1
|
Liang WZ, Hsieh KW, Yang ZD, Sun GC. Induction of Ca 2+ signaling and cytotoxic responses of human lung fibroblasts upon an antihistamine drug oxatomide treatment and evaluating the protective effects of Ca 2+ chelating. Fundam Clin Pharmacol 2025; 39:e13040. [PMID: 39431647 DOI: 10.1111/fcp.13040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/05/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Oxatomide, an antihistamine drug of the diphenylmethylpiperazine family, has anti-inflammatory effects in airway disease. Because oxatomide was shown to cause diverse physiological responses in several cell models, the impact of oxatomide on Ca2+ signaling and its related physiological effects has not been explored in IMR-90 human fetal lung fibroblasts. OBJECTIVES This study assessed the effect of oxatomide on cell viability and intracellular free Ca2+ concentrations ([Ca2+]i) and examined whether oxatomide-induced cytotoxicity through Ca2+ signaling in IMR-90 cells. METHODS Cell viability was measured by the cell proliferation reagent (WST-1). [Ca2+]i was measured by the Ca2+-sensitive fluorescent dye fura-2. RESULTS Oxatomide (10-40 μM) concentration dependently reduced cell viability and induced [Ca2+]i rises in IMR-90 cells. This cytotoxic effect was reversed by chelation of cytosolic Ca2+ with BAPTA-AM. In terms of Ca2+ signaling, oxatomide-caused Ca2+ entry was inhibited by modulators of store-operated Ca2+ channels (2-APB and SKF96365) and protein kinase C (PKC) inhibitor (GF109203X). Furthermore, oxatomide-induced Ca2+ influx was confirmed by Mn2+-induced quench of fura-2 fluorescence. In a Ca2+-free medium, preincubation with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin inhibited oxatomide-evoked [Ca2+]i rises. Conversely, treatment with oxatomide abolished thapsigargin-induced [Ca2+]i rises. Inhibition of phospholipase C (PLC) with U73122 also inhibited oxatomide-caused [Ca2+]i rises. CONCLUSION In IMR-90 cells, oxatomide-induced cytotoxicity by preceding [Ca2+]i rises involving PKC-sensitive store-operated Ca2+ entry and PLC-dependent Ca2+ release from the endoplasmic reticulum. BAPTA-AM, with its Ca2+ chelating effects, may be a potential compound for preventing oxatomide-induced cytotoxicity.
Collapse
Affiliation(s)
- Wei-Zhe Liang
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Yanpu Township, Pingtung County, Taiwan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Kai-Wei Hsieh
- Department of Anesthesiology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Zong-Da Yang
- Department of Anesthesiology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Gwo-Ching Sun
- Department of Anesthesiology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
2
|
Birkedal R, Branovets J, Vendelin M. Compartmentalization in cardiomyocytes modulates creatine kinase and adenylate kinase activities. FEBS Lett 2024; 598:2623-2640. [PMID: 39112921 DOI: 10.1002/1873-3468.14994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/03/2024] [Accepted: 07/21/2024] [Indexed: 11/12/2024]
Abstract
Intracellular molecules are transported by motor proteins or move by diffusion resulting from random molecular motion. Cardiomyocytes are packed with structures that are crucial for function, but also confine the diffusional spaces, providing cells with a means to control diffusion. They form compartments in which local concentrations are different from the overall, average concentrations. For example, calcium and cyclic AMP are highly compartmentalized, allowing these versatile second messengers to send different signals depending on their location. In energetic compartmentalization, the ratios of AMP and ADP to ATP are different from the average ratios. This is important for the performance of ATPases fuelling cardiac excitation-contraction coupling and mechanical work. A recent study suggested that compartmentalization modulates the activity of creatine kinase and adenylate kinase in situ. This could have implications for energetic signaling through, for example, AMP-activated kinase. It highlights the importance of taking compartmentalization into account in our interpretation of cellular physiology and developing methods to assess local concentrations of AMP and ADP to enhance our understanding of compartmentalization in different cell types.
Collapse
Affiliation(s)
- Rikke Birkedal
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Estonia
| | - Jelena Branovets
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Estonia
| | - Marko Vendelin
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Estonia
| |
Collapse
|
3
|
Ivanova A, Atakpa-Adaji P, Rao S, Marti-Solano M, Taylor CW. Dual regulation of IP 3 receptors by IP 3 and PIP 2 controls the transition from local to global Ca 2+ signals. Mol Cell 2024; 84:3997-4015.e7. [PMID: 39366376 DOI: 10.1016/j.molcel.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/11/2024] [Accepted: 09/08/2024] [Indexed: 10/06/2024]
Abstract
The spatial organization of inositol 1,4,5-trisphosphate (IP3)-evoked Ca2+ signals underlies their versatility. Low stimulus intensities evoke Ca2+ puffs, localized Ca2+ signals arising from a few IP3 receptors (IP3Rs) within a cluster tethered beneath the plasma membrane. More intense stimulation evokes global Ca2+ signals. Ca2+ signals propagate regeneratively as the Ca2+ released stimulates more IP3Rs. How is this potentially explosive mechanism constrained to allow local Ca2+ signaling? We developed methods that allow IP3 produced after G-protein coupled receptor (GPCR) activation to be intercepted and replaced by flash photolysis of a caged analog of IP3. We find that phosphatidylinositol 4,5-bisphosphate (PIP2) primes IP3Rs to respond by partially occupying their IP3-binding sites. As GPCRs stimulate IP3 formation, they also deplete PIP2, relieving the priming stimulus. Loss of PIP2 resets IP3R sensitivity and delays the transition from local to global Ca2+ signals. Dual regulation of IP3Rs by PIP2 and IP3 through GPCRs controls the transition from local to global Ca2+ signals.
Collapse
Affiliation(s)
- Adelina Ivanova
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK.
| | - Peace Atakpa-Adaji
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | - Shanlin Rao
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | - Maria Marti-Solano
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | - Colin W Taylor
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| |
Collapse
|
4
|
Bahmanpour A, Ghoreishian SM, Sepahvandi A. Electromagnetic Modulation of Cell Behavior: Unraveling the Positive Impacts in a Comprehensive Review. Ann Biomed Eng 2024; 52:1941-1954. [PMID: 38652384 DOI: 10.1007/s10439-024-03519-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
There are numerous effective procedures for cell signaling, in which humans directly transmit detectable signals to cells to govern their essential behaviors. From a biomedical perspective, the cellular response to the combined influence of electrical and magnetic fields holds significant promise in various domains, such as cancer treatment, targeted drug delivery, gene therapy, and wound healing. Among these modern cell signaling methods, electromagnetic fields (EMFs) play a pivotal role; however, there remains a paucity of knowledge concerning the effects of EMFs across all wavelengths. It's worth noting that most wavelengths are incompatible with human cells, and as such, this study excludes them from consideration. In this review, we aim to comprehensively explore the most effective and current EMFs, along with their therapeutic impacts on various cell types. Specifically, we delve into the influence of alternating electromagnetic fields (AEMFs) on diverse cell behaviors, encompassing proliferation, differentiation, biomineralization, cell death, and cell migration. Our findings underscore the substantial potential of these pivotal cellular behaviors in advancing the treatment of numerous diseases. Moreover, AEMFs wield a significant role in the realms of biomaterials and tissue engineering, given their capacity to decisively influence biomaterials, facilitate non-invasive procedures, ensure biocompatibility, and exhibit substantial efficacy. It is worth mentioning that AEMFs often serve as a last-resort treatment option for various diseases. Much about electromagnetic fields remains a mystery to the scientific community, and we have yet to unravel the precise mechanisms through which wavelengths control cellular fate. Consequently, our understanding and knowledge in this domain predominantly stem from repeated experiments yielding similar effects. In the ensuing sections of this article, we delve deeper into our extended experiments and research.
Collapse
|
5
|
Silvestri R, Nicolì V, Gangadharannambiar P, Crea F, Bootman MD. Calcium signalling pathways in prostate cancer initiation and progression. Nat Rev Urol 2023; 20:524-543. [PMID: 36964408 DOI: 10.1038/s41585-023-00738-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 03/26/2023]
Abstract
Cancer cells proliferate, differentiate and migrate by repurposing physiological signalling mechanisms. In particular, altered calcium signalling is emerging as one of the most widespread adaptations in cancer cells. Remodelling of calcium signalling promotes the development of several malignancies, including prostate cancer. Gene expression data from in vitro, in vivo and bioinformatics studies using patient samples and xenografts have shown considerable changes in the expression of various components of the calcium signalling toolkit during the development of prostate cancer. Moreover, preclinical and clinical evidence suggests that altered calcium signalling is a crucial component of the molecular re-programming that drives prostate cancer progression. Evidence points to calcium signalling re-modelling, commonly involving crosstalk between calcium and other cellular signalling pathways, underpinning the onset and temporal progression of this disease. Discrete alterations in calcium signalling have been implicated in hormone-sensitive, castration-resistant and aggressive variant forms of prostate cancer. Hence, modulation of calcium signals and downstream effector molecules is a plausible therapeutic strategy for both early and late stages of prostate cancer. Based on this premise, clinical trials have been undertaken to establish the feasibility of targeting calcium signalling specifically for prostate cancer.
Collapse
Affiliation(s)
| | - Vanessa Nicolì
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | | | - Francesco Crea
- Cancer Research Group, School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Martin D Bootman
- Cancer Research Group, School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK.
| |
Collapse
|
6
|
Zhu C, Xu X, Zhou S, Zhou B, Liu Y, Xu H, Tian Y, Zhu X. WGCNA based identification of hub genes associated with cold response and development in Apis mellifera metamorphic pupae. Front Physiol 2023; 14:1169301. [PMID: 37250124 PMCID: PMC10213956 DOI: 10.3389/fphys.2023.1169301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Honeybee is a crucial pollinator in nature, and plays an indispensable role in both agricultural production and scientific research. In recent decades, honeybee was challenged with health problems by biotic and abiotic stresses. As a key ecological factor, temperature has been proved to have an impact on the survival and production efficiency of honeybees. Previous studies have demonstrated that low temperature stress can affect honeybee pupation and shorten adult longevity. However, the molecular mechanism underlying the effects of low temperatures on honeybee growth and development during their developmental period remain poorly understood. In this paper, the weighted gene co-expression analysis (WGCNA) was employed to explore the molecular mechanisms underpinnings of honeybees' respond to low temperatures (20°C) during four distinct developmental stages: large-larvae, prepupae, early-pupae and mid-pupae. Through an extensive transcriptome analysis, thirteen gene co-expression modules were identified and analyzed in relation to honeybee development and stress responses. The darkorange module was found to be associated with low temperature stress, with its genes primarily involved in autophagy-animal, endocytosis and MAPK signaling pathways. Four hub genes were identified within this module, namely, loc726497, loc409791, loc410923, and loc550857, which may contribute to honeybee resistance to low temperature and provide insight into the underlying mechanism. The gene expression patterns of grey60 and black modules were found to correspond to the developmental stages of prepupae and early-pupae, respectively, with the hub genes loc409494, loc725756, loc552457, loc726158, Ip3k and Lcch3 in grey60 module likely involved in brain development, and the hub genes loc410555 in black module potentially related to exoskeleton development. The brown module genes exhibited a distinct pattern of overexpression in mid-pupae specimens, with genes primarily enriched in oxidative phosphorylation, citrate cycle and other pathways, which may be related to the formation of bee flying muscle. No related gene expression module was found for mature larvae stage. These findings provide valuable insights into the developmental process of honeybees at molecular level during the capped brood stage.
Collapse
Affiliation(s)
- Chenyu Zhu
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinjian Xu
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
- Honeybee Research Institute, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shujing Zhou
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
- Honeybee Research Institute, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bingfeng Zhou
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
- Honeybee Research Institute, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yiming Liu
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongzhi Xu
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanmingyue Tian
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiangjie Zhu
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
- Honeybee Research Institute, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
7
|
Ohmori H, Hirai Y, Matsui R, Watanabe D. High resolution recording of local field currents simultaneously with sound-evoked calcium signals by a photometric patch electrode in the auditory cortex field L of the chick. J Neurosci Methods 2023; 392:109863. [PMID: 37075913 DOI: 10.1016/j.jneumeth.2023.109863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/06/2023] [Accepted: 04/15/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND Functioning of the brain is based on both electrical and metabolic activity of neural ensembles. Accordingly, it would be useful to measure intracellular metabolic signaling simultaneously with electrical activity in the brain in vivo. NEW METHOD We innovated a PhotoMetric-patch-Electrode (PME) recording system that has a high temporal resolution incorporating a photomultiplier tube as a light detector. The PME is fabricated from a quartz glass capillary to transmit light as a light guide, and it can detect electrical signals as a patch electrode simultaneously with a fluorescence signal. RESULTS We measured the sound-evoked Local Field Current (LFC) and fluorescence Ca2+ signal from neurons labeled with Ca2+-sensitive dye Oregon Green BAPTA1 in field L, the avian auditory cortex. Sound stimulation evoked multi-unit spike bursts and Ca2+ signals, and enhanced the fluctuation of LFC. After a brief sound stimulation, the cross-correlation between LFC and Ca2+ signal was prolonged. D-AP5 (antagonist for NMDA receptors) suppressed the sound-evoked Ca2+ signal when applied locally by pressure from the tip of PME. COMPARISON WITH EXISTING METHODS In contrast to existing multiphoton imaging or optical fiber recording methods, the PME is a patch electrode pulled simply from a quartz glass capillary and can measure fluorescence signals at the tip simultaneously with electrical signal at any depth of the brain structure. CONCLUSION The PME is devised to record electrical and optical signals simultaneously with high temporal resolution. Moreover, it can inject chemical agents dissolved in the tip-filling medium locally by pressure, allowing manipulation of neural activity pharmacologically.
Collapse
Affiliation(s)
- Harunori Ohmori
- Department of Physiology & Neurobiology, Faculty of Medicine, Kyoto University, Kyoto, Japan.
| | - Yasuharu Hirai
- Department of Physiology & Neurobiology, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Ryosuke Matsui
- Department of Biological Sciences, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Dai Watanabe
- Department of Biological Sciences, Faculty of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
Sun 孙意冉 Y, Yan C, He L, Xiang S, Wang P, Li Z, Chen Y, Zhao J, Yuan Y, Wang W, Zhang X, Su P, Su Y, Ma J, Xu J, Peng Q, Ma H, Xie Z, Zhang Z. Inhibition of ferroptosis through regulating neuronal calcium homeostasis: An emerging therapeutic target for Alzheimer's disease. Ageing Res Rev 2023; 87:101899. [PMID: 36871781 DOI: 10.1016/j.arr.2023.101899] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Alzheimer's disease (AD), a chronic and progressive neurodegenerative disease, generates a serious threat to the health of the elderly. The AD brain is microscopically characterized by amyloid plaques and neurofibrillary tangles. There are still no effective therapeutic drugs to restrain the progression of AD though much attention has been paid to exploit AD treatments. Ferroptosis, a type of programmed cell death, has been reported to promote the pathological occurrence and development of AD, and inhibition of neuronal ferroptosis can effectively improve the cognitive impairment of AD. Studies have shown that calcium (Ca2+) dyshomeostasis is closely related to the pathology of AD, and can drive the occurrence of ferroptosis through several pathways, such as interacting with iron, and regulating the crosstalk between endoplasmic reticulum (ER) and mitochondria. This paper mainly reviews the roles of ferroptosis and Ca2+ in the pathology of AD, and highlights that restraining ferroptosis through maintaining the homeostasis of Ca2+ may be an innovative target for the treatment of AD.
Collapse
Affiliation(s)
- Yiran Sun 孙意冉
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Chenchen Yan
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Libo He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Shixie Xiang
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Pan Wang
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhonghua Li
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yuanzhao Chen
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jie Zhao
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Ye Yuan
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Wang Wang
- School of basic medicine, Nanchang Medical College, Nanchang 330052, Jiangxi, China
| | - Xiaowei Zhang
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Pan Su
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yunfang Su
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jinlian Ma
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jiangyan Xu
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Quekun Peng
- School of Biosciences and Technology, Chengdu Medical College, Chengdu 610500, China.
| | - Huifen Ma
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Zhishen Xie
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Zhenqiang Zhang
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| |
Collapse
|
9
|
Sakanoue W, Yokoyama T, Hirakawa M, Maesawa S, Sato K, Saino T. 3-Iodothyronamine, a trace amine-associated receptor agonist, regulates intracellular Ca2+ increases via CaMK II through Epac2 in rat cerebral arterioles. Biomed Res 2023; 44:219-232. [PMID: 37779034 DOI: 10.2220/biomedres.44.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Trace amines (TAs) in the nervous system bind to TA-associated receptors (TAARs) and are involved in the regulation of monoaminergic functions. Among TAAR subtypes, TAAR1 has been implicated in the development of neurological disorders, such as schizophrenia. The present study investigated the effects of the TAAR1 agonist, 3-iodothyronamine (T1AM) on cerebral arterioles using fluctuations in the intracellular concentration of Ca2+ ([Ca2+]i) as an index of contractile responses. In cerebral arterioles, most of the TAAR agonists did not increase [Ca2+]i, while only T1AM elevated [Ca2+]i in vascular smooth muscle cells. This increase involved extracellular Ca2+ influx through T-type Ca2+ channels and inositol trisphosphate- and ryanodine-receptor-mediated Ca2+ release from intracellular stores. The inhibition of the cAMP sensor, exchange protein directly activated by cAMP (Epac) 2, and calmodulin kinase (CaMK) II strongly inhibited Ca2+ elevations. The present study revealed that T1AM acted not only on the TAAR1 receptor as previously suggested, but also on other G-protein coupled receptors and/or signal transduction systems to increase intracellular Ca2+ in cerebral arteriole smooth muscle cells. These results suggest that when using T1AM in clinical practice, attention should be paid to the early rise in blood pressure.
Collapse
Affiliation(s)
- Wakana Sakanoue
- Division of Dental Anesthesiology, Department of Reconstructive Oral and Maxillofacial Surgery, School of Dentistry, Iwate Medical University, Yahaba, Japan
| | - Takuya Yokoyama
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Masato Hirakawa
- Department of Anatomy (Cell Biology), Iwate Medical University, Yahaba, Japan
| | - Satsuki Maesawa
- Division of Dental Anesthesiology, Department of Reconstructive Oral and Maxillofacial Surgery, School of Dentistry, Iwate Medical University, Yahaba, Japan
| | - Kenichi Sato
- Division of Dental Anesthesiology, Department of Reconstructive Oral and Maxillofacial Surgery, School of Dentistry, Iwate Medical University, Yahaba, Japan
| | - Tomoyuki Saino
- Department of Anatomy (Cell Biology), Iwate Medical University, Yahaba, Japan
| |
Collapse
|
10
|
Armstrong FA, Cheng B, Herold RA, Megarity CF, Siritanaratkul B. From Protein Film Electrochemistry to Nanoconfined Enzyme Cascades and the Electrochemical Leaf. Chem Rev 2022; 123:5421-5458. [PMID: 36573907 PMCID: PMC10176485 DOI: 10.1021/acs.chemrev.2c00397] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein film electrochemistry (PFE) has given unrivalled insight into the properties of redox proteins and many electron-transferring enzymes, allowing investigations of otherwise ill-defined or intractable topics such as unstable Fe-S centers and the catalytic bias of enzymes. Many enzymes have been established to be reversible electrocatalysts when attached to an electrode, and further investigations have revealed how unusual dependences of catalytic rates on electrode potential have stark similarities with electronics. A special case, the reversible electrochemistry of a photosynthetic enzyme, ferredoxin-NADP+ reductase (FNR), loaded at very high concentrations in the 3D nanopores of a conducting metal oxide layer, is leading to a new technology that brings PFE to myriad enzymes of other classes, the activities of which become controlled by the primary electron exchange. This extension is possible because FNR-based recycling of NADP(H) can be coupled to a dehydrogenase, and thence to other enzymes linked in tandem by the tight channelling of cofactors and intermediates within the nanopores of the material. The earlier interpretations of catalytic wave-shapes and various analogies with electronics are thus extended to initiate a field perhaps aptly named "cascade-tronics", in which the flow of reactions along an enzyme cascade is monitored and controlled through an electrochemical analyzer. Unlike in photosynthesis where FNR transduces electron transfer and hydride transfer through the unidirectional recycling of NADPH, the "electrochemical leaf" (e-Leaf) can be used to drive reactions in both oxidizing and reducing directions. The e-Leaf offers a natural way to study how enzymes are affected by nanoconfinement and crowding, mimicking the physical conditions under which enzyme cascades operate in living cells. The reactions of the trapped enzymes, often at very high local concentration, are thus studied electrochemically, exploiting the potential domain to control rates and direction and the current-rate analogy to derive kinetic data. Localized NADP(H) recycling is very efficient, resulting in very high cofactor turnover numbers and new opportunities for controlling and exploiting biocatalysis.
Collapse
Affiliation(s)
- Fraser A. Armstrong
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Beichen Cheng
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Ryan A. Herold
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Clare F. Megarity
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Bhavin Siritanaratkul
- Stephenson Institute for Renewable Energy and the Department of Chemistry, University of Liverpool, Liverpool L69 7ZF, United Kingdom
| |
Collapse
|
11
|
Castilla R, Ruffa FV, Bancalari I, Fernández Vivanco M, Lallopizzo C, Torasso N, Farcy N, Gutierrez C, Bonazzolaa P. Cobalt chloride postconditioning as myoprotective therapy in cardiac ischemia-reperfusion. Pflugers Arch 2022; 474:743-752. [PMID: 35585327 DOI: 10.1007/s00424-022-02703-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/11/2022] [Accepted: 05/03/2022] [Indexed: 11/24/2022]
Abstract
Since damage induced by ischemia-reperfusion (I/R) involves alterations in Ca2+ homeostasis and is reduced by ischemic postconditioning (IP) and that CoCl2 can trigger changes resembling the response to a hypoxic event in normoxia and its blockade on Ca2+ current in heart muscle, our aim was to evaluate CoCl2 as an IP therapeutic tool. Mechanic and energetic parameters of isolated and arterially perfused male Wistar rat heart ventricles were simultaneously analyzed in a model of I/R in which 0.23 mmol/L CoCl2 was introduced upon reperfusion and kept or withdrawn after 20 min or introduced after 20 min of reperfusion. The presence of CoCl2 did not affect diastolic pressure but increased post-ischemic contractile recovery, which peaked at 20 min and decreased at the end of reperfusion. This decrease was prevented when CoCl2 was removed at 20 min of reperfusion. Total heat release increased throughout reperfusion, while economy increased between 15 and 25 min. No effect was observed when CoCl2 was introduced at 20 min of reperfusion. In addition, both the area under the contracture curve evoked by 10 mmol/L caffeine-36 mmol/L Na+ and the contracture tension relaxation rate were higher with CoCl2.Furthermore, CoCl2 decreased the number of arrhythmias during reperfusion and the ventricular damaged area. The presence of CoCl2 in reperfusion induces cardioprotection consistent with the improvement in cellular calcium handling. The use of CoCl2 constitutes a potential cardioprotective tool of clinical relevance.
Collapse
Affiliation(s)
- Rocío Castilla
- CONICET, Instituto Alberto C Taquini de Investigaciones en Medicina Traslacional (IATIMET) C1122AAJ, Universidad de Buenos Aires, Marcelo T. de Alvear, 2270- C1122AAJ, Buenos Aires, Argentina.
| | - Facundo Vigón Ruffa
- CONICET, Instituto Alberto C Taquini de Investigaciones en Medicina Traslacional (IATIMET) C1122AAJ, Universidad de Buenos Aires, Marcelo T. de Alvear, 2270- C1122AAJ, Buenos Aires, Argentina
| | - Ignacio Bancalari
- CONICET, Instituto Alberto C Taquini de Investigaciones en Medicina Traslacional (IATIMET) C1122AAJ, Universidad de Buenos Aires, Marcelo T. de Alvear, 2270- C1122AAJ, Buenos Aires, Argentina
| | - Mercedes Fernández Vivanco
- CONICET, Instituto Alberto C Taquini de Investigaciones en Medicina Traslacional (IATIMET) C1122AAJ, Universidad de Buenos Aires, Marcelo T. de Alvear, 2270- C1122AAJ, Buenos Aires, Argentina
| | - Carla Lallopizzo
- CONICET, Instituto Alberto C Taquini de Investigaciones en Medicina Traslacional (IATIMET) C1122AAJ, Universidad de Buenos Aires, Marcelo T. de Alvear, 2270- C1122AAJ, Buenos Aires, Argentina
| | - Nicolás Torasso
- Facultad de Ciencias Exactas Y Naturales, Instituto de Física de Buenos Aires (IFIBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nicole Farcy
- CONICET, Instituto Alberto C Taquini de Investigaciones en Medicina Traslacional (IATIMET) C1122AAJ, Universidad de Buenos Aires, Marcelo T. de Alvear, 2270- C1122AAJ, Buenos Aires, Argentina
| | - Christopher Gutierrez
- CONICET, Instituto Alberto C Taquini de Investigaciones en Medicina Traslacional (IATIMET) C1122AAJ, Universidad de Buenos Aires, Marcelo T. de Alvear, 2270- C1122AAJ, Buenos Aires, Argentina
| | - Patricia Bonazzolaa
- CONICET, Instituto Alberto C Taquini de Investigaciones en Medicina Traslacional (IATIMET) C1122AAJ, Universidad de Buenos Aires, Marcelo T. de Alvear, 2270- C1122AAJ, Buenos Aires, Argentina
| |
Collapse
|
12
|
Yang J, Shakil H, Ratté S, Prescott SA. Minimal requirements for a neuron to co-regulate many properties and the implications for ion channel correlations and robustness. eLife 2022; 11:72875. [PMID: 35293858 PMCID: PMC8986315 DOI: 10.7554/elife.72875] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Neurons regulate their excitability by adjusting their ion channel levels. Degeneracy – achieving equivalent outcomes (excitability) using different solutions (channel combinations) – facilitates this regulation by enabling a disruptive change in one channel to be offset by compensatory changes in other channels. But neurons must coregulate many properties. Pleiotropy – the impact of one channel on more than one property – complicates regulation because a compensatory ion channel change that restores one property to its target value often disrupts other properties. How then does a neuron simultaneously regulate multiple properties? Here, we demonstrate that of the many channel combinations producing the target value for one property (the single-output solution set), few combinations produce the target value for other properties. Combinations producing the target value for two or more properties (the multioutput solution set) correspond to the intersection between single-output solution sets. Properties can be effectively coregulated only if the number of adjustable channels (nin) exceeds the number of regulated properties (nout). Ion channel correlations emerge during homeostatic regulation when the dimensionality of solution space (nin − nout) is low. Even if each property can be regulated to its target value when considered in isolation, regulation as a whole fails if single-output solution sets do not intersect. Our results also highlight that ion channels must be coadjusted with different ratios to regulate different properties, which suggests that each error signal drives modulatory changes independently, despite those changes ultimately affecting the same ion channels.
Collapse
Affiliation(s)
- Jane Yang
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
| | - Husain Shakil
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
| | - Stéphanie Ratté
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
| | - Steven Alec Prescott
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
13
|
Could Lower Testosterone in Older Men Explain Higher COVID-19 Morbidity and Mortalities? Int J Mol Sci 2022; 23:ijms23020935. [PMID: 35055119 PMCID: PMC8781054 DOI: 10.3390/ijms23020935] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 01/08/2023] Open
Abstract
The health scourge imposed on humanity by the COVID-19 pandemic seems not to recede. This fact warrants refined and novel ideas analyzing different aspects of the illness. One such aspect is related to the observation that most COVID-19 casualties were older males, a tendency also noticed in the epidemics of SARS-CoV in 2003 and the Middle East respiratory syndrome in 2012. This gender-related difference in the COVID-19 death toll might be directly involved with testosterone (TEST) and its plasmatic concentration in men. TEST has been demonstrated to provide men with anti-inflammatory and immunological advantages. As the plasmatic concentration of this androgen decreases with age, the health benefit it confers also diminishes. Low plasmatic levels of TEST can be determinant in the infection’s outcome and might be related to a dysfunctional cell Ca2+ homeostasis. Not only does TEST modulate the activity of diverse proteins that regulate cellular calcium concentrations, but these proteins have also been proven to be necessary for the replication of many viruses. Therefore, we discuss herein how TEST regulates different Ca2+-handling proteins in healthy tissues and propose how low TEST concentrations might facilitate the replication of the SARS-CoV-2 virus through the lack of modulation of the mechanisms that regulate intracellular Ca2+ concentrations.
Collapse
|
14
|
Hao LJ, Chou CT, Jan CR, Cheng HH, Liao WC, Lin RA, Chen IS, Wang JL, Chien JM, Kuo CC. Hydroxytyrosol [2-(3,4-dihydroxyphenyl)-ethanol], a natural phenolic compound found in the olive, alters Ca 2+ signaling and viability in human HepG2 hepatoma cells. CHINESE J PHYSIOL 2022; 65:30-36. [DOI: 10.4103/cjp.cjp_74_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
15
|
Hsu SS, Lin YS, Liang WZ. Inhibition of the pesticide rotenone-induced Ca 2+ signaling, cytotoxicity and oxidative stress in HCN-2 neuronal cells by the phenolic compound hydroxytyrosol. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 179:104979. [PMID: 34802529 DOI: 10.1016/j.pestbp.2021.104979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/30/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Rotenone, a plant-derived pesticide belonging to genera Derris and Lonchorcarpus, is an inhibitor of NADH dehydrogenase complex. Studies have shown that rotenone was applied as a neurotoxic agent in various neuronal models. Hydroxytyrosol [2-(3,4-dihydroxyphenyl)-ethanol] is a natural phenolic compound found in the olive (Olea europaea L.). Studies of hydroxytyrosol have dramatically increased because this compound may contribute to the prevention of neurodegenerative diseases. Although hydroxytyrosol has received increasing attention due to its multiple pharmacological activities, it is not explored whether hydroxytyrosol inhibited rotenone-induced cytotoxicity in the neuronal cell model. The aim of this study was to explore whether hydroxytyrosol prevented rotenone-induced Ca2+ signaling, cytotoxicity and oxidative stress in HCN-2 neuronal cell line. In HCN-2 cells, rotenone (5-30 μM) concentration-dependently induced cytosolic Ca2+ concentrations ([Ca2+]i) rises and cytotoxicity. Treatment with hydroxytyrosol (30 μM) reversed rotenone (20 μM)-induced cytotoxic responses. In Ca2+-containing medium, rotenone-induced Ca2+ entry was inhibited by 2-APB (a store-operated Ca2+ channel modulator) or hydroxytyrosol. In Ca2+-free medium, treatment with thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) or hydroxytyrosol significantly inhibited rotenone-induced [Ca2+]i rises. Furthermore, treatment with hydroxytyrosol reversed ROS levels, cytotoxic responses, and antioxidant enzyme activities (SOD, GPX and CAT) in rotenone-treated cells. Together, in HCN-2 cells, rotenone induced Ca2+ influx via store-operated Ca2+ entry and Ca2+ release from the endoplasmic reticulum and caused oxidative stress. Moreover, hydroxytyrosol ameliorated Ca2+ or ROS-associated cytotoxicity. It suggests that hydroxytyrosol might have a protective effect on rotenone-induced neurotoxicity in human neuronal cells.
Collapse
Affiliation(s)
- Shu-Shong Hsu
- Department of Neurosurgery, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan; Department of Neurosurgery, National Defense Medical Center, Taipei 11490, Taiwan; College of Health and Nursing, Meiho University, Pingtung 91202, Taiwan
| | - Yung-Shang Lin
- Department of Neurosurgery, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
| | - Wei-Zhe Liang
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County 90741, Taiwan; Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
| |
Collapse
|
16
|
Sherwood MW, Arizono M, Panatier A, Mikoshiba K, Oliet SHR. Astrocytic IP 3Rs: Beyond IP 3R2. Front Cell Neurosci 2021; 15:695817. [PMID: 34393726 PMCID: PMC8363081 DOI: 10.3389/fncel.2021.695817] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/30/2021] [Indexed: 12/31/2022] Open
Abstract
Astrocytes are sensitive to ongoing neuronal/network activities and, accordingly, regulate neuronal functions (synaptic transmission, synaptic plasticity, behavior, etc.) by the context-dependent release of several gliotransmitters (e.g., glutamate, glycine, D-serine, ATP). To sense diverse input, astrocytes express a plethora of G-protein coupled receptors, which couple, via Gi/o and Gq, to the intracellular Ca2+ release channel IP3-receptor (IP3R). Indeed, manipulating astrocytic IP3R-Ca2+ signaling is highly consequential at the network and behavioral level: Depleting IP3R subtype 2 (IP3R2) results in reduced GPCR-Ca2+ signaling and impaired synaptic plasticity; enhancing IP3R-Ca2+ signaling affects cognitive functions such as learning and memory, sleep, and mood. However, as a result of discrepancies in the literature, the role of GPCR-IP3R-Ca2+ signaling, especially under physiological conditions, remains inconclusive. One primary reason for this could be that IP3R2 has been used to represent all astrocytic IP3Rs, including IP3R1 and IP3R3. Indeed, IP3R1 and IP3R3 are unique Ca2+ channels in their own right; they have unique biophysical properties, often display distinct distribution, and are differentially regulated. As a result, they mediate different physiological roles to IP3R2. Thus, these additional channels promise to enrich the diversity of spatiotemporal Ca2+ dynamics and provide unique opportunities for integrating neuronal input and modulating astrocyte–neuron communication. The current review weighs evidence supporting the existence of multiple astrocytic-IP3R isoforms, summarizes distinct sub-type specific properties that shape spatiotemporal Ca2+ dynamics. We also discuss existing experimental tools and future refinements to better recapitulate the endogenous activities of each IP3R isoform.
Collapse
Affiliation(s)
- Mark W Sherwood
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Misa Arizono
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Aude Panatier
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Katsuhiko Mikoshiba
- ShanghaiTech University, Shanghai, China.,Faculty of Science, Toho University, Funabashi, Japan.,RIKEN CLST, Kobe, Japan
| | - Stéphane H R Oliet
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| |
Collapse
|
17
|
A Comparative Perspective on Functionally-Related, Intracellular Calcium Channels: The Insect Ryanodine and Inositol 1,4,5-Trisphosphate Receptors. Biomolecules 2021; 11:biom11071031. [PMID: 34356655 PMCID: PMC8301844 DOI: 10.3390/biom11071031] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 02/03/2023] Open
Abstract
Calcium (Ca2+) homeostasis is vital for insect development and metabolism, and the endoplasmic reticulum (ER) is a major intracellular reservoir for Ca2+. The inositol 1,4,5- triphosphate receptor (IP3R) and ryanodine receptor (RyR) are large homotetrameric channels associated with the ER and serve as two major actors in ER-derived Ca2+ supply. Most of the knowledge on these receptors derives from mammalian systems that possess three genes for each receptor. These studies have inspired work on synonymous receptors in insects, which encode a single IP3R and RyR. In the current review, we focus on a fundamental, common question: “why do insect cells possess two Ca2+ channel receptors in the ER?”. Through a comparative approach, this review covers the discovery of RyRs and IP3Rs, examines their structures/functions, the pathways that they interact with, and their potential as target sites in pest control. Although insects RyRs and IP3Rs share structural similarities, they are phylogenetically distinct, have their own structural organization, regulatory mechanisms, and expression patterns, which explains their functional distinction. Nevertheless, both have great potential as target sites in pest control, with RyRs currently being targeted by commercial insecticide, the diamides.
Collapse
|
18
|
Zhu D, Feng L, Feliu N, Guse AH, Parak WJ. Stimulation of Local Cytosolic Calcium Release by Photothermal Heating for Studying Intra- and Intercellular Calcium Waves. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008261. [PMID: 33949733 PMCID: PMC11469046 DOI: 10.1002/adma.202008261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/16/2021] [Indexed: 06/12/2023]
Abstract
A methodology is described that allows for localized Ca2+ release by photoexcitation. For this, cells are loaded with polymer capsules with integrated plasmonic nanoparticles, which reside in endo-lysosomes. The micrometer-sized capsules can be individually excited by near-infrared light from a light pointer, causing photothermal heating, upon which there is a rise in the free cytosolic Ca2+ concentration ([Ca2+ ]i ). The [Ca2+ ]i can be analyzed with a Ca2+ indicator fluorophore. In this way, it is possible to excite local lysosomal Ca2+ release in a desired target cell.
Collapse
Affiliation(s)
- Dingcheng Zhu
- Fachbereich PhysikCHyNUniversität HamburgLuruper Chaussee 14922761HamburgGermany
- College of Material, Chemistry and Chemical EngineeringHangzhou Normal UniversityYuhangtang road 2318Hangzhou311121China
| | - Lili Feng
- Fachbereich PhysikCHyNUniversität HamburgLuruper Chaussee 14922761HamburgGermany
| | - Neus Feliu
- Fachbereich PhysikCHyNUniversität HamburgLuruper Chaussee 14922761HamburgGermany
- CANFraunhofer InstitutGrindelallee 11720146HamburgGermany
| | - Andreas H. Guse
- Department of Biochemistry and Molecular Cell BiologyUniversity Medical Center Hamburg‐EppendorfMartinistraße 5220246HamburgGermany
| | - Wolfgang J. Parak
- Fachbereich PhysikCHyNUniversität HamburgLuruper Chaussee 14922761HamburgGermany
- National Engineering Center for Nanotechnology (NECN)Shanghai Jiao Tong UniversityDongchuan road 800Shanghai200240China
| |
Collapse
|
19
|
Hsu SS, Lin YS, Liang WZ. Mechanism of action of a diterpene alkaloid hypaconitine on cytotoxicity and inhibitory effect of BAPTA-AM in HCN-2 neuronal cells. Clin Exp Pharmacol Physiol 2021; 48:801-810. [PMID: 33609056 DOI: 10.1111/1440-1681.13482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/11/2021] [Accepted: 01/28/2021] [Indexed: 11/29/2022]
Abstract
Hypaconitine, a neuromuscular blocker, is a diterpene alkaloid found in the root of Aconitum carmichaelii. Although hypaconitine was shown to affect various physiological responses in neurological models, the effect of hypaconitine on cell viability and the mechanism of its action of Ca2+ handling is elusive in cortical neurons. This study examined whether hypaconitine altered viability and Ca2+ signalling in HCN-2 neuronal cell lines. Cell viability was measured by the cell proliferation reagent (WST-1). Cytosolic Ca2+ concentrations [Ca2+ ]i was measured by the Ca2+ -sensitive fluorescent dye fura-2. In HCN-2 cells, hypaconitine (10-50 μmol/L) induced cytotoxicity and [Ca2+ ]i rises in a concentration-dependent manner. Removal of extracellular Ca2+ partially reduced the hypaconitine's effect on [Ca2+ ]i rises. Furthermore, chelation of cytosolic Ca2+ with BAPTA-AM reduced hypaconitine's cytotoxicity. In Ca2+ -containing medium, hypaconitine-induced Ca2+ entry was inhibited by modulators (2-APB and SKF96365) of store-operated Ca2+ channels and a protein kinase C (PKC) inhibitor (GF109203X). Hypaconitine induced Mn2+ influx indirectly suggesting that hypaconitine evoked Ca2+ entry. In Ca2+ -free medium, treatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin abolished hypaconitine-induced [Ca2+ ]i rises. Conversely, treatment with hypaconitine inhibited thapsigargin-induced [Ca2+ ]i rises. However, inhibition of phospholipase C (PLC) with U73122 did not inhibit hypaconitine-induced [Ca2+ ]i rises. Together, hypaconitine caused cytotoxicity that was linked to preceding [Ca2+ ]i rises by Ca2+ influx via store-operated Ca2+ entry involved PKC regulation and evoking PLC-independent Ca2+ release from the endoplasmic reticulum. Because BAPTA-AM loading only partially reversed hypaconitine-induced cell death, it suggests that hypaconitine induced a second Ca2+ -independent cytotoxicity in HCN-2 cells.
Collapse
Affiliation(s)
- Shu-Shong Hsu
- Department of Neurosurgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Neurosurgery, National Defense Medical Center, Taipei, Taiwan
- College of Health and Nursing, Meiho University, Pingtung, Taiwan
| | - Yung-Shang Lin
- Department of Neurosurgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Wei-Zhe Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County, Taiwan
| |
Collapse
|
20
|
Gil D, Guse AH, Dupont G. Three-Dimensional Model of Sub-Plasmalemmal Ca 2+ Microdomains Evoked by the Interplay Between ORAI1 and InsP 3 Receptors. Front Immunol 2021; 12:659790. [PMID: 33995380 PMCID: PMC8113648 DOI: 10.3389/fimmu.2021.659790] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/06/2021] [Indexed: 11/21/2022] Open
Abstract
Ca2+ signaling plays an essential role in T cell activation, which is a key step to start an adaptive immune response. During the transition from a quiescent to a fully activated state, Ca2+ microdomains characterized by reduced spatial and temporal extents are observed in the junctions between the plasma membrane (PM) and the endoplasmic reticulum (ER). Such Ca2+ responses can also occur in response to T cell adhesion to other cells or extracellular matrix proteins in otherwise unstimulated T cells. These non-TCR/CD3-dependent Ca2+ microdomains rely on d-myo-inositol 1,4,5-trisphosphate (IP3) signaling and subsequent store operated Ca2+ entry (SOCE) via the ORAI/STIM system. The detailed molecular mechanism of adhesion-dependent Ca2+ microdomain formation remains to be fully elucidated. We used mathematical modeling to investigate the spatiotemporal characteristics of T cell Ca2+ microdomains and their molecular regulators. We developed a reaction-diffusion model using COMSOL Multiphysics to describe the evolution of cytosolic and ER Ca2+ concentrations in a three-dimensional ER-PM junction. Equations are based on a previously proposed realistic description of the junction, which is extended to take into account IP3 receptors (IP3R) that are located next to the junction. The first model only considered the ORAI channels and the SERCA pumps. Taking into account the existence of preformed clusters of ORAI1 and STIM2, ORAI1 slightly opens in conditions of a full ER. These simulated Ca2+ microdomains are too small as compared to those observed in unstimulated T cells. When considering the opening of the IP3Rs located near the junction, the local depletion of ER Ca2+ allows for larger Ca2+ fluxes through the ORAI1 channels and hence larger local Ca2+ concentrations. Computational results moreover show that Ca2+ diffusion in the ER has a major impact on the Ca2+ changes in the junction, by affecting the local Ca2+ gradients in the sub-PM ER. Besides pointing out the likely involvement of the spontaneous openings of IP3Rs in the activation of SOCE in conditions of T cell adhesion prior to full activation, the model provides a tool to investigate how Ca2+ microdomains extent and interact in response to T cell receptor activation.
Collapse
Affiliation(s)
- Diana Gil
- The Ca2+ Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H Guse
- The Ca2+ Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Geneviève Dupont
- Unit of Theoretical Chronobiology, Faculté des Sciences CP231, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
21
|
Cheng KJ, Liang WZ. Influence of a bearing-wastewater phenolic compound (3,4-dimethylphenol, 3,4-DMP) treatment on Ca 2+ homeostasis and its related cytotoxicity in human proximal renal tubular epithelial cells. Hum Exp Toxicol 2021; 40:1899-1908. [PMID: 33906515 DOI: 10.1177/09603271211013453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A lot of phenolic compounds are widespread in industrial effluents and they are considerable environmental pollutants. Being a compound commercially available, the effect of a bearing-wastewater phenolic compound 3,4-dimethylphenol (3,4-DMP) on Ca2+ homeostasis and its related physiology has not been explored in cultured human kidney cell models. The aim of this study was to explore the effect of 3,4-DMP on [Ca2+]i and viability in HK-2 human proximal renal tubular epithelial cells. In terms of Ca2+ signaling, 3,4-DMP (5-100 μM) induced [Ca2+]i rises only in HK-2 cells and Ca2+ removal reduced the signal by 40%. In Ca2+-containing medium, 3,4-DMP-induced Ca2+ entry was inhibited by 20% by a modulator of store-operated Ca2+ channels (2-APB), and by a PKC activator (PMA) and inhibitor (GF109203X). Moreover, 3,4-DMP-induced Mn2+ influx suggesting of Ca2+ entry. In Ca2+-free medium, inhibition of PLC with U73122 abolished 3,4-DMP-induced [Ca2+]i rises. Furthermore, treatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin abolished 3,4-DMP-evoked [Ca2+]i rises. Conversely, treatment with 3,4-DMP abolished thapsigargin-evoked [Ca2+]i rises. Regarding to cell viability, 3,4-DMP (60-140 μM) killed cells in a concentration-dependent fashion in HK-2 cells. Chelation of cytosolic Ca2+ with BAPTA-AM partially reversed cytotoxicity of 3,4-DMP. Collectively, our data suggest that in HK-2 cells, 3,4-DMP-induced [Ca2+]i rises by evoking Ca2+ entry via PKC-sensitive store-operated Ca2+ entry and PLC-dependent Ca2+ release from the endoplasmic reticulum. 3,4-DMP also caused cytotoxicity that was linked to preceding [Ca2+]i rises. Our findings provide new insight into the cytotoxic effects of 3,4-DMP and the possible mechanisms underlying these effects.
Collapse
Affiliation(s)
- K-J Cheng
- Department of Nephrology, 210825Kaohsiung Municipal United Hospital, Kaohsiung.,Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung
| | - W-Z Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Pharmacy and Master Program, College of Pharmacy and Health Care, 63299Tajen University, Pingtung County, Taiwan
| |
Collapse
|
22
|
Wang MH, Chen KW, Ni DX, Fang HJ, Jang LS, Chen CH. Effect of extremely low frequency electromagnetic field parameters on the proliferation of human breast cancer. Electromagn Biol Med 2021; 40:384-392. [PMID: 33632057 DOI: 10.1080/15368378.2021.1891093] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Extremely low-frequency electromagnetic field (ELF-EMF) exposures influence many biological systems. These effects are mainly related to the intensity, duration, frequency, and pattern of the ELF-EMF. Our intent was to characterize the effect of specific pulsed electromagnetic fields on the in vitro proliferation of MCF-7 adenocarcinoma and MDA-MB-231 breast cancer cell lines and one non-cancerous M10 breast epithelial cell line. The following four important parameters of ELF-EMF were examined: frequencies (7.83 ± 0.3, 23.49 ± 0.3, and 39.15 ± 0.3 Hz), flux density (0.5 and 1 mT), exposure duration (12, 24, and 48 h), and the exposure methodology (continuous exposure versus switching exposure). The viability of MDA-MB-231 cells exposed to the optimized ELF-EMF pattern (7.83 ± 0.3 Hz, 1 mT, and 6 h switching exposure) was 40.1%. By contrast, the optimized ELF-EMF parameters that were most cytotoxic to breast cancer MDA-MB-231 cells were not damaging to normal M10 cells. In vitro studies also showed that exposure of MDA-MB-231 cells to the optimized ELF-EMF pattern promoted Ca2+ influx and resulted in apoptosis. These data confirm that exposure to this specific ELF-EMF pattern can influence cellular processes and inhibit cancer cell growth. The specific ELF-EMF pattern determined in this study may provide a potential anti-cancer treatment in the future.
Collapse
Affiliation(s)
- Min-Haw Wang
- Taiwan Department of Electrical Engineering, Chinese Culture University, Taipei, Taiwan
| | - Kuan-Wei Chen
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Ding-Xung Ni
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Jha Fang
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Ling-Sheng Jang
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Hong Chen
- Department of Electrical Engineering, Tunghai University, Taichung, Taiwan
| |
Collapse
|
23
|
Rathner P, Fahrner M, Cerofolini L, Grabmayr H, Horvath F, Krobath H, Gupta A, Ravera E, Fragai M, Bechmann M, Renger T, Luchinat C, Romanin C, Müller N. Interhelical interactions within the STIM1 CC1 domain modulate CRAC channel activation. Nat Chem Biol 2021; 17:196-204. [PMID: 33106661 PMCID: PMC7610458 DOI: 10.1038/s41589-020-00672-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/04/2020] [Accepted: 09/11/2020] [Indexed: 01/28/2023]
Abstract
The calcium release activated calcium channel is activated by the endoplasmic reticulum-resident calcium sensor protein STIM1. On activation, STIM1 C terminus changes from an inactive, tight to an active, extended conformation. A coiled-coil clamp involving the CC1 and CC3 domains is essential in controlling STIM1 activation, with CC1 as the key entity. The nuclear magnetic resonance-derived solution structure of the CC1 domain represents a three-helix bundle stabilized by interhelical contacts, which are absent in the Stormorken disease-related STIM1 R304W mutant. Two interhelical sites between the CC1α1 and CC1α2 helices are key in controlling STIM1 activation, affecting the balance between tight and extended conformations. Nuclear magnetic resonance-directed mutations within these interhelical interactions restore the physiological, store-dependent activation behavior of the gain-of-function STIM1 R304W mutant. This study reveals the functional impact of interhelical interactions within the CC1 domain for modifying the CC1-CC3 clamp strength to control the activation of STIM1.
Collapse
Affiliation(s)
- Petr Rathner
- Institute of Organic Chemistry, Johannes Kepler University Linz, Linz, Austria
- Institute of Inorganic Chemistry, Johannes Kepler University Linz, Linz, Austria
| | - Marc Fahrner
- Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Linda Cerofolini
- Magnetic Resonance Center (CERM), University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Sesto Fiorentino, Italy
| | - Herwig Grabmayr
- Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Ferdinand Horvath
- Institute for Theoretical Physics, Johannes Kepler University Linz, Linz, Austria
| | - Heinrich Krobath
- Institute for Theoretical Physics, Johannes Kepler University Linz, Linz, Austria
| | - Agrim Gupta
- Institute of Organic Chemistry, Johannes Kepler University Linz, Linz, Austria
| | - Enrico Ravera
- Magnetic Resonance Center (CERM), University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Sesto Fiorentino, Italy
- Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Sesto Fiorentino, Italy
- Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Matthias Bechmann
- Institute of Organic Chemistry, Johannes Kepler University Linz, Linz, Austria
| | - Thomas Renger
- Institute for Theoretical Physics, Johannes Kepler University Linz, Linz, Austria
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Sesto Fiorentino, Italy
- Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Christoph Romanin
- Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria.
| | - Norbert Müller
- Institute of Organic Chemistry, Johannes Kepler University Linz, Linz, Austria.
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
| |
Collapse
|
24
|
Böhme I, Schönherr R, Eberle J, Bosserhoff AK. Membrane Transporters and Channels in Melanoma. Rev Physiol Biochem Pharmacol 2020; 181:269-374. [PMID: 32737752 DOI: 10.1007/112_2020_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent research has revealed that ion channels and transporters can be important players in tumor development, progression, and therapy resistance in melanoma. For example, members of the ABC family were shown to support cancer stemness-like features in melanoma cells, while several members of the TRP channel family were reported to act as tumor suppressors.Also, many transporter proteins support tumor cell viability and thus suppress apoptosis induction by anticancer therapy. Due to the high number of ion channels and transporters and the resulting high complexity of the field, progress in understanding is often focused on single molecules and is in total rather slow. In this review, we aim at giving an overview about a broad subset of ion transporters, also illustrating some aspects of the field, which have not been addressed in detail in melanoma. In context with the other chapters in this special issue on "Transportome Malfunctions in the Cancer Spectrum," a comparison between melanoma and these tumors will be possible.
Collapse
Affiliation(s)
- Ines Böhme
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Roland Schönherr
- Institute of Biochemistry and Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Jürgen Eberle
- Department of Dermatology, Venerology and Allergology, Skin Cancer Center Charité, University Medical Center Charité, Berlin, Germany
| | - Anja Katrin Bosserhoff
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany. .,Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany.
| |
Collapse
|
25
|
Abstract
Ionized calcium (Ca2+) is the most versatile cellular messenger. All cells use Ca2+ signals to regulate their activities in response to extrinsic and intrinsic stimuli. Alterations in cellular Ca2+ signaling and/or Ca2+ homeostasis can subvert physiological processes into driving pathological outcomes. Imaging of living cells over the past decades has demonstrated that Ca2+ signals encode information in their frequency, kinetics, amplitude, and spatial extent. These parameters alter depending on the type and intensity of stimulation, and cellular context. Moreover, it is evident that different cell types produce widely varying Ca2+ signals, with properties that suit their physiological functions. This primer discusses basic principles and mechanisms underlying cellular Ca2+ signaling and Ca2+ homeostasis. Consequently, we have cited some historical articles in addition to more recent findings. A brief summary of the core features of cellular Ca2+ signaling is provided, with particular focus on Ca2+ stores and Ca2+ transport across cellular membranes, as well as mechanisms by which Ca2+ signals activate downstream effector systems.
Collapse
|
26
|
Rocha A, Trujillo KA. Neurotoxicity of low-level lead exposure: History, mechanisms of action, and behavioral effects in humans and preclinical models. Neurotoxicology 2019; 73:58-80. [PMID: 30836127 PMCID: PMC7462347 DOI: 10.1016/j.neuro.2019.02.021] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/20/2022]
Abstract
Lead is a neurotoxin that produces long-term, perhaps irreversible, effects on health and well-being. This article summarizes clinical and preclinical studies that have employed a variety of research techniques to examine the neurotoxic effects of low levels of lead exposure. A historical perspective is presented, followed by an overview of studies that examined behavioral and cognitive outcomes. In addition, a short summary of potential mechanisms of action is provided with a focus on calcium-dependent processes. The current level of concern, or reference level, set by the CDC is 5 μg/dL of lead in blood and a revision to 3.5 μg/dL has been suggested. However, levels of lead below 3 μg/dL have been shown to produce diminished cognitive function and maladaptive behavior in humans and animal models. Because much of the research has focused on higher concentrations of lead, work on low concentrations is needed to better understand the neurobehavioral effects and mechanisms of action of this neurotoxic metal.
Collapse
MESH Headings
- Adolescent
- Adolescent Behavior/drug effects
- Adolescent Development/drug effects
- Adult
- Age Factors
- Aged
- Animals
- Brain/drug effects
- Brain/growth & development
- Child
- Child Behavior/drug effects
- Child Development/drug effects
- Child, Preschool
- Cognition/drug effects
- Dose-Response Relationship, Drug
- History, 20th Century
- History, 21st Century
- Humans
- Lead Poisoning, Nervous System, Adult/history
- Lead Poisoning, Nervous System, Adult/physiopathology
- Lead Poisoning, Nervous System, Adult/psychology
- Lead Poisoning, Nervous System, Childhood/history
- Lead Poisoning, Nervous System, Childhood/physiopathology
- Lead Poisoning, Nervous System, Childhood/psychology
- Mice
- Middle Aged
- Rats
- Risk Assessment
- Risk Factors
- Toxicity Tests
- Young Adult
Collapse
Affiliation(s)
- Angelica Rocha
- California State University San Marcos, San Marcos, CA 92069, USA.
| | - Keith A Trujillo
- California State University San Marcos, San Marcos, CA 92069, USA
| |
Collapse
|
27
|
Tang JY, Yeh TW, Huang YT, Wang MH, Jang LS. Effects of extremely low-frequency electromagnetic fields on B16F10 cancer cells. Electromagn Biol Med 2019; 38:149-157. [PMID: 30889982 DOI: 10.1080/15368378.2019.1591438] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This paper presents a method to inhibit B16F10 cancer cells using extremely low-frequency electromagnetic fields (ELF-EMFs) and to evaluate cell viability using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay. The study examined the effect of a natural EMF resonance frequency (7.83 Hz) and a power line frequency (60 Hz) on B16F10 cancer cells for 24 and 48 h. The B16F10 cancer cells were also exposed to sweep frequencies in several sweep intervals to quantitatively analyze the viability of cancer cells. The results yielded a 17% inhibition rate under 7.83 Hz compared with that of the control group. Moreover, sweep frequencies in narrow intervals (7.83 ± 0.1 Hz for the step 0.05 Hz) caused an inhibition rate of 26.4%, and inhibitory effects decreased as frequency sweep intervals increased. These results indicate that a Schumann resonance frequency of 7.83 Hz can inhibit the growth of cancer cells and that using a specific frequency type can lead to more effective growth inhibition.
Collapse
Affiliation(s)
- Jing-Yau Tang
- a Department of Electrical Engineering , National Cheng Kung University , Tainan , Taiwan
| | - Te-Wei Yeh
- a Department of Electrical Engineering , National Cheng Kung University , Tainan , Taiwan
| | - Yu-Ting Huang
- a Department of Electrical Engineering , National Cheng Kung University , Tainan , Taiwan
| | - Min-Haw Wang
- b Department of Electrical Engineering , Chinese Culture University , Taipei , Taiwan
| | - Ling-Sheng Jang
- a Department of Electrical Engineering , National Cheng Kung University , Tainan , Taiwan
| |
Collapse
|
28
|
Zhou H, Zhang YQ, Lai T, Liu XJ, Guo FY, Guo T, Ding W. Acaricidal Mechanism of Scopoletin Against Tetranychus cinnabarinus. Front Physiol 2019; 10:164. [PMID: 30894818 PMCID: PMC6414448 DOI: 10.3389/fphys.2019.00164] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 02/11/2019] [Indexed: 01/10/2023] Open
Abstract
Scopoletin is a promising acaricidal botanical natural compound against Tetranychus cinnabarinus, and its acaricidal mechanism maybe involve calcium overload according to our previous study. To seek potential candidate target genes of calcium overload induced by scopoletin in T. cinnabarinus, RNA-seq was utilized to detect changes in transcription levels. 24 and 48 h after treatment, 70 and 102 differentially expressed genes were obtained, respectively. Target genes included 3 signal transduction genes, 4 cell apoptosis genes, 4 energy metabolism genes, and 2 transcription factor genes. The role of 3 calcium signaling pathway-related genes, namely, G-protein-coupled neuropeptide receptor, Bcl-2 protein and guanylate kinase (designated TcGPCR, TcBAG, and TcGUK, respectively) in the calcium overload were investigated in this study. RT-qPCR detection showed that scopoletin treatment upregulated the expression level of TcGPCR and downregulated the expression level of TcBAG and TcGUK. The result of RNAi indicated that downregulation of TcGPCR decreased susceptibility to scopoletin, and downregulation of TcBAG and TcGUK enhanced susceptibility to scopoletin. Functional expression in Chinese hamster ovary cells showed that scopoletin induced a significant increase in intracellular free calcium [Ca2+]i levels by activating TcGPCR. These results demonstrated that the acaricidal mechanism of scopoletin was via disrupting intracellular Ca2+ homeostasis and calcium signaling pathway mediated by GPCR, BAG, and GUK.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Ding
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
29
|
Miyamoto A, Mikoshiba K. A novel multi lines analysis tool of Ca 2+ dynamics reveals the nonuniformity of Ca 2+ propagation. Cell Calcium 2019; 78:76-80. [PMID: 30669073 DOI: 10.1016/j.ceca.2019.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/15/2018] [Accepted: 01/03/2019] [Indexed: 01/01/2023]
Abstract
Extracellular stimuli evoke a robust increase in the concentration of intracellular Ca2+ ([Ca2+]c) throughout the cell to trigger various cellular responses, such as gene expression and apoptosis. This robust expansion of [Ca2+]c is called Ca2+ propagation. To date, it is thought that intracellular second messengers, such as inositol 1,4,5-trisphosphate (IP3) and intracellular Ca2+, and clusters of IP3 receptors (IP3Rs) regulate Ca2+ propagation. However, little is known about how the elevation in the [Ca2+]c spreads throughout the cell, especially in non-polar cell, including HeLa cell. In this study, we developed a novel multi lines analysis tool. This tool revealed that the velocity of Ca2+ propagation was inconstant throughout cell and local concentration of intracellular Ca2+ did not contribute to the velocity of Ca2+ propagation. Our results suggest that intracellular Ca2+ propagation is not merely the result of diffusion of intracellular Ca2+, and that, on the contrary, intracellular Ca2+ propagation seems to be regulated by more complicated processes.
Collapse
Affiliation(s)
- Akitoshi Miyamoto
- Laboratory for Developmental Neurobiology, Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama, Japan; Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto, Japan.
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama, Japan.
| |
Collapse
|
30
|
Chen Y, Wu C, Shen Y, Ma Y, Wei D, Wang W. N, N-dimethylformamide induces cellulase production in the filamentous fungus Trichoderma reesei. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:36. [PMID: 30820246 PMCID: PMC6380019 DOI: 10.1186/s13068-019-1375-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/08/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND The filamentous fungus Trichoderma reesei produces cellulase enzymes that are widely studied for lignocellulose bioconversion to biofuel. N,N-dimethylformamide (DMF) is a versatile organic solvent used in large quantities in industries. RESULTS In this study, we serendipitously found that biologically relevant concentrations of extracellular DMF-induced cellulase production in the T. reesei hyper-cellulolytic mutant Rut-C30 and wild-type strain QM6a. Next, by transcriptome analysis, we determined that plc-e encoding phospholipase C was activated by DMF and revealed that cytosolic Ca2+ plays a vital role in the response of T. reesei to DMF. Using EGTA (a putative extracellular Ca2+ chelator) and LaCl3 (a plasma membrane Ca2+ channel blocker), we demonstrated that DMF induced a cytosolic Ca2+ burst via extracellular Ca2+ and Ca2+ channels in T. reesei, and that the cytosolic Ca2+ burst induced by DMF-mediated overexpression of cellulase through calcium signaling. Deletion of crz1 confirmed that calcium signaling plays a dominant role in DMF-induced cellulase production. Additionally, 0.5-2% DMF increases the permeability of T. reesei mycelia for cellulase release. Simultaneous supplementation with 1% DMF and 10 mM Mn2+ to T. reesei Rut-C30 increased cellulase activity approximately fourfold compared to that without treatment and was also more than that observed in response to either treatment alone. CONCLUSIONS Our results reveal that DMF-induced cellulase production via calcium signaling and permeabilization. Our results also provide insight into the role of calcium signaling in enzyme production for enhanced cellulase production and the development of novel inducers of cellulase.
Collapse
Affiliation(s)
- Yumeng Chen
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237 China
| | - Chuan Wu
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237 China
| | - Yaling Shen
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237 China
| | - Yushu Ma
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237 China
| | - Dongzhi Wei
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237 China
| | - Wei Wang
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237 China
| |
Collapse
|
31
|
Hsu SS, Jan CR, Liang WZ. The investigation of the pyrethroid insecticide lambda-cyhalothrin (LCT)-affected Ca 2+ homeostasis and -activated Ca 2+-associated mitochondrial apoptotic pathway in normal human astrocytes: The evaluation of protective effects of BAPTA-AM (a selective Ca 2+ chelator). Neurotoxicology 2018; 69:97-107. [PMID: 30292652 DOI: 10.1016/j.neuro.2018.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 12/22/2022]
Abstract
Exposure to insecticides has been found to have deleterious effects on human health. Lambda-cyhalothrin (LCT), a mixture of isomers of cyhalothrin, is a pyrethroid insecticide routinely used in pest control programs. LCT was reported to cause neurotoxic effects in various models. However, the mechanism of underlying effect of LCT on cytotoxicity in normal human brain cells is still elusive. This study examined whether LCT affected Ca2+ homeostasis and Ca2+-related physiology in Gibco® Human Astrocytes (GHA cells), and explored whether BAPTA-AM (1,2-bis(2-aminophenoxy)ethane-N,N,N'N'-tetraacetic acid), a selective Ca2+ chelator, has protective effects on LCT-treated GHA cells. The data show that LCT (10-15 μM) concentration-dependently induced cytotoxicity in both GHA cells and DI TNC1 normal rat astrocytes but only induced intracellular Ca2+ concentration ([Ca2+]i) rises in GHA cells. In terms of Ca2+ signaling in GHA cells, LCT-induced [Ca2+]i rises were reduced by removing extracellular Ca2+ and were inhibited by store-operated Ca2+ channel modulators (2-APB, econazole or SKF96365). In Ca2+-free medium, pretreatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin abolished LCT-induced [Ca2+]i rises. Conversely, incubation with LCT abolished thapsigargin-induced [Ca2+]i rises. Regarding cytotoxicity, LCT evoked apoptosis by regulating apoptotic protein expressions (Bax, BCl-2, cleaved caspase-9/-3). This apoptotic response was significantly inhibited by prechelating cytosolic Ca2+ with BAPTA-AM. Together, in GHA cells, LCT induced [Ca2+]i rises by inducing Ca2+ entry via store-operated Ca2+ channels and Ca2+ release from the endoplasmic reticulum. Moreover, BAPTA-AM has a protective effect on inhibiting LCT-activated mitochondrial apoptotic pathway. This study provided new insights into the molecular protective mechanism of LCT-induced cytotoxicity in normal human astrocytes.
Collapse
Affiliation(s)
- Shu-Shong Hsu
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan; Department of Surgery, National Defense Medical Center, Taipei, 11490, Taiwan; Department of Nursing, Meiho University, Pingtung, 91202, Taiwan
| | - Chung-Ren Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
| | - Wei-Zhe Liang
- Department of Pharmacy, Tajen University, Pingtung, 90741, Taiwan; Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan.
| |
Collapse
|
32
|
Mahapatra C, Brain KL, Manchanda R. A biophysically constrained computational model of the action potential of mouse urinary bladder smooth muscle. PLoS One 2018; 13:e0200712. [PMID: 30048468 PMCID: PMC6061979 DOI: 10.1371/journal.pone.0200712] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 07/02/2018] [Indexed: 11/19/2022] Open
Abstract
Urinary incontinence is associated with enhanced spontaneous phasic contractions of the detrusor smooth muscle (DSM). Although a complete understanding of the etiology of these spontaneous contractions is not yet established, it is suggested that the spontaneously evoked action potentials (sAPs) in DSM cells initiate and modulate the contractions. In order to further our understanding of the ionic mechanisms underlying sAP generation, we present here a biophysically detailed computational model of a single DSM cell. First, we constructed mathematical models for nine ion channels found in DSM cells based on published experimental data: two voltage gated Ca2+ ion channels, an hyperpolarization-activated ion channel, two voltage-gated K+ ion channels, three Ca2+-activated K+ ion channels and a non-specific background leak ion channel. The ion channels' kinetics were characterized in terms of maximal conductances and differential equations based on voltage or calcium-dependent activation and inactivation. All ion channel models were validated by comparing the simulated currents and current-voltage relations with those reported in experimental work. Incorporating these channels, our DSM model is capable of reproducing experimentally recorded spike-type sAPs of varying configurations, ranging from sAPs displaying after-hyperpolarizations to sAPs displaying after-depolarizations. The contributions of the principal ion channels to spike generation and configuration were also investigated as a means of mimicking the effects of selected pharmacological agents on DSM cell excitability. Additionally, the features of propagation of an AP along a length of electrically continuous smooth muscle tissue were investigated. To date, a biophysically detailed computational model does not exist for DSM cells. Our model, constrained heavily by physiological data, provides a powerful tool to investigate the ionic mechanisms underlying the genesis of DSM electrical activity, which can further shed light on certain aspects of urinary bladder function and dysfunction.
Collapse
Affiliation(s)
- Chitaranjan Mahapatra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Keith L. Brain
- School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, England, United Kingdom
| | - Rohit Manchanda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| |
Collapse
|
33
|
Wang F, Yuan RY, Li L, Meng TG, Fan LH, Jing Y, Zhang RR, Li YY, Liang QX, Dong F, Hou Y, Schatten H, Sun QY, Ou XH. Mitochondrial regulation of [Ca 2+]i oscillations during cell cycle resumption of the second meiosis of oocyte. Cell Cycle 2018; 17:1471-1486. [PMID: 29965788 DOI: 10.1080/15384101.2018.1489179] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Oocyte is arrested at metaphase of the second meiosis until fertilization switching on [Ca2+]i oscillations. Oocyte activation inefficiency is the most challenging problem for failed fertilization and embryonic development. Mitochondrial function and intracellular [Ca2+]i oscillations are two critical factors for the oocyte's developmental potential. We aimed to understand the possible correlation between mitochondrial function and [Ca2+]i oscillations in oocytes. To this end, mitochondrial uncoupler CCCP which damages mitochondrial function and two small molecule mitochondrial agonists, L-carnitine (LC) and BGP-15, were used to examine the regulation of [Ca2+]i by mitochondrial functions. With increasing CCCP concentrations, [Ca2+]i oscillations were gradually diminished and high concentrations of CCCP led to oocyte death. LC enhanced mitochondrial membrane potential and [Ca2+]i oscillations and even improved the damage induced by CCCP, however, BGP-15 had no beneficial effect on oocyte activation. We have found that mitochondrial function plays a vital role in the generation of [Ca2+]i oscillations in oocytes, and thus mitochondria may interact with the ER to generate [Ca2+]i oscillations during oocyte activation. Improvement of mitochondrial functions with small molecules can be expected to improve oocyte activation and embryonic development in infertile patients without invasive micromanipulation.
Collapse
Affiliation(s)
- Feng Wang
- a Fertility Preservation Lab , Reproductive Medicine Center, Guangdong Second Provincial General Hospital , Guangzhou , China.,b State Key Laboratory of Stem Cell and Reproductive Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Rui-Ying Yuan
- a Fertility Preservation Lab , Reproductive Medicine Center, Guangdong Second Provincial General Hospital , Guangzhou , China
| | - Li Li
- b State Key Laboratory of Stem Cell and Reproductive Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Tie-Gang Meng
- b State Key Laboratory of Stem Cell and Reproductive Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Li-Hua Fan
- b State Key Laboratory of Stem Cell and Reproductive Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Ying Jing
- b State Key Laboratory of Stem Cell and Reproductive Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Ren-Ren Zhang
- b State Key Laboratory of Stem Cell and Reproductive Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Yuna-Yuan Li
- b State Key Laboratory of Stem Cell and Reproductive Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Qiu-Xia Liang
- b State Key Laboratory of Stem Cell and Reproductive Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Feng Dong
- b State Key Laboratory of Stem Cell and Reproductive Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Yi Hou
- b State Key Laboratory of Stem Cell and Reproductive Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Heide Schatten
- c Department of Veterinary Pathobiology , University of Missouri , Columbia , MO , USA
| | - Qing-Yuan Sun
- b State Key Laboratory of Stem Cell and Reproductive Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,d University of Chinese Academy of Sciences , Beijing , China
| | - Xiang-Hong Ou
- a Fertility Preservation Lab , Reproductive Medicine Center, Guangdong Second Provincial General Hospital , Guangzhou , China
| |
Collapse
|
34
|
Agrawal A, Suryakumar G, Rathor R. Role of defective Ca 2+ signaling in skeletal muscle weakness: Pharmacological implications. J Cell Commun Signal 2018; 12:645-659. [PMID: 29982883 DOI: 10.1007/s12079-018-0477-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/27/2018] [Indexed: 01/19/2023] Open
Abstract
The misbehaving attitude of Ca2+ signaling pathways could be the probable reason in many muscular disorders such as myopathies, systemic disorders like hypoxia, sepsis, cachexia, sarcopenia, heart failure, and dystrophy. The present review throws light upon the calcium flux regulating signaling channels like ryanodine receptor complex (RyR1), SERCA (Sarco-endoplasmic Reticulum Calcium ATPase), DHPR (Dihydropyridine Receptor) or Cav1.1 and Na+/Ca2+ exchange pump in detail and how remodelling of these channels contribute towards disturbed calcium homeostasis. Understanding these pathways will further provide an insight for establishing new therapeutic approaches for the prevention and treatment of muscle atrophy under stress conditions, targeting calcium ion channels and associated regulatory proteins.
Collapse
Affiliation(s)
- Akanksha Agrawal
- DRDO, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Geetha Suryakumar
- DRDO, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Richa Rathor
- DRDO, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
35
|
Whitworth CL, Redfern CPF, Cheek TR. Differentiation-Induced Remodelling of Store-Operated Calcium Entry Is Independent of Neuronal or Glial Phenotype but Modulated by Cellular Context. Mol Neurobiol 2018; 56:857-872. [PMID: 29802571 PMCID: PMC6400879 DOI: 10.1007/s12035-018-1112-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/09/2018] [Indexed: 01/20/2023]
Abstract
Neurogenesis is a complex process leading to the generation of neuronal networks and glial cell types from stem cells or intermediate progenitors. Mapping subcellular and molecular changes accompanying the switch from proliferation to differentiation is vital for developing therapeutic targets for neurological diseases. Neuronal (N-type) and glial (S-type) phenotypes within the SH-SY5Y neuroblastoma cell line have distinct differentiation responses to 9-cis-retinoic acid (9cRA). In both cell phenotypes, these were accompanied at the single cell level by an uncoupling of Ca2+ store release from store-operated Ca2+ entry (SOCE), mediated by changes in the expression of calcium release-activated calcium pore proteins. This remodelling of calcium signalling was moderated by the predominant cell phenotype within the population. N- and S-type cells differed markedly in their phenotypic stability after withdrawal of the differentiation inducer, with the phenotypic stability of S-type cells, both morphologically and with respect to SOCE properties, in marked contrast to the lability of the N-type phenotype. Furthermore, the SOCE response of I-type cells, a presumed precursor to both N- and S-type cells, varied markedly in different cell environments. These results demonstrate the unique biology of neuronal and glial derivatives of common precursors and suggest that direct or indirect interactions between cell types are vital components of neurogenesis that need to be considered in experimental models.
Collapse
Affiliation(s)
- Claire L Whitworth
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Division of Biological Chemistry & Drug Discovery, School of Life Sciences, University of Dundee, Dundee, Scotland, DD1 5EH, UK
| | - Christopher P F Redfern
- Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Timothy R Cheek
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
36
|
Drumm BT, Rembetski BE, Cobine CA, Baker SA, Sergeant GP, Hollywood MA, Thornbury KD, Sanders KM. Ca 2+ signalling in mouse urethral smooth muscle in situ: role of Ca 2+ stores and Ca 2+ influx mechanisms. J Physiol 2018; 596:1433-1466. [PMID: 29383731 PMCID: PMC5899989 DOI: 10.1113/jp275719] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/17/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Contraction of urethral smooth muscle cells (USMCs) contributes to urinary continence. Ca2+ signalling in USMCs was investigated in intact urethral muscles using a genetically encoded Ca2+ sensor, GCaMP3, expressed selectively in USMCs. USMCs were spontaneously active in situ, firing intracellular Ca2+ waves that were asynchronous at different sites within cells and between adjacent cells. Spontaneous Ca2+ waves in USMCs were myogenic but enhanced by adrenergic or purinergic agonists and decreased by nitric oxide. Ca2+ waves arose from inositol trisphosphate type 1 receptors and ryanodine receptors, and Ca2+ influx by store-operated calcium entry was required to maintain Ca2+ release events. Ca2+ release and development of Ca2+ waves appear to be the primary source of Ca2+ for excitation-contraction coupling in the mouse urethra, and no evidence was found that voltage-dependent Ca2+ entry via L-type or T-type channels was required for responses to α adrenergic responses. ABSTRACT Urethral smooth muscle cells (USMCs) generate myogenic tone and contribute to urinary continence. Currently, little is known about Ca2+ signalling in USMCs in situ, and therefore little is known about the source(s) of Ca2+ required for excitation-contraction coupling. We characterized Ca2+ signalling in USMCs within intact urethral muscles using a genetically encoded Ca2+ sensor, GCaMP3, expressed selectively in USMCs. USMCs fired spontaneous intracellular Ca2+ waves that did not propagate cell-to-cell across muscle bundles. Ca2+ waves increased dramatically in response to the α1 adrenoceptor agonist phenylephrine (10 μm) and to ATP (10 μm). Ca2+ waves were inhibited by the nitric oxide donor DEA NONOate (10 μm). Ca2+ influx and release from sarcoplasmic reticulum stores contributed to Ca2+ waves, as Ca2+ free bathing solution and blocking the sarcoplasmic Ca2+ -ATPase abolished activity. Intracellular Ca2+ release involved cooperation between ryanadine receptors and inositol trisphosphate receptors, as tetracaine and ryanodine (100 μm) and xestospongin C (1 μm) reduced Ca2+ waves. Ca2+ waves were insensitive to L-type Ca2+ channel modulators nifedipine (1 μm), nicardipine (1 μm), isradipine (1 μm) and FPL 64176 (1 μm), and were unaffected by the T-type Ca2+ channel antagonists NNC-550396 (1 μm) and TTA-A2 (1 μm). Ca2+ waves were reduced by the store operated Ca2+ entry blocker SKF 96365 (10 μm) and by an Orai antagonist, GSK-7975A (1 μm). The latter also reduced urethral contractions induced by phenylephrine, suggesting that Orai can function effectively as a receptor-operated channel. In conclusion, Ca2+ waves in mouse USMCs are a source of Ca2+ for excitation-contraction coupling in urethral muscles.
Collapse
Affiliation(s)
- Bernard T. Drumm
- Department of Physiology and Cell BiologyUniversity of Nevada, Reno School of MedicineRenoNV89557USA
| | - Benjamin E. Rembetski
- Department of Physiology and Cell BiologyUniversity of Nevada, Reno School of MedicineRenoNV89557USA
| | - Caroline A. Cobine
- Department of Physiology and Cell BiologyUniversity of Nevada, Reno School of MedicineRenoNV89557USA
| | - Salah A. Baker
- Department of Physiology and Cell BiologyUniversity of Nevada, Reno School of MedicineRenoNV89557USA
| | - Gerard P. Sergeant
- Smooth Muscle Research CentreDundalk Institute of TechnologyCo. LouthDundalkRepublic of Ireland
| | - Mark A. Hollywood
- Smooth Muscle Research CentreDundalk Institute of TechnologyCo. LouthDundalkRepublic of Ireland
| | - Keith D. Thornbury
- Smooth Muscle Research CentreDundalk Institute of TechnologyCo. LouthDundalkRepublic of Ireland
| | - Kenton M. Sanders
- Department of Physiology and Cell BiologyUniversity of Nevada, Reno School of MedicineRenoNV89557USA
| |
Collapse
|
37
|
Coordination to lanthanide ions distorts binding site conformation in calmodulin. Proc Natl Acad Sci U S A 2018; 115:E3126-E3134. [PMID: 29545272 DOI: 10.1073/pnas.1722042115] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Ca2+-sensing protein calmodulin (CaM) is a popular model of biological ion binding since it is both experimentally tractable and essential to survival in all eukaryotic cells. CaM modulates hundreds of target proteins and is sensitive to complex patterns of Ca2+ exposure, indicating that it functions as a sophisticated dynamic transducer rather than a simple on/off switch. Many details of this transduction function are not well understood. Fourier transform infrared (FTIR) spectroscopy, ultrafast 2D infrared (2D IR) spectroscopy, and electronic structure calculations were used to probe interactions between bound metal ions (Ca2+ and several trivalent lanthanide ions) and the carboxylate groups in CaM's EF-hand ion-coordinating sites. Since Tb3+ is commonly used as a luminescent Ca2+ analog in studies of protein-ion binding, it is important to characterize distinctions between the coordination of Ca2+ and the lanthanides in CaM. Although functional assays indicate that Tb3+ fully activates many Ca2+-dependent proteins, our FTIR spectra indicate that Tb3+, La3+, and Lu3+ disrupt the bidentate coordination geometry characteristic of the CaM binding sites' strongly conserved position 12 glutamate residue. The 2D IR spectra indicate that, relative to the Ca2+-bound form, lanthanide-bound CaM exhibits greater conformational flexibility and larger structural fluctuations within its binding sites. Time-dependent 2D IR lineshapes indicate that binding sites in Ca2+-CaM occupy well-defined configurations, whereas binding sites in lanthanide-bound-CaM are more disordered. Overall, the results show that binding to lanthanide ions significantly alters the conformation and dynamics of CaM's binding sites.
Collapse
|
38
|
Compartmentalization of antagonistic Ca 2+ signals in developing cochlear hair cells. Proc Natl Acad Sci U S A 2018; 115:E2095-E2104. [PMID: 29439202 DOI: 10.1073/pnas.1719077115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During a critical developmental period, cochlear inner hair cells (IHCs) exhibit sensory-independent activity, featuring action potentials in which Ca2+ ions play a fundamental role in driving both spiking and glutamate release onto synapses with afferent auditory neurons. This spontaneous activity is controlled by a cholinergic input to the IHC, activating a specialized nicotinic receptor with high Ca2+ permeability, and coupled to the activation of hyperpolarizing SK channels. The mechanisms underlying distinct excitatory and inhibitory Ca2+ roles within a small, compact IHC are unknown. Making use of Ca2+ imaging, afferent auditory bouton recordings, and electron microscopy, the present work shows that unusually high intracellular Ca2+ buffering and "subsynaptic" cisterns provide efficient compartmentalization and tight control of cholinergic Ca2+ signals. Thus, synaptic efferent Ca2+ spillover and cross-talk are prevented, and the cholinergic input preserves its inhibitory signature to ensure normal development of the auditory system.
Collapse
|
39
|
Nelson HA, Roe MW. Molecular physiology and pathophysiology of stromal interaction molecules. Exp Biol Med (Maywood) 2018; 243:451-472. [PMID: 29363328 DOI: 10.1177/1535370218754524] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ca2+ release from the endoplasmic reticulum is an important component of Ca2+ signal transduction that controls numerous physiological processes in eukaryotic cells. Release of Ca2+ from the endoplasmic reticulum is coupled to the activation of store-operated Ca2+ entry into cells. Store-operated Ca2+ entry provides Ca2+ for replenishing depleted endoplasmic reticulum Ca2+ stores and a Ca2+ signal that regulates Ca2+-dependent intracellular biochemical events. Central to connecting discharge of endoplasmic reticulum Ca2+ stores following G protein-coupled receptor activation with the induction of store-operated Ca2+ entry are stromal interaction molecules (STIM1 and STIM2). These highly homologous endoplasmic reticulum transmembrane proteins function as sensors of the Ca2+ concentration within the endoplasmic reticulum lumen and activators of Ca2+ release-activated Ca2+ channels. Emerging evidence indicates that in addition to their role in Ca2+ release-activated Ca2+ channel gating and store-operated Ca2+ entry, STIM1 and STIM2 regulate other cellular signaling events. Recent studies have shown that disruption of STIM expression and function is associated with the pathogenesis of several diseases including autoimmune disorders, cancer, cardiovascular disease, and myopathies. Here, we provide an overview of the latest developments in the molecular physiology and pathophysiology of STIM1 and STIM2. Impact statement Intracellular Ca2+ signaling is a fundamentally important regulator of cell physiology. Recent studies have revealed that Ca2+-binding stromal interaction molecules (Stim1 and Stim2) expressed in the membrane of the endoplasmic reticulum (ER) are essential components of eukaryote Ca2+ signal transduction that control the activity of ion channels and other signaling effectors present in the plasma membrane. This review summarizes the most recent information on the molecular physiology and pathophysiology of stromal interaction molecules. We anticipate that the work presented in our review will provide new insights into molecular interactions that participate in interorganelle signaling crosstalk, cell function, and the pathogenesis of human diseases.
Collapse
Affiliation(s)
- Heather A Nelson
- 1 Department of Cell and Developmental Biology, 12302 SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Michael W Roe
- 1 Department of Cell and Developmental Biology, 12302 SUNY Upstate Medical University, Syracuse, NY 13210, USA.,2 Department of Medicine, 12302 SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
40
|
Abstract
The Encouraging Novel Amelogenesis Models and Ex vivo cell Lines (ENAMEL) Development workshop was held on 23 June 2017 at the Bethesda headquarters of the National Institute of Dental and Craniofacial Research (NIDCR). Discussion topics included model organisms, stem cells/cell lines, and tissues/3D cell culture/organoids. Scientists from a number of disciplines, representing institutions from across the United States, gathered to discuss advances in our understanding of enamel, as well as future directions for the field.
Collapse
|
41
|
Vogl W, Lyon K, Adams A, Piva M, Nassour V. The endoplasmic reticulum, calcium signaling and junction turnover in Sertoli cells. Reproduction 2017; 155:R93-R104. [PMID: 29066527 DOI: 10.1530/rep-17-0281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/12/2017] [Accepted: 10/23/2017] [Indexed: 12/19/2022]
Abstract
The endoplasmic reticulum (ER) forms a continuous network throughout morphologically differentiated Sertoli cells. It is an integral component of intercellular adhesion junctions in this cell type, as well as forming membrane contact sites with the plasma membrane and intracellular organelles. One of the major functions of the ER in cells generally is maintaining calcium homeostasis and generating calcium signals. In this review, we discuss what is currently known about the overall pattern of distribution of the ER in Sertoli cells and the location of calcium regulatory machinery in the various subdomains of the organelle. Current data are consistent with the hypothesis that calcium signaling by the ER of Sertoli cells may play a significant role in events related to junction remodeling that occur in the seminiferous epithelium during spermatogenesis.
Collapse
Affiliation(s)
- Wayne Vogl
- Department of Cellular and Physiological SciencesUniversity of British Columbia, British Columbia, Canada .,Department of Obstetrics and GynaecologyUniversity of British Columbia, British Columbia, Canada
| | - Kevin Lyon
- Department of Obstetrics and GynaecologyUniversity of British Columbia, British Columbia, Canada
| | - Arlo Adams
- Department of Cellular and Physiological SciencesUniversity of British Columbia, British Columbia, Canada
| | - Matthew Piva
- Department of Cellular and Physiological SciencesUniversity of British Columbia, British Columbia, Canada
| | - Vanessa Nassour
- Department of Cellular and Physiological SciencesUniversity of British Columbia, British Columbia, Canada
| |
Collapse
|
42
|
Li M, Jiang C, Ye L, Wang S, Zhang H, Liu J, Hong H. The Role of Na+/Ca2+ Exchanger 1 in Maintaining Ductus Arteriosus Patency. Sci Rep 2017; 7:9826. [PMID: 28852106 PMCID: PMC5575298 DOI: 10.1038/s41598-017-10377-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/08/2017] [Indexed: 01/24/2023] Open
Abstract
Patency of the ductus arteriosus (DA) is crucial for both fetal circulation and patients with DA-dependent congenital heart diseases (CHD). The Na+/Ca2+ exchanger 1 (NCX1) protein has been shown to play a key role in the regulation of vascular tone and is elevated in DA-dependent CHD. This current study was conducted to investigate the mechanisms underpinning the role of NCX1 in DA patency. Our data showed NCX1 expression was up-regulated in the DA of fetal mice. Up-regulation of NCX1 expression resulted in a concomitant decrease in cytosolic Ca2+ levels in human DA smooth muscle cells (DASMCs) and an inhibition of the proliferation and migration capacities of human DASMCs. Furthermore, treatment of DASMCs with KB-R7943, which can reduce Ca2+ influx, resulted in the inhibition of both cell proliferation and migration. These findings indicate that NCX1 may play a role in maintaining patent DA not only by preventing DA functional closure through reducing cytosolic Ca2+ level in DASMC but also by delaying the anatomical closure process. The latter delay is facilitated by the down-regulation of human DASMC proliferation and migration. It is also likely that a reduction in cytosolic Ca2+ levels inhibits the proliferation and migration capacities of human DASMCs in vitro.
Collapse
Affiliation(s)
- Minghui Li
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Chuan Jiang
- Shanghai Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Lincai Ye
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.,Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.,Shanghai Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Shoubao Wang
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Haibo Zhang
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Jinfen Liu
- Shanghai Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.
| | - Haifa Hong
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
43
|
Fang YC, Chou CT, Liang WZ, Kuo CC, Hsu SS, Wang JL, Jan CR. Effect of tetramethylpyrazine (TMP) on Ca 2+ signal transduction and cell viability in a model of renal tubular cells. J Biochem Mol Toxicol 2017; 31. [PMID: 28658523 DOI: 10.1002/jbt.21952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/29/2017] [Accepted: 06/14/2017] [Indexed: 11/09/2022]
Abstract
Tetramethylpyrazine (TMP) is a compound purified from herb. Its effect on Ca2+ concentrations ([Ca2+ ]i ) in renal cells is unclear. This study examined whether TMP altered Ca2+ signaling in Madin-Darby canine kidney (MDCK) cells. TMP at 100-800 μM induced [Ca2+ ]i rises, which were reduced by Ca2+ removal. TMP induced Mn2+ influx implicating Ca2+ entry. TMP-induced Ca2+ entry was inhibited by 30% by modulators of protein kinase C (PKC) and store-operated Ca2+ channels. Treatment with the endoplasmic reticulum Ca2+ pump inhibitor 2,5-di-tert-butylhydroquinone (BHQ) inhibited 93% of TMP-evoked [Ca2+ ]i rises. Treatment with TMP abolished BHQ-evoked [Ca2+ ]i rises. Inhibition of phospholipase C (PLC) abolished TMP-induced responses. TMP at 200-1000 μM decreased viability, which was not reversed by pretreatment with the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester. Together, in MDCK cells, TMP induced [Ca2+ ]i rises by evoking PLC-dependent Ca2+ release from endoplasmic reticulum and Ca2+ entry via PKC-sensitive store-operated Ca2+ entry. TMP also caused Ca2+ -independent cell death.
Collapse
Affiliation(s)
- Yi-Chien Fang
- Department of Laboratory Medicine, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung, 81345, Taiwan
| | - Chiang-Ting Chou
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chia-Yi, 61363, Taiwan.,Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chia-Yi, 61363, Taiwan
| | - Wei-Zhe Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
| | - Chun-Chi Kuo
- Department of Nursing, Tzu Hui Institute of Technology, Pingtung, 92641, Taiwan
| | - Shu-Shong Hsu
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
| | - Jue-Long Wang
- Department of Rehabilitation, Kaohsiung Veterans General Hospital Tainan Branch, Tainan, 71051, Taiwan
| | - Chung-Ren Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
| |
Collapse
|
44
|
Cheng HH, Chou CT, Liang WZ, Kuo CC, Shieh P, Wang JL, Jan CR. Effects of puerarin on intracellular Ca 2+ and cell viability of MDCK renal tubular cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 52:83-89. [PMID: 28384516 DOI: 10.1016/j.etap.2017.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 06/07/2023]
Abstract
Puerarin is a natural compound and has been used as herb medication in a number of countries, especially in Asia. The effect of puerarin on Ca2+ signaling is unknown in renal cells. This study examined whether puerarin affected Ca2+ physiology in MDCK renal tubular cells. Cytosolic free Ca2+ levels ([Ca2+]i) were measured using the fluorescent dye fura-2. Cell viability was examined by using WST-1 assay. Puerarin induced [Ca2+]i rises and the response was reduced by removing extracellular Ca2+. Puerarin-induced Ca2+ entry was not altered by protein kinase C (PKC) activity, but was inhibited by nifedipine. In Ca2+-free medium, treatment with the endoplasmic reticulum Ca2+ pump inhibitor 2,5-di-tert-butylhydroquinone (BHQ) or thapsigargin partly inhibited puerarin-evoked [Ca2+]i rises. Inhibition of phospholipase C (PLC) with U73122 did not change puerarin-induced [Ca2+]i rises. Puerarin at 25-50μM caused cytotoxicity, which was not reversed by pretreatment with the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA/AM). Collectively, in MDCK cells, puerarin induced [Ca2+]i rises by evoking PLC-independent Ca2+ release from the endoplasmic reticulum and other unknown stores, and Ca2+ entry via nifedipine-sensitive, PKC-insensitive Ca2+ entry pathways. Puerarin also caused Ca2+-independent cell death.
Collapse
Affiliation(s)
- He-Hsiung Cheng
- Department of Medicine, Chang Bing Show Chwan Memorial Hospital, Changhua County 50544, Taiwan
| | - Chiang-Ting Chou
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chia-Yi 61363, Taiwan; Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chia-Yi 61363, Taiwan
| | - Wei-Zhe Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
| | - Chun-Chi Kuo
- Department of Nursing, Tzu Hui Institute of Technology, Pingtung 92641, Taiwan
| | - Pochuan Shieh
- Department of Pharmacy, Tajen University, Pingtung 90741, Taiwan.
| | - Jue-Long Wang
- Department of Rehabilitation, Kaohsiung Veterans General Hospital Tainan Branch, Tainan 71051, Taiwan.
| | - Chung-Ren Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
| |
Collapse
|
45
|
Reddish FN, Miller CL, Gorkhali R, Yang JJ. Calcium Dynamics Mediated by the Endoplasmic/Sarcoplasmic Reticulum and Related Diseases. Int J Mol Sci 2017; 18:E1024. [PMID: 28489021 PMCID: PMC5454937 DOI: 10.3390/ijms18051024] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 04/28/2017] [Accepted: 05/01/2017] [Indexed: 12/17/2022] Open
Abstract
The flow of intracellular calcium (Ca2+) is critical for the activation and regulation of important biological events that are required in living organisms. As the major Ca2+ repositories inside the cell, the endoplasmic reticulum (ER) and the sarcoplasmic reticulum (SR) of muscle cells are central in maintaining and amplifying the intracellular Ca2+ signal. The morphology of these organelles, along with the distribution of key calcium-binding proteins (CaBPs), regulatory proteins, pumps, and receptors fundamentally impact the local and global differences in Ca2+ release kinetics. In this review, we will discuss the structural and morphological differences between the ER and SR and how they influence localized Ca2+ release, related diseases, and the need for targeted genetically encoded calcium indicators (GECIs) to study these events.
Collapse
Affiliation(s)
- Florence N Reddish
- Department of Chemistry, Center for Diagnostics and Therapeutics (CDT), Georgia State University, Atlanta, GA 30303, USA.
| | - Cassandra L Miller
- Department of Chemistry, Center for Diagnostics and Therapeutics (CDT), Georgia State University, Atlanta, GA 30303, USA.
| | - Rakshya Gorkhali
- Department of Chemistry, Center for Diagnostics and Therapeutics (CDT), Georgia State University, Atlanta, GA 30303, USA.
| | - Jenny J Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics (CDT), Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
46
|
Abstract
Across all kingdoms in the tree of life, calcium (Ca2+) is an essential element used by cells to respond and adapt to constantly changing environments. In multicellular organisms, it plays fundamental roles during fertilization, development and adulthood. The inability of cells to regulate Ca2+ can lead to pathological conditions that ultimately culminate in cell death. One such pathological condition is manifested in Parkinson's disease, the second most common neurological disorder in humans, which is characterized by the aggregation of the protein, α-synuclein. This Review discusses current evidence that implicates Ca2+ in the pathogenesis of Parkinson's disease. Understanding the mechanisms by which Ca2+ signaling contributes to the progression of this disease will be crucial for the development of effective therapies to combat this devastating neurological condition.
Collapse
Affiliation(s)
- Sofia V Zaichick
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kaitlyn M McGrath
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Gabriela Caraveo
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
47
|
Moreira-Lobo DC, Cruz JS, Silva FR, Ribeiro FM, Kushmerick C, Oliveira FA. Thiamine Deficiency Increases Ca 2+ Current and Ca V1.2 L-type Ca 2+ Channel Levels in Cerebellum Granular Neurons. Cell Mol Neurobiol 2017; 37:453-460. [PMID: 27140189 DOI: 10.1007/s10571-016-0378-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/22/2016] [Indexed: 11/27/2022]
Abstract
Thiamine (vitamin B1) is co-factor for three pivotal enzymes for glycolytic metabolism: pyruvate dehydrogenase, α-ketoglutarate dehydrogenase, and transketolase. Thiamine deficiency leads to neurodegeneration of several brain regions, especially the cerebellum. In addition, several neurodegenerative diseases are associated with impairments of glycolytic metabolism, including Alzheimer's disease. Therefore, understanding the link between dysfunction of the glycolytic pathway and neuronal death will be an important step to comprehend the mechanism and progression of neuronal degeneration as well as the development of new treatment for neurodegenerative states. Here, using an in vitro model to study the effects of thiamine deficiency on cerebellum granule neurons, we show an increase in Ca2+ current density and CaV1.2 expression. These results indicate a link between alterations in glycolytic metabolism and changes to Ca2+ dynamics, two factors that have been implicated in neurodegeneration.
Collapse
Affiliation(s)
- Daniel C Moreira-Lobo
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Bloco K4, Sala #167, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Jader S Cruz
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Bloco K4, Sala #167, Belo Horizonte, MG, CEP 31270-901, Brazil.
| | - Flavia R Silva
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Bloco K4, Sala #167, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Fabíola M Ribeiro
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Bloco K4, Sala #167, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Christopher Kushmerick
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Fernando A Oliveira
- Center for Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC - UFABC, Rua Arcturus, 03 - Jardim Antares, Bloco Delta; 2º Andar; Sala: 248, São Bernardo do Campo, SP, CEP 09606-070, Brazil.
| |
Collapse
|
48
|
Hashimoto M, Doi M, Kurebayashi N, Furukawa K, Hirawake-Mogi H, Ohmiya Y, Sakurai T, Mita T, Mikoshiba K, Nara T. Inositol 1,4,5-trisphosphate receptor determines intracellular Ca 2+ concentration in Trypanosoma cruzi throughout its life cycle. FEBS Open Bio 2017; 6:1178-1185. [PMID: 28203518 PMCID: PMC5302059 DOI: 10.1002/2211-5463.12126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/17/2016] [Accepted: 09/05/2016] [Indexed: 11/05/2022] Open
Abstract
Regulation of intracellular Ca2+ concentration ([Ca2+]i) is vital for eukaryotic organisms. Recently, we identified a Ca2+ channel (TcIP 3R) associated with intracellular Ca2+ stores in Trypanosoma cruzi, the parasitic protist that causes Chagas disease. In this study, we measured [Ca2+]i during the parasite life cycle and determined whether TcIP 3R is involved in the observed variations. Parasites expressing R-GECO1, a red fluorescent, genetically encoded Ca2+ indicator for optical imaging that fluoresces when bound to Ca2+, were produced. Using these R-GECO1-expressing parasites to measure [Ca2+]i, we found that the [Ca2+]i in epimastigotes was significantly higher than that in trypomastigotes and lower than that in amastigotes, and we observed a positive correlation between TcIP3R mRNA expression and [Ca2+]i during the parasite life cycle both in vitro and in vivo. We also generated R-GECO1-expressing parasites with TcIP 3R expression levels that were approximately 65% of wild-type (wt) levels (SKO parasites), and [Ca2+]i in the wt and SKO parasites was compared. The [Ca2+]i in SKO parasites was reduced to approximately 50-65% of that in wt parasites. These results show that TcIP 3R is the determinant of [Ca2+]i in T. cruzi. Since Ca2+ signaling is vital for these parasites, TcIP 3R is a promising drug target for Chagas disease.
Collapse
Affiliation(s)
- Muneaki Hashimoto
- Department of Molecular and Cellular Parasitology Juntendo University School of Medicine Tokyo Japan; Health Research Institute AIST Takamatsu Kagawa Japan
| | - Motomichi Doi
- Biomedical Research Institute AIST Tsukuba Ibaraki Japan
| | - Nagomi Kurebayashi
- Department of Pharmacology Juntendo University School of Medicine Tokyo Japan
| | - Koji Furukawa
- Biomedical Research Institute AIST Tsukuba Ibaraki Japan
| | - Hiroko Hirawake-Mogi
- Department of Molecular and Cellular Parasitology Juntendo University School of Medicine Tokyo Japan
| | | | - Takashi Sakurai
- Department of Pharmacology Juntendo University School of Medicine Tokyo Japan
| | - Toshihiro Mita
- Department of Molecular and Cellular Parasitology Juntendo University School of Medicine Tokyo Japan
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology RIKEN Brain Science Institute Saitama Japan
| | - Takeshi Nara
- Department of Molecular and Cellular Parasitology Juntendo University School of Medicine Tokyo Japan
| |
Collapse
|
49
|
Wang PY, Wang SR, Xiao L, Chen J, Wang JY, Rao JN. c-Jun enhances intestinal epithelial restitution after wounding by increasing phospholipase C-γ1 transcription. Am J Physiol Cell Physiol 2017; 312:C367-C375. [PMID: 28100486 DOI: 10.1152/ajpcell.00330.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 01/06/2023]
Abstract
c-Jun is an activating protein 1 (AP-1) transcription factor and implicated in many aspects of cellular functions, but its exact role in the regulation of early intestinal epithelial restitution after injury remains largely unknown. Phospholipase C-γ1 (PLCγ1) catalyzes hydrolysis of phosphatidylinositol 4,5 biphosphate into the second messenger diacylglycerol and inositol 1,4,5 triphosphate, coordinates Ca2+ store mobilization, and regulates cell migration and proliferation in response to stress. Here we reported that c-Jun upregulates PLCγ1 expression and enhances PLCγ1-induced Ca2+ signaling, thus promoting intestinal epithelial restitution after wounding. Ectopically expressed c-Jun increased PLCγ1 expression at the transcription level, and this stimulation is mediated by directly interacting with AP-1 and CCAAT-enhancer-binding protein (C/EBP) binding sites that are located at the proximal region of the rat PLCγ1 promoter. Increased levels of PLCγ1 by c-Jun elevated cytosolic free Ca2+ concentration and stimulated intestinal epithelial cell migration over the denuded area after wounding. The c-Jun-mediated PLCγ1/Ca2+ signal also plays an important role in polyamine-induced cell migration after wounding because increased c-Jun rescued Ca2+ influx and cell migration in polyamine-deficient cells. These findings indicate that c-Jun induces PLCγ1 expression transcriptionally and enhances rapid epithelial restitution after injury by activating Ca2+ signal.
Collapse
Affiliation(s)
- Peng-Yuan Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Shelley R Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jie Chen
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland; and.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; .,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| |
Collapse
|
50
|
Huang F, Luo J, Ning T, Cao W, Jin X, Zhao H, Wang Y, Han S. Cytosolic and Nucleosolic Calcium Signaling in Response to Osmotic and Salt Stresses Are Independent of Each Other in Roots of Arabidopsis Seedlings. FRONTIERS IN PLANT SCIENCE 2017; 8:1648. [PMID: 28983313 PMCID: PMC5613247 DOI: 10.3389/fpls.2017.01648] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/07/2017] [Indexed: 05/02/2023]
Abstract
Calcium acts as a universal second messenger in both developmental processes and responses to environmental stresses. Previous research has shown that a number of stimuli can induce [Ca2+] increases in both the cytoplasm and nucleus in plants. However, the relationship between cytosolic and nucleosolic calcium signaling remains obscure. Here, we generated transgenic plants containing a fusion protein, comprising rat parvalbumin (PV) with either a nuclear export sequence (PV-NES) or a nuclear localization sequence (NLS-PV), to selectively buffer the cytosolic or nucleosolic calcium. Firstly, we found that the osmotic stress-induced cytosolic [Ca2+] increase (OICIcyt) and the salt stress-induced cytosolic [Ca2+] increase (SICIcyt) were impaired in the PV-NES lines compared with the Arabidopsis wildtype (WT). Similarly, the osmotic stress-induced nucleosolic [Ca2+] increase (OICInuc) and salt stress-induced nucleosolic [Ca2+] increase (SICInuc) were also disrupted in the NLS-PV lines. These results indicate that PV can effectively buffer the increase of [Ca2+] in response to various stimuli in Arabidopsis. However, the OICIcyt and SICIcyt in the NLS-PV plants were similar to those in the WT, and the OICInuc and SICInuc in the PV-NES plants were also same as those in the WT, suggesting that the cytosolic and nucleosolic calcium dynamics are mutually independent. Furthermore, we found that osmotic stress- and salt stress-inhibited root growth was reduced dramatically in the PV-NES and NLS-PV lines, while the osmotic stress-induced increase of the lateral root primordia was higher in the PV-NES plants than either the WT or NLS-PV plants. In addition, several stress-responsive genes, namely CML37, DREB2A, MYB2, RD29A, and RD29B, displayed diverse expression patterns in response to osmotic and salt stress in the PV-NES and NLS-PV lines when compared with the WT. Together, these results imply that the cytosolic and nucleosolic calcium signaling coexist to play the pivotal roles in the growth and development of plants and their responses to environment stresses.
Collapse
|