1
|
de Los Ángeles Juricic Urzúa M, Gallardo Rojas J, Couve Correa A, Cerda M, Härtel Gründler S, González-Silva C. The Dendritic Ergic: Microtubule And Actin Cytoskeletons Participate In Stop-And-Go Movement Of Mobile Carriers Between Stable Structures. Traffic 2022; 23:174-187. [PMID: 35075729 DOI: 10.1111/tra.12832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 12/30/2021] [Accepted: 01/20/2022] [Indexed: 11/29/2022]
Abstract
The ER-to-Golgi intermediate compartment (ERGIC) is a membranous organelle that mediates protein transport between the endoplasmic reticulum (ER) and the Golgi apparatus. In neurons, clusters of these vesiculotubular structures are situated throughout the cell in proximity to the ER, passing cargo to the cis-Golgi cisternae, located mainly in the perinuclear region. Although ERGIC markers have been identified in neurons, the distribution and dynamics of neuronal ERGIC structures have not been characterized yet. Here, we show that long-distance ERGIC transport occurs via an intermittent mechanism in dendrites, with mobile elements moving between stationary structures. Slow and fast live-cell imaging have captured stable ERGIC structures remaining in place over long periods of time, as well as mobile ERGIC structures advancing very short distances along dendrites. These short distances have been consistent with the lengths between the stationary ERGIC structures. Kymography revealed ERGIC elements that moved intermittently, emerging from and fusing with stationary ERGIC structures. Interestingly, this movement apparently depends not only on the integrity of the microtubule cytoskeleton, as previously reported, but on the actin cytoskeleton as well. Our results indicate that the dendritic ERGIC has a dual nature, with both stationary and mobile structures. The neural ERGIC network transports proteins via a stop-and-go movement in which both the microtubule and the actin cytoskeletons participate. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- María de Los Ángeles Juricic Urzúa
- Neuroscience Department, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute (BNI), Santiago, Chile
| | - Javiera Gallardo Rojas
- Neuroscience Department, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute (BNI), Santiago, Chile
| | - Andrés Couve Correa
- Neuroscience Department, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute (BNI), Santiago, Chile
| | - Mauricio Cerda
- Biomedical Neuroscience Institute (BNI), Santiago, Chile.,Integrative Biology Program, Institute of Biomedical Sciences (ICBM), Center for Medical Informatics and Telemedicine (CIMT), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Steffen Härtel Gründler
- Biomedical Neuroscience Institute (BNI), Santiago, Chile.,Integrative Biology Program, Institute of Biomedical Sciences (ICBM), Center for Medical Informatics and Telemedicine (CIMT), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carolina González-Silva
- Neuroscience Department, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute (BNI), Santiago, Chile
| |
Collapse
|
2
|
Branched Actin Maintains Acetylated Microtubule Network in the Early Secretory Pathway. Cells 2021; 11:cells11010015. [PMID: 35011578 PMCID: PMC8750537 DOI: 10.3390/cells11010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/12/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022] Open
Abstract
In the early secretory pathway, the delivery of anterograde cargoes from the endoplasmic reticulum (ER) exit sites (ERES) to the Golgi apparatus is a multi-step transport process occurring via the ER-Golgi intermediate compartment (IC, also called ERGIC). While the role microtubules in ER-to-Golgi transport has been well established, how the actin cytoskeleton contributes to this process remains poorly understood. Here, we report that Arp2/3 inhibition affects the network of acetylated microtubules around the Golgi and induces the accumulation of unusually long RAB1/GM130-positive carriers around the centrosome. These long carriers are less prone to reach the Golgi apparatus, and arrival of anterograde cargoes to the Golgi is decreased upon Arp2/3 inhibition. Our data suggest that Arp2/3-dependent actin polymerization maintains a stable network of acetylated microtubules, which ensures efficient cargo trafficking at the late stage of ER to Golgi transport.
Collapse
|
3
|
Saraste J, Marie M. Intermediate compartment (IC): from pre-Golgi vacuoles to a semi-autonomous membrane system. Histochem Cell Biol 2018; 150:407-430. [PMID: 30173361 PMCID: PMC6182704 DOI: 10.1007/s00418-018-1717-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2018] [Indexed: 12/19/2022]
Abstract
Despite its discovery more than three decades ago and well-established role in protein sorting and trafficking in the early secretory pathway, the intermediate compartment (IC) has remained enigmatic. The prevailing view is that the IC evolved as a specialized organelle to mediate long-distance endoplasmic reticulum (ER)–Golgi communication in metazoan cells, but is lacking in other eukaryotes, such as plants and fungi. However, this distinction is difficult to reconcile with the high conservation of the core machineries that regulate early secretory trafficking from yeast to man. Also, it has remained unclear whether the pleiomorphic IC components—vacuoles, tubules and vesicles—represent transient transport carriers or building blocks of a permanent pre-Golgi organelle. Interestingly, recent studies have revealed that the IC maintains its compositional, structural and spatial properties throughout the cell cycle, supporting a model that combines the dynamic and stable aspects of the organelle. Moreover, the IC has been assigned novel functions, such as cell signaling, Golgi-independent trafficking and autophagy. The emerging permanent nature of the IC and its connections with the centrosome and the endocytic recycling system encourage reconsideration of its relationship with the Golgi ribbon, role in Golgi biogenesis and ubiquitous presence in eukaryotic cells.
Collapse
Affiliation(s)
- Jaakko Saraste
- Department of Biomedicine and Molecular Imaging Center (MIC), University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.
| | - Michaël Marie
- Department of Biomedicine and Molecular Imaging Center (MIC), University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway
| |
Collapse
|
4
|
Abstract
Cytoplasmic dynein 1 is an important microtubule-based motor in many eukaryotic cells. Dynein has critical roles both in interphase and during cell division. Here, we focus on interphase cargoes of dynein, which include membrane-bound organelles, RNAs, protein complexes and viruses. A central challenge in the field is to understand how a single motor can transport such a diverse array of cargoes and how this process is regulated. The molecular basis by which each cargo is linked to dynein and its cofactor dynactin has started to emerge. Of particular importance for this process is a set of coiled-coil proteins - activating adaptors - that both recruit dynein-dynactin to their cargoes and activate dynein motility.
Collapse
|
5
|
|
6
|
Kaczmarek B, Verbavatz JM, Jackson CL. GBF1 and Arf1 function in vesicular trafficking, lipid homoeostasis and organelle dynamics. Biol Cell 2017; 109:391-399. [PMID: 28985001 DOI: 10.1111/boc.201700042] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 01/07/2023]
Abstract
The ADP-ribosylation factor (Arf) small G proteins act as molecular switches to coordinate multiple downstream pathways that regulate membrane dynamics. Their activation is spatially and temporally controlled by the guanine nucleotide exchange factors (GEFs). Members of the evolutionarily conserved GBF/Gea family of Arf GEFs are well known for their roles in formation of coat protein complex I (COPI) vesicles, essential for maintaining the structure and function of the Golgi apparatus. However, studies over the past 10 years have found new functions for these GEFs, along with their substrate Arf1, in lipid droplet metabolism, clathrin-independent endocytosis, signalling at the plasma membrane, mitochondrial dynamics and transport along microtubules. Here, we describe these different functions, focussing in particular on the emerging theme of GFB1 and Arf1 regulation of organelle movement on microtubules.
Collapse
Affiliation(s)
- Beata Kaczmarek
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Paris, F-75013, France
| | - Jean-Marc Verbavatz
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Paris, F-75013, France
| | - Catherine L Jackson
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Paris, F-75013, France
| |
Collapse
|
7
|
Wei JH, Seemann J. Golgi ribbon disassembly during mitosis, differentiation and disease progression. Curr Opin Cell Biol 2017; 47:43-51. [PMID: 28390244 DOI: 10.1016/j.ceb.2017.03.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 11/16/2022]
Abstract
The Golgi apparatus is tightly integrated into the cellular system where it plays essential roles required for a variety of cellular processes. Its vital functions include not only processing and sorting of proteins and lipids, but also serving as a signaling hub and a microtubule-organizing center. Golgi stacks in mammalian cells are interconnected into a compact ribbon in the perinuclear region. However, the ribbon can undergo distinct disassembly processes that reflect the cellular state or environmental demands and stress. For instance, its most dramatic change takes place in mitosis when the ribbon is efficiently disassembled into vesicles through a combination of ribbon unlinking, cisternal unstacking and vesiculation. Furthermore, the ribbon can also be detached and positioned at specific cellular locations to gain additional functionalities during differentiation, or fragmented to different degrees along disease progression or upon cell death. Here, we describe the major morphological alterations of Golgi ribbon disassembly under physiological and pathological conditions and discuss the underlying mechanisms that drive these changes.
Collapse
Affiliation(s)
- Jen-Hsuan Wei
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Joachim Seemann
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
8
|
Barker AR, McIntosh KV, Dawe HR. Centrosome positioning in non-dividing cells. PROTOPLASMA 2016; 253:1007-1021. [PMID: 26319517 DOI: 10.1007/s00709-015-0883-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 08/22/2015] [Indexed: 06/04/2023]
Abstract
Centrioles and centrosomes are found in almost all eukaryotic cells, where they are important for organising the microtubule cytoskeleton in both dividing and non-dividing cells. The spatial location of centrioles and centrosomes is tightly controlled and, in non-dividing cells, plays an important part in cell migration, ciliogenesis and immune cell functions. Here, we examine some of the ways that centrosomes are connected to other organelles and how this impacts on cilium formation, cell migration and immune cell function in metazoan cells.
Collapse
Affiliation(s)
- Amy R Barker
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, EC1M 6BQ, London
| | - Kate V McIntosh
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Helen R Dawe
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| |
Collapse
|
9
|
DCTN1 p.K56R in progressive supranuclear palsy. Parkinsonism Relat Disord 2016; 28:56-61. [PMID: 27132499 DOI: 10.1016/j.parkreldis.2016.04.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/05/2016] [Accepted: 04/22/2016] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Mutations in dynactin DCTN1 (p150(glued)) have previously been linked to familial motor neuron disease or Perry syndrome (PS) consisting of depression, parkinsonism and hypoventilation. METHODS We sequenced DCTN1 in 636 Caucasian patients with parkinsonism (Parkinson's disease and Parkinson-plus syndromes) and 508 healthy controls. Variants (MAF < 0.01) were subsequently genotyped in Caucasian (1360 cases and 1009 controls) and Asian cohorts (1046 cases and 830 controls), and the functional implications of pathogenic variants were assessed. RESULTS We identified 17 rare variants leading to non-synonymous amino-acid substitutions. Four of the variants were only observed in control subjects, four in both cases and controls and the remaining nine in cases only. One of the variants, DCTN1 p.K56R, was present in two patients with progressive supranuclear palsy (PSP) with a shared minimal 2.2 Mb haplotype. Both subjects have parkinsonism as the most prominent symptom with abnormal ocular movements, moderate cognitive impairment and little to no l-dopa response. Neither subject presents with depression, central hypoventilation or weight loss. For one of the subjects MRI shows symmetrical atrophy of temporal and frontoparietal lobes. In HEK293 cells mutant p150(glued) (p.K56R) shows less affinity for microtubules than wild-type, with a more diffuse cytoplasmic distribution. CONCLUSIONS We have identified DCTN1 p.K56R in patients with PSP. This variant is immediately adjacent to the N-terminal p150(glued) 'CAP-Gly' domain, affects a highly conserved amino acid and alters the protein's affinity to microtubules and its cytoplasmic distribution.
Collapse
|
10
|
Salogiannis J, Egan MJ, Reck-Peterson SL. Peroxisomes move by hitchhiking on early endosomes using the novel linker protein PxdA. J Cell Biol 2016; 212:289-96. [PMID: 26811422 PMCID: PMC4748578 DOI: 10.1083/jcb.201512020] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/05/2016] [Indexed: 11/22/2022] Open
Abstract
Eukaryotic cells use microtubule-based intracellular transport for the delivery of many subcellular cargos, including organelles. The canonical view of organelle transport is that organelles directly recruit molecular motors via cargo-specific adaptors. In contrast with this view, we show here that peroxisomes move by hitchhiking on early endosomes, an organelle that directly recruits the transport machinery. Using the filamentous fungus Aspergillus nidulans we found that hitchhiking is mediated by a novel endosome-associated linker protein, PxdA. PxdA is required for normal distribution and long-range movement of peroxisomes, but not early endosomes or nuclei. Using simultaneous time-lapse imaging, we find that early endosome-associated PxdA localizes to the leading edge of moving peroxisomes. We identify a coiled-coil region within PxdA that is necessary and sufficient for early endosome localization and peroxisome distribution and motility. These results present a new mechanism of microtubule-based organelle transport in which peroxisomes hitchhike on early endosomes and identify PxdA as the novel linker protein required for this coupling.
Collapse
Affiliation(s)
- John Salogiannis
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Martin J Egan
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Samara L Reck-Peterson
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115 Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093 Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
11
|
Saraste J, Marie M. Intermediate Compartment: A Sorting Station between the Endoplasmic Reticulum and the Golgi Apparatus. ENCYCLOPEDIA OF CELL BIOLOGY 2016. [PMCID: PMC7150006 DOI: 10.1016/b978-0-12-394447-4.20013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Islam MA, Sharif SR, Lee H, Moon IS. N-Acetyl-D-Glucosamine Kinase Promotes the Axonal Growth of Developing Neurons. Mol Cells 2015; 38:876-85. [PMID: 26467288 PMCID: PMC4625069 DOI: 10.14348/molcells.2015.0120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 08/03/2015] [Accepted: 08/05/2015] [Indexed: 01/01/2023] Open
Abstract
N-acetyl-D-glucosamine kinase (NAGK) plays an enzyme activity-independent, non-canonical role in the dendritogenesis of hippocampal neurons in culture. In this study, we investigated its role in axonal development. We found NAGK was distributed throughout neurons until developmental stage 3 (axonal outgrowth), and that its axonal expression remarkably decreased during stage 4 (dendritic outgrowth) and became negligible in stage 5 (mature). Immunocytochemistry (ICC) showed colocalization of NAGK with tubulin in hippocampal neurons and with Golgi in somata, dendrites, and nascent axons. A proximity ligation assay (PLA) for NAGK and Golgi marker protein followed by ICC for tubulin or dynein light chain roadblock type 1 (DYNLRB1) in stage 3 neurons showed NAGK-Golgi complex colocalized with DYNLRB1 at the tips of microtubule (MT) fibers in axonal growth cones and in somatodendritic areas. PLAs for NAGK-dynein combined with tubulin or Golgi ICC showed similar signal patterns, indicating a three way interaction between NAGK, dynein, and Golgi in growing axons. In addition, overexpression of the NAGK gene and of kinase mutant NAGK genes increased axonal lengths, and knockdown of NAGK by small hairpin (sh) RNA reduced axonal lengths; suggesting a structural role for NAGK in axonal growth. Finally, transfection of 'DYNLRB1 (74-96)', a small peptide derived from DYNLRB1's C-terminal, which binds with NAGK, resulted in neurons with shorter axons in culture. The authors suggest a NAGK-dynein-Golgi tripartite interaction in growing axons is instrumental during early axonal development.
Collapse
Affiliation(s)
- Md. Ariful Islam
- Department of Anatomy, College of Medicine Dongguk University, Gyeongju 780-714,
Korea
| | - Syeda Ridita Sharif
- Department of Anatomy, College of Medicine Dongguk University, Gyeongju 780-714,
Korea
| | - HyunSook Lee
- Dongguk Medical Institute, College of Medicine Dongguk University, Gyeongju 780-714,
Korea
| | - Il Soo Moon
- Department of Anatomy, College of Medicine Dongguk University, Gyeongju 780-714,
Korea
- Dongguk Medical Institute, College of Medicine Dongguk University, Gyeongju 780-714,
Korea
| |
Collapse
|
13
|
Islam MA, Sharif SR, Lee H, Seog DH, Moon IS. N-acetyl-D-glucosamine kinase interacts with dynein light-chain roadblock type 1 at Golgi outposts in neuronal dendritic branch points. Exp Mol Med 2015; 47:e177. [PMID: 26272270 PMCID: PMC4558486 DOI: 10.1038/emm.2015.48] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/23/2015] [Accepted: 04/10/2015] [Indexed: 11/09/2022] Open
Abstract
N-acetylglucosamine kinase (GlcNAc kinase or NAGK) is a ubiquitously expressed enzyme in mammalian cells. Recent studies have shown that NAGK has an essential structural, non-enzymatic role in the upregulation of dendritogenesis. In this study, we conducted yeast two-hybrid screening to search for NAGK-binding proteins and found a specific interaction between NAGK and dynein light-chain roadblock type 1 (DYNLRB1). Immunocytochemistry (ICC) on hippocampal neurons using antibodies against NAGK and DYNLRB1 or dynein heavy chain showed some colocalization, which was increased by treating the live cells with a crosslinker. A proximity ligation assay (PLA) of NAGK-dynein followed by tubulin ICC showed the localization of PLA signals on microtubule fibers at dendritic branch points. NAGK-dynein PLA combined with Golgi ICC showed the colocalization of PLA signals with somal Golgi facing the apical dendrite and with Golgi outposts in dendritic branch points and distensions. NAGK-Golgi PLA followed by tubulin or DYNLRB1 ICC showed that PLA signals colocalize with DYNLRB1 at dendritic branch points and at somal Golgi, indicating a tripartite interaction between NAGK, dynein and Golgi. Finally, the ectopic introduction of a small peptide derived from the C-terminal amino acids 74–96 of DYNLRB1 resulted in the stunting of hippocampal neuron dendrites in culture. Our data indicate that the NAGK-dynein-Golgi tripartite interaction at dendritic branch points functions to regulate dendritic growth and/or branching.
Collapse
Affiliation(s)
- Md Ariful Islam
- Department of Anatomy, Dongguk Medical Institute, College of Medicine Dongguk University, Gyeongju, Republic of Korea
| | - Syeda Ridita Sharif
- Department of Anatomy, Dongguk Medical Institute, College of Medicine Dongguk University, Gyeongju, Republic of Korea
| | - HyunSook Lee
- Neuroscience Section, Dongguk Medical Institute, College of Medicine Dongguk University, Gyeongju, Republic of Korea
| | - Dae-Hyun Seog
- Departments of Biochemistry, College of Medicine Inje University, Busan, Republic of Korea
| | - Il Soo Moon
- 1] Department of Anatomy, Dongguk Medical Institute, College of Medicine Dongguk University, Gyeongju, Republic of Korea [2] Neuroscience Section, Dongguk Medical Institute, College of Medicine Dongguk University, Gyeongju, Republic of Korea
| |
Collapse
|
14
|
Brandstaetter H, Kruppa AJ, Buss F. Huntingtin is required for ER-to-Golgi transport and for secretory vesicle fusion at the plasma membrane. Dis Model Mech 2014; 7:1335-40. [PMID: 25368120 PMCID: PMC4257002 DOI: 10.1242/dmm.017368] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Huntingtin is a large membrane-associated scaffolding protein that associates with endocytic and exocytic vesicles and modulates their trafficking along cytoskeletal tracks. Although the progression of Huntington’s disease is linked to toxic accumulation of mutant huntingtin protein, loss of wild-type huntingtin function might also contribute to neuronal cell death, but its precise function is not well understood. Therefore, we investigated the molecular role of huntingtin in exocytosis and observed that huntingtin knockdown in HeLa cells causes a delay in endoplasmic reticulum (ER)-to-Golgi transport and a reduction in the number of cargo vesicles leaving the trans-Golgi network. In addition, we found that huntingtin is required for secretory vesicle fusion at the plasma membrane. Similar defects in the early exocytic pathway were observed in primary fibroblasts from homozygous Htt140Q/140Q knock-in mice, which have the expansion inserted into the mouse huntingtin gene so lack wild-type huntingtin expression. Interestingly, heterozygous fibroblasts from a Huntington’s disease patient with a 180Q expansion displayed no obvious defects in the early secretory pathway. Thus, our results highlight the requirement for wild-type huntingtin at distinct steps along the secretory pathway.
Collapse
Affiliation(s)
- Hemma Brandstaetter
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Antonina J Kruppa
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Folma Buss
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK.
| |
Collapse
|
15
|
Dix CI, Soundararajan HC, Dzhindzhev NS, Begum F, Suter B, Ohkura H, Stephens E, Bullock SL. Lissencephaly-1 promotes the recruitment of dynein and dynactin to transported mRNAs. ACTA ACUST UNITED AC 2013; 202:479-94. [PMID: 23918939 PMCID: PMC3734092 DOI: 10.1083/jcb.201211052] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lissencephaly-1 promotes the interaction of dynein with dynactin and facilitates motor complex association with mRNA cargos. Microtubule-based transport mediates the sorting and dispersal of many cellular components and pathogens. However, the mechanisms by which motor complexes are recruited to and regulated on different cargos remain poorly understood. Here we describe a large-scale biochemical screen for novel factors associated with RNA localization signals mediating minus end–directed mRNA transport during Drosophila development. We identified the protein Lissencephaly-1 (Lis1) and found that minus-end travel distances of localizing transcripts are dramatically reduced in lis1 mutant embryos. Surprisingly, given its well-documented role in regulating dynein mechanochemistry, we uncovered an important requirement for Lis1 in promoting the recruitment of dynein and its accessory complex dynactin to RNA localization complexes. Furthermore, we provide evidence that Lis1 levels regulate the overall association of dynein with dynactin. Our data therefore reveal a critical role for Lis1 within the mRNA localization machinery and suggest a model in which Lis1 facilitates motor complex association with cargos by promoting the interaction of dynein with dynactin.
Collapse
Affiliation(s)
- Carly I Dix
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, England, UK
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Brandizzi F, Barlowe C. Organization of the ER-Golgi interface for membrane traffic control. Nat Rev Mol Cell Biol 2013; 14:382-92. [PMID: 23698585 DOI: 10.1038/nrm3588] [Citation(s) in RCA: 363] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Coat protein complex I (COPI) and COPII are required for bidirectional membrane trafficking between the endoplasmic reticulum (ER) and the Golgi. While these core coat machineries and other transport factors are highly conserved across species, high-resolution imaging studies indicate that the organization of the ER-Golgi interface is varied in eukaryotic cells. Regulation of COPII assembly, in some cases to manage distinct cellular cargo, is emerging as one important component in determining this structure. Comparison of the ER-Golgi interface across different systems, particularly mammalian and plant cells, reveals fundamental elements and distinct organization of this interface. A better understanding of how these interfaces are regulated to meet varying cellular secretory demands should provide key insights into the mechanisms that control efficient trafficking of proteins and lipids through the secretory pathway.
Collapse
Affiliation(s)
- Federica Brandizzi
- DOE Plant Research Laboratory and Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
17
|
Yadav S, Puthenveedu MA, Linstedt AD. Golgin160 recruits the dynein motor to position the Golgi apparatus. Dev Cell 2012; 23:153-65. [PMID: 22814606 DOI: 10.1016/j.devcel.2012.05.023] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/19/2012] [Accepted: 05/29/2012] [Indexed: 11/26/2022]
Abstract
Membrane motility is a fundamental characteristic of all eukaryotic cells. One of the best-known examples is that of the mammalian Golgi apparatus, where constant inward movement of Golgi membranes results in its characteristic position near the centrosome. While it is clear that the minus-end-directed motor dynein is required for this process, the mechanism and regulation of dynein recruitment to Golgi membranes remains unknown. Here, we show that the Golgi protein golgin160 recruits dynein to Golgi membranes. This recruitment confers centripetal motility to membranes and is regulated by the GTPase Arf1. Further, during cell division, motor association with membranes is regulated by the dissociation of the receptor-motor complex from membranes. These results identify a cell-cycle-regulated membrane receptor for a molecular motor and suggest a mechanistic basis for achieving the dramatic changes in organelle positioning seen during cell division.
Collapse
Affiliation(s)
- Smita Yadav
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
18
|
Corda D, Barretta ML, Cervigni RI, Colanzi A. Golgi complex fragmentation in G2/M transition: An organelle-based cell-cycle checkpoint. IUBMB Life 2012; 64:661-70. [PMID: 22730233 DOI: 10.1002/iub.1054] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 04/29/2012] [Indexed: 11/06/2022]
Abstract
In mammalian cells, the Golgi complex is organized into a continuous membranous system known as the Golgi ribbon, which is formed by individual Golgi stacks that are laterally connected by tubular bridges. During mitosis, the Golgi ribbon undergoes extensive fragmentation through a multistage process that is required for its correct partitioning into the daughter cells. Importantly, inhibition of this Golgi disassembly results in cell-cycle arrest at the G2 stage, suggesting that accurate inheritance of the Golgi complex is monitored by a "Golgi mitotic checkpoint." Here, we discuss the mechanisms and regulation of the Golgi ribbon breakdown and briefly comment on how Golgi partitioning may inhibit G2/M transition.
Collapse
Affiliation(s)
- Daniela Corda
- Institute of Protein Biochemistry, National Research Council (CNR), Via Pietro Castellino 111, Naples, Italy.
| | | | | | | |
Collapse
|
19
|
|
20
|
TRAPPC9 mediates the interaction between p150 and COPII vesicles at the target membrane. PLoS One 2012; 7:e29995. [PMID: 22279557 PMCID: PMC3261171 DOI: 10.1371/journal.pone.0029995] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 12/07/2011] [Indexed: 11/19/2022] Open
Abstract
Background The transport of endoplasmic reticulum (ER)-derived COPII vesicles toward the ER-Golgi intermediate compartment (ERGIC) requires cytoplasmic dynein and is dependent on microtubules. p150Glued, a subunit of dynactin, has been implicated in the transport of COPII vesicles via its interaction with COPII coat components Sec23 and Sec24. However, whether and how COPII vesicle tether, TRAPP (Transport protein particle), plays a role in the interaction between COPII vesicles and microtubules is currently unknown. Principle Findings We address the functional relationship between COPII tether TRAPP and dynactin. Overexpressed TRAPP subunits interfered with microtubule architecture by competing p150Glued away from the MTOC. TRAPP subunit TRAPPC9 bound directly to p150Glued via the same carboxyl terminal domain of p150Glued that binds Sec23 and Sec24. TRAPPC9 also inhibited the interaction between p150Glued and Sec23/Sec24 both in vitro and in vivo, suggesting that TRAPPC9 serves to uncouple p150Glued from the COPII coat, and to relay the vesicle-dynactin interaction at the target membrane. Conclusions These findings provide a new perspective on the function of TRAPP as an adaptor between the ERGIC membrane and dynactin. By preserving the connection between dynactin and the tethered and/or fused vesicles, TRAPP allows nascent ERGIC to continue the movement along the microtubules as they mature into the cis-Golgi.
Collapse
|
21
|
McKenney RJ, Weil SJ, Scherer J, Vallee RB. Mutually exclusive cytoplasmic dynein regulation by NudE-Lis1 and dynactin. J Biol Chem 2011; 286:39615-22. [PMID: 21911489 PMCID: PMC3234784 DOI: 10.1074/jbc.m111.289017] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/02/2011] [Indexed: 12/27/2022] Open
Abstract
Cytoplasmic dynein is responsible for a wide range of cellular roles. How this single motor protein performs so many functions has remained a major outstanding question for many years. Part of the answer is thought to lie in the diversity of dynein regulators, but how the effects of these factors are coordinated in vivo remains unexplored. We previously found NudE to bind dynein through its light chain 8 (LC8) and intermediate chain (IC) subunits (1), the latter of which also mediates the dynein-dynactin interaction (2). We report here that NudE and dynactin bind to a common region within the IC, and compete for this site. We find LC8 to bind to a novel sequence within NudE, without detectably affecting the dynein-NudE interaction. We further find that commonly used dynein inhibitory reagents have broad effects on the interaction of dynein with its regulatory factors. Together these results reveal an unanticipated mechanism for preventing dual regulation of individual dynein molecules, and identify the IC as a nexus for regulatory interactions within the dynein complex.
Collapse
Affiliation(s)
- Richard J. McKenney
- From the Department of Pathology and Cell Biology, Columbia University, New York, New York 10032
| | - Sarah J. Weil
- From the Department of Pathology and Cell Biology, Columbia University, New York, New York 10032
| | - Julian Scherer
- From the Department of Pathology and Cell Biology, Columbia University, New York, New York 10032
| | - Richard B. Vallee
- From the Department of Pathology and Cell Biology, Columbia University, New York, New York 10032
| |
Collapse
|
22
|
Abstract
The Golgi apparatus lies at the heart of the secretory pathway where it receives, modifies and sorts protein cargo to the proper intracellular or extracellular location. Although this secretory function is highly conserved throughout the eukaryotic kingdom, the structure of the Golgi complex is arranged very differently among species. In particular, Golgi membranes in vertebrate cells are integrated into a single compact entity termed the Golgi ribbon that is normally localized in the perinuclear area and in close vicinity to the centrosomes. This organization poses a challenge for cell division when the single Golgi ribbon needs to be partitioned into the two daughter cells. To ensure faithful inheritance in the progeny, the Golgi ribbon is divided in three consecutive steps in mitosis, namely disassembly, partitioning and reassembly. However, the structure of the Golgi ribbon is only present in higher animals and Golgi disassembly during mitosis is not ubiquitous in all organisms. Therefore, there must be unique reasons to build up the Golgi in this particular conformation and to preserve it over generations. In this review, we first highlight the diversity of the Golgi architecture in different organisms and revisit the concept of the Golgi ribbon. Following on, we discuss why the ribbon is needed and how it forms in vertebrate cells. Lastly, we conclude with likely purposes of mitotic ribbon disassembly and further propose mechanisms by which it regulates mitosis.
Collapse
Affiliation(s)
- Jen-Hsuan Wei
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | |
Collapse
|
23
|
Tan SC, Scherer J, Vallee RB. Recruitment of dynein to late endosomes and lysosomes through light intermediate chains. Mol Biol Cell 2010; 22:467-77. [PMID: 21169557 PMCID: PMC3038645 DOI: 10.1091/mbc.e10-02-0129] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cytoplasmic dynein is involved in a wide range of cellular processes, but how it is regulated and how it recognizes an extremely wide range of cargo are incompletely understood. The dynein light intermediate chains, LIC1 and LIC2 (DYNC1LI1 and DYNC1LI2, respectively), have been implicated in cargo binding, but their full range of functions is unknown. Using LIC isoform-specific antibodies, we report the first characterization of their subcellular distribution and identify a specific association with elements of the late endocytic pathway, but not other vesicular compartments. LIC1 and LIC2 RNA interference (RNAi) each specifically disrupts the distribution of lysosomes and late endosomes. Stimulation of dynein-mediated late-endosomal transport by the Rab7-interacting lysosomal protein (RILP) is reversed by LIC1 RNAi, which displaces dynein, but not dynactin, from these structures. Conversely, expression of ΔN-RILP or the dynactin subunit dynamitin each fails to displace dynein, but not dynactin. Thus, using a variety of complementary approaches, our results indicate a novel specific role for the LICs in dynein recruitment to components of the late endocytic pathway.
Collapse
Affiliation(s)
- Serena C Tan
- Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
24
|
Manneville JB, Jehanno M, Etienne-Manneville S. Dlg1 binds GKAP to control dynein association with microtubules, centrosome positioning, and cell polarity. ACTA ACUST UNITED AC 2010; 191:585-98. [PMID: 21041448 PMCID: PMC3003329 DOI: 10.1083/jcb.201002151] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The small GTPase Cdc42 regulates interactions of dynein with microtubules through the polarity protein Dlg1 and the scaffolding protein GKAP. Centrosome positioning is crucial during cell division, cell differentiation, and for a wide range of cell-polarized functions including migration. In multicellular organisms, centrosome movement across the cytoplasm is thought to result from a balance of forces exerted by the microtubule-associated motor dynein. However, the mechanisms regulating dynein-mediated forces are still unknown. We show here that during wound-induced cell migration, the small G protein Cdc42 acts through the polarity protein Dlg1 to regulate the interaction of dynein with microtubules of the cell front. Dlg1 interacts with dynein via the scaffolding protein GKAP and together, Dlg1, GKAP, and dynein control microtubule dynamics and organization near the cell cortex and promote centrosome positioning. Our results suggest that, by modulating dynein interaction with leading edge microtubules, the evolutionary conserved proteins Dlg1 and GKAP control the forces operating on microtubules and play a fundamental role in centrosome positioning and cell polarity.
Collapse
|
25
|
TGN golgins, Rabs and cytoskeleton: regulating the Golgi trafficking highways. Trends Cell Biol 2010; 20:329-36. [DOI: 10.1016/j.tcb.2010.02.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 02/15/2010] [Accepted: 02/17/2010] [Indexed: 12/22/2022]
|
26
|
Abstract
The mammalian Golgi apparatus is characterized by a ribbon-like organization adjacent to the centrosome during interphase and extensive fragmentation and dispersal away from the centrosome during mitosis. It is not clear whether this dynamic association between the Golgi and centrosome is of functional significance. We discuss recent findings indicating that the Golgi–centrosome relationship may be important for directional protein transport and centrosome positioning, which are both required for cell polarization. We also summarize our current knowledge of the link between Golgi organization and cell cycle progression.
Collapse
Affiliation(s)
- Christine Sütterlin
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA.
| | | |
Collapse
|
27
|
Tomás M, Martínez-Alonso E, Ballesta J, Martínez-Menárguez JA. Regulation of ER-Golgi intermediate compartment tubulation and mobility by COPI coats, motor proteins and microtubules. Traffic 2010; 11:616-25. [PMID: 20136777 DOI: 10.1111/j.1600-0854.2010.01047.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Little is known about the formation and regulation of endoplasmic reticulum (ER)-Golgi transport intermediates, although previous studies suggest that cargo is the main regulator of their morphology. In this study, we analyze the role of coat protein I (COPI) and cytoskeleton in the formation of tubular ER-Golgi intermediate compartment (ERGIC) and also show that partial COPI detachment by means of low temperature (15 degrees C) or brefeldin A induces the formation of transient tubular ERGIC elements. Most of them moved from the cell periphery to the perinuclear area and were 2.5x slower than vesicles. Time-lapse analysis of living cells demonstrates that the ERGIC elements are able to shift very fast from tubular to vesicular forms and vice versa, suggesting that the amount of cargo is not the determining factor for ERGIC morphology. Both the partial microtubule depolymerization and the inhibition of uncoating of the membranes result in the formation of long tubules that grow from round ERGICs and form at complex network. Interestingly, both COPI detachment and microtubule depolymerization induce a redistribution of kinesin from peripheral ERGIC elements to the Golgi area, while dynein distribution is not affected. However, both kinesin and dynein downregulation by RNA interference induced ERGIC tubulation. The tubules induced by kinesin depletion were static, whereas those resulting from dynein depletion were highly mobile. Our results strongly suggest that the interaction of motor proteins with COPI-coated membranes and microtubules is a key regulator of ERGIC morphology and mobility.
Collapse
Affiliation(s)
- Mónica Tomás
- Department of Cell Biology and Histology, School of Medicine, University of Murcia, Murcia, Spain
| | | | | | | |
Collapse
|
28
|
Bremner KH, Scherer J, Yi J, Vershinin M, Gross SP, Vallee RB. Adenovirus transport via direct interaction of cytoplasmic dynein with the viral capsid hexon subunit. Cell Host Microbe 2010; 6:523-35. [PMID: 20006841 DOI: 10.1016/j.chom.2009.11.006] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 09/18/2009] [Accepted: 10/19/2009] [Indexed: 10/20/2022]
Abstract
Early in infection, adenovirus travels to the nucleus as a naked capsid using the microtubule motor cytoplasmic dynein. How the dynein complex is recruited to viral cargo remains unclear. We find that cytoplasmic dynein and its associated proteins dynactin and NudE/NudEL, but not LIS1 or ZW10, colocalized with incoming, postendosomal adenovirus particles. However, in contrast to physiological cargos, dynein binding to adenovirus was independent of these dynein-associated proteins. Dynein itself directly interacted through its intermediate and light intermediate chains with the adenovirus capsid subunit hexon in a pH-dependent manner. Expression of hexon or injection of anti-hexon antibody inhibited virus transport but not physiological dynein function. These results identify hexon as a direct receptor for cytoplasmic dynein and demonstrate that hexon recruits dynein for transport to the nucleus by a mechanism distinct from that for physiological dynein cargo.
Collapse
Affiliation(s)
- K Helen Bremner
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
29
|
Miller PM, Folkmann AW, Maia ARR, Efimova N, Efimov A, Kaverina I. Golgi-derived CLASP-dependent microtubules control Golgi organization and polarized trafficking in motile cells. Nat Cell Biol 2009; 11:1069-80. [PMID: 19701196 PMCID: PMC2748871 DOI: 10.1038/ncb1920] [Citation(s) in RCA: 230] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 05/22/2009] [Indexed: 01/10/2023]
Abstract
Microtubules are indispensable for Golgi complex assembly and maintenance, which are integral parts of cytoplasm organization during interphase in mammalian cells. Here, we show that two discrete microtubule subsets drive two distinct, yet simultaneous, stages of Golgi assembly. In addition to the radial centrosomal microtubule array, which positions the Golgi in the centre of the cell, we have identified a role for microtubules that form at the Golgi membranes in a manner dependent on the microtubule regulators CLASPs. These Golgi-derived microtubules draw Golgi ministacks together in tangential fashion and are crucial for establishing continuity and proper morphology of the Golgi complex. We propose that specialized functions of these two microtubule arrays arise from their specific geometries. Further, we demonstrate that directional post-Golgi trafficking and cell migration depend on Golgi-associated CLASPs, suggesting that correct organization of the Golgi complex by microtubules is essential for cell polarization and motility.
Collapse
Affiliation(s)
- Paul M Miller
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
30
|
Palmer KJ, Hughes H, Stephens DJ. Specificity of cytoplasmic dynein subunits in discrete membrane-trafficking steps. Mol Biol Cell 2009; 20:2885-99. [PMID: 19386764 DOI: 10.1091/mbc.e08-12-1160] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The cytoplasmic dynein motor complex is known to exist in multiple forms, but few specific functions have been assigned to individual subunits. A key limitation in the analysis of dynein in intact mammalian cells has been the reliance on gross perturbation of dynein function, e.g., inhibitory antibodies, depolymerization of the entire microtubule network, or the use of expression of dominant negative proteins that inhibit dynein indirectly. Here, we have used RNAi and automated image analysis to define roles for dynein subunits in distinct membrane-trafficking processes. Depletion of a specific subset of dynein subunits, notably LIC1 (DYNC1LI1) but not LIC2 (DYNC1LI2), recapitulates a direct block of ER export, revealing that dynein is required to maintain the steady-state composition of the Golgi, through ongoing ER-to-Golgi transport. Suppression of LIC2 but not of LIC1 results in a defect in recycling endosome distribution and cytokinesis. Biochemical analyses also define the role of each subunit in stabilization of the dynein complex; notably, suppression of DHC1 or IC2 results in concomitant loss of Tctex1. Our data demonstrate that LIC1 and LIC2 define distinct dynein complexes that function at the Golgi versus recycling endosomes, respectively, suggesting that functional populations of dynein mediate discrete intracellular trafficking pathways.
Collapse
Affiliation(s)
- Krysten J Palmer
- Cell Biology Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS81TD, United Kingdom
| | | | | |
Collapse
|
31
|
Brownhill K, Wood L, Allan V. Molecular motors and the Golgi complex: staying put and moving through. Semin Cell Dev Biol 2009; 20:784-92. [PMID: 19446479 DOI: 10.1016/j.semcdb.2009.03.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 03/30/2009] [Accepted: 03/31/2009] [Indexed: 11/19/2022]
Abstract
The Golgi apparatus is a highly dynamic organelle through which nascent proteins released from the endoplasmic reticulum (ER) are trafficked. Proteins are post-translationally modified within the Golgi and subsequently packaged into carriers for transport to a variety of cellular destinations. This transit of proteins, as well as the maintenance of Golgi structure and position, is highly dependent upon the actin and microtubule cytoskeletons and their associated molecular motors. Here we review how motors contribute to the correct functioning of the Golgi in higher eukaryotes and discuss the secretory pathway as a model system for studying cooperation between motor proteins.
Collapse
Affiliation(s)
- Kim Brownhill
- University of Manchester, Faculty of Life Sciences, The Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | | | |
Collapse
|
32
|
Tisdale EJ, Azizi F, Artalejo CR. Rab2 utilizes glyceraldehyde-3-phosphate dehydrogenase and protein kinase C{iota} to associate with microtubules and to recruit dynein. J Biol Chem 2009; 284:5876-84. [PMID: 19106097 PMCID: PMC2645835 DOI: 10.1074/jbc.m807756200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 12/01/2008] [Indexed: 01/09/2023] Open
Abstract
Rab2 requires glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and atypical protein kinase Ciota (aPKCiota) for retrograde vesicle formation from vesicular tubular clusters that sort secretory cargo from recycling proteins returned to the endoplasmic reticulum. However, the precise role of GAPDH and aPKCiota in the early secretory pathway is unclear. GAPDH was the first glycolytic enzyme reported to co-purify with microtubules (MTs). Similarly, aPKC associates directly with MTs. To learn whether Rab2 also binds directly to MTs, a MT binding assay was performed. Purified Rab2 was found in a MT-enriched pellet only when both GAPDH and aPKCiota were present, and Rab2-MT binding could be prevented by a recombinant fragment made to the Rab2 amino terminus (residues 2-70), which directly interacts with GAPDH and aPKCiota. Because GAPDH binds to the carboxyl terminus of alpha-tubulin, we characterized the distribution of tyrosinated/detyrosinated alpha-tubulin that is recruited by Rab2 in a quantitative membrane binding assay. Rab2-treated membranes contained predominantly tyrosinated alpha-tubulin; however, aPKCiota was the limiting and essential factor. Tyrosination/detyrosination influences MT motor protein binding; therefore, we determined whether Rab2 stimulated kinesin or dynein membrane binding. Although kinesin was not detected on membranes incubated with Rab2, dynein was recruited in a dose-dependent manner, and binding was aPKCiota-dependent. These combined results suggest a mechanism by which Rab2 controls MT and motor recruitment to vesicular tubular clusters.
Collapse
Affiliation(s)
- Ellen J Tisdale
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | |
Collapse
|
33
|
Yadav S, Puri S, Linstedt AD. A primary role for Golgi positioning in directed secretion, cell polarity, and wound healing. Mol Biol Cell 2009; 20:1728-36. [PMID: 19158377 DOI: 10.1091/mbc.e08-10-1077] [Citation(s) in RCA: 236] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Peri-centrosomal positioning of the mammalian Golgi apparatus is known to involve microtubule-based motility, but its importance for cellular physiology is a major unanswered question. Here, we identify golgin-160 and GMAP210 as proteins required for centripetal motility of Golgi membranes. In the absence of either golgin, peri-centrosomal positioning of the Golgi apparatus was disrupted while the cytoskeleton remained intact. Although secretion persisted with normal kinetics, it was evenly distributed in response to wounding rather than directed to the wound edge. Strikingly, these cells also completely failed to polarize. Further, directionally persistent cell migration was inhibited such that wound closure was impaired. These findings not only reveal novel roles for golgin-160 and GMAP210 in conferring membrane motility but also indicate that Golgi positioning has an active role in directed secretion, cell polarity, and wound healing.
Collapse
Affiliation(s)
- Smita Yadav
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
34
|
McKeen HD, McAlpine K, Valentine A, Quinn DJ, McClelland K, Byrne C, O'Rourke M, Young S, Scott CJ, McCarthy HO, Hirst DG, Robson T. A novel FK506-like binding protein interacts with the glucocorticoid receptor and regulates steroid receptor signaling. Endocrinology 2008; 149:5724-34. [PMID: 18669603 DOI: 10.1210/en.2008-0168] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
FKBP-like (FKBPL) protein is a novel immunophilin-like protein that plays a role in the cellular stress response. Its three tetratricopeptide repeat motifs are homologous to the heat shock protein 90 interaction sites of other immunophilins that have roles in steroid hormone receptor signaling. In this study, using biomolecular complementation and coimmunoprecipitation techniques, we show that FKBPL also colocalizes and interacts with the components of the heat shock protein 90-glucocorticoid receptor (GR) complex and demonstrate that the PPIase domain of FKBPL is important for the interaction between this complex and the dynein motor protein, dynamitin. Treatment of DU145 cells with the GR ligand, dexamethasone, induced a rapid and coordinated translocation of both GR and FKBPL to the nucleus; this response was perturbed when FKBPL was knocked down with a targeted small interfering RNA. Furthermore, overexpression of FKBPL increased GR protein levels and transactivation of a luciferase reporter gene in response to dexamethasone in DU145 cells. However, these responses were cell line dependent. In summary, these data suggest that FKBPL can be classed as a new member of the FKBP protein family with a role in steroid receptor complexes and signaling.
Collapse
Affiliation(s)
- Hayley D McKeen
- School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Bryksin AV, Laktionov PP. Role of glyceraldehyde-3-phosphate dehydrogenase in vesicular transport from golgi apparatus to endoplasmic reticulum. BIOCHEMISTRY (MOSCOW) 2008; 73:619-25. [PMID: 18620527 DOI: 10.1134/s0006297908060011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a well-studied glycolytic protein with energy production as its implied occupation. It has established itself lately as a multifunctional protein. Recent studies have found GAPDH to be involved in a variety of nuclear and cytosolic pathways ranging from its role in apoptosis and regulation of gene expression to its involvement in regulation of Ca2+ influx from endoplasmic reticulum. Numerous studies also indicate that GAPDH interacts with microtubules and participates in cell membrane fusion. This review is focused on the cytosolic functions of the protein related to vesicular transport. Suggestions for future directions as well as the model of protein polymer structure and possible post-translational modifications as a basis for its multifunctional activities in the early secretory pathway are given.
Collapse
Affiliation(s)
- A V Bryksin
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia.
| | | |
Collapse
|
36
|
Gupta V, Palmer KJ, Spence P, Hudson A, Stephens DJ. Kinesin-1 (uKHC/KIF5B) is required for bidirectional motility of ER exit sites and efficient ER-to-Golgi transport. Traffic 2008; 9:1850-66. [PMID: 18817524 DOI: 10.1111/j.1600-0854.2008.00811.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transport of proteins and lipids between intracellular compartments is fundamental to the organization and function of eukaryotic cells. The efficiency of this process is greatly enhanced through coupling of membranes to microtubules. This serves two functions, organelle positioning and vesicular transport. In this study, we show that in addition to the well-known role for the minus-end motor dynein in endoplasmic reticulum (ER)-to-Golgi transport, the plus-end-directed motor kinesin-1 is involved in positioning coat protein II-coated ER exit sites (ERES) in cells as well as the formation of transport carriers and their movement to the Golgi. Using two-dimensional Gaussian fitting to determine their location at high spatial resolution, we show that ERES undergo short-range bidirectional movements. Bidirectionality depends on both kinesin-1 and dynein. Suppression of kinesin-1 (KIF5B) also inhibits ER-to-Golgi transport and affects the morphology of ER-to-Golgi transport carriers. Furthermore, we show that suppression of dynein heavy chain expression increases the range of movement of ERES, suggesting that dynein might anchor ERES, or the ER itself, to microtubules. These data implicate kinesin-1 in the spatial organization of the ER/Golgi interface as well as in traffic outside the ER.
Collapse
Affiliation(s)
- Vijay Gupta
- Cell Biology Laboratories, Department of Biochemistry, University of Bristol, School of Medical Sciences, University Walk, Bristol, BS81TD, UK
| | | | | | | | | |
Collapse
|
37
|
Abstract
Pseudomonas aeruginosa ExoS is a bifunctional type III cytotoxin that disrupts Ras- and Rho-signaling pathways in mammalian cells. A hydrophobic region (residues 51-77, termed the membrane localization domain) targets ExoS to the plasma membrane (PM) and late endosomes of host cells. In the current study, metabolic inhibitors and dominant-negative proteins that disrupt known vesicle-trafficking pathways were used to define the intracellular trafficking of ExoS. Release of ExoS from PM was independent of dynamin and ADP ribosylation factor 6 but inhibited by methyl-beta-cyclodextrin, a cholesterol-depleting reagent, and perinuclear localization of ExoS was disrupted by nocodazole. p50 dynamitin, a dynein inhibitor partially disrupted perinuclear localization of ExoS. Methyl-beta-cyclodextrin and nocodazole inhibited the ability of type-III-delivered ExoS to ADP-ribosylated Golgi/endoplasmic reticulum-resident Ras. Methyl-beta-cyclodextrin also relocated ExoS from the perinuclear region to the PM, indicating that ExoS can cycle through anterograde as well as through retrograde trafficking pathways. These findings show that ExoS endocytosis is cholesterol dependent, and it utilizes host microtubules, for intracellular trafficking. Understanding how type III cytotoxins enter and traffic within mammalian cells may identify new targets for therapeutic intervention of gram-negative bacterial pathogens.
Collapse
Affiliation(s)
- Qing Deng
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
38
|
Ramanathan HN, Chung DH, Plane SJ, Sztul E, Chu YK, Guttieri MC, McDowell M, Ali G, Jonsson CB. Dynein-dependent transport of the hantaan virus nucleocapsid protein to the endoplasmic reticulum-Golgi intermediate compartment. J Virol 2007; 81:8634-47. [PMID: 17537852 PMCID: PMC1951367 DOI: 10.1128/jvi.00418-07] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In contrast to most negative-stranded RNA viruses, hantaviruses and other viruses in the family Bunyaviridae mature intracellularly, deriving the virion envelope from the endoplasmic reticulum (ER) or Golgi compartment. While it is generally accepted that Old World hantaviruses assemble and bud into the Golgi compartment, some studies with New World hantaviruses have raised the possibility of maturation at the plasma membrane as well. Overall, the steps leading to virion assembly remain largely undetermined for hantaviruses. Because hantaviruses do not have matrix proteins, the nucleocapsid protein (N) has been proposed to play a key role in assembly. Herein, we examine the intracellular trafficking and morphogenesis of the prototype Old World hantavirus, Hantaan virus (HTNV). Using confocal microscopy, we show that N colocalized with the ER-Golgi intermediate compartment (ERGIC) in HTNV-infected Vero E6 cells, not with the ER, Golgi compartment, or early endosomes. Brefeldin A, which effectively disperses the ER, the ERGIC, and Golgi membranes, redistributed N with the ERGIC, implicating membrane association; however, subcellular fractionation experiments showed the majority of N in particulate fractions. Confocal microscopy revealed that N was juxtaposed to and distributed along microtubules and, over time, became surrounded by vimentin cages. To probe cytoskeletal association further, we probed trafficking of N in cells treated with nocodazole and cytochalasin D, which depolymerize microtubules and actin, respectively. We show that nocodazole, but not cytochalasin D, affected the distribution of N and reduced levels of intracellular viral RNA. These results suggested the involvement of microtubules in trafficking of N, whose movement could occur via molecular motors such as dynein. Overexpression of dynamitin, which is associated with dynein-mediated transport, creates a dominant-negative phenotype blocking transport on microtubules. Overexpression of dynamitin reduced N accumulation in the perinuclear region, which further supports microtubule components in N trafficking. The combined results of these experiments support targeting of N to the ERGIC prior to its movement to the Golgi compartment and the requirement of an intact ERGIC for viral replication and, thus, the possibility of virus factories in this region.
Collapse
Affiliation(s)
- Harish N Ramanathan
- Graduate Program in Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Suzuki SO, McKenney RJ, Mawatari SY, Mizuguchi M, Mikami A, Iwaki T, Goldman JE, Canoll P, Vallee RB. Expression patterns of LIS1, dynein and their interaction partners dynactin, NudE, NudEL and NudC in human gliomas suggest roles in invasion and proliferation. Acta Neuropathol 2007; 113:591-9. [PMID: 17221205 DOI: 10.1007/s00401-006-0180-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 11/26/2006] [Accepted: 11/26/2006] [Indexed: 11/24/2022]
Abstract
Diffusely infiltrating gliomas are the most common type of primary intracranial neoplasm in humans. One of the major obstacles to the effective treatment of these tumors is their highly infiltrative growth. However, mechanisms controlling their migration and proliferation are poorly understood. Glioma cells resemble neural progenitors, and we hypothesize that gliomas recapitulate the capacity of migration and proliferation of progenitors that takes place during brain development. Based on recent evidence implicating cytoplasmic dynein and its regulatory proteins in neural progenitor migration and division, we conducted immunohistochemical evaluation of surgically resected human glioma samples for the presence and distribution of these proteins. We examined expression of LIS1, the gene responsible for type I lissencephaly, cytoplasmic dynein and the dynein- and LIS1-interacting factors dynactin, NudE/NudEL and NudC, which play significant roles in neural progenitor cell behavior. We found that each of these proteins is expressed in all histological types and grades of human neuroectodermal tumors examined. Immunohistochemical analysis revealed that the levels of expression varied from cell to cell within each tumor, ranging from very high to undetectable. This stands in contrast to the low levels of diffuse staining seen in non-neoplastic brain tissue. Of particular interest, we noted tumor cells infiltrating the white matter and tumor cells undergoing cell division amongst the cells with notably high expression levels. These findings are compatible with the idea that LIS1 and its interacting proteins play a role in glioma migration and proliferation analogous to their role during brain development.
Collapse
Affiliation(s)
- Satoshi O Suzuki
- Department of Neuropathology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, 812-8582 Fukuoka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Appenzeller-Herzog C, Hauri HP. The ER-Golgi intermediate compartment (ERGIC): in search of its identity and function. J Cell Sci 2007; 119:2173-83. [PMID: 16723730 DOI: 10.1242/jcs.03019] [Citation(s) in RCA: 315] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Protein traffic moving from the endoplasmic reticulum (ER) to the Golgi complex in mammalian cells passes through the tubulovesicular membrane clusters of the ER-Golgi intermediate compartment (ERGIC), the marker of which is the lectin ERGIC-53. The dynamic nature and functional role of the ERGIC have been debated for quite some time. In the most popular current view, the ERGIC clusters are mobile transport complexes that deliver secretory cargo from ER-exit sites to the Golgi. Recent live-cell imaging data revealing the formation of anterograde carriers from stationary ERGIC-53-positive membranes, however, suggest a stable compartment model in which ER-derived cargo is first shuttled from ER-exit sites to stationary ERGIC clusters in a COPII-dependent step and subsequently to the Golgi in a second vesicular transport step. This model can better accommodate previous morphological and functional data on ER-to-Golgi traffic. Such a stationary ERGIC would be a major site of anterograde and retrograde sorting that is controlled by coat proteins, Rab and Arf GTPases, as well as tethering complexes, SNAREs and cytoskeletal networks. The ERGIC also contributes to the concentration, folding, and quality control of newly synthesized proteins.
Collapse
|
41
|
Bekker JM, Colantonio JR, Stephens AD, Clarke WT, King SJ, Hill KL, Crosbie RH. Direct interaction of Gas11 with microtubules: Implications for the dynein regulatory complex. ACTA ACUST UNITED AC 2007; 64:461-73. [PMID: 17366626 DOI: 10.1002/cm.20196] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We previously described the Trypanin family of cytoskeleton-associated proteins that have been implicated in dynein regulation [Hill et al., J Biol Chem2000; 275(50):39369-39378; Hutchings et al., J Cell Biol2002;156(5):867-877; Rupp and Porter, J Cell Biol2003;162(1):47-57]. Trypanin from T. brucei is part of an evolutionarily conserved dynein regulatory system that is required for regulation of flagellar beat. In C. reinhardtii, the trypanin homologue (PF2) is part of an axonemal 'dynein regulatory complex' (DRC) that functions as a reversible inhibitor of axonemal dynein [Piperno et al., J Cell Biol1992;118(6):1455-1463; Gardner et al., J Cell Biol1994;127(5):1311-1325]. The DRC consists of an estimated seven polypeptides that are tightly associated with axonemal microtubules. Association with the axoneme is critical for DRC function, but the mechanism by which it attaches to the microtubule lattice is completely unknown. We demonstrate that Gas11, the mammalian trypanin/PF2 homologue, associates with microtubules in vitro and in vivo. Deletion analyses identified a novel microtubule-binding domain (GMAD) and a distinct region (IMAD) that attenuates Gas11-microtubule interactions. Using single-particle binding assays, we demonstrate that Gas11 directly binds microtubules and that the IMAD attenuates the interaction between GMAD and the microtubule. IMAD is able to function in either a cis- or trans-orientation with GMAD. The discovery that Gas11 provides a direct linkage to microtubules provides new mechanistic insight into the structural features of the dynein-regulatory complex.
Collapse
Affiliation(s)
- Janine M Bekker
- Department of Physiological Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Atkinson S, Roghi C, Murphy G. MT1-MMP hemopexin domain exchange with MT4-MMP blocks enzyme maturation and trafficking to the plasma membrane in MCF7 cells. Biochem J 2006; 398:15-22. [PMID: 16686598 PMCID: PMC1525013 DOI: 10.1042/bj20060243] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The hemopexin-like domain of membrane-type matrix metalloproteinase-1 (MT1-MMP) enables MT1-MMP to form oligomers that facilitate the activation of pro-matrix metalloproteinase-2 (pro-MMP-2) at the cell surface. To investigate the role of the MT1-MMP hemopexin domain in the trafficking of MT1-MMP to the cell surface we have examined the activity of two MT1-MT4-MMP chimaeras in which the hemopexin domain of MT1-MMP has been replaced with that of human or mouse MT4-MMP. We show that MT1-MMP bearing the hemopexin domain of MT4-MMP was incapable of activating pro-MMP-2 or degrading gelatin in cell based assays. Furthermore, cell surface biotinylation and indirect immunofluorescence show that transiently expressed MT1-MT4-MMP chimaeras failed to reach the plasma membrane and were retained in the endoplasmic reticulum. Functional activity could be restored by replacing the MT4-MMP hemopexin domain with the wild-type MT1-MMP hemopexin domain. Subsequent analysis with an antibody specifically recognising the propeptide of MT1-MMP revealed that the propeptides of the MT1-MT4-MMP chimaeras failed to undergo proper processing. It has previously been suggested that the hemopexin domain of MT4-MMP could exert a regulatory mechanism that prevents MT4-MMP from activating pro-MMP-2. In this report, we demonstrate unambiguously that MT1-MT4-MMP chimaeras do not undergo normal trafficking and are not correctly processed to their fully active forms and, as a consequence, they are unable to activate pro-MMP-2 at the cell surface.
Collapse
Affiliation(s)
- Susan J. Atkinson
- Department of Oncology, Cambridge University, Cambridge Institute for Medical Research, Hills Road, Cambridge CB2 2XY, U.K
| | - Christian Roghi
- Department of Oncology, Cambridge University, Cambridge Institute for Medical Research, Hills Road, Cambridge CB2 2XY, U.K
| | - Gillian Murphy
- Department of Oncology, Cambridge University, Cambridge Institute for Medical Research, Hills Road, Cambridge CB2 2XY, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
43
|
Krubasik D, Iyer NG, English WR, Ahmed AA, Vias M, Roskelley C, Brenton JD, Caldas C, Murphy G. Absence of p300 induces cellular phenotypic changes characteristic of epithelial to mesenchyme transition. Br J Cancer 2006; 94:1326-32. [PMID: 16622451 PMCID: PMC2361417 DOI: 10.1038/sj.bjc.6603101] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
p300 is a transcriptional cofactor and prototype histone acetyltransferase involved in regulating multiple cellular processes. We generated p300 deficient (p300−) cells from the colon carcinoma cell line HCT116 by gene targeting. Comparison of epithelial and mesenchymal proteins in p300− with parental HCT116 cells showed that a number of genes involved in cell and extracellular matrix interactions, typical of ‘epithelial to mesenchyme transition’ were differentially regulated at both the RNA and protein level. p300− cells were found to have aggressive ‘cancer’ phenotypes, with loss of cell–cell adhesion, defects in cell–matrix adhesion and increased migration through collagen and matrigel. Although migration was shown to be metalloproteinase mediated, these cells actually showed a downregulation or no change in the level of key metalloproteinases, indicating that changes in cellular adhesion properties can be critical for cellular mobility.
Collapse
Affiliation(s)
- D Krubasik
- Department of Oncology, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2XY, UK
| | - N G Iyer
- Cancer Genomics Program, Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 2XZ, UK
| | - W R English
- Department of Oncology, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2XY, UK
| | - A A Ahmed
- Cancer Genomics Program, Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 2XZ, UK
| | - M Vias
- Cancer Genomics Program, Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 2XZ, UK
| | - C Roskelley
- Department of Anatomy, University of British Columbia, 2177 Westbrook Mall, Vancouver BC V66T 1Z3, UK
| | - J D Brenton
- Cancer Genomics Program, Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 2XZ, UK
| | - C Caldas
- Cancer Genomics Program, Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 2XZ, UK
| | - G Murphy
- Department of Oncology, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2XY, UK
- Department of Oncology, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2XY, UK. E-mail:
| |
Collapse
|
44
|
Varma D, Dujardin DL, Stehman SA, Vallee RB. Role of the kinetochore/cell cycle checkpoint protein ZW10 in interphase cytoplasmic dynein function. ACTA ACUST UNITED AC 2006; 172:655-62. [PMID: 16505164 PMCID: PMC2063698 DOI: 10.1083/jcb.200510120] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Zeste white 10 (ZW10) is a mitotic checkpoint protein and the anchor for cytoplasmic dynein at mitotic kinetochores, though it is expressed throughout the cell cycle. We find that ZW10 localizes to pericentriolar membranous structures during interphase and cosediments with Golgi membranes. Dominant-negative ZW10, anti-ZW10 antibody, and ZW10 RNA interference (RNAi) caused Golgi dispersal. ZW10 RNAi also dispersed endosomes and lysosomes. Live imaging of Golgi, endosomal, and lysosomal markers after reduced ZW10 expression showed a specific decrease in the frequency of minus end-directed movements. Golgi membrane-associated dynein was markedly decreased, suggesting a role for ZW10 in dynein cargo binding during interphase. We also find ZW10 enriched at the leading edge of migrating fibroblasts, suggesting that ZW10 serves as a general regulator of dynein function throughout the cell cycle.
Collapse
Affiliation(s)
- Dileep Varma
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
45
|
Colantonio JR, Bekker JM, Kim SJ, Morrissey KM, Crosbie RH, Hill KL. Expanding the Role of the Dynein Regulatory Complex to Non-Axonemal Functions: Association of GAS11 with the Golgi Apparatus. Traffic 2006; 7:538-48. [PMID: 16643277 DOI: 10.1111/j.1600-0854.2006.00411.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The mammalian GAS11 gene is a candidate tumor suppressor of unknown function that was previously identified as one of several genes upregulated upon growth arrest. Interestingly, although GAS11 homologs in Trypanosoma brucei (trypanin) and Chlamydomonas reinhardtii (PF2) are integral components of the flagellar axoneme and are necessary for regulating flagellar beat, the GAS11 gene was discovered based on its expression in cells that do not assemble a motile cilium. This suggests that GAS11 function might not be restricted to the cilium. To investigate this possibility, we generated GAS11-specific antibodies and demonstrate here that GAS11 is expressed in a variety of mammalian cells that lack a motile cilium. In COS7 cells, GAS11 is associated with the detergent-insoluble cytoskeleton and exhibits a juxtanuclear localization that overlaps with the pericentrosomal Golgi apparatus. This localization is dependent upon intact microtubules and is cell-cycle regulated, such that GAS11 is dispersed throughout the cytoplasm as cells progress through mitosis. GAS11 remains associated with Golgi fragments following depolymerization of cytoplasmic microtubules but is dispersed upon disruption of the Golgi with brefeldin A. These data suggest that GAS11 is associated with the Golgi apparatus. In support of this, recombinant GAS11 binds Golgi membranes in vitro. In growth-arrested mIMCD3 cells, GAS11 co-localizes with gamma-tubulin at the base of the primary cilium. The pericentrosomal Golgi apparatus and base of the cilium both represent convergence points for microtubule minus ends and correspond to sites where dynein regulation is required. The algal GAS11 homolog functions as part of a dynein regulatory complex (DRC) in the axoneme (Rupp and Porter. J Cell Biol 2003;162:47-57) and our findings suggest that components of this axonemal dynein regulatory system have been adapted in mammalian cells to participate in non-axonemal functions.
Collapse
Affiliation(s)
- Jessica R Colantonio
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
46
|
Yeh TY, Chuang JZ, Sung CH. Dynein light chain rp3 acts as a nuclear matrix-associated transcriptional modulator in a dynein-independent pathway. J Cell Sci 2005; 118:3431-43. [PMID: 16079286 DOI: 10.1242/jcs.02472] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cytoplasmic dynein is a motor protein complex involved in microtubule-based cargo movement. Previous biochemical evidence suggests that dynein light chain subunits also exist outside the dynein complex. Here we show that the dynein light chain rp3 is present in both the cytoplasm and the nucleus. Nuclear rp3 binds to and assembles with the transcription factor SATB1 at nuclear matrix-associated structures. Dynein intermediate chain was also detected in the nucleus, but it was dispensable for the rp3-SATB1 interaction. SATB1 facilitates the nuclear localization of rp3, whereas rp3 and dynein motor activity are not essential for nuclear accumulation of SATB1. The nuclear rp3-SATB1 protein complex is assembled with a DNA element of the matrix attachment region of the Bcl2 gene. Finally, rp3 is involved in SATB1-mediated gene repression of Bcl2. Our data provide evidence that dynein subunit rp3 has functions independent of the dynein motor.
Collapse
Affiliation(s)
- Ting-Yu Yeh
- Department of Ophthalmology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
47
|
Short B, Haas A, Barr FA. Golgins and GTPases, giving identity and structure to the Golgi apparatus. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1744:383-95. [PMID: 15979508 DOI: 10.1016/j.bbamcr.2005.02.001] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 02/09/2005] [Accepted: 02/09/2005] [Indexed: 12/22/2022]
Abstract
In this review we will focus on the recent advances in how coiled-coil proteins of the golgin family give identity and structure to the Golgi apparatus in animal cells. A number of recent studies reveal a common theme for the targeting of golgins containing the ARL-binding GRIP domain, and the related ARF-binding GRAB domain. Similarly, other golgins such as the vesicle tethering factor p115 and Bicaudal-D are targeted by the Rab GTPases, Rab1 and Rab6, respectively. Together golgins and their regulatory GTPases form a complex network, commonly known as the Golgi matrix, which organizes Golgi membranes and regulates membrane trafficking.
Collapse
Affiliation(s)
- Benjamin Short
- Intracellular Protein Transport, Independent Junior Research Group, Max-Planck-Institute of Biochemistry, Martinsried, 82152, Germany
| | | | | |
Collapse
|
48
|
Li S, Oakley CE, Chen G, Han X, Oakley BR, Xiang X. Cytoplasmic dynein's mitotic spindle pole localization requires a functional anaphase-promoting complex, gamma-tubulin, and NUDF/LIS1 in Aspergillus nidulans. Mol Biol Cell 2005; 16:3591-605. [PMID: 15930134 PMCID: PMC1182300 DOI: 10.1091/mbc.e04-12-1071] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In Aspergillus nidulans, cytoplasmic dynein and NUDF/LIS1 are found at the spindle poles during mitosis, but they seem to be targeted to this location via different mechanisms. The spindle pole localization of cytoplasmic dynein requires the function of the anaphase-promoting complex (APC), whereas that of NUDF does not. Moreover, although NUDF's localization to the spindle poles does not require a fully functional dynein motor, the function of NUDF is important for cytoplasmic dynein's targeting to the spindle poles. Interestingly, a gamma-tubulin mutation, mipAR63, nearly eliminates the localization of cytoplasmic dynein to the spindle poles, but it has no apparent effect on NUDF's spindle pole localization. Live cell analysis of the mipAR63 mutant revealed a defect in chromosome separation accompanied by unscheduled spindle elongation before the completion of anaphase A, suggesting that gamma-tubulin may recruit regulatory proteins to the spindle poles for mitotic progression. In A. nidulans, dynein is not apparently required for mitotic progression. In the presence of a low amount of benomyl, a microtubule-depolymerizing agent, however, a dynein mutant diploid strain exhibits a more pronounced chromosome loss phenotype than the control, indicating that cytoplasmic dynein plays a role in chromosome segregation.
Collapse
Affiliation(s)
- Shihe Li
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | | | | | |
Collapse
|
49
|
Nikulina K, Patel-King RS, Takebe S, Pfister KK, King SM. The Roadblock light chains are ubiquitous components of cytoplasmic dynein that form homo- and heterodimers. ACTA ACUST UNITED AC 2005; 57:233-45. [PMID: 14752807 DOI: 10.1002/cm.10172] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The Roadblock/LC7 class of light chains associate with the intermediate chains at the base of the soluble dynein particle. In mammals, there are two Roadblock isoforms (Robl1 and Robl2), one of which (Robl2) is differentially expressed in a tissue-dependent manner and is especially prominent in testis. Here we define the alpha helical content of Robl and demonstrate using both the yeast two-hybrid system and in vitro biochemistry that Robl1 and Robl2 are capable of forming homo- and heterodimers. This is the first report of heterodimer formation by any cytoplasmic dynein component, and it further enlarges the number of potential cytoplasmic dynein isoforms available for binding specific cellular cargoes. In addition, we have generated an antibody that specifically recognizes Robl light chains and shows a 5-10 fold preference for Robl2 over Robl1. Using this antibody, we show that Robl is a ubiquitous cytoplasmic dynein component, being found in samples purified from brain, liver, kidney, and testis. Immunofluorescence analysis reveals that Robl is present in punctate organelles in rat neuroblastoma cells. In testis, Robl is found in Leydig cells, spermatocytes, and sperm flagella.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibody Specificity/immunology
- Blotting, Western
- Brain Chemistry
- Carrier Proteins/chemistry
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Line, Tumor
- Centrifugation, Density Gradient
- Circular Dichroism
- Cloning, Molecular
- DNA, Complementary/genetics
- Dyneins/chemistry
- Dyneins/genetics
- Dyneins/metabolism
- Electrophoresis, Polyacrylamide Gel
- Genes, Reporter/genetics
- Immunohistochemistry
- Isoenzymes/chemistry
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Kidney/chemistry
- Leydig Cells/chemistry
- Liver/chemistry
- Male
- Maltose-Binding Proteins
- Mice
- Microscopy, Fluorescence
- Microtubules/chemistry
- Molecular Sequence Data
- Molecular Weight
- Polymerase Chain Reaction
- Protein Binding
- Protein Structure, Secondary
- Rats
- Recombinant Fusion Proteins/analysis
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/immunology
- Saccharomyces cerevisiae/genetics
- Sequence Homology, Amino Acid
- Spermatozoa/chemistry
- Testis/chemistry
- Two-Hybrid System Techniques
- Vaccination
Collapse
Affiliation(s)
- Karina Nikulina
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06030-3305, USA
| | | | | | | | | |
Collapse
|
50
|
Abstract
The majority of active transport in the cell is driven by three classes of molecular motors: the kinesin and dynein families that move toward the plus-end and minus-end of microtubules, respectively, and the unconventional myosin motors that move along actin filaments. Each class of motor has different properties, but in the cell they often function together. In this review we summarize what is known about their single-molecule properties and the possibilities for regulation of such properties. In view of new results on cytoplasmic dynein, we attempt to rationalize how these different classes of motors might work together as part of the intracellular transport machinery. We propose that kinesin and myosin are robust and highly efficient transporters, but with somewhat limited room for regulation of function. Because cytoplasmic dynein is less efficient and robust, to achieve function comparable to the other motors it requires a number of accessory proteins as well as multiple dyneins functioning together. This necessity for additional factors, as well as dynein's inherent complexity, in principle allows for greatly increased control of function by taking the factors away either singly or in combination. Thus, dynein's contribution relative to the other motors can be dynamically tuned, allowing the motors to function together differently in a variety of situations.
Collapse
Affiliation(s)
- Roop Mallik
- Department of Developmental and Cell Biology, University of California Irvine, California 92697, USA
| | | |
Collapse
|