1
|
Platelet-Rich Plasma Lysate-Incorporating Gelatin Hydrogel as a Scaffold for Bone Reconstruction. Bioengineering (Basel) 2022; 9:bioengineering9100513. [PMID: 36290482 PMCID: PMC9598158 DOI: 10.3390/bioengineering9100513] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 12/03/2022] Open
Abstract
In implant dentistry, large vertical and horizontal alveolar ridge deficiencies in mandibular and maxillary bone are challenges that clinicians continue to face. One of the limitations of porous blocks for reconstruction of bone in large defects in the oral cavity, and in the musculoskeletal system, is that fibrin clot does not adequately fill the interior pores and does not persist long enough to accommodate cell migration into the center of the block. The objective of our work was to develop a gelatin-based gel incorporating platelet-rich plasma (PRP) lysate, to mimic the role that a blood clot would normally play to attract and accommodate the migration of host osteoprogenitor and endothelial cells into the scaffold, thereby facilitating bone reconstruction. A conjugate of gelatin (Gtn) and hydroxyphenyl propionic acid (HPA), an amino-acid-like molecule, was commended for this application because of its ability to undergo enzyme-mediated covalent cross-linking to form a hydrogel in vivo, after being injected as a liquid. The initiation and propagation of cross-linking were under the control of horseradish peroxidase and hydrogen peroxide, respectively. The objectives of this in vitro study were directed toward evaluating: (1) the migration of rat mesenchymal stem cells (MSCs) into Gtn–HPA gel under the influence of rat PRP lysate or recombinant platelet-derived growth factor (PDGF)-BB incorporated into the gel; (2) the differentiation of MSCs, incorporated into the gel, into osteogenic cells under the influence of PRP lysate and PDGF-BB; and (3) the release kinetics of PDGF-BB from gels incorporating two formulations of PRP lysate and recombinant PDGF-BB. Results: The number of MSCs migrating into the hydrogel was significantly (3-fold) higher in the hydrogel group incorporating PRP lysate compared to the PDGF-BB and the blank gel control groups. For the differentiation/osteogenesis assay, the osteocalcin-positive cell area percentage was significantly higher in both the gel/PRP and gel/PDGF-BB groups, compared to the two control groups: cells in the blank gels grown in cell expansion medium and in osteogenic medium. Results of the ELISA release assay indicated that Gtn–HPA acted as an effective delivery vehicle for the sustained release of PDGF-BB from two different PRP lysate batches, with about 60% of the original PDGF-BB amount in the two groups remaining in the gel at 28 days. Conclusions: Gtn–HPA accommodates MSC migration. PRP-lysate-incorporating hydrogels chemoattract increased MSC migration into the Gtn–HPA compared to the blank gel. PRP-lysate- and the PDGF-BB-incorporating gels stimulate osteogenic differentiation of the MSCs. The release of the growth factors from Gtn–HPA containing PRP lysate can extend over the period of time (weeks) necessary for bone reconstruction. The findings demonstrate that Gtn–HPA can serve as both a scaffold for cell migration and a delivery vehicle that allows sustained and controlled release of the incorporated therapeutic agent over extended periods of time. These findings commend Gtn–HPA incorporating PRP lysate for infusion into porous calcium phosphate blocks for vertical and horizontal ridge reconstruction, and for other musculoskeletal applications.
Collapse
|
2
|
Lagrange J, Worou ME, Michel JB, Raoul A, Didelot M, Muczynski V, Legendre P, Plénat F, Gauchotte G, Lourenco-Rodrigues MD, Christophe OD, Lenting PJ, Lacolley P, Denis CV, Regnault V. The VWF/LRP4/αVβ3-axis represents a novel pathway regulating proliferation of human vascular smooth muscle cells. Cardiovasc Res 2022; 118:622-637. [PMID: 33576766 DOI: 10.1093/cvr/cvab042] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 12/09/2020] [Accepted: 02/04/2021] [Indexed: 01/22/2023] Open
Abstract
AIMS Von Willebrand factor (VWF) is a plasma glycoprotein involved in primary haemostasis, while also having additional roles beyond haemostasis namely in cancer, inflammation, angiogenesis, and potentially in vascular smooth muscle cell (VSMC) proliferation. Here, we addressed how VWF modulates VSMC proliferation and investigated the underlying molecular pathways and the in vivo pathophysiological relevance. METHODS AND RESULTS VWF induced proliferation of human aortic VSMCs and also promoted VSMC migration. Treatment of cells with a siRNA against αv integrin or the RGT-peptide blocking αvβ3 signalling abolished proliferation. However, VWF did not bind to αvβ3 on VSMCs through its RGD-motif. Rather, we identified the VWF A2 domain as the region mediating binding to the cells. We hypothesized the involvement of a member of the LDL-related receptor protein (LRP) family due to their known ability to act as co-receptors. Using the universal LRP-inhibitor receptor-associated protein, we confirmed LRP-mediated VSMC proliferation. siRNA experiments and confocal fluorescence microscopy identified LRP4 as the VWF-counterreceptor on VSMCs. Also co-localization between αvβ3 and LRP4 was observed via proximity ligation analysis and immuno-precipitation experiments. The pathophysiological relevance of our data was supported by VWF-deficient mice having significantly reduced hyperplasia in carotid artery ligation and artery femoral denudation models. In wild-type mice, infiltration of VWF in intimal regions enriched in proliferating VSMCs was found. Interestingly, also analysis of human atherosclerotic lesions showed abundant VWF accumulation in VSMC-proliferating rich intimal areas. CONCLUSION VWF mediates VSMC proliferation through a mechanism involving A2 domain binding to the LRP4 receptor and integrin αvβ3 signalling. Our findings provide new insights into the mechanisms that drive physiological repair and pathological hyperplasia of the arterial vessel wall. In addition, the VWF/LRP4-axis may represent a novel therapeutic target to modulate VSMC proliferation.
Collapse
MESH Headings
- Animals
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Carotid Artery Injuries/genetics
- Carotid Artery Injuries/metabolism
- Carotid Artery Injuries/pathology
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Hyperplasia
- Integrin alphaVbeta3/genetics
- Integrin alphaVbeta3/metabolism
- LDL-Receptor Related Proteins/genetics
- LDL-Receptor Related Proteins/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/injuries
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neointima
- Plaque, Atherosclerotic
- Signal Transduction
- Vascular System Injuries/genetics
- Vascular System Injuries/metabolism
- Vascular System Injuries/pathology
- von Willebrand Factor/genetics
- von Willebrand Factor/metabolism
- Mice
Collapse
Affiliation(s)
- Jérémy Lagrange
- INSERM, UMR_S 1116, Vandœuvre-lès-Nancy, France
- Université de Lorraine, DCAC, Nancy, France
| | - Morel E Worou
- INSERM, UMR_S 1116, Vandœuvre-lès-Nancy, France
- Université de Lorraine, DCAC, Nancy, France
| | | | - Alexandre Raoul
- INSERM, UMR_S 1116, Vandœuvre-lès-Nancy, France
- Université de Lorraine, DCAC, Nancy, France
| | - Mélusine Didelot
- INSERM, UMR_S 1116, Vandœuvre-lès-Nancy, France
- Université de Lorraine, DCAC, Nancy, France
| | - Vincent Muczynski
- HITh, UMR_S1176, INSERM, Université Paris-Saclay, Inserm U1176, 80 rue du Général Leclerc,94276 Le Kremlin-Bicêtre, France
| | - Paulette Legendre
- HITh, UMR_S1176, INSERM, Université Paris-Saclay, Inserm U1176, 80 rue du Général Leclerc,94276 Le Kremlin-Bicêtre, France
| | | | | | - Marc-Damien Lourenco-Rodrigues
- HITh, UMR_S1176, INSERM, Université Paris-Saclay, Inserm U1176, 80 rue du Général Leclerc,94276 Le Kremlin-Bicêtre, France
| | - Olivier D Christophe
- HITh, UMR_S1176, INSERM, Université Paris-Saclay, Inserm U1176, 80 rue du Général Leclerc,94276 Le Kremlin-Bicêtre, France
| | - Peter J Lenting
- HITh, UMR_S1176, INSERM, Université Paris-Saclay, Inserm U1176, 80 rue du Général Leclerc,94276 Le Kremlin-Bicêtre, France
| | - Patrick Lacolley
- INSERM, UMR_S 1116, Vandœuvre-lès-Nancy, France
- Université de Lorraine, DCAC, Nancy, France
| | - Cécile V Denis
- HITh, UMR_S1176, INSERM, Université Paris-Saclay, Inserm U1176, 80 rue du Général Leclerc,94276 Le Kremlin-Bicêtre, France
| | - Véronique Regnault
- INSERM, UMR_S 1116, Vandœuvre-lès-Nancy, France
- Université de Lorraine, DCAC, Nancy, France
| |
Collapse
|
3
|
Ferguson HR, Smith MP, Francavilla C. Fibroblast Growth Factor Receptors (FGFRs) and Noncanonical Partners in Cancer Signaling. Cells 2021; 10:1201. [PMID: 34068954 PMCID: PMC8156822 DOI: 10.3390/cells10051201] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
Increasing evidence indicates that success of targeted therapies in the treatment of cancer is context-dependent and is influenced by a complex crosstalk between signaling pathways and between cell types in the tumor. The Fibroblast Growth Factor (FGF)/FGF receptor (FGFR) signaling axis highlights the importance of such context-dependent signaling in cancer. Aberrant FGFR signaling has been characterized in almost all cancer types, most commonly non-small cell lung cancer (NSCLC), breast cancer, glioblastoma, prostate cancer and gastrointestinal cancer. This occurs primarily through amplification and over-expression of FGFR1 and FGFR2 resulting in ligand-independent activation. Mutations and translocations of FGFR1-4 are also identified in cancer. Canonical FGF-FGFR signaling is tightly regulated by ligand-receptor combinations as well as direct interactions with the FGFR coreceptors heparan sulfate proteoglycans (HSPGs) and Klotho. Noncanonical FGFR signaling partners have been implicated in differential regulation of FGFR signaling. FGFR directly interacts with cell adhesion molecules (CAMs) and extracellular matrix (ECM) proteins, contributing to invasive and migratory properties of cancer cells, whereas interactions with other receptor tyrosine kinases (RTKs) regulate angiogenic, resistance to therapy, and metastatic potential of cancer cells. The diversity in FGFR signaling partners supports a role for FGFR signaling in cancer, independent of genetic aberration.
Collapse
Affiliation(s)
- Harriet R. Ferguson
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
| | - Michael P. Smith
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
| | - Chiara Francavilla
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
- Manchester Breast Centre, Manchester Cancer Research Centre, The University of Manchester, Manchester M20 4GJ, UK
| |
Collapse
|
4
|
Contreras O, Córdova-Casanova A, Brandan E. PDGF-PDGFR network differentially regulates the fate, migration, proliferation, and cell cycle progression of myogenic cells. Cell Signal 2021; 84:110036. [PMID: 33971280 DOI: 10.1016/j.cellsig.2021.110036] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/22/2022]
Abstract
Platelet-derived growth factors (PDGFs) regulate embryonic development, tissue regeneration, and wound healing through their binding to PDGF receptors, PDGFRα and PDGFRβ. However, the role of PDGF signaling in regulating muscle development and regeneration remains elusive, and the cellular and molecular responses of myogenic cells are understudied. Here, we explore the PDGF-PDGFR gene expression changes and their involvement in skeletal muscle myogenesis and myogenic fate. By surveying bulk RNA sequencing and single-cell profiling data of skeletal muscle stem cells, we show that myogenic progenitors and muscle stem cells differentially express PDGF ligands and PDGF receptors during myogenesis. Quiescent adult muscle stem cells and myoblasts preferentially express PDGFRβ over PDGFRα. Remarkably, cell culture- and injury-induced muscle stem cell activation altered PDGF family gene expression. In myoblasts, PDGF-AB and PDGF-BB treatments activate two pro-chemotactic and pro-mitogenic downstream transducers, RAS-ERK1/2 and PI3K-AKT. PDGFRs inhibitor AG1296 inhibited ERK1/2 and AKT activation, myoblast migration, proliferation, and cell cycle progression induced by PDGF-AB and PDGF-BB. We also found that AG1296 causes myoblast G0/G1 cell cycle arrest. Remarkably, PDGF-AA did not promote a noticeable ERK1/2 or AKT activation, myoblast migration, or expansion. Also, myogenic differentiation reduced the expression of both PDGFRα and PDGFRβ, whereas forced PDGFRα expression impaired myogenesis. Thus, our data highlight PDGF signaling pathway to stimulate satellite cell proliferation aiming to enhance skeletal muscle regeneration and provide a deeper understanding of the role of PDGF signaling in non-fibroblastic cells.
Collapse
Affiliation(s)
- Osvaldo Contreras
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Kensington 2052, Australia; Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile.
| | - Adriana Córdova-Casanova
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile
| | - Enrique Brandan
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile; Fundación Ciencia & Vida, 7780272 Santiago, Chile
| |
Collapse
|
5
|
Cross-Talk between Fibroblast Growth Factor Receptors and Other Cell Surface Proteins. Cells 2019; 8:cells8050455. [PMID: 31091809 PMCID: PMC6562592 DOI: 10.3390/cells8050455] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 12/14/2022] Open
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) constitute signaling circuits that transmit signals across the plasma membrane, regulating pivotal cellular processes like differentiation, migration, proliferation, and apoptosis. The malfunction of FGFs/FGFRs signaling axis is observed in numerous developmental and metabolic disorders, and in various tumors. The large diversity of FGFs/FGFRs functions is attributed to a great complexity in the regulation of FGFs/FGFRs-dependent signaling cascades. The function of FGFRs is modulated at several levels, including gene expression, alternative splicing, posttranslational modifications, and protein trafficking. One of the emerging ways to adjust FGFRs activity is through formation of complexes with other integral proteins of the cell membrane. These proteins may act as coreceptors, modulating binding of FGFs to FGFRs and defining specificity of elicited cellular response. FGFRs may interact with other cell surface receptors, like G-protein-coupled receptors (GPCRs) or receptor tyrosine kinases (RTKs). The cross-talk between various receptors modulates the strength and specificity of intracellular signaling and cell fate. At the cell surface FGFRs can assemble into large complexes involving various cell adhesion molecules (CAMs). The interplay between FGFRs and CAMs affects cell–cell interaction and motility and is especially important for development of the central nervous system. This review summarizes current stage of knowledge about the regulation of FGFRs by the plasma membrane-embedded partner proteins and highlights the importance of FGFRs-containing membrane complexes in pathological conditions, including cancer.
Collapse
|
6
|
Hou Z, Wang X, Cai J, Zhang J, Hassan A, Auer M, Shi X. Platelet-Derived Growth Factor Subunit B Signaling Promotes Pericyte Migration in Response to Loud Sound in the Cochlear Stria Vascularis. J Assoc Res Otolaryngol 2018; 19:363-379. [PMID: 29869048 PMCID: PMC6081892 DOI: 10.1007/s10162-018-0670-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/19/2018] [Indexed: 12/20/2022] Open
Abstract
Normal blood supply to the cochlea is critical for hearing. Noise damages auditory sensory cells and has a marked effect on the microvasculature in the cochlear lateral wall. Pericytes in the stria vascularis (strial pericytes) are particularly vulnerable and sensitive to acoustic trauma. Exposure of NG2DsRedBAC transgenic mice (6-8 weeks old) to wide-band noise at a level of 120 dB for 3 h per day for 2 consecutive days produced a significant hearing threshold shift and caused pericytes to protrude and migrate from their normal endothelial attachment sites. The pericyte migration was associated with increased expression of platelet-derived growth factor beta (PDGF-BB). Blockade of PDGF-BB signaling with either imatinib, a potent PDGF-BB receptor (PDGFR) inhibitor, or APB5, a specific PDGFRβ blocker, significantly attenuated the pericyte migration from strial vessel walls. The PDGF-BB-mediated strial pericyte migration was further confirmed in an in vitro cell migration assay, as well as in an in vivo live animal model used in conjunction with confocal fluorescence microscopy. Pericyte migration took one of two different forms, here denoted protrusion and detachment. The protrusion is characterized by pericytes with a prominent triangular shape, or pericytes extending fine strands to neighboring capillaries. The detachment is characterized by pericyte detachment and movement away from vessels. We also found the sites of pericyte migration highly associated with regions of vascular leakage. In particular, under transmission electron microscopy (TEM), multiple vesicles at the sites of endothelial cells with loosely attached pericytes were observed. These data show that cochlear pericytes are markedly affected by acoustic trauma, causing them to display abnormal morphology. The effect of loud sound on pericytes is mediated by upregulation of PDGF-BB. Normal functioning pericytes are required for vascular stability.
Collapse
Affiliation(s)
- Zhiqiang Hou
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Xiaohan Wang
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Jing Cai
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Jinhui Zhang
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Ahmed Hassan
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Manfred Auer
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Xiaorui Shi
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
7
|
da Silva TCP, Silva MG, Shinjo SK. Relevance of serum angiogenic cytokines in adult patients with dermatomyositis. Adv Rheumatol 2018; 58:17. [DOI: 10.1186/s42358-018-0018-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/02/2018] [Indexed: 11/10/2022] Open
|
8
|
Kim JH, Oh SH, Min HK, Lee JH. Dual growth factor-immobilized asymmetrically porous membrane for bone-to-tendon interface regeneration on rat patellar tendon avulsion model. J Biomed Mater Res A 2017; 106:115-125. [PMID: 28880464 DOI: 10.1002/jbm.a.36212] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/11/2017] [Accepted: 08/16/2017] [Indexed: 12/17/2022]
Abstract
Insufficient repair of the bone-to-tendon interface (BTI) with structural/compositional gradients has been a significant challenge in orthopedics. In this study, dual growth factor (platelet-derived growth factor-BB [PDGF-BB] and bone morphogenetic protein-2 [BMP-2])-immobilized polycaprolactone (PCL)/Pluronic F127 asymmetrically porous membrane was fabricated to estimate its feasibility as a potential strategy for effective regeneration of BTI injury. The growth factors immobilized (via heparin-intermediated interactions) on the membrane were continuously released for up to ∼80% of the initial loading amount after 5 weeks without a significant initial burst. From the in vivo animal study using a rat patellar tendon avulsion model, it was observed that the PDGF-BB/BMP-2-immobilized membrane accelerates the regeneration of the BTI injury, probably because of the continuous release of both growth factors (biological stimuli) and their complementary effect to create a multiphasic structure (bone, fibrocartilage, and tendon) like a native structure, as well as the role of the asymmetrically porous membrane as a physical barrier (nanopore side; prevention of fibrous tissue invasion into the defect site) and scaffold (micropore side; guidance for tissue regeneration). © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 115-125, 2018.
Collapse
Affiliation(s)
- Joong-Hyun Kim
- Department of Nanobiomedical Science, Dankook University, 119 Dandae Ro, Dongnam Gu, Cheonan, 31116, Republic of Korea.,Department of Periodontology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, 567 Baekjedae Ro, Deokjin Gu, Jeonju, 54896, Republic of Korea
| | - Se Heang Oh
- Department of Nanobiomedical Science, Dankook University, 119 Dandae Ro, Dongnam Gu, Cheonan, 31116, Republic of Korea.,Department of Pharmaceutical Engineering, Dankook University, 119 Dandae Ro, Dongnam Gu, Cheonan, 31116, Republic of Korea
| | - Hyun Ki Min
- Department of Advanced Materials and Chemical Engineering, Hannam University, 1646 Yuseong Daero, Yuseong Gu, Daejeon, 34054, Republic of Korea
| | - Jin Ho Lee
- Department of Advanced Materials and Chemical Engineering, Hannam University, 1646 Yuseong Daero, Yuseong Gu, Daejeon, 34054, Republic of Korea
| |
Collapse
|
9
|
Collagen and Fractionated Platelet-Rich Plasma Scaffold for Dermal Regeneration. Plast Reconstr Surg 2016; 137:1498-1506. [DOI: 10.1097/prs.0000000000002094] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Association between in vivo bone formation and ex vivo migratory capacity of human bone marrow stromal cells. Stem Cell Res Ther 2015; 6:196. [PMID: 26450135 PMCID: PMC4599318 DOI: 10.1186/s13287-015-0188-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/02/2015] [Accepted: 09/21/2015] [Indexed: 12/13/2022] Open
Abstract
Introduction There is a clinical need for developing systemic transplantation protocols for use of human skeletal stem cells (also known bone marrow stromal stem cells) (hBMSC) in tissue regeneration. In systemic transplantation studies, only a limited number of hBMSC home to injured tissues suggesting that only a subpopulation of hBMSC possesses “homing” capacity. Thus, we tested the hypothesis that a subpopulation of hBMSC defined by ability to form heterotopic bone in vivo, is capable of homing to injured bone. Methods We tested ex vivo and in vivo homing capacity of a number of clonal cell populations derived from telomerized hBMSC (hBMSC-TERT) with variable ability to form heterotopic bone when implanted subcutaneously in immune deficient mice. In vitro transwell migration assay was used and the in vivo homing ability of transplanted hBMSC to bone fractures in mice was visualized by bioluminescence imaging (BLI). In order to identify the molecular phenotype associated with enhanced migration, we carried out comparative DNA microarray analysis of gene expression of hBMSC-derived high bone forming (HBF) clones versus low bone forming (LBF) clones. Results HBF clones were exhibited higher ex vivo transwell migration and following intravenous injection, better in vivo homing ability to bone fracture when compared to LBF clones. Comparative microarray analysis of HBF versus LBF clones identified enrichment of gene categories of chemo-attraction, adhesion and migration associated genes. Among these, platelet-derived growth factor receptor (PDGFR) α and β were highly expressed in HBF clones. Follow up studies showed that the chemoattractant effects of PDGF in vitro was more enhanced in HBF compared to LBF clones and this effect was reduced in presence of a PDGFRβ-specific inhibitor: SU-16 f. Also, PDGF exerted greater chemoattractant effect on PDGFRβ+ cells sorted from LBF clones compared to PDGFRβ- cells. Conclusion Our data demonstrate phenotypic and molecular association between in vivo bone forming ability and migratory capacity of hBMSC. PDGFRβ can be used as a potential marker for the prospective selection of hBMSC populations with high migration and bone formation capacities suitable for clinical trials for enhancing bone regeneration. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0188-9) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Hsu BB, Jamieson KS, Hagerman SR, Holler E, Ljubimova JY, Hammond PT. Ordered and kinetically discrete sequential protein release from biodegradable thin films. Angew Chem Int Ed Engl 2014; 53:8093-8. [PMID: 24938739 PMCID: PMC4387866 DOI: 10.1002/anie.201403702] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Indexed: 11/09/2022]
Abstract
Multidrug regimens can sometimes treat recalcitrant diseases when single-drug therapies fail. Recapitulating complex multidrug administration from controlled release films for localized delivery remains challenging because their release kinetics are frequently intertwined, and an initial burst release of each drug is usually uncontrollable. Kinetic control over protein release is demonstrated by cross-linking layer-by-layer films during the assembly process. We used biodegradable and naturally derived components and relied on copper-free click chemistry for bioorthogonal covalent cross-links throughout the film that entrap but do not modify the embedded protein. We found that this strategy restricted the interdiffusion of protein while maintaining its activity. By depositing a barrier layer and a second protein-containing layer atop this construct, we generated well-defined sequential protein release with minimal overlap that follows their spatial distribution within the film.
Collapse
Affiliation(s)
- Bryan B. Hsu
- Koch Institute for Integrative Cancer Research and the Institute for Soldier Nanotechnologies, Massachusetts Institute for Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA, Department of Chemistry, Massachusetts Institute for Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Kelsey S. Jamieson
- Department of Chemical Engineering, Massachusetts Institute for Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Samantha R. Hagerman
- Department of Chemical Engineering, Massachusetts Institute for Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Eggehard Holler
- Nanomedicine Research Center; Department of Neurosurgery, Cedars Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048 USA
| | - Julia Y. Ljubimova
- Nanomedicine Research Center; Department of Neurosurgery, Cedars Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048 USA
| | - Paula T. Hammond
- Koch Institute for Integrative Cancer Research and the Institute for Soldier Nanotechnologies, Massachusetts Institute for Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA, Department of Chemical Engineering, Massachusetts Institute for Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| |
Collapse
|
12
|
Ordered and Kinetically Discrete Sequential Protein Release from Biodegradable Thin Films. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403702] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Ito R, Morimoto N, Pham LH, Taira T, Kawai K, Suzuki S. Efficacy of the Controlled Release of Concentrated Platelet Lysate from a Collagen/Gelatin Scaffold for Dermis-Like Tissue Regeneration. Tissue Eng Part A 2013; 19:1398-405. [DOI: 10.1089/ten.tea.2012.0375] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Ran Ito
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoki Morimoto
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, Osaka, Japan
| | - Liem Hieu Pham
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Katsuya Kawai
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigehiko Suzuki
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
14
|
Evidence for the interaction of fibroblast growth factor-2 with the lymphatic endothelial cell marker LYVE-1. Blood 2012; 121:1229-37. [PMID: 23264596 DOI: 10.1182/blood-2012-08-450502] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
LYVE-1 (lymphatic vessel endothelial hyaluronan receptor-1) is a homolog of the hyaluronan receptor CD44, and one of the most widely used markers of lymphatic endothelial cells in normal and tumor tissues. However, the physiologic role of LYVE-1 in the lymphatic system still remains unclear. It is well established that fibroblast growth factor 2 (FGF2) induces lymphangiogenesis. Based on the known interaction between FGF2 and CD44 and based on the structural similarity of CD44 and LYVE-1, we investigated whether FGF2 might interact with LYVE-1. We found that FGF2 is able to bind LYVE-1 using AlphaScreen, or after surface-immobilization or in solution. FGF2 binds to LYVE-1 with a higher affinity than any other known LYVE-1–binding molecules, such as hyaluronan or PDGF-BB. Glycosylation of LYVE-1 is important for FGF2 binding. Furthermore, FGF2 interacts with LYVE-1 when overexpressed in CHO cells. Soluble LYVE-1 and knockdown of LYVE-1 in lymphatic endothelial cells impaired FGF2 signaling and functions. In addition, FGF2 but not VEGF-C-induced in vivo lymphangiogenesis, was also inhibited. Conversely, FGF2 also modulates LYVE-1 expression in cells and ex vivo. Thus, our data demonstrate a functional relationship to the interaction between FGF2 and LYVE-1.
Collapse
|
15
|
Matsui M, Tabata Y. Enhanced angiogenesis by multiple release of platelet-rich plasma contents and basic fibroblast growth factor from gelatin hydrogels. Acta Biomater 2012; 8:1792-801. [PMID: 22293581 DOI: 10.1016/j.actbio.2012.01.016] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/27/2011] [Accepted: 01/13/2012] [Indexed: 12/14/2022]
Abstract
The objective of this study is to evaluate the angiogenic effects induced by biodegradable gelatin hydrogel granules incorporating mixed platelet-rich plasma (PRP) growth factor mixture (PGFM) and bioactive basic fibroblast growth factor (bFGF). The PRP was prepared by a double-spinning technique for isolating animal bloods, followed by treatment with different concentrations of calcium chloride (CaCl(2)) solution. The CaCl(2) solution treatment activated the platelets of PRP, allowing the release of various growth factors, such as platelet-derived growth factor (PDGF)-BB, vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-β(1), and epithelial growth factor (EGF). In the PRP treated with different CaCl(2) solutions, high amounts of representative platelet growth factor, PDGF-BB, VEGF, EGF, and TGF-β(1) were detected in the CaCl(2) concentrations of 1, 2, and 4 wt.% compared with higher or lower ones. The PRP treated was impregnated into gelatin hydrogel granules freeze-dried at 37°C for 1h, and then the percentage of PGFM desorbed from the gelatin hydrogel granules was evaluated. The percentages of PDGF-BB, VEGF, EGF, and TGF-β(1) desorbed tended to decrease with decreasing CaCl(2) concentration. Taken together, the CaCl(2) concentration to activate PRP for PGFM release was fixed at 2 wt.%. In vitro release tests demonstrated that the PGFM was released from the gelatin hydrogel granules with time. For the gelatin hydrogels incorporating PGFM and bFGF, the time profile of PDGF-BB or bFGF release was in good correspondence with that of gelatin hydrogel degradation. The gelatin hydrogel granules incorporating mixed PGFM and bFGF were prepared and intramuscularly injected to a mouse leg ischemia model to evaluate the angiogenic effects in terms of histological and laser Doppler perfusion imaging examinations. As controls, hydrogel granules incorporating bFGF, PGFM, and platelet-poor plasma were used for the angiogenic evaluation. The number of blood vessels newly formed and the percentage of anti-α-smooth muscle actin antibody-positive cells increased around ischemic sites injected with the gelatin hydrogel granules incorporating mixed PGFM and bFGF, in marked contrast to other control groups. The blood reperfusion level of ischemic tissues was enhanced by the hydrogel granules incorporating mixed PGFM and bFGF, whereas no enhancement was observed for other groups. It is concluded that the dual-release system of PGFM and bFGF from gelatin hydrogel granules shows promise as a method to enhance angiogenic effects.
Collapse
|
16
|
Tengood JE, Ridenour R, Brodsky R, Russell AJ, Little SR. Sequential delivery of basic fibroblast growth factor and platelet-derived growth factor for angiogenesis. Tissue Eng Part A 2011; 17:1181-9. [PMID: 21142700 DOI: 10.1089/ten.tea.2010.0551] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
An externally regulated delivery model that permits temporal separation of multiple angiogenic factors was used for the delivery of basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF). While bFGF plays a significant role in the sprouting of new capillaries, PDGF plays a role in the recruitment of mural cells, which stabilize neovessels. However, these two factors have been shown to inhibit each other, when presented together. Using the externally regulated model, sequential delivery of bFGF and PDGF led to not only increased endothelial cell migration, but also endothelial cell and vascular pericyte colocalization. More importantly, this delivery strategy was able to induce red blood cell-filled neovessels, suggesting integration of angiogenesis with the existing vasculature.
Collapse
Affiliation(s)
- Jillian E Tengood
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
17
|
Abstract
Previous data report that fibroblast growth factor-2 (FGF-2)-derived peptide FREG potently inhibits FGF-2-dependent angiogenesis in vitro and in vivo. Here, we show that FREG inhibits up to 70% in vitro growth and invasion/migration of smooth muscle and melanoma cells. Such inhibition is mediated by platelet-derived growth factor-receptor-α (PDGF-Rα); in fact, proliferation and migration were restored upon PDGF-Rα neutralization. Further experiments demonstrated that FREG interacts with PDGF-Rα both in vitro and in vivo and stimulates its phosphorylation. We have previously shown that overexpressing PDGF-Rα strongly inhibits melanoma growth in vivo; we, therefore, hypothesized that PDGF-Rα agonists may represent a novel tool to inhibit melanoma growth in vivo. To support this hypothesis, FREG was inoculated intravenously (i.v.) in a mouse melanoma model and markedly inhibited pulmonary metastases formation. Immunohistochemical analyses showed less proliferation, less angiogenesis, and more apoptosis in metastasized lungs upon FREG treatment, as compared to untreated controls. Finally, in preliminary acute toxicity studies, FREG showed no toxicity signs in healthy animals, and neither microscopic nor macroscopic toxicity at the liver, kidney, and lungs level. Altogether, these data indicate that FREG systemic treatment strongly inhibits melanoma metastases development and indicate for the first time that agonists of PDGF-Rα may control melanoma both in vitro and in vivo.
Collapse
|
18
|
Ucuzian AA, Brewster LP, East AT, Pang Y, Gassman AA, Greisler HP. Characterization of the chemotactic and mitogenic response of SMCs to PDGF-BB and FGF-2 in fibrin hydrogels. J Biomed Mater Res A 2010; 94:988-96. [PMID: 20730936 PMCID: PMC2928161 DOI: 10.1002/jbm.a.32786] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The delivery of growth factors to cellularize biocompatible scaffolds like fibrin is a commonly used strategy in tissue engineering. We characterized smooth muscle cells (SMC) proliferation and chemotaxis in response to PDGF-BB and FGF-2, alone and in combination, in 2D culture and in 3D fibrin hydrogels. While both growth factors induced an equipotent mitogenic response in 2D culture, only FGF-2 was significantly mitogenic for SMCs in 3D culture. Only PDGF-BB was significantly chemotactic in a modified Boyden chamber assay. In a 3D assay of matrix invasion, both growth factors induced an invasive response into the fibrin hydrogel in both proliferating and nonproliferating, mitomycin C (MMC) treated cells. The invasive response was less attenuated by the inhibition of proliferation in PDGF-BB stimulated cells compared with FGF-2 stimulated cells. We conclude that SMCs cultured in fibrin hydrogels have a more robust chemotactic response to PDGF-BB compared with FGF-2, and that the response to FGF-2 is more dependent on cell proliferation. Delivery of both growth factors together potentiates the chemotactic, but not mitogenic response to either growth factor alone.
Collapse
Affiliation(s)
- Areck A. Ucuzian
- Department of Surgery, Loyola University Medical Center, Maywood, IL
- Department of Cell Biology, Neurobiology, & Anatomy, Loyola University Medical Center, Maywood, IL
| | - Luke P. Brewster
- Department of Surgery, Loyola University Medical Center, Maywood, IL
- Department of Cell Biology, Neurobiology, & Anatomy, Loyola University Medical Center, Maywood, IL
| | - Andrea T. East
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Yongang Pang
- Department of Surgery, Loyola University Medical Center, Maywood, IL
| | - Andrew A. Gassman
- Department of Surgery, Loyola University Medical Center, Maywood, IL
| | - Howard P. Greisler
- Department of Surgery, Loyola University Medical Center, Maywood, IL
- Department of Cell Biology, Neurobiology, & Anatomy, Loyola University Medical Center, Maywood, IL
- Research and Surgical Services, Edward J. Hines Jr. V.A. Hospital, Hines, IL
| |
Collapse
|
19
|
Jennings JA, Crews RM, Robinson J, Richelsoph K, Cole JA, Bumgardner JD, Yang Y, Haggard WO. Effect of growth factors in combination with injectable silicone resin particles on the biological activity of dermal fibroblasts: a preliminary in vitro study. J Biomed Mater Res B Appl Biomater 2010; 92:255-60. [PMID: 19904740 DOI: 10.1002/jbm.b.31512] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Injections of silicone fluid have been clinically evaluated to treat and prevent foot ulcers due to diminished plantar fat-pad in neuropathic diabetics. The objective of this study was to determine preliminary in vitro effects of an injectable form of silicone resin particles in combination with growth factors to determine the suitability of this potential therapy for prevention of diabetic foot ulcers. Basic fibroblast growth factor (bFGF), epidermal growth factor (EGF) and platelet-derived growth factor (PDGF-BB) were added to monolayer culture along with silicone resin particles (12 microm average diameter). Growth factors were also combined as follows: bFGF+PDGF-BB, EGF+PDGF-BB, and bFGF+EGF. Growth factors alone and in combination increased fibroblast proliferation, but the presence of particles did not significantly affect cellular proliferation. The addition of particles significantly increased fibronectin production 117% in the control group and 151% in the PDGF only group. Collagen production was increased with exposure to EGF and growth factor combinations, but the presence of particles did not lead to any significant differences, except an 81% increase in the bFGF group. These preliminary results suggest that a combination of PDGF and bFGF may be effective in stimulating proliferation and matrix production around injectable silicone resin particles to generate a fibrous tissue pad to alleviate the abnormal distribution of high pressures that contribute to diabetic foot ulcer formation.
Collapse
Affiliation(s)
- Jessica A Jennings
- Department of Biomedical Engineering, The University of Memphis, Memphis, Tennessee 38152, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Platelet-derived growth factor-receptor alpha strongly inhibits melanoma growth in vitro and in vivo. Neoplasia 2009; 11:732-42. [PMID: 19649203 DOI: 10.1593/neo.09408] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Revised: 04/16/2009] [Accepted: 04/20/2009] [Indexed: 02/08/2023]
Abstract
Cutaneous melanoma is the most aggressive skin cancer; it is highly metastatic and responds poorly to current therapies. The expression of platelet-derived growth factor receptors (PDGF-Rs) is reported to be reduced in metastatic melanoma compared with benign nevi or normal skin; we then hypothesized that PDGF-Ralpha may control growth of melanoma cells. We show here that melanoma cells overexpressing PDGF-Ralpha respond to serum with a significantly lower proliferation compared with that of controls. Apoptosis, cell cycle arrest, pRb dephosphorylation, and DNA synthesis inhibition were also observed in cells overexpressing PDGF-Ralpha. Proliferation was rescued by PDGF-Ralpha inhibitors, allowing to exclude nonspecific toxic effects and indicating that PDGF-Ralpha mediates autocrine antiproliferation signals in melanoma cells. Accordingly, PDGF-Ralpha was found to mediate staurosporine cytotoxicity. A protein array-based analysis of the mitogen-activated protein kinase pathway revealed that melanoma cells overexpressing PDGF-Ralpha show a strong reduction of c-Jun phosphorylated in serine 63 and of protein phosphatase 2A/Balpha and a marked increase of p38gamma, mitogen-activated protein kinase kinase 3, and signal regulatory protein alpha1 protein expression. In a mouse model of primary melanoma growth, infection with the Ad-vector overexpressing PDGF-Ralpha reached a significant 70% inhibition of primary melanoma growth (P < .001) and a similar inhibition of tumor angiogenesis. All together, these data demonstrate that PDGF-Ralpha strongly impairs melanoma growth likely through autocrine mechanisms and indicate a novel endogenous mechanism involved in melanoma control.
Collapse
|
21
|
Ritter E, Perry A, Yu J, Wang T, Tang L, Bieberich E. Breast cancer cell-derived fibroblast growth factor 2 and vascular endothelial growth factor are chemoattractants for bone marrow stromal stem cells. Ann Surg 2008; 247:310-4. [PMID: 18216538 DOI: 10.1097/sla.0b013e31816401d5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Recent efforts by the scientific community to characterize the complex interplay between different cell types involved in the development of tumors have led us to investigate the roles of vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF2) in the development of breast cancer. METHODS Using modified Boyden chamber assays, we measured the in vitro migration effect on murine mesenchymal stem cells (MSCs). Additionally, we assayed for the presence of receptors for these growth factors on MSCs, and for the presence of VEGF and FGF2 in breast cancer-conditioned media. We measured the change in migration of MSCs toward breast cancer when we depleted these growth factors from breast cancer-conditioned media. Further, we conducted a series of standard curve migration assays for basal media supplemented with physiologic concentrations of VEGF and FGF2. RESULTS Analysis of gene expression and protein analysis demonstrated the expression of FGF2 and VEGF by the breast cancer cells, and the presence of VEGF (FLK1) and FGF2 receptors on the MSCs. We also demonstrated a reduction in migration when we antibody-depleted VEGF and FGF2 from breast cancer-conditioned media. Additionally, we found the physiologic concentrations of VEGF and FGF2 at 12 and 15 ng/mL, respectively. CONCLUSIONS We demonstrate that VEGF and FGF2 induce migration of MSCs are secreted by breast cancer cells, their receptors are present on MSCs, and depletion of these growth factors reduces migration, and are therefore 2 relevant growth factors for MSC migration toward breast cancer cells.
Collapse
Affiliation(s)
- Edmond Ritter
- Department of Surgery, School of Medicine, Medical College of Georgia, Augusta, Georgia 30912, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Waugh HV, Sherratt JA. Modeling the effects of treating diabetic wounds with engineered skin substitutes. Wound Repair Regen 2007; 15:556-65. [PMID: 17650100 DOI: 10.1111/j.1524-475x.2007.00270.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this paper, a novel mathematical model of wound healing in both normal and diabetic cases is presented, focusing upon the effects of adding two currently available commercial engineered skin substitute therapies to the wound (Apligraf) and Dermagraft). Our work extends a previously developed model, which considers inflammatory and repair macrophage dynamics in normal and diabetic wound healing. Here, we extend the model to include equations for platelet-derived growth factor concentration, fibroblast density, collagen density, and hyaluronan concentration. This enables us to examine the variation of these components in both normal and diabetic wound healing cases, and to model the treatment protocols of these therapies. Within the context of our model, we find that the key component to successful healing in diabetic wounds is hyaluronan and that the therapies work by increasing the amount of hyaluronan available in the wound environment. The time-to-healing results correlate with those observed in clinical trials and the model goes some way to establishing an understanding of why diabetic wounds do not heal, and how these treatments affect the diabetic wound environment to promote wound closure.
Collapse
Affiliation(s)
- Helen V Waugh
- School of Mathematics & Computing Sciences, Heriot-Watt University, Riccarton, Edinburgh, UK
| | | |
Collapse
|
23
|
Muto A, Fitzgerald TN, Pimiento JM, Maloney S, Teso D, Paszkowiak JJ, Westvik TS, Kudo FA, Nishibe T, Dardik A. Smooth muscle cell signal transduction: implications of vascular biology for vascular surgeons. J Vasc Surg 2007; 45 Suppl A:A15-24. [PMID: 17544020 PMCID: PMC1939976 DOI: 10.1016/j.jvs.2007.02.061] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 02/17/2007] [Indexed: 12/31/2022]
Abstract
Vascular smooth muscle cells exhibit varied responses after vessel injury and surgical interventions, including phenotypic switching, migration, proliferation, protein synthesis, and apoptosis. Although the source of the smooth muscle cells that accumulate in the vascular wall is controversial, possibly reflecting migration from the adventitia, from the circulating blood, or in situ differentiation, the intracellular signal transduction pathways that control these processes are being defined. Some of these pathways include the Ras-mitogen-activated protein kinase, phosphatidylinositol 3-kinase-Akt, Rho, death receptor-caspase, and nitric oxide pathways. Signal transduction pathways provide amplification, redundancy, and control points within the cell and culminate in biologic responses. We review some of the signaling pathways activated within smooth muscle cells that contribute to smooth muscle cell heterogeneity and development of pathology such as restenosis and neointimal hyperplasia.
Collapse
MESH Headings
- Animals
- Apoptosis
- Bone Marrow Cells/metabolism
- Cell Differentiation
- Cell Movement
- Cell Proliferation
- Constriction, Pathologic/metabolism
- Constriction, Pathologic/pathology
- Extracellular Matrix/metabolism
- Humans
- Hyperplasia/metabolism
- Hyperplasia/pathology
- Muscle, Smooth, Vascular/injuries
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Muscle, Smooth, Vascular/surgery
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Protein Kinases/metabolism
- Signal Transduction
- Stem Cells/metabolism
- Vascular Surgical Procedures/adverse effects
Collapse
Affiliation(s)
- Akihito Muto
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Department of Interdepartmental Program in Vascular Biology and Transplantation, Yale University School of Medicine, New Haven, CT, USA
| | - Tamara N Fitzgerald
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Department of Interdepartmental Program in Vascular Biology and Transplantation, Yale University School of Medicine, New Haven, CT, USA
| | - Jose M Pimiento
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Department of Interdepartmental Program in Vascular Biology and Transplantation, Yale University School of Medicine, New Haven, CT, USA
- Saint Mary’s Hospital, Waterbury, CT, USA
| | - Stephen Maloney
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Department of Interdepartmental Program in Vascular Biology and Transplantation, Yale University School of Medicine, New Haven, CT, USA
- Saint Mary’s Hospital, Waterbury, CT, USA
| | - Desarom Teso
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Saint Mary’s Hospital, Waterbury, CT, USA
| | - Jacek J Paszkowiak
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Saint Mary’s Hospital, Waterbury, CT, USA
| | - Tormod S Westvik
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Department of Interdepartmental Program in Vascular Biology and Transplantation, Yale University School of Medicine, New Haven, CT, USA
| | - Fabio A Kudo
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Department of Interdepartmental Program in Vascular Biology and Transplantation, Yale University School of Medicine, New Haven, CT, USA
| | | | - Alan Dardik
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Department of Interdepartmental Program in Vascular Biology and Transplantation, Yale University School of Medicine, New Haven, CT, USA
- VA Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
24
|
Ozaki Y, Nishimura M, Sekiya K, Suehiro F, Kanawa M, Nikawa H, Hamada T, Kato Y. Comprehensive analysis of chemotactic factors for bone marrow mesenchymal stem cells. Stem Cells Dev 2007; 16:119-29. [PMID: 17348810 DOI: 10.1089/scd.2006.0032] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To understand which growth factors/cytokines can affect migration of mesenchymal stem cells (MSCs) to injured tissues, we compared the effects of many (26) growth factors/cytokines on the migration activity of rabbit and human MSCs using a microchemotaxis chamber. Among them, platelet-derived growth factor (PDGF)-BB, PDGF-AB, epidermal growth factor (EGF), HB-EGF, transforming growth factor (TGF-alpha), insulin growth factor (IGF-I), hepatocyte growth factor (HGF), fibroblast growth factor (FGF-2), and thrombin consistently enhanced the migration of rabbit and human MSCs at appropriate concentrations. PDGF-BB showed the greatest effect on migration. Various combinations of these factors further enhanced the migration of MSCs, whereas combinations of factors that shared common cell-surface receptors did not induce the additive stimulation. On the other hand, some combinations, including that of FGF-2 or thrombin with PDGF-BB, suppressed the migration activity of MSCs. These findings suggest that combinations of growth factors are important to eliciting the maximal chemotactic effect. The factors that induced the migration of MSCs also enhanced their proliferation, suggesting that migration and proliferation can take place simultaneously. The above factors were also effective in stimulating the migration of fibroblasts, but thrombin alone selectively enhanced the migration of MSCs, suggesting that thrombin is useful to stimulate migration of MSCs without migration of fibroblasts.
Collapse
Affiliation(s)
- Yoshie Ozaki
- Department of Prosthetic Dentistry, Hiroshima University, Kasumi, Hiroshima 734-8553, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Robitaille G, Hénault J, Christin MS, Senécal JL, Raymond Y. The nuclear autoantigen CENP-B displays cytokine-like activities toward vascular smooth muscle cells. ACTA ACUST UNITED AC 2007; 56:3814-26. [DOI: 10.1002/art.22972] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
26
|
Schor SL, Ellis IR, Harada K, Motegi K, Anderson ARA, Chaplain MAJ, Keatch RP, Schor AM. A novel “sandwich” assay for quantifying chemo-regulated cell migration within 3-dimensional matrices: Wound healing cytokines exhibit distinct motogenic activities compared to the transmembrane assay. ACTA ACUST UNITED AC 2006; 63:287-300. [PMID: 16528704 DOI: 10.1002/cm.20123] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The extracellular matrix profoundly affects cellular response to soluble motogens. In view of this critical aspect of matrix functionality, we have developed a novel assay to quantify chemo-regulated cell migration within biologically relevant 3-dimensional matrices. In this "sandwich" assay, target cells are plated at the interface between an upper and lower matrix compartment, either in the presence of an isotropic (uniform) or anisotropic (gradient) spatial distribution of test motogen. Cell migration in response to the different conditions is ascertained by quantifying their subsequent disposition within the upper and lower matrix compartments. The objective of this study has been to compare the motogenic activities of platelet-derived growth factor (PDGF-AB) and transforming growth factor-beta isoforms (TGF-beta1, -beta2 and -beta3) in the sandwich assay and the commonly employed transmembrane assay. As previously reported, dermal fibroblasts exhibited a motogenic response to isotropic and anisotropic distributions of all tested cytokines in the transmembrane assay. In contrast, only PDGF-AB and TGF-beta3 were active in the sandwich assay, each eliciting directionally unbiased (symmetrical) migration into the upper and lower type I collagen matrices in response to an isotropic cytokine distribution and a directionally biased response to an anisotropic distribution. TGF-beta1 and -beta2 were completely devoid of motogenic activity. These results are consistent with the reported differential bioactivities of PDGF and TGF-beta3 compared to TGF-beta1 and -beta2 in animal models of wound healing and suggest that the sandwich assay provides a means of obtaining physiologically relevant data regarding chemo-regulated cell migration.
Collapse
Affiliation(s)
- S L Schor
- Regenerative Medicine Group, Unit of Cell and Molecular Biology, The Dental School, University of Dundee, Dundee, Scotland.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Faraone D, Aguzzi MS, Ragone G, Russo K, Capogrossi MC, Facchiano A. Heterodimerization of FGF-receptor 1 and PDGF-receptor-alpha: a novel mechanism underlying the inhibitory effect of PDGF-BB on FGF-2 in human cells. Blood 2005; 107:1896-902. [PMID: 16322476 DOI: 10.1182/blood-2005-04-1524] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous evidence has shown that platelet-derived growth factor-BB (PDGF-BB) and fibroblast growth factor-2 (FGF-2) directly interact with high affinity, leading to potent reciprocal inhibitory effects on bovine endothelial cells and rat vascular smooth muscle cells. In this study, we report that PDGF-BB inhibits a series of FGF-2-induced events, such as proliferation of human umbilical vein endothelial cells (HUVECs), FGF-2 cellular internalization, phosphorylation of intracellular signaling factors including p38, rac1/cdc42, MKK4, and MKK3/6, and phosphorylation of FGF-receptor 1 (FGF-R1). PDGF-receptor-alpha (PDGF-Ralpha) was found to mediate PDGF-BB inhibitory effects because its neutralization fully restored FGF-2 mitogenic activity and internalization. Additional biochemical analyses, coimmunoprecipitation experiments, and FRET analysis showed that FGF-R1 and PDGF-Ralpha directly interact in vitro and in vivo and that this interaction is somehow increased in the presence of the corresponding ligands FGF-2 and PDGF-BB. These results suggest that FGF-R1/PDGF-Ralpha heterodimerization may represent a novel endogenous mechanism to modulate the action of these receptors and their ligands and to control endothelial cell function.
Collapse
Affiliation(s)
- Debora Faraone
- Laboratorio di Patologia Vascolare, Istituto Dermopatico della Immacolata, IDI-IRCCS, Via Monti di Creta 104, 00167 Rome, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Dardik A, Yamashita A, Aziz F, Asada H, Sumpio BE. Shear stress-stimulated endothelial cells induce smooth muscle cell chemotaxis via platelet-derived growth factor-BB and interleukin-1alpha. J Vasc Surg 2005; 41:321-31. [PMID: 15768016 DOI: 10.1016/j.jvs.2004.11.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Vascular smooth muscle cell (SMC) migration is critical to the development of atherosclerosis and neointimal hyperplasia. Hemodynamic forces such as shear stress and cyclic strain stimulate endothelial cell signal-transduction pathways, resulting in the secretion of several factors, including SMC chemoattractants such as platelet-derived growth factor (PDGF). We hypothesized that mechanical forces stimulate endothelial cells to secrete SMC chemoattractants to induce migration via the mitogen-activated protein kinase (MAPK) pathway. METHODS Bovine aortic endothelial cells were exposed to shear stress, cyclic strain, or static conditions for 16 hours. The resulting conditioned medium was used as a SMC chemoattractant in a Boyden chamber. Activation of SMC extracellular signal-regulated protein kinase 1/2 (ERK1/2) was assessed by Western blot analysis. Pathways were inhibited with anti-PDGF-BB or anti-interleukin-1alpha (IL-1alpha) antibodies, or the ERK1/2 upstream pathway inhibitor PD98059. RESULTS Conditioned medium from endothelial cells exposed to shear stress corresponding to arterial levels of shear stress stimulated SMC migration but lower levels of shear stress or cyclic strain did not. Both PDGF-BB and IL-1alpha were secreted into the conditioned medium by endothelial cells stimulated with shear stress. Both PDGF-BB and IL-1alpha stimulated SMC chemotaxis but were not synergistic, and both stimulated SMC ERK1/2 phosphorylation. Inhibition of PDGF-BB or IL-1alpha inhibited SMC chemotaxis and ERK1/2 phosphorylation. CONCLUSION Shear stress stimulates endothelial cells to secrete several SMC chemoattractants, including PDGF-BB and IL-1alpha; both PDGF-BB and IL-1alpha stimulate SMC chemotaxis via the ERK1/2 signal-transduction pathway. These results suggest that the response to vascular injury may have a common pathway amenable to pharmacologic manipulation. CLINICAL RELEVANCE One difficulty in the pharmacologic treatment of atherosclerosis or neointimal hyperplasia leading to restenosis is the multiplicity of activated pathways and thus potential treatment targets. This study demonstrates that shear stress, a hemodynamic force that may be a biologically relevant stimulus to induce vascular pathology, stimulates endothelial cells to secrete PDGF-BB and IL-1alpha. Both of these mediators stimulate the SMC ERK1/2 pathway to induce migration, a critical event in the pathogenesis of atherosclerosis and neointimal hyperplasia. Therefore, this study suggests a relevant common target pathway in SMC that is amenable to manipulation for clinical treatment.
Collapse
Affiliation(s)
- Alan Dardik
- Section of Vascular Surgery, Yale University School of Medicine, New Haven, CT 06519, USA.
| | | | | | | | | |
Collapse
|
29
|
Millette E, Rauch BH, Defawe O, Kenagy RD, Daum G, Clowes AW. Platelet-Derived Growth Factor-BB–Induced Human Smooth Muscle Cell Proliferation Depends on Basic FGF Release and FGFR-1 Activation. Circ Res 2005; 96:172-9. [PMID: 15625285 DOI: 10.1161/01.res.0000154595.87608.db] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have shown that the G protein–coupled receptor (GPCR) agonists, thrombin and Factor Xa, stimulate smooth muscle cell (SMC) proliferation through transactivation of the EGF receptor (EGFR) or the FGF receptor (FGFR), both of which are tyrosine kinase receptors. In the present study, we investigated whether platelet-derived growth factor (PDGF), a tyrosine kinase receptor agonist, might transactivate another tyrosine kinase receptor to induce SMC proliferation. Because heparin inhibits PDGF-mediated proliferation in human SMCs, we investigated whether the heparin-binding growth factor basic fibroblast growth factor (bFGF) and one of its receptors, FGFR-1, play a role in the response of human arterial SMCs to PDGF-BB. PDGF-BB induced the release of bFGF and sustained phosphorylation of FGFR-1 (30 minutes to 6 hours). A bFGF-neutralizing antibody inhibited PDGF-BB–mediated phosphorylation of FGFR-1, DNA synthesis, and cell proliferation. In the presence of bFGF antibody, PDGF-BB–induced early activation of ERK (0 to 60 minutes) was not affected, whereas late ERK activation (2 to 4 hours) was reduced. When FGFR-1 expression was suppressed using small interfering RNA (siRNA), ERK activation was reduced at late, but not early, time points after PDGF-BB stimulation. Addition of bFGF antibody to cells treated with siRNA to FGFR-1 had no further effect on ERK activation. Our results provide support for a novel mechanism by which PDGF-BB induces the release of bFGF and activation of FGFR-1 followed by the sustained activation of ERK and proliferation of human SMCs.
Collapse
MESH Headings
- Aorta, Abdominal
- Becaplermin
- Cell Division/drug effects
- Cell Movement/drug effects
- Cells, Cultured/drug effects
- Cells, Cultured/metabolism
- Chromones/pharmacology
- DNA Replication/drug effects
- Enzyme Activation/drug effects
- Fibroblast Growth Factor 2/metabolism
- Fibroblast Growth Factor 2/pharmacology
- Fibroblast Growth Factor 2/physiology
- Flavonoids/pharmacology
- Heparin/pharmacology
- Humans
- Indoles/pharmacology
- MAP Kinase Kinase 1/metabolism
- MAP Kinase Kinase 2/metabolism
- Maleimides/pharmacology
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Morpholines/pharmacology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Phosphorylation/drug effects
- Platelet-Derived Growth Factor/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Protein Processing, Post-Translational/drug effects
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-akt
- Proto-Oncogene Proteins c-sis
- RNA, Small Interfering/pharmacology
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/physiology
- Receptor, Fibroblast Growth Factor, Type 1
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/physiology
- Recombinant Proteins/pharmacology
- Tyrphostins/pharmacology
Collapse
Affiliation(s)
- Esther Millette
- University of Washington School of Medicine, Department of Surgery, Box 356410, 1959 NE Pacific St, Seattle, WA 98195-6410, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Ricci G, Catizone A, Galdieri M. Embryonic mouse testis development: role of platelet derived growth factor (PDGF-BB). J Cell Physiol 2004; 200:458-67. [PMID: 15254974 DOI: 10.1002/jcp.20035] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Platelet-derived growth factors (PDGFs) are paracrine growth factors mediating epithelial-mesenchymal interactions and exerting multiple biological activities which include cell proliferation, motility, and differentiation. As previously demonstrated, PDGFs act during embryonic development and recently, by culturing male genital ridges, we have demonstrated that PDGF-BB is able to support in vitro testicular cord formation. In the present paper, we report that PDGF-BB is present during embryonic testis development and, in organ culture, induces cord formation although with reduced diameters compared with the cords formed in the genital ridges cultured in the presence of HGF. Moreover we have analyzed the roles exerted by this growth factor during the morphogenesis of the testis. We demonstrate by immunohistochemical experiments that PDGF-BB and its receptors are synthesized by the male UGRs isolated from 11.5 and 13.5 dpc embryos and by Western blot that the factor is secreted in a biologically active form by testicular cells isolated from 13.5 dpc embryos. The biological roles of the factor have also been studied and we demonstrate that PDGF-BB acts as a migratory factor for male mesonephric cells whose migration is a male specific event necessary for a normal testicular morphogenesis. In addition we demonstrate that during testicular development, PDGF-BB induces testicular cell proliferation being in this way responsible for the increase in size of the testis. Finally we demonstrate that PDGF-BB is able to reorganize dissociated testicular cells inducing the formation of large cellular aggregates. However the structures formed in vitro under PDGF-BB stimulation never had a cord-like morphology similar to the cord-like structures formed in the presence of HGF (Ricci et al., 2002, Mech Dev 118:19-28), suggesting that this factor does not act as a morphogenetic factor during testicular development. All together the data presented in this paper demonstrate that PDGF-BB and its receptors (alpha- and beta-subunits) are present during the crucial ages of embryonic mouse testis morphogenesis and indicate the multiple roles exerted by this factor during the development of the male gonad.
Collapse
Affiliation(s)
- G Ricci
- Department of Experimental Medicine, Histology and Embryology Laboratory, School of Medicine, Second University of Naples, Naples, Italy
| | | | | |
Collapse
|
31
|
Leung WCY, Lawrie A, Demaries S, Massaeli H, Burry A, Yablonsky S, Sarjeant JM, Fera E, Rassart E, Pickering JG, Rabinovitch M. Apolipoprotein D and Platelet-Derived Growth Factor-BB Synergism Mediates Vascular Smooth Muscle Cell Migration. Circ Res 2004; 95:179-86. [PMID: 15192024 DOI: 10.1161/01.res.0000135482.74178.14] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We identified apolipoprotein (apo)D in a search for proteins upregulated in a posttranscriptional manner similar to fibronectin in motile smooth muscle cells (SMCs). To address the function of apoD in SMCs, we cloned a partial apoD cDNA from ovine aortic (Ao) SMCs using RT-PCR. We documented a 2.5-fold increase in apoD protein but no increase in apoD mRNA in Ao SMCs 48 hours after a multiwound migration assay (
P
<0.01). Confocal microscopy revealed prominent perinuclear and trailing edge expression of apoD in migrating SMCs but not in the confluent monolayer. Stimulation of Ao SMCs with 10 ng/mL platelet-derived growth factor (PDGF)-BB increased apoD protein expression (
P
<0.05). Moreover, PDGF-BB–stimulated migration of human pulmonary artery SMCs was suppressed by knock-down of apoD using RNAi. Stable overexpression of apoD in Ao SMCs cultured in 10% fetal bovine serum promoted random migration by 62% compared with vector-transfected cells (
P
<0.01). Overexpression of apoD or addition of exogenous apoD to a rat aortic SMC line (A10) stimulated their migration in response to a subthreshold dose of PDGF-BB (
P
<0.05). This was unrelated to increased phosphorylation of ERK1/2 or of phospholipase C-γ1, but correlated with enhanced Rac1 activation. This study shows that apoD can be expressed or taken up by SMCs and can regulate their motility in response to growth factors.
Collapse
Affiliation(s)
- Wesley C Y Leung
- Cardiovascular Research Program, Research Institute, The Hospital for Sick Children, and the Department of Pediatrics, University of Toronto, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hao X, Månsson-Broberg A, Gustafsson T, Grinnemo KH, Blomberg P, Siddiqui AJ, Wärdell E, Sylvén C. Angiogenic effects of dual gene transfer of bFGF and PDGF-BB after myocardial infarction. Biochem Biophys Res Commun 2004; 315:1058-63. [PMID: 14985120 DOI: 10.1016/j.bbrc.2004.01.165] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2003] [Indexed: 10/26/2022]
Abstract
Therapeutic effects of combination of angiogenic growth factors for the treatment of ischemia after myocardial infarction are largely unknown. Plasmids expressing basic fibroblast growth factor (bFGF), platelet-derived growth factor (PDGF-BB) or their combination with a 1:1 mass ratio were injected into hearts with 7-day-old myocardial infarction. Hearts were harvested after 1 and 4 weeks after gene transfer. The major findings in this chronic myocardial infarction model were that bFGF, PDGF-BB and their combination all had a more pronounced angiogenic effect on the arteriolar than the capillary level. bFGF stimulated both capillary and arteriolar growth while PDGF-BB preferentially stimulated arterioles. The combination increased the amount of both capillaries and arterioles and in addition gave rise to stable capillaries compared to single factor transfer but did not further enhance angiogenesis. No cardiovascular side effects were observed after gene transfer.
Collapse
Affiliation(s)
- X Hao
- Department of Cardiology, Karolinska Institutet, Huddinge University Hospital, Stockholm SE-141 86, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Facchiano A, Russo K, Facchiano AM, De Marchis F, Facchiano F, Ribatti D, Aguzzi MS, Capogrossi MC. Identification of a novel domain of fibroblast growth factor 2 controlling its angiogenic properties. J Biol Chem 2003; 278:8751-60. [PMID: 12496262 DOI: 10.1074/jbc.m209936200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibroblast growth factor 2 (FGF-2) is a potent factor modulating the activity of many cell types. Its dimerization and binding to high affinity receptors are considered to be necessary steps to induce FGF receptor phosphorylation and signaling activation. A structural analysis was carried out and a region encompassing residues 48-58 of human FGF-2 was identified, as potentially involved in FGF-2 dimerization. A peptide (FREG-48-58) derived from this region strongly and specifically inhibited FGF-2 induced proliferation and migration of primary bovine aorta endothelial cells (BAEC) in vitro, and markedly reduced FGF-2-dependent angiogenesis in two distinct in vivo assays. To further investigate the role of region 48-58, a polyclonal antibody raised against FREG-(48-58) was tested and was found to block FGF-2 action in vitro. Human FGF-2 has three histidine residues, one falling within the region 48-58. Chemical modification of histidine residues blocked FGF-2 activity and FREG-(48-58) inhibitory effect in vitro, indicating that histidine residues, in particular the one within FREG-(48-58) region, play a crucial role in the observed activity. Additional experiments showed that FREG-(48-58) specifically interacted with FGF-2, impaired FGF-2-interaction with itself, with heparin and with FGF receptor 1, and inhibited FGF-2-induced receptor phosphorylation and FGF-2 internalization. These data indicate for the first time that region 48-58 of FGF-2 is a functional domain controlling FGF-2 activity.
Collapse
Affiliation(s)
- Antonio Facchiano
- Laboratorio Patologia Vascolare, Istituto Dermopatico dell'Immacolata, IRCCS, 00167 Roma, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Ricci G, Catizone A, Galdieri M. Pleiotropic activity of hepatocyte growth factor during embryonic mouse testis development. Mech Dev 2002; 118:19-28. [PMID: 12351166 DOI: 10.1016/s0925-4773(02)00247-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The hepatocyte growth factor (HGF) is a pleiotropic cytokine whose action is mediated by c-met, a glycoproteic receptor with tyrosine kinase activity which transduces its multiple biological activities including cell proliferation, motility and differentiation. During embryonic development HGF acts as a morphogenetic factor as previously demonstrated for metanephric and lung development. Recently, culturing male genital ridges, we demonstrated that HGF is able to support in vitro testicular cord formation. In the present paper we report the expression pattern of the HGF gene during embryonic testis development and the multiple roles exerted by this factor during the morphogenesis of this organ. Northern blot analysis reveals a positive signal in urogenital ridges isolated from 11.5 days post coitum (dpc) embryos and in testes isolated from 13.5 and 15.5 dpc male embryos. On the contrary HGF mRNA is undetectable in ovaries isolated from 13.5 and 15.5 dpc embryos. Moreover, we demonstrate that HGF is synthesized and secreted by the male gonad and is biologically active. These data indicate a male specific biological function of HGF during embryonic gonadal development. This hypothesis is supported by the in vitro demonstration that HGF acts as a migratory factor for male mesonephric cells which is a male specific event. In addition we demonstrate that during testicular development, HGF acts as a morphogenetic factor able to reorganize dissociated testicular cells which, under HGF stimulation, form a tridimensional network of cord-like structures. Finally, we demonstrate that HGF induces testicular cell proliferation in this way being responsible for the size increase of the testis. All together the data presented in this paper demonstrate that HGF is expressed during the embryonic development of the testis and clarify the multiple roles exerted by this factor during the morphogenesis of the male gonad.
Collapse
Affiliation(s)
- G Ricci
- Department of Histology and Medical Embryology, University of Rome La Sapienza, Via A. Scarpa 14, Rome 00161, Italy
| | | | | |
Collapse
|
35
|
Facchiano F, Lentini A, Fogliano V, Mancarella S, Rossi C, Facchiano A, Capogrossi MC. Sugar-induced modification of fibroblast growth factor 2 reduces its angiogenic activity in vivo. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:531-41. [PMID: 12163378 PMCID: PMC1850725 DOI: 10.1016/s0002-9440(10)64209-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Both clinical and animal studies have shown that angiogenesis is impaired in diabetes mellitus; however, the mechanisms responsible for this effect are poorly characterized. The major aims of the present study were to evaluate the effect of hyperglycemia on fibroblast growth factor 2 (FGF2)-induced angiogenesis in vivo and to determine whether FGF2 non-enzymatic glycation occurs in hyperglycemic mice. New blood vessel formation was examined in reconstituted basement membrane protein (Matrigel) plugs containing FGF2 in control normoglycemic CD1 and in hyperglycemic nonobese diabetic (NOD) mice. FGF2-induced angiogenesis in NOD mice was inhibited by 75% versus control mice (P < 0.001). When recombinant FGF2 was mixed with Matrigel and injected in mice, it was found that recombinant FGF2 glycation was significantly enhanced in plugs from NOD versus control mice (P < 0.01). In the Boyden chamber assay, the chemotactic effect of glycated FGF2 toward endothelial cells was lower than that of unmodified FGF2 (P < 0.01). Further, FGF2 glycated in vitro and co-injected with Matrigel in CD1 mice was a weaker angiogenic stimulus than unglycated FGF2 (P < 0.005). These results indicate that FGF2-induced angiogenesis is inhibited in diabetic mice, FGF2 glycation is enhanced in hyperglycemic mice, and glycation markedly reduces FGF2 chemotactic effect in vitro and its angiogenic properties in vivo. Thus, FGF2 glycation may represent a mechanism responsible for the impairment of angiogenesis in diabetes mellitus.
Collapse
Affiliation(s)
- Francesco Facchiano
- Laboratorio di Patologia Vascolare, Istituto Dermopatico dell'Immacolata, Roma, Italy.
| | | | | | | | | | | | | |
Collapse
|
36
|
De Marchis F, Ribatti D, Giampietri C, Lentini A, Faraone D, Scoccianti M, Capogrossi MC, Facchiano A. Platelet-derived growth factor inhibits basic fibroblast growth factor angiogenic properties in vitro and in vivo through its alpha receptor. Blood 2002; 99:2045-53. [PMID: 11877278 DOI: 10.1182/blood.v99.6.2045] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Basic fibroblast growth factor (bFGF) and platelet-derived growth factor-BB (PDGF-BB) modulate vascular wall cell function in vitro and angiogenesis in vivo. The aim of the current study was to determine how bovine aorta endothelial cells (BAECs) respond to the simultaneous exposure to PDGF-BB and bFGF. It was found that bFGF-dependent BAEC migration, proliferation, and differentiation into tubelike structures on reconstituted extracellular matrix (Matrigel) were inhibited by PDGF-BB. The role played by PDGF receptor alpha (PDGF-Ralpha) was investigated by selective stimulation with PDGF-AA, by blocking PDGF-BB-binding to PDGF-Ralpha with neomycin, or by transfecting cells with dominant-negative forms of the receptors to selectively impair either PDGF-Ralpha or PDGF-Rbeta function. In all cases, PDGF-Ralpha impairment abolished the inhibitory effect of PDGF-BB on bFGF-directed BAEC migration. In addition, PDGF-Ralpha phosphorylation was increased in the presence of bFGF and PDGF, as compared to PDGF alone, whereas mitogen-activated protein kinase phosphorylation was decreased in the presence of PDGF-BB and bFGF compared with bFGF alone. In vivo experiments showed that PDGF-BB and PDGF-AA inhibited bFGF-induced angiogenesis in vivo in the chick embryo chorioallantoic membrane assay and that PDGF-BB inhibited bFGF-induced angiogenesis in Matrigel plugs injected subcutaneously in CD1 mice. Taken together these results show that PDGF inhibits the angiogenic properties of bFGF in vitro and in vivo, likely through PDGF-Ralpha stimulation.
Collapse
Affiliation(s)
- Francesco De Marchis
- Laboratorio di Patologia Vascolare, Istituto Dermopatico dell'Immacolata, Via dei Monti di Creta 104, 00167 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Palumbo R, Gaetano C, Antonini A, Pompilio G, Bracco E, Rönnstrand L, Heldin CH, Capogrossi MC. Different effects of high and low shear stress on platelet-derived growth factor isoform release by endothelial cells: consequences for smooth muscle cell migration. Arterioscler Thromb Vasc Biol 2002; 22:405-11. [PMID: 11884282 DOI: 10.1161/hq0302.104528] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present study, we analyzed the effect of conditioned media (CM) from bovine aortic endothelial cells exposed to laminar shear stress (SS) of 5 dyne/cm2 (SS5) or 15 dyne/cm2 (SS15) for 16 hours on smooth muscle cell (SMC) migration. In response to CM from bovine aortic endothelial cells exposed to SS5 (CMSS5) and SS15 (CMSS15), migration was 45 +/- 5.5 and 30 +/- 1.5 cells per field, respectively (P<0.05). Similar results were obtained with SS of 2 versus 20 dyne/cm2 and also when SS of 5 and 15 dyne/cm2 lasted 24 hours. Platelet-derived growth factor (PDGF)-AA levels in CMSS5 and CMSS15 were 9 +/- 7 and 18 +/- 5 ng/10(6) cells for 16 hours, respectively (P<0.05); PDGF-BB levels in CMSS5 and CMSS15 were 38 +/- 10 and 53 +/- 10 ng/10(6) cells for 16 hours, respectively (P<0.05). PDGF receptor alpha (PDGFRalpha) and PDGF receptor beta (PDGFRbeta) in SMCs were phosphorylated by CMSS15>CMSS5. In response to CMSS15, a neutralizing antibody against PDGF-AA enhanced SMC migration to a level comparable to that of CMSS5; in contrast, antibodies against PDGF-BB abolished SMC migration. Transfection of SMCs with a dominant-negative PDGFRalpha or PDGFRbeta increased or inhibited, respectively, SMC migration in response to CMSS15. Overexpression of wild-type PDGFRalpha inhibited SMC migration in response to CMSS5, CMSS15, or recombinant PDGF-BB (P<0.001). These results suggest that the ability of high SS to inhibit arterial wall thickening in vivo may be related to enhanced activation of PDGFRalpha in SMCs by PDGF isoforms secreted by the endothelium.
Collapse
MESH Headings
- Animals
- Becaplermin
- Cattle
- Chemotaxis
- Culture Media, Conditioned/pharmacology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Mutation
- Phosphorylation
- Platelet-Derived Growth Factor/biosynthesis
- Platelet-Derived Growth Factor/pharmacology
- Proto-Oncogene Proteins c-sis
- Receptor, Platelet-Derived Growth Factor alpha/genetics
- Receptor, Platelet-Derived Growth Factor alpha/physiology
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Receptor, Platelet-Derived Growth Factor beta/physiology
- Stress, Mechanical
- Transfection
Collapse
Affiliation(s)
- Roberta Palumbo
- Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Russo K, Ragone R, Facchiano AM, Capogrossi MC, Facchiano A. Platelet-derived growth factor-BB and basic fibroblast growth factor directly interact in vitro with high affinity. J Biol Chem 2002; 277:1284-91. [PMID: 11694520 DOI: 10.1074/jbc.m108858200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Platelet-derived growth factor-BB (PDGF-BB) and basic fibroblast growth factor (bFGF) are potent growth factors active on many cell types. The present study indicates that they directly interact in vitro. The interaction was investigated with overlay experiments, surface plasmon resonance experiments, and solid-phase immunoassays by immobilizing one factor or the other and by steady-state fluorescence analysis. The interaction observed was specific, dose-dependent, and saturable, and the bFGF/PDGF-BB binding stoichiometry was found to be 2:1. K(D)(1) for the first step equilibrium and the overall K(D) values were found to be in the nanomolar and in the picomolar range, respectively. Basic FGF/PDGF-BB interaction was strongly reduced as a function of time of PDGF-BB proteolysis. Furthermore, docking analysis suggested that the PDGF-BB region interacting with bFGF may overlap, at least in part, with the PDGF-BB receptor-binding site. This hypothesis was supported by surface plasmon resonance experiments showing that an anti-PDGF-BB antibody, known to inhibit PDGF-BB binding with its receptor, strongly reduced bFGF/PDGF-BB interaction, whereas a control antibody was ineffective. According to these data, the observed bFGF.PDGF-BB complex formation might explain, at least in part, previous observations showing that PDGF-BB chemotactic and mitogenic activity on smooth muscle cells are strongly inhibited in the presence of bFGF.
Collapse
Affiliation(s)
- Katia Russo
- Laboratorio di Patologia Vascolare, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico, 00167 Roma, Italy
| | | | | | | | | |
Collapse
|
39
|
Facchiano F, D'Arcangelo D, Riccomi A, Lentini A, Beninati S, Capogrossi MC. Transglutaminase activity is involved in polyamine-induced programmed cell death. Exp Cell Res 2001; 271:118-29. [PMID: 11697888 DOI: 10.1006/excr.2001.5356] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Natural polyamines, i.e., putrescine, spermidine, and spermine, are ubiquitous molecules essential for cell proliferation and differentiation. In the present study, the effect of polyamines on primary cultures of bovine aortic endothelial cells (BAECs), rat aortic smooth muscle cells (RASMCs), and a human melanoma cell line was examined. While in the absence of fetal calf serum (FCS) polyamines had no effect on viability, in the presence of FCS spermidine and spermine, at concentrations close to physiologic levels, induced a dose-dependent cell death, whereas putrescine was ineffective. RASMCs were significantly more sensitive than other cells. FACS analysis, oligo-nucleosome ELISA, Hoechst nuclear staining, and Annexin V-FITC quantification showed that cell death was likely due to apoptosis. Cells exposed to spermidine showed a marked increase of intracellular transglutaminase (TGase) activity ( approximately 30-fold over control). Inhibitors of polyamine oxidation or inhibitors of TGase activity prevented polyamine-induced apoptosis. Moreover, tissue TGase overexpression significantly increased cell sensitivity to polyamine, suggesting that this effect is likely related to enhanced intracellular TGase activity. These data indicate that polyamines may modulate cell viability through a novel TGase-dependent process.
Collapse
MESH Headings
- Animals
- Aorta
- Apoptosis/physiology
- Catalase/metabolism
- Cattle
- Cell Division/physiology
- Cell Separation
- Cells, Cultured
- Culture Media, Serum-Free
- DNA Fragmentation
- Dose-Response Relationship, Drug
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiology
- Flow Cytometry
- Humans
- Melanoma
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Polyamines/pharmacology
- Rats
- Transfection
- Transglutaminases/genetics
- Transglutaminases/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- F Facchiano
- Laboratorio di Patologia Vascolare, Istituto Dermopatico dell'Immacolata, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
40
|
Maher EA, Furnari FB, Bachoo RM, Rowitch DH, Louis DN, Cavenee WK, DePinho RA. Malignant glioma: genetics and biology of a grave matter. Genes Dev 2001; 15:1311-33. [PMID: 11390353 DOI: 10.1101/gad.891601] [Citation(s) in RCA: 871] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- E A Maher
- Center for Neuro-Oncology, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|