue in zebrafish where Fus protein levels are depleted. The homozygous mutants displayed a reduced lifespan as well as impaired motor abilities associated with specific cellular deficits, including decreased motor neurons length and neuromuscular junctions (NMJ) fragmentation. Furthermore, we demonstrate that these cellular impairments are linked to the misregulation of mRNA expression of acetylcholine receptor (AChR) subunits and histone deacetylase 4, markers of denervation and reinnervation processes observed in ALS patients. In addition, fus loss of function alters tau transcripts favoring the expression of small tau isoforms. Overall, this new animal model extends our knowledge on FUS and supports the relevance of FUS loss of function in ALS physiopathology.
Collapse
Affiliation(s)
- Annis-Rayan Bourefis
- Imagine Institute, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1163, Paris Descartes Université, 75015 Paris, France; Sorbonne Université, Université Pierre et Marie Curie (UPMC), Université de Paris 06, INSERM Unité 1127, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 7225 Institut du Cerveau et de la Moelle Épinière (ICM), 75013 Paris, France
| | - Maria-Letizia Campanari
- Imagine Institute, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1163, Paris Descartes Université, 75015 Paris, France; Sorbonne Université, Université Pierre et Marie Curie (UPMC), Université de Paris 06, INSERM Unité 1127, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 7225 Institut du Cerveau et de la Moelle Épinière (ICM), 75013 Paris, France
| | | | - Edor Kabashi
- Imagine Institute, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1163, Paris Descartes Université, 75015 Paris, France; Sorbonne Université, Université Pierre et Marie Curie (UPMC), Université de Paris 06, INSERM Unité 1127, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 7225 Institut du Cerveau et de la Moelle Épinière (ICM), 75013 Paris, France.
| |
Collapse
|
47
|
Murray DT, Tycko R. Side Chain Hydrogen-Bonding Interactions within Amyloid-like Fibrils Formed by the Low-Complexity Domain of FUS: Evidence from Solid State Nuclear Magnetic Resonance Spectroscopy. Biochemistry 2020; 59:364-378. [PMID: 31895552 DOI: 10.1021/acs.biochem.9b00892] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In aqueous solutions, the 214-residue low-complexity domain of the FUS protein (FUS-LC) is known to undergo liquid-liquid phase separation and also to self-assemble into amyloid-like fibrils. In previous work based on solid state nuclear magnetic resonance (ssNMR) methods, a structural model for the FUS-LC fibril core was developed, showing that residues 39-95 form the fibril core. Unlike fibrils formed by amyloid-β peptides, α-synuclein, and other amyloid-forming proteins, the FUS-LC core is largely devoid of purely hydrophobic amino acid side chains. Instead, the core-forming segment contains numerous hydroxyl-bearing residues, including 18 serines, six threonines, and eight tyrosines, suggesting that the FUS-LC fibril structure may be stabilized in part by inter-residue hydrogen bonds among side chain hydroxyl groups. Here we describe ssNMR measurements, performed on 2H,15N,13C-labeled FUS-LC fibrils, that provide new information about the interactions of hydroxyl-bearing residues with one another and with water. The ssNMR data support the involvement of specific serine, threonine, and tyrosine residues in hydrogen-bonding interactions. The data also reveal differences in hydrogen exchange rates with water for different side chain hydroxyl groups, providing information about solvent exposure and penetration of water into the FUS-LC fibril core.
Collapse
Affiliation(s)
- Dylan T Murray
- Department of Chemistry , University of California , Davis , California 95616-5271 , United States
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases , National Institutes of Health , Bethesda , Maryland 20892-0520 , United States
| |
Collapse
|
48
|
Cobos SN, Bennett SA, Torrente MP. The impact of histone post-translational modifications in neurodegenerative diseases. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1982-1991. [PMID: 30352259 PMCID: PMC6475498 DOI: 10.1016/j.bbadis.2018.10.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/05/2018] [Accepted: 10/11/2018] [Indexed: 02/08/2023]
Abstract
Every year, neurodegenerative disorders take more than 5000 lives in the US alone. Cures have not yet been found for many of the multitude of neuropathies. The majority of amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD) and Parkinson's disease (PD) cases have no known genetic basis. Thus, it is evident that contemporary genetic approaches have failed to explain the etiology or etiologies of ALS/FTD and PD. Recent investigations have explored the potential role of epigenetic mechanisms in disease development. Epigenetics comprises heritable changes in gene utilization that are not derived from changes in the genome. A main epigenetic mechanism involves the post-translational modification of histones. Increased knowledge of the epigenomic landscape of neurodegenerative diseases would not only further our understanding of the disease pathologies, but also lead to the development of treatments able to halt their progress. Here, we review recent advances on the association of histone post-translational modifications with ALS, FTD, PD and several ataxias.
Collapse
Affiliation(s)
- Samantha N Cobos
- Chemistry Department of Brooklyn College, Brooklyn, New York 11210, United States; Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, United States
| | - Seth A Bennett
- Chemistry Department of Brooklyn College, Brooklyn, New York 11210, United States; Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, United States
| | - Mariana P Torrente
- Chemistry Department of Brooklyn College, Brooklyn, New York 11210, United States; Ph.D. Programs in Chemistry, Biochemistry, and Biology, The Graduate Center of the City University of New York, New York 10016, United States.
| |
Collapse
|
49
|
Abstract
This chapter describes the main neuropathological features of the most common age associated neurodegenerative diseases including Alzheimer's disease, Lewy body diseases, vascular dementia and the various types of frontotemporal lobar degeneration. In addition, the more recent concepts of primary age-related tauopathy and ageing-related tau astrogliopathy as well as chronic traumatic encephalopathy are briefly described. One section is dedicated to cerebral multi-morbidity as it is becoming increasingly clear that the old brain is characterised by the presence of multiple pathologies (to varying extent) rather than by one single, disease specific pathology alone. The main aim of this chapter is to inform the reader about the neuropathological basics of age associated neurodegenerative diseases as we feel this is crucial to meaningfully interpret the vast literature that is published in the broad field of dementia research.
Collapse
Affiliation(s)
- Lauren Walker
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Kirsty E McAleese
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel Erskine
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Johannes Attems
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
50
|
Signal Exchange through Extracellular Vesicles in Neuromuscular Junction Establishment and Maintenance: From Physiology to Pathology. Int J Mol Sci 2019; 20:ijms20112804. [PMID: 31181747 PMCID: PMC6600513 DOI: 10.3390/ijms20112804] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022] Open
Abstract
Neuromuscular junction (NMJ) formation involves morphological changes both in motor terminals and muscle membrane. The molecular mechanisms leading to NMJ formation and maintenance have not yet been fully elucidated. During the last decade, it has become clear that virtually all cells release different types of extracellular vesicles (EVs), which can be taken up by nearby or distant cells modulating their activity. Initially, EVs were associated to a mechanism involved in the elimination of unwanted material; subsequent evidence demonstrated that exosomes, and more in general EVs, play a key role in intercellular communication by transferring proteins, lipids, DNA and RNA to target cells. Recently, EVs have emerged as potent carriers for Wnt, bone morphogenetic protein, miRNA secretion and extracellular traveling. Convincing evidence demonstrates that presynaptic terminals release exosomes that are taken up by muscle cells, and these exosomes can modulate synaptic plasticity in the recipient muscle cell in vivo. Furthermore, recent data highlighted that EVs could also be a potential cause of neurodegenerative disorders. Indeed, mutant SOD1, TDP-43 and FUS/TLS can be secreted by neural cells packaged into EVs and enter in neighboring neural cells, contributing to the onset and severity of the disease.
Collapse
|