1
|
Srivastava LK, Ehrlicher AJ. Sensing the squeeze: nuclear mechanotransduction in health and disease. Nucleus 2024; 15:2374854. [PMID: 38951951 PMCID: PMC11221475 DOI: 10.1080/19491034.2024.2374854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
The nucleus not only is a repository for DNA but also a center of cellular and nuclear mechanotransduction. From nuclear deformation to the interplay between mechanosensing components and genetic control, the nucleus is poised at the nexus of mechanical forces and cellular function. Understanding the stresses acting on the nucleus, its mechanical properties, and their effects on gene expression is therefore crucial to appreciate its mechanosensitive function. In this review, we examine many elements of nuclear mechanotransduction, and discuss the repercussions on the health of cells and states of illness. By describing the processes that underlie nuclear mechanosensation and analyzing its effects on gene regulation, the review endeavors to open new avenues for studying nuclear mechanics in physiology and diseases.
Collapse
Affiliation(s)
| | - Allen J. Ehrlicher
- Department of Bioengineering, McGill University, Montreal, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
- Centre for Structural Biology, McGill University, Montreal, Canada
- Department of Mechanical Engineering, McGill University, Montreal, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Canada
| |
Collapse
|
2
|
Sikder K, Phillips E, Zhong Z, Wang N, Saunders J, Mothy D, Kossenkov A, Schneider T, Nichtova Z, Csordas G, Margulies KB, Choi JC. Perinuclear damage from nuclear envelope deterioration elicits stress responses that contribute to LMNA cardiomyopathy. SCIENCE ADVANCES 2024; 10:eadh0798. [PMID: 38718107 PMCID: PMC11078192 DOI: 10.1126/sciadv.adh0798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/03/2024] [Indexed: 05/12/2024]
Abstract
Mutations in the LMNA gene encoding lamins A/C cause an array of tissue-selective diseases, with the heart being the most commonly affected organ. Despite progress in understanding the perturbations emanating from LMNA mutations, an integrative understanding of the pathogenesis underlying cardiac dysfunction remains elusive. Using a novel conditional deletion model capable of translatome profiling, we observed that cardiomyocyte-specific Lmna deletion in adult mice led to rapid cardiomyopathy with pathological remodeling. Before cardiac dysfunction, Lmna-deleted cardiomyocytes displayed nuclear abnormalities, Golgi dilation/fragmentation, and CREB3-mediated stress activation. Translatome profiling identified MED25 activation, a transcriptional cofactor that regulates Golgi stress. Autophagy is disrupted in the hearts of these mice, which can be recapitulated by disrupting the Golgi. Systemic administration of modulators of autophagy or ER stress significantly delayed cardiac dysfunction and prolonged survival. These studies support a hypothesis wherein stress responses emanating from the perinuclear space contribute to the LMNA cardiomyopathy development.
Collapse
Affiliation(s)
- Kunal Sikder
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia PA, USA
| | - Elizabeth Phillips
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia PA, USA
| | - Zhijiu Zhong
- Translational Research and Pathology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Nadan Wang
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia PA, USA
| | - Jasmine Saunders
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia PA, USA
| | - David Mothy
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia PA, USA
| | - Andrew Kossenkov
- Bioinformatics Facility, The Wistar Institute Cancer Center, Philadelphia, PA, USA
| | - Timothy Schneider
- Mitocare, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zuzana Nichtova
- Mitocare, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Gyorgy Csordas
- Mitocare, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kenneth B. Margulies
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason C. Choi
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia PA, USA
| |
Collapse
|
3
|
Gregory EF, Kalra S, Brock T, Bonne G, Luxton GWG, Hopkins C, Starr DA. Caenorhabditis elegans models for striated muscle disorders caused by missense variants of human LMNA. PLoS Genet 2023; 19:e1010895. [PMID: 37624850 PMCID: PMC10484454 DOI: 10.1371/journal.pgen.1010895] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/07/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Striated muscle laminopathies caused by missense mutations in the nuclear lamin gene LMNA are characterized by cardiac dysfunction and often skeletal muscle defects. Attempts to predict which LMNA variants are pathogenic and to understand their physiological effects lag behind variant discovery. We created Caenorhabditis elegans models for striated muscle laminopathies by introducing pathogenic human LMNA variants and variants of unknown significance at conserved residues within the lmn-1 gene. Severe missense variants reduced fertility and/or motility in C. elegans. Nuclear morphology defects were evident in the hypodermal nuclei of many lamin variant strains, indicating a loss of nuclear envelope integrity. Phenotypic severity varied within the two classes of missense mutations involved in striated muscle disease, but overall, variants associated with both skeletal and cardiac muscle defects in humans lead to more severe phenotypes in our model than variants predicted to disrupt cardiac function alone. We also identified a separation of function allele, lmn-1(R204W), that exhibited normal viability and swimming behavior but had a severe nuclear migration defect. Thus, we established C. elegans avatars for striated muscle laminopathies and identified LMNA variants that offer insight into lamin mechanisms during normal development.
Collapse
Affiliation(s)
- Ellen F. Gregory
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| | - Shilpi Kalra
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| | - Trisha Brock
- InVivo Biosystems, Eugene, Oregon, United States of America
| | - Gisèle Bonne
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - G. W. Gant Luxton
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| | | | - Daniel A. Starr
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| |
Collapse
|
4
|
Pande S, Ghosh DK. Nuclear proteostasis imbalance in laminopathy-associated premature aging diseases. FASEB J 2023; 37:e23116. [PMID: 37498235 DOI: 10.1096/fj.202300878r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/15/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Laminopathies are a group of rare genetic disorders with heterogeneous clinical phenotypes such as premature aging, cardiomyopathy, lipodystrophy, muscular dystrophy, microcephaly, epilepsy, and so on. The cellular phenomena associated with laminopathy invariably show disruption of nucleoskeleton of lamina due to deregulated expression, localization, function, and interaction of mutant lamin proteins. Impaired spatial and temporal tethering of lamin proteins to the lamina or nucleoplasmic aggregation of lamins are the primary molecular events that can trigger nuclear proteotoxicity by modulating differential protein-protein interactions, sequestering quality control proteins, and initiating a cascade of abnormal post-translational modifications. Clearly, laminopathic cells exhibit moderate to high nuclear proteotoxicity, raising the question of whether an imbalance in nuclear proteostasis is involved in laminopathic diseases, particularly in diseases of early aging such as HGPS and laminopathy-associated premature aging. Here, we review nuclear proteostasis and its deregulation in the context of lamin proteins and laminopathies.
Collapse
Affiliation(s)
- Shruti Pande
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Debasish Kumar Ghosh
- Enteric Disease Division, Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
5
|
Walker SG, Langland CJ, Viles J, Hecker LA, Wallrath LL. Drosophila Models Reveal Properties of Mutant Lamins That Give Rise to Distinct Diseases. Cells 2023; 12:cells12081142. [PMID: 37190051 DOI: 10.3390/cells12081142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Mutations in the LMNA gene cause a collection of diseases known as laminopathies, including muscular dystrophies, lipodystrophies, and early-onset aging syndromes. The LMNA gene encodes A-type lamins, lamins A/C, intermediate filaments that form a meshwork underlying the inner nuclear membrane. Lamins have a conserved domain structure consisting of a head, coiled-coil rod, and C-terminal tail domain possessing an Ig-like fold. This study identified differences between two mutant lamins that cause distinct clinical diseases. One of the LMNA mutations encodes lamin A/C p.R527P and the other codes lamin A/C p.R482W, which are typically associated with muscular dystrophy and lipodystrophy, respectively. To determine how these mutations differentially affect muscle, we generated the equivalent mutations in the Drosophila Lamin C (LamC) gene, an orthologue of human LMNA. The muscle-specific expression of the R527P equivalent showed cytoplasmic aggregation of LamC, a reduced larval muscle size, decreased larval motility, and cardiac defects resulting in a reduced adult lifespan. By contrast, the muscle-specific expression of the R482W equivalent caused an abnormal nuclear shape without a change in larval muscle size, larval motility, and adult lifespan compared to controls. Collectively, these studies identified fundamental differences in the properties of mutant lamins that cause clinically distinct phenotypes, providing insights into disease mechanisms.
Collapse
Affiliation(s)
- Sydney G Walker
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Christopher J Langland
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Jill Viles
- Independent Researcher, Gowrie, IA 50543, USA
| | - Laura A Hecker
- Department of Biology, Clarke University, Dubuque, IA 52001, USA
| | - Lori L Wallrath
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
6
|
Genotype-Phenotype Correlations in Human Diseases Caused by Mutations of LINC Complex-Associated Genes: A Systematic Review and Meta-Summary. Cells 2022; 11:cells11244065. [PMID: 36552829 PMCID: PMC9777268 DOI: 10.3390/cells11244065] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Mutations in genes encoding proteins associated with the linker of nucleoskeleton and cytoskeleton (LINC) complex within the nuclear envelope cause different diseases with varying phenotypes including skeletal muscle, cardiac, metabolic, or nervous system pathologies. There is some understanding of the structure of LINC complex-associated proteins and how they interact, but it is unclear how mutations in genes encoding them can cause the same disease, and different diseases with different phenotypes. Here, published mutations in LINC complex-associated proteins were systematically reviewed and analyzed to ascertain whether patterns exist between the genetic sequence variants and clinical phenotypes. This revealed LMNA is the only LINC complex-associated gene in which mutations commonly cause distinct conditions, and there are no clear genotype-phenotype correlations. Clusters of LMNA variants causing striated muscle disease are located in exons 1 and 6, and metabolic disease-associated LMNA variants are frequently found in the tail of lamin A/C. Additionally, exon 6 of the emerin gene, EMD, may be a mutation "hot-spot", and diseases related to SYNE1, encoding nesprin-1, are most often caused by nonsense type mutations. These results provide insight into the diverse roles of LINC-complex proteins in human disease and provide direction for future gene-targeted therapy development.
Collapse
|
7
|
Peña B, Gao S, Borin D, Del Favero G, Abdel-Hafiz M, Farahzad N, Lorenzon P, Sinagra G, Taylor MRG, Mestroni L, Sbaizero O. Cellular Biomechanic Impairment in Cardiomyocytes Carrying the Progeria Mutation: An Atomic Force Microscopy Investigation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14928-14940. [PMID: 36420863 PMCID: PMC9730902 DOI: 10.1021/acs.langmuir.2c02623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Given the clinical effect of progeria syndrome, understanding the cell mechanical behavior of this pathology could benefit the patient's treatment. Progeria patients show a point mutation in the lamin A/C gene (LMNA), which could change the cell's biomechanical properties. This paper reports a mechano-dynamic analysis of a progeria mutation (c.1824 C > T, p.Gly608Gly) in neonatal rat ventricular myocytes (NRVMs) using cell indentation by atomic force microscopy to measure alterations in beating force, frequency, and contractile amplitude of selected cells within cell clusters. Furthermore, we examined the beating rate variability using a time-domain method that produces a Poincaré plot because beat-to-beat changes can shed light on the causes of arrhythmias. Our data have been further related to our cell phenotype findings, using immunofluorescence and calcium transient analysis, showing that mutant NRVMs display changes in both beating force and frequency. These changes were associated with a decreased gap junction localization (Connexin 43) in the mutant NRVMs even in the presence of a stable cytoskeletal structure (microtubules and actin filaments) when compared with controls (wild type and non-treated cells). These data emphasize the kindred between nucleoskeleton (LMNA), cytoskeleton, and the sarcolemmal structures in NRVM with the progeria Gly608Gly mutation, prompting future mechanistic and therapeutic investigations.
Collapse
Affiliation(s)
- Brisa Peña
- Cardiovascular
Institute & Adult Medical Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado80045, United States
- Bioengineering
Department, University of Colorado Denver
Anschutz Medical Campus, 12705 E. Montview Avenue, Suite 100, Aurora, Colorado80045, United States
| | - Shanshan Gao
- Cardiovascular
Institute & Adult Medical Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado80045, United States
| | - Daniele Borin
- Department
of Engineering and Architecture, University
of Trieste, Trieste34127, Italy
| | - Giorgia Del Favero
- Department
of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38-42, 1090Vienna, Austria
- Core
Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Wien, Währinger Straße 38-42, 1090Vienna, Austria
| | - Mostafa Abdel-Hafiz
- Bioengineering
Department, University of Colorado Denver
Anschutz Medical Campus, 12705 E. Montview Avenue, Suite 100, Aurora, Colorado80045, United States
| | - Nasim Farahzad
- Bioengineering
Department, University of Colorado Denver
Anschutz Medical Campus, 12705 E. Montview Avenue, Suite 100, Aurora, Colorado80045, United States
| | - Paola Lorenzon
- Department
F of Life Sciences, University of Trieste, Trieste34127, Italy
| | - Gianfranco Sinagra
- Polo
Cardiologico, Azienda Sanitaria Universitaria
Integrata di Trieste, Strada di Fiume 447, Trieste34127, Italy
| | - Matthew R. G. Taylor
- Cardiovascular
Institute & Adult Medical Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado80045, United States
| | - Luisa Mestroni
- Cardiovascular
Institute & Adult Medical Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado80045, United States
| | - Orfeo Sbaizero
- Cardiovascular
Institute & Adult Medical Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado80045, United States
- Department
of Engineering and Architecture, University
of Trieste, Trieste34127, Italy
| |
Collapse
|
8
|
Abstract
The nuclear envelope is composed of the nuclear membranes, nuclear lamina, and nuclear pore complexes. Laminopathies are diseases caused by mutations in genes encoding protein components of the lamina and these other nuclear envelope substructures. Mutations in the single gene encoding lamin A and C, which are expressed in most differentiated somatic cells, cause diseases affecting striated muscle, adipose tissue, peripheral nerve, and multiple systems with features of accelerated aging. Mutations in genes encoding other nuclear envelope proteins also cause an array of diseases that selectively affect different tissues or organs. In some instances, the molecular and cellular consequences of laminopathy-causing mutations are known. However, even when these are understood, mechanisms explaining specific tissue or organ pathology remain enigmatic. Current mechanistic hypotheses focus on how alterations in the nuclear envelope may affect gene expression, including via the regulation of signaling pathways, or cellular mechanics, including responses to mechanical stress.
Collapse
Affiliation(s)
- Ji-Yeon Shin
- Department of Medicine and Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Howard J. Worman
- Department of Medicine and Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
9
|
Preclinical Advances of Therapies for Laminopathies. J Clin Med 2021; 10:jcm10214834. [PMID: 34768351 PMCID: PMC8584472 DOI: 10.3390/jcm10214834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022] Open
Abstract
Laminopathies are a group of rare disorders due to mutation in LMNA gene. Depending on the mutation, they may affect striated muscles, adipose tissues, nerves or are multisystemic with various accelerated ageing syndromes. Although the diverse pathomechanisms responsible for laminopathies are not fully understood, several therapeutic approaches have been evaluated in patient cells or animal models, ranging from gene therapies to cell and drug therapies. This review is focused on these therapies with a strong focus on striated muscle laminopathies and premature ageing syndromes.
Collapse
|
10
|
Vignier N, Chatzifrangkeskou M, Pinton L, Wioland H, Marais T, Lemaitre M, Le Dour C, Peccate C, Cardoso D, Schmitt A, Wu W, Biferi MG, Naouar N, Macquart C, Beuvin M, Decostre V, Bonne G, Romet-Lemonne G, Worman HJ, Tedesco FS, Jégou A, Muchir A. The non-muscle ADF/cofilin-1 controls sarcomeric actin filament integrity and force production in striated muscle laminopathies. Cell Rep 2021; 36:109601. [PMID: 34433058 PMCID: PMC8411111 DOI: 10.1016/j.celrep.2021.109601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/09/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022] Open
Abstract
Cofilins are important for the regulation of the actin cytoskeleton, sarcomere organization, and force production. The role of cofilin-1, the non-muscle-specific isoform, in muscle function remains unclear. Mutations in LMNA encoding A-type lamins, intermediate filament proteins of the nuclear envelope, cause autosomal Emery-Dreifuss muscular dystrophy (EDMD). Here, we report increased cofilin-1 expression in LMNA mutant muscle cells caused by the inability of proteasome degradation, suggesting a protective role by ERK1/2. It is known that phosphorylated ERK1/2 directly binds to and catalyzes phosphorylation of the actin-depolymerizing factor cofilin-1 on Thr25. In vivo ectopic expression of cofilin-1, as well as its phosphorylated form on Thr25, impairs sarcomere structure and force generation. These findings present a mechanism that provides insight into the molecular pathogenesis of muscular dystrophies caused by LMNA mutations.
Collapse
Affiliation(s)
- Nicolas Vignier
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Maria Chatzifrangkeskou
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Luca Pinton
- Department of Cell and Developmental Biology, University College London, London, UK; Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Hugo Wioland
- Université de Paris, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Thibaut Marais
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Mégane Lemaitre
- Sorbonne Université, UMS28, Phénotypage du Petit Animal, Paris, France
| | - Caroline Le Dour
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Cécile Peccate
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Déborah Cardoso
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Alain Schmitt
- Université de Paris, INSERM, CNRS, Institut Cochin, 75005 Paris, France
| | - Wei Wu
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Maria-Grazia Biferi
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Naïra Naouar
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Coline Macquart
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Maud Beuvin
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Valérie Decostre
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Gisèle Bonne
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | | | - Howard J Worman
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Francesco Saverio Tedesco
- Department of Cell and Developmental Biology, University College London, London, UK; Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London, UK; The Francis Crick Institute, London, UK
| | - Antoine Jégou
- Université de Paris, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Antoine Muchir
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France.
| |
Collapse
|
11
|
Expression of the Ebola Virus VP24 Protein Compromises the Integrity of the Nuclear Envelope and Induces a Laminopathy-Like Cellular Phenotype. mBio 2021; 12:e0097221. [PMID: 34225493 PMCID: PMC8406168 DOI: 10.1128/mbio.00972-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ebola virus (EBOV) VP24 protein is a nucleocapsid-associated protein that inhibits interferon (IFN) gene expression and counteracts the IFN-mediated antiviral response, preventing nuclear import of signal transducer and activator of transcription 1 (STAT1). Proteomic studies to identify additional EBOV VP24 partners have pointed to the nuclear membrane component emerin as a potential element of the VP24 cellular interactome. Here, we have further studied this interaction and its impact on cell biology. We demonstrate that VP24 interacts with emerin but also with other components of the inner nuclear membrane, such as lamin A/C and lamin B. We also show that VP24 diminishes the interaction between emerin and lamin A/C and compromises the integrity of the nuclear membrane. This disruption is associated with nuclear morphological abnormalities, activation of a DNA damage response, the phosphorylation of extracellular signal-regulated kinase (ERK), and the induction of interferon-stimulated gene 15 (ISG15). Interestingly, expression of VP24 also promoted the cytoplasmic translocation and downmodulation of barrier-to-autointegration factor (BAF), a common interactor of lamin A/C and emerin, leading to repression of the BAF-regulated CSF1 gene. Importantly, we found that EBOV infection results in the activation of pathways associated with nuclear envelope damage, consistent with our observations in cells expressing VP24. In summary, here we demonstrate that VP24 acts at the nuclear membrane, causing morphological and functional changes in cells that recapitulate several of the hallmarks of laminopathy diseases.
Collapse
|
12
|
Abstract
The cell nucleus is best known as the container of the genome. Its envelope provides a barrier for passive macromolecule diffusion, which enhances the control of gene expression. As its largest and stiffest organelle, the nucleus also defines the minimal space requirements of a cell. Internal or external pressures that deform a cell to its physical limits cause a corresponding nuclear deformation. Evidence is consolidating that the nucleus, in addition to its genetic functions, serves as a physical sensing device for critical cell body deformation. Nuclear mechanotransduction allows cells to adapt their acute behaviors, mechanical stability, paracrine signaling, and fate to their physical surroundings. This review summarizes the basic chemical and mechanical properties of nuclear components, and how these properties are thought to be utilized for mechanosensing. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Philipp Niethammer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| |
Collapse
|
13
|
Kronenberg-Tenga R, Tatli M, Eibauer M, Wu W, Shin JY, Bonne G, Worman HJ, Medalia O. A lamin A/C variant causing striated muscle disease provides insights into filament organization. J Cell Sci 2021; 134:jcs.256156. [PMID: 33536248 DOI: 10.1242/jcs.256156] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/26/2021] [Indexed: 12/31/2022] Open
Abstract
The LMNA gene encodes the A-type lamins, which polymerize into ∼3.5-nm-thick filaments and, together with B-type lamins and associated proteins, form the nuclear lamina. Mutations in LMNA cause a wide variety of pathologies. In this study, we analyzed the nuclear lamina of embryonic fibroblasts from Lmna H222P/H222P mice, which develop cardiomyopathy and muscular dystrophy. Although the organization of the lamina appeared unaltered, there were changes in chromatin and B-type lamin expression. An increase in nuclear size and consequently a relative reduction in heterochromatin near the lamina allowed for a higher resolution structural analysis of lamin filaments using cryo-electron tomography. This was most apparent when visualizing lamin filaments in situ and using a nuclear extraction protocol. Averaging of individual segments of filaments in Lmna H222P/H222P mouse fibroblasts resolved two polymers that constitute the mature filaments. Our findings provide better views of the organization of lamin filaments and the effect of a striated muscle disease-causing mutation on nuclear structure.
Collapse
Affiliation(s)
- Rafael Kronenberg-Tenga
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Meltem Tatli
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Matthias Eibauer
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Wei Wu
- Department of Medicine and Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Ji-Yeon Shin
- Department of Medicine and Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Gisèle Bonne
- Sorbonne Université, INSERM, Centre de Recherche en Myologie, Institut de Myologie, F-75651 Paris CEDEX 13, France
| | - Howard J Worman
- Department of Medicine and Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
14
|
Lateral A11 type tetramerization in lamins. J Struct Biol 2020; 209:107404. [DOI: 10.1016/j.jsb.2019.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022]
|
15
|
Dorland YL, Cornelissen AS, Kuijk C, Tol S, Hoogenboezem M, van Buul JD, Nolte MA, Voermans C, Huveneers S. Nuclear shape, protrusive behaviour and in vivo retention of human bone marrow mesenchymal stromal cells is controlled by Lamin-A/C expression. Sci Rep 2019; 9:14401. [PMID: 31591420 PMCID: PMC6779744 DOI: 10.1038/s41598-019-50955-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 09/23/2019] [Indexed: 12/13/2022] Open
Abstract
Culture expanded mesenchymal stromal cells (MSCs) are being extensively studied for therapeutic applications, including treatment of graft-versus-host disease, osteogenesis imperfecta and for enhancing engraftment of hematopoietic stem cells after transplantation. Thus far, clinical trials have shown that the therapeutic efficiency of MSCs is variable, which may in part be due to inefficient cell migration. Here we demonstrate that human MSCs display remarkable low migratory behaviour compared to other mesodermal-derived primary human cell types. We reveal that specifically in MSCs the nucleus is irregularly shaped and nuclear lamina are prone to wrinkling. In addition, we show that expression of Lamin A/C is relatively high in MSCs. We further demonstrate that in vitro MSC migration through confined pores is limited by their nuclei, a property that might correlate to the therapeutic inefficiency of administered MSC in vivo. Silencing expression of Lamin A/C in MSCs improves nuclear envelope morphology, promotes the protrusive activity of MSCs through confined pores and enhances their retention in the lung after intravenous administration in vivo. Our findings suggest that the intrinsic nuclear lamina properties of MSCs underlie their limited capacity to migrate, and that strategies that target the nuclear lamina might alter MSC-based cellular therapies.
Collapse
Affiliation(s)
- Yvonne L Dorland
- Sanquin Research and Landsteiner Laboratory, Department of Molecular and Cellular Hemostasis, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Anne S Cornelissen
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Carlijn Kuijk
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Simon Tol
- Sanquin Research and Landsteiner Laboratory, Department of Molecular and Cellular Hemostasis, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mark Hoogenboezem
- Sanquin Research and Landsteiner Laboratory, Department of Molecular and Cellular Hemostasis, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaap D van Buul
- Sanquin Research and Landsteiner Laboratory, Department of Molecular and Cellular Hemostasis, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Martijn A Nolte
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Carlijn Voermans
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Stephan Huveneers
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Stewart RM, Rodriguez EC, King MC. Ablation of SUN2-containing LINC complexes drives cardiac hypertrophy without interstitial fibrosis. Mol Biol Cell 2019; 30:1664-1675. [PMID: 31091167 PMCID: PMC6727752 DOI: 10.1091/mbc.e18-07-0438] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The cardiomyocyte cytoskeleton, including the sarcomeric contractile apparatus, forms a cohesive network with cellular adhesions at the plasma membrane and nuclear--cytoskeletal linkages (LINC complexes) at the nuclear envelope. Human cardiomyopathies are genetically linked to the LINC complex and A-type lamins, but a full understanding of disease etiology in these patients is lacking. Here we show that SUN2-null mice display cardiac hypertrophy coincident with enhanced AKT/MAPK signaling, as has been described previously for mice lacking A-type lamins. Surprisingly, in contrast to lamin A/C-null mice, SUN2-null mice fail to show coincident fibrosis or upregulation of pathological hypertrophy markers. Thus, cardiac hypertrophy is uncoupled from profibrotic signaling in this mouse model, which we tie to a requirement for the LINC complex in productive TGFβ signaling. In the absence of SUN2, we detect elevated levels of the integral inner nuclear membrane protein MAN1, an established negative regulator of TGFβ signaling, at the nuclear envelope. We suggest that A-type lamins and SUN2 play antagonistic roles in the modulation of profibrotic signaling through opposite effects on MAN1 levels at the nuclear lamina, suggesting a new perspective on disease etiology.
Collapse
Affiliation(s)
- Rachel M Stewart
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520-8002
| | - Elisa C Rodriguez
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520-8002
| | - Megan C King
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520-8002
| |
Collapse
|
17
|
Cellular and Animal Models of Striated Muscle Laminopathies. Cells 2019; 8:cells8040291. [PMID: 30934932 PMCID: PMC6523539 DOI: 10.3390/cells8040291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 01/12/2023] Open
Abstract
The lamin A/C (LMNA) gene codes for nuclear intermediate filaments constitutive of the nuclear lamina. LMNA has 12 exons and alternative splicing of exon 10 results in two major isoforms—lamins A and C. Mutations found throughout the LMNA gene cause a group of diseases collectively known as laminopathies, of which the type, diversity, penetrance and severity of phenotypes can vary from one individual to the other, even between individuals carrying the same mutation. The majority of the laminopathies affect cardiac and/or skeletal muscles. The underlying molecular mechanisms contributing to such tissue-specific phenotypes caused by mutations in a ubiquitously expressed gene are not yet well elucidated. This review will explore the different phenotypes observed in established models of striated muscle laminopathies and their respective contributions to advancing our understanding of cardiac and skeletal muscle-related laminopathies. Potential future directions for developing effective treatments for patients with lamin A/C mutation-associated cardiac and/or skeletal muscle conditions will be discussed.
Collapse
|
18
|
Khromova NV, Perepelina KI, Ivanova OA, Malashicheva AB, Kostareva AA, Dmitrieva RI. R482L Mutation of the LMNA Gene Affects Dynamics of C2C12 Myogenic Differentiation and Stimulates Formation of Intramuscular Lipid Droplets. BIOCHEMISTRY (MOSCOW) 2019; 84:241-249. [DOI: 10.1134/s0006297919030064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Serebryannyy LA, Ball DA, Karpova TS, Misteli T. Single molecule analysis of lamin dynamics. Methods 2019; 157:56-65. [PMID: 30145357 PMCID: PMC6387858 DOI: 10.1016/j.ymeth.2018.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 12/28/2022] Open
Abstract
The nuclear envelope (NE) is an essential cellular structure that contributes to nuclear stability, organization, and function. Mutations in NE-associated proteins result in a myriad of pathologies with widely diverse clinical manifestations, ages of onsets, and affected tissues. Notably, several hundred disease-causing mutations have been mapped to the LMNA gene, which encodes the intermediate filament proteins lamin A and C, two of the major architectural components of the nuclear envelope. However, how NE dysfunction leads to the highly variable pathologies observed in patient cells and tissues remains poorly understood. One model suggests alterations in the dynamic properties of the nuclear lamina and its associated proteins contribute to disease phenotype. Here, we describe the application of single molecule tracking (SMT) methodology to characterize the behavior of nuclear envelope transmembrane proteins and nuclear lamins in their native cellular environment at the single molecule level. As proof-of-concept, we demonstrate by SMT that Halo-tagged lamin B1, Samp1, lamin A, and lamin AΔ50 have distinct binding and kinetic properties, and we identify several disease-relevant mutants which exhibit altered binding dynamics. SMT is also able to separately probe the dynamics of the peripheral and the nucleoplasmic populations of lamin A mutants. We suggest that SMT is a robust and sensitive method to investigate the relationship between pathogenic mutations or cellular processes and protein dynamics at the NE.
Collapse
Affiliation(s)
- Leonid A Serebryannyy
- Cell Biology of Genomes Group, National Cancer Institute, National Institutes of Health, 41 Library Drive, Bethesda, MD 20892, USA
| | - David A Ball
- Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, Optical Microscopy Core, National Cancer Institute, National Institutes of Health, Building 41, 41 Library Drive, Bethesda, MD 20892, USA
| | - Tatiana S Karpova
- Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, Optical Microscopy Core, National Cancer Institute, National Institutes of Health, Building 41, 41 Library Drive, Bethesda, MD 20892, USA
| | - Tom Misteli
- Cell Biology of Genomes Group, National Cancer Institute, National Institutes of Health, 41 Library Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
20
|
Vivante A, Brozgol E, Bronshtein I, Levi V, Garini Y. Chromatin dynamics governed by a set of nuclear structural proteins. Genes Chromosomes Cancer 2019; 58:437-451. [PMID: 30537111 DOI: 10.1002/gcc.22719] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/15/2018] [Accepted: 12/04/2018] [Indexed: 12/30/2022] Open
Abstract
During the past three decades, the study of nuclear and chromatin organization has become of great interest. The organization and dynamics of chromatin are directly responsible for many functions including gene regulation, genome replication, and maintenance. In order to better understand the details of these mechanisms, we need to understand the role of specific proteins that take part in these processes. The genome in the nucleus is organized in different length scales, ranging from the bead-like nucleosomes through topological associated domains up to chromosome territories. The mechanisms that maintain these structures, however, remain to be fully elucidated. Previous works highlighted the significance of lamin A, an important nucleoplasmic protein; however, there are other nuclear structural proteins that are also important for chromatin organization. Studying the organizational aspects of the nucleus is a complex task, and different methods have been developed and adopted for this purpose, including molecular and imaging methods. Here we describe the use of the live-cell imaging method and demonstrate that the dynamics of the nucleus is strongly related to its organizational mechanisms. We labeled different genomic sites in the nucleus and measured the effect of nuclear structural proteins on their dynamics. We studied lamin A, BAF, Emerin, lamin B, CTCF, and Cohesin and discuss how each of them affect chromatin dynamics. Our findings indicate that lamin A and BAF have a significant effect on chromosomes dynamics, while other proteins mildly affect the type of the diffusion while the volume of motion is not affected.
Collapse
Affiliation(s)
- Anat Vivante
- Physics Department and Nanotechnology Institute, Bar Ilan University, Ramat Gan, Israel
| | - Eugene Brozgol
- Physics Department and Nanotechnology Institute, Bar Ilan University, Ramat Gan, Israel
| | - Irena Bronshtein
- Physics Department and Nanotechnology Institute, Bar Ilan University, Ramat Gan, Israel
| | - Vered Levi
- Physics Department and Nanotechnology Institute, Bar Ilan University, Ramat Gan, Israel
| | - Yuval Garini
- Physics Department and Nanotechnology Institute, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
21
|
González-Cruz RD, Dahl KN, Darling EM. The Emerging Role of Lamin C as an Important LMNA Isoform in Mechanophenotype. Front Cell Dev Biol 2018; 6:151. [PMID: 30450357 PMCID: PMC6224339 DOI: 10.3389/fcell.2018.00151] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/15/2018] [Indexed: 12/17/2022] Open
Abstract
Lamin A and lamin C isoforms of the gene LMNA are major structural and mechanotransductive components of the nuclear lamina. Previous reports have proposed lamin A as the isoform with the most dominant contributions to cellular mechanophenotype. Recently, expression of lamin C has also been shown to strongly correlate to cellular elastic and viscoelastic properties. Nevertheless, LMNA isoforms exist as part of a network that collectively provides structural integrity to the nucleus and their expression is ultimately regulated in a cell-specific manner. Thus, they have importance in mechanotransduction and structural integrity of the nucleus as well as potential candidates for biomarkers of whole-cell mechanophenotype. Therefore, a fuller discussion of lamin isoforms as mechanophenotypic biomarkers should compare both individual and ratiometric isoform contributions toward whole-cell mechanophenotype across different cell types. In this perspective, we discuss the distinctions between the mechanophenotypic correlations of individual and ratiometric lamins A:B1, C:B1, (A + C):B1, and C:A across cells from different lineages, demonstrating that the collective contribution of ratiometric lamin (A + C):B1 isoforms exhibited the strongest correlation to whole-cell stiffness. Additionally, we highlight the potential roles of lamin isoform ratios as indicators of mechanophenotypic change in differentiation and disease to demonstrate that the contributions of individual and collective lamin isoforms can occur as both static and dynamic biomarkers of mechanophenotype.
Collapse
Affiliation(s)
| | - Kris N Dahl
- Department of Chemical Engineering, Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Eric M Darling
- Center for Biomedical Engineering, Brown University, Providence, RI, United States.,Department of Molecular Pharmacology, Physiology and Biotechnology, School of Engineering, Department of Orthopaedics, Brown University, Providence, RI, United States
| |
Collapse
|
22
|
Steele-Stallard HB, Pinton L, Sarcar S, Ozdemir T, Maffioletti SM, Zammit PS, Tedesco FS. Modeling Skeletal Muscle Laminopathies Using Human Induced Pluripotent Stem Cells Carrying Pathogenic LMNA Mutations. Front Physiol 2018; 9:1332. [PMID: 30405424 PMCID: PMC6201196 DOI: 10.3389/fphys.2018.01332] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 09/04/2018] [Indexed: 01/03/2023] Open
Abstract
Laminopathies are a clinically heterogeneous group of disorders caused by mutations in LMNA. The main proteins encoded by LMNA are Lamin A and C, which together with Lamin B1 and B2, form the nuclear lamina: a mesh-like structure located underneath the inner nuclear membrane. Laminopathies show striking tissue specificity, with subtypes affecting striated muscle, peripheral nerve, and adipose tissue, while others cause multisystem disease with accelerated aging. Although several pathogenic mechanisms have been proposed, the exact pathophysiology of laminopathies remains unclear, compounded by the rarity of these disorders and lack of easily accessible cell types to study. To overcome this limitation, we used induced pluripotent stem cells (iPSCs) from patients with skeletal muscle laminopathies such as LMNA-related congenital muscular dystrophy and limb-girdle muscular dystrophy 1B, to model disease phenotypes in vitro. iPSCs can be derived from readily accessible cell types, have unlimited proliferation potential and can be differentiated into cell types that would otherwise be difficult and invasive to obtain. iPSC lines from three skeletal muscle laminopathy patients were differentiated into inducible myogenic cells and myotubes. Disease-associated phenotypes were observed in these cells, including abnormal nuclear shape and mislocalization of nuclear lamina proteins. Nuclear abnormalities were less pronounced in monolayer cultures of terminally differentiated skeletal myotubes than in proliferating myogenic cells. Notably, skeletal myogenic differentiation of LMNA-mutant iPSCs in artificial muscle constructs improved detection of myonuclear abnormalities compared to conventional monolayer cultures across multiple pathogenic genotypes, providing a high-fidelity modeling platform for skeletal muscle laminopathies. Our results lay the foundation for future iPSC-based therapy development and screening platforms for skeletal muscle laminopathies.
Collapse
Affiliation(s)
- Heather B Steele-Stallard
- Department of Cell and Developmental Biology, University College London, London, United Kingdom.,Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Luca Pinton
- Department of Cell and Developmental Biology, University College London, London, United Kingdom.,Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Shilpita Sarcar
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Tanel Ozdemir
- Department of Cell and Developmental Biology, University College London, London, United Kingdom.,Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Sara M Maffioletti
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Francesco Saverio Tedesco
- Department of Cell and Developmental Biology, University College London, London, United Kingdom.,The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
23
|
Chatzifrangkeskou M, Yadin D, Marais T, Chardonnet S, Cohen-Tannoudji M, Mougenot N, Schmitt A, Crasto S, Di Pasquale E, Macquart C, Tanguy Y, Jebeniani I, Pucéat M, Morales Rodriguez B, Goldmann WH, Dal Ferro M, Biferi MG, Knaus P, Bonne G, Worman HJ, Muchir A. Cofilin-1 phosphorylation catalyzed by ERK1/2 alters cardiac actin dynamics in dilated cardiomyopathy caused by lamin A/C gene mutation. Hum Mol Genet 2018; 27:3060-3078. [PMID: 29878125 PMCID: PMC6097156 DOI: 10.1093/hmg/ddy215] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 01/01/2023] Open
Abstract
Hyper-activation of extracellular signal-regulated kinase (ERK) 1/2 contributes to heart dysfunction in cardiomyopathy caused by mutations in the lamin A/C gene (LMNA cardiomyopathy). The mechanism of how this affects cardiac function is unknown. We show that active phosphorylated ERK1/2 directly binds to and catalyzes the phosphorylation of the actin depolymerizing factor cofilin-1 on Thr25. Cofilin-1 becomes active and disassembles actin filaments in a large array of cellular and animal models of LMNA cardiomyopathy. In vivo expression of cofilin-1, phosphorylated on Thr25 by endogenous ERK1/2 signaling, leads to alterations in left ventricular function and cardiac actin. These results demonstrate a novel role for cofilin-1 on actin dynamics in cardiac muscle and provide a rationale on how increased ERK1/2 signaling leads to LMNA cardiomyopathy.
Collapse
Affiliation(s)
- Maria Chatzifrangkeskou
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, F-75013 Paris, France
| | - David Yadin
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Thibaut Marais
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, F-75013 Paris, France
| | - Solenne Chardonnet
- Sorbonne Université, UPMC Paris 06, INSERM, UMS29 Omique, F-75013 Paris, France
| | - Mathilde Cohen-Tannoudji
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, F-75013 Paris, France
| | - Nathalie Mougenot
- Sorbonne Université, UPMC Paris 06, INSERM, UMS28 Phénotypage du Petit Animal, Paris F-75013, France
| | - Alain Schmitt
- Institut Cochin, INSERM U1016-CNRS UMR 8104, Université Paris Descartes-Sorbonne Paris Cité, Paris F-75014, France
| | - Silvia Crasto
- Istituto Clinico Humanitas IRCCS, Milan, Italy
- Istituto Ricerca Genetica e Biomedica, National Research Council of Italy, Milan 20089, Italy
| | - Elisa Di Pasquale
- Istituto Clinico Humanitas IRCCS, Milan, Italy
- Istituto Ricerca Genetica e Biomedica, National Research Council of Italy, Milan 20089, Italy
| | - Coline Macquart
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, F-75013 Paris, France
| | - Yannick Tanguy
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, F-75013 Paris, France
| | - Imen Jebeniani
- Faculté de Médecine La Timone, Université Aix-Marseille, INSERM UMR910, Marseille 13005, France
| | - Michel Pucéat
- Faculté de Médecine La Timone, Université Aix-Marseille, INSERM UMR910, Marseille 13005, France
| | - Blanca Morales Rodriguez
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, F-75013 Paris, France
| | - Wolfgang H Goldmann
- Department of Physics, Friedrich-Alexander-University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Matteo Dal Ferro
- Cardiovascular Department, Ospedali Riuniti and University of Trieste, Trieste, Italy
| | - Maria-Grazia Biferi
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, F-75013 Paris, France
| | - Petra Knaus
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Gisèle Bonne
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, F-75013 Paris, France
| | - Howard J Worman
- Department of Medicine
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Antoine Muchir
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, F-75013 Paris, France
| |
Collapse
|
24
|
Maraldi NM. The lamin code. Biosystems 2018; 164:68-75. [DOI: 10.1016/j.biosystems.2017.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/10/2017] [Accepted: 07/14/2017] [Indexed: 12/24/2022]
|
25
|
González-Cruz RD, Sadick JS, Fonseca VC, Darling EM. Nuclear Lamin Protein C Is Linked to Lineage-Specific, Whole-Cell Mechanical Properties. Cell Mol Bioeng 2018; 11:131-142. [PMID: 29755599 DOI: 10.1007/s12195-018-0518-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Lamin proteins confer nuclear integrity and relay external mechanical cues that drive changes in gene expression. However, the influence these lamins have on whole-cell mechanical properties is unknown. We hypothesized that protein expression of lamins A, B1, and C would depend on the integrity of the actin cytoskeleton and correlate with cellular elasticity and viscoelasticity. METHODS To test these hypotheses, we examined the protein expression of lamins A, B1, and C across five different cell lines with varied mechanical properties. Additionally, we treated representative "soft/stiff" cell types with cytochalasin D and LMNA siRNA to determine the effect of a more compliant whole-cell phenotype on lamin A, B1 and C protein expression. RESULTS A positive, linear correlation existed between lamin C protein expression and average cell moduli/apparent viscosity. Though moderate correlations existed between lamin A/B1 protein expression and whole-cell mechanical properties, they were statistically insignificant. Inhibition of actin polymerization, via cytochalasin D treatment, resulted in reduced cell elasticity, viscoelasticity, and lamin A and C protein expression in "stiff" MG-63 cells. In "soft" HEK-293T cells, this treatment reduced cell elasticity and viscoelasticity but did not affect lamin B1 or C protein expression. Additionally, LMNA siRNA treatment of MG-63 cells decreased whole-cell elasticity and viscoelasticity. CONCLUSION These findings suggest that lamin C protein expression is strongly associated with whole-cell mechanical properties and could potentially serve as a biomarker for mechanophenotype.
Collapse
Affiliation(s)
- Rafael D González-Cruz
- Center for Biomedical Engineering, Brown University, Providence, RI USA.,Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI USA
| | - Jessica S Sadick
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI USA
| | - Vera C Fonseca
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI USA
| | - Eric M Darling
- Center for Biomedical Engineering, Brown University, Providence, RI USA.,Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI USA.,Department of Orthopaedics, Brown University, Providence, RI USA.,School of Engineering, Brown University, Providence, RI USA
| |
Collapse
|
26
|
Bhattacharjee P, Dasgupta D, Sengupta K. DCM associated LMNA mutations cause distortions in lamina structure and assembly. Biochim Biophys Acta Gen Subj 2017; 1861:2598-2608. [PMID: 28844980 DOI: 10.1016/j.bbagen.2017.08.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/01/2017] [Accepted: 08/11/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND A and B-type lamins are integral scaffolding components of the nuclear lamina which impart rigidity and shape to all metazoan nuclei. Over 450 mutations in A-type lamins are associated with 16 human diseases including dilated cardiomyopathy (DCM). Here, we show that DCM mutants perturb the self-association of lamin A (LA) and it's binding with lamin B1 (LB1). METHODS We used confocal and superresolution microscopy (NSIM) to study the effect of LA mutants on the nuclear lamina. We further used circular dichroism, fluorescence spectroscopy and isothermal titration calorimetry (ITC) to probe the structural modulations, self-association and heteropolymeric association of mutant LA. RESULTS Transfection of mutants in cultured cell lines result in the formation of nuclear aggregates of varied size and distribution. Endogenous LB1 is sequestered into these aggregates. This is consistent with the ten-fold increase in association constant of the mutant proteins compared to the wild type. These mutants exhibit differential heterotypic interaction with LB1, along with significant secondary and tertiary structural alterations of the interacting proteins. Thermodynamic studies demonstrate that the mutants bind to LB1 with different stoichiometry, affinity and energetics. CONCLUSIONS In this report we show that increased self-association propensity of mutant LA modulates the LA-LB1 interaction and precludes the formation of an otherwise uniform laminar network. GENERAL SIGNIFICANCE Our results might highlight the role of homotypic and heterotypic interactions of LA in the pathogenesis of DCM and hence laminopathies in the broader sense.
Collapse
Affiliation(s)
- Pritha Bhattacharjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Dipak Dasgupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India.
| | - Kaushik Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India.
| |
Collapse
|
27
|
Gagliardi A, Besio R, Carnemolla C, Landi C, Armini A, Aglan M, Otaify G, Temtamy SA, Forlino A, Bini L, Bianchi L. Cytoskeleton and nuclear lamina affection in recessive osteogenesis imperfecta: A functional proteomics perspective. J Proteomics 2017; 167:46-59. [PMID: 28802583 PMCID: PMC5584732 DOI: 10.1016/j.jprot.2017.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/02/2017] [Accepted: 08/07/2017] [Indexed: 02/07/2023]
Abstract
Osteogenesis imperfecta (OI) is a collagen-related disorder associated to dominant, recessive or X-linked transmission, mainly caused by mutations in type I collagen genes or in genes involved in type I collagen metabolism. Among the recessive forms, OI types VII, VIII, and IX are due to mutations in CRTAP, P3H1, and PPIB genes, respectively. They code for the three components of the endoplasmic reticulum complex that catalyzes 3-hydroxylation of type I collagen α1Pro986. Under-hydroxylation of this residue leads to collagen structural abnormalities and results in moderate to lethal OI phenotype, despite the exact molecular mechanisms are still not completely clear. To shed light on these recessive forms, primary fibroblasts from OI patients with mutations in CRTAP (n=3), P3H1 (n=3), PPIB (n=1) genes and from controls (n=4) were investigated by a functional proteomic approach. Cytoskeleton and nucleoskeleton asset, protein fate, and metabolism were delineated as mainly affected. While western blot experiments confirmed altered expression of lamin A/C and cofilin-1, immunofluorescence analysis using antibody against lamin A/C and phalloidin showed an aberrant organization of nucleus and cytoskeleton. This is the first report describing an altered organization of intracellular structural proteins in recessive OI and pointing them as possible novel target for OI treatment. SIGNIFICANCE OI is a prototype for skeletal dysplasias. It is a highly heterogeneous collagen-related disorder with dominant, recessive and X-linked transmission. There is no definitive cure for this disease, thus a better understanding of the molecular basis of its pathophysiology is expected to contribute in identifying potential targets to develop new treatments. Based on this concept, we performed a functional proteomic study to delineate affected molecular pathways in primary fibroblasts from recessive OI patients, carrying mutations in CRTAP (OI type VII), P3H1 (OI type VIII), and PPIB (OI type IX) genes. Our analyses demonstrated the occurrence of an altered cytoskeleton and, for the first time in OI, of nuclear lamina organization. Hence, cytoskeleton and nucleoskeleton components may be considered as novel drug targets for clinical management of the disease. Finally, according to our analyses, OI emerged to share similar deregulated pathways and molecular aberrances, as previously described, with other rare disorders caused by different genetic defects. Those aberrances may provide common pharmacological targets to support classical clinical approach in treating different diseases.
Collapse
Affiliation(s)
- Assunta Gagliardi
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, Siena, Italy; CIBIO, University of Trento, Trento, Italy
| | - Roberta Besio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Chiara Carnemolla
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, Siena, Italy
| | - Claudia Landi
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, Siena, Italy
| | - Alessandro Armini
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, Siena, Italy
| | - Mona Aglan
- Department of Clinical Genetics, Human Genetics & Genome Research Division, Center of Excellence for Human Genetics, National Research Centre, Cairo, Egypt
| | - Ghada Otaify
- Department of Clinical Genetics, Human Genetics & Genome Research Division, Center of Excellence for Human Genetics, National Research Centre, Cairo, Egypt
| | - Samia A Temtamy
- Department of Clinical Genetics, Human Genetics & Genome Research Division, Center of Excellence for Human Genetics, National Research Centre, Cairo, Egypt
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Luca Bini
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, Siena, Italy
| | - Laura Bianchi
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, Siena, Italy.
| |
Collapse
|
28
|
Verma AD, Parnaik VK. Heart-specific expression of laminopathic mutations in transgenic zebrafish. Cell Biol Int 2017; 41:809-819. [DOI: 10.1002/cbin.10784] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/28/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Ajay D. Verma
- CSIR-Centre for Cellular and Molecular Biology; Uppal Road Hyderabad 500007 India
| | - Veena K. Parnaik
- CSIR-Centre for Cellular and Molecular Biology; Uppal Road Hyderabad 500007 India
| |
Collapse
|
29
|
Dixon CR, Platani M, Makarov AA, Schirmer EC. Microinjection of Antibodies Targeting the Lamin A/C Histone-Binding Site Blocks Mitotic Entry and Reveals Separate Chromatin Interactions with HP1, CenpB and PML. Cells 2017; 6:cells6020009. [PMID: 28346356 PMCID: PMC5492013 DOI: 10.3390/cells6020009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/24/2017] [Accepted: 03/14/2017] [Indexed: 02/07/2023] Open
Abstract
Lamins form a scaffold lining the nucleus that binds chromatin and contributes to spatial genome organization; however, due to the many other functions of lamins, studies knocking out or altering the lamin polymer cannot clearly distinguish between direct and indirect effects. To overcome this obstacle, we specifically targeted the mapped histone-binding site of A/C lamins by microinjecting antibodies specific to this region predicting that this would make the genome more mobile. No increase in chromatin mobility was observed; however, interestingly, injected cells failed to go through mitosis, while control antibody-injected cells did. This effect was not due to crosslinking of the lamin polymer, as Fab fragments also blocked mitosis. The lack of genome mobility suggested other lamin-chromatin interactions. To determine what these might be, mini-lamin A constructs were expressed with or without the histone-binding site that assembled into independent intranuclear structures. HP1, CenpB and PML proteins accumulated at these structures for both constructs, indicating that other sites supporting chromatin interactions exist on lamin A. Together, these results indicate that lamin A-chromatin interactions are highly redundant and more diverse than generally acknowledged and highlight the importance of trying to experimentally separate their individual functions.
Collapse
Affiliation(s)
- Charles R Dixon
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Max Born Crescent, Edinburgh EH9 3BF, UK.
| | - Melpomeni Platani
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Max Born Crescent, Edinburgh EH9 3BF, UK.
| | - Alexandr A Makarov
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Max Born Crescent, Edinburgh EH9 3BF, UK.
| | - Eric C Schirmer
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Max Born Crescent, Edinburgh EH9 3BF, UK.
| |
Collapse
|
30
|
Abstract
SUMMARYThe nucleoskeleton is an important structural feature of the metazoan nucleus and is involved in the regulation of genome expression and maintenance. The nuclear lamins are intermediate filament proteins that form a peripheral nucleoskeleton in concert with other lamin-associated proteins. Several other proteins normally found in the cytoskeleton have also been identified in the nucleus, but, as will be discussed here, their roles in forming a nucleoskeleton have not been elucidated. Nevertheless, mutations in lamins and lamin-associated proteins cause a spectrum of diseases, making them interesting targets for future research.
Collapse
Affiliation(s)
- Stephen A Adam
- Department of Cell and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611
| |
Collapse
|
31
|
A Novel Lamin A Mutant Responsible for Congenital Muscular Dystrophy Causes Distinct Abnormalities of the Cell Nucleus. PLoS One 2017; 12:e0169189. [PMID: 28125586 PMCID: PMC5268432 DOI: 10.1371/journal.pone.0169189] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/13/2016] [Indexed: 11/26/2022] Open
Abstract
A-type lamins, the intermediate filament proteins participating in nuclear structure and function, are encoded by LMNA. LMNA mutations can lead to laminopathies such as lipodystrophies, premature aging syndromes (progeria) and muscular dystrophies. Here, we identified a novel heterozygous LMNA p.R388P de novo mutation in a patient with a non-previously described severe phenotype comprising congenital muscular dystrophy (L-CMD) and lipodystrophy. In culture, the patient’s skin fibroblasts entered prematurely into senescence, and some nuclei showed a lamina honeycomb pattern. C2C12 myoblasts were transfected with a construct carrying the patient’s mutation; R388P-lamin A (LA) predominantly accumulated within the nucleoplasm and was depleted at the nuclear periphery, altering the anchorage of the inner nuclear membrane protein emerin and the nucleoplasmic protein LAP2-alpha. The mutant LA triggered a frequent and severe nuclear dysmorphy that occurred independently of prelamin A processing, as well as increased histone H3K9 acetylation. Nuclear dysmorphy was not significantly improved when transfected cells were treated with drugs disrupting microtubules or actin filaments or modifying the global histone acetylation pattern. Therefore, releasing any force exerted at the nuclear envelope by the cytoskeleton or chromatin did not rescue nuclear shape, in contrast to what was previously shown in Hutchinson-Gilford progeria due to other LMNA mutations. Our results point to the specific cytotoxic effect of the R388P-lamin A mutant, which is clinically related to a rare and severe multisystemic laminopathy phenotype.
Collapse
|
32
|
Lanzicher T, Martinelli V, Long CS, Del Favero G, Puzzi L, Borelli M, Mestroni L, Taylor MRG, Sbaizero O. AFM single-cell force spectroscopy links altered nuclear and cytoskeletal mechanics to defective cell adhesion in cardiac myocytes with a nuclear lamin mutation. Nucleus 2016; 6:394-407. [PMID: 26309016 DOI: 10.1080/19491034.2015.1084453] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Previous investigations suggested that lamin A/C gene (LMNA) mutations, which cause a variety of human diseases including muscular dystrophies and cardiomyopathies, alter the nuclear mechanical properties. We hypothesized that biomechanical changes may extend beyond the nucleus.
Collapse
Affiliation(s)
- Thomas Lanzicher
- a Department of Engineering and Architecture ; University of Trieste ; Trieste Italy
| | - Valentina Martinelli
- a Department of Engineering and Architecture ; University of Trieste ; Trieste Italy.,b International Center for Genetic Engineering and Biotechnology ; Trieste Italy
| | - Carlin S Long
- c Cardiovascular Institute & Adult Medical Genetics; University of Colorado Denver Anschutz Medical Campus ; CO USA
| | - Giorgia Del Favero
- d Department of Food Chemistry and Toxicology ; University of Vienna ; Waehringer Str. 38A-1090 Vienna Austria
| | - Luca Puzzi
- a Department of Engineering and Architecture ; University of Trieste ; Trieste Italy
| | - Massimo Borelli
- e Department of Life Sciences ; University of Trieste ; Trieste Italy
| | - Luisa Mestroni
- c Cardiovascular Institute & Adult Medical Genetics; University of Colorado Denver Anschutz Medical Campus ; CO USA
| | - Matthew R G Taylor
- c Cardiovascular Institute & Adult Medical Genetics; University of Colorado Denver Anschutz Medical Campus ; CO USA
| | - Orfeo Sbaizero
- a Department of Engineering and Architecture ; University of Trieste ; Trieste Italy.,c Cardiovascular Institute & Adult Medical Genetics; University of Colorado Denver Anschutz Medical Campus ; CO USA
| |
Collapse
|
33
|
The effect of the lamin A and its mutants on nuclear structure, cell proliferation, protein stability, and mobility in embryonic cells. Chromosoma 2016; 126:501-517. [PMID: 27534416 PMCID: PMC5509783 DOI: 10.1007/s00412-016-0610-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 07/11/2016] [Accepted: 08/02/2016] [Indexed: 01/26/2023]
Abstract
LMNA gene encodes for nuclear intermediate filament proteins lamin A/C. Mutations in this gene lead to a spectrum of genetic disorders, collectively referred to as laminopathies. Lamin A/C are widely expressed in most differentiated somatic cells but not in early embryos and some undifferentiated cells. To investigate the role of lamin A/C in cell phenotype maintenance and differentiation, which could be a determinant of the pathogenesis of laminopathies, we examined the role played by exogenous lamin A and its mutants in differentiated cell lines (HeLa, NHDF) and less-differentiated HEK 293 cells. We introduced exogenous wild-type and mutated (H222P, L263P, E358K D446V, and ∆50) lamin A into different cell types and analyzed proteins’ impact on proliferation, protein mobility, and endogenous nuclear envelope protein distribution. The mutants give rise to a broad spectrum of nuclear phenotypes and relocate lamin C. The mutations ∆50 and D446V enhance proliferation in comparison to wild-type lamin A and control cells, but no changes in exogenous protein mobility measured by FRAP were observed. Interestingly, although transcripts for lamins A and C are at similar level in HEK 293 cells, only lamin C protein is detected in western blots. Also, exogenous lamin A and its mutants, when expressed in HEK 293 cells underwent posttranscriptional processing. Overall, our results provide new insight into the maintenance of lamin A in less-differentiated cells. Embryonic cells are very sensitive to lamin A imbalance, and its upregulation disturbs lamin C, which may influence gene expression and many regulatory pathways.
Collapse
|
34
|
West G, Gullmets J, Virtanen L, Li SP, Keinänen A, Shimi T, Mauermann M, Heliö T, Kaartinen M, Ollila L, Kuusisto J, Eriksson JE, Goldman RD, Herrmann H, Taimen P. Deleterious assembly of the lamin A/C mutant p.S143P causes ER stress in familial dilated cardiomyopathy. J Cell Sci 2016; 129:2732-43. [PMID: 27235420 DOI: 10.1242/jcs.184150] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/20/2016] [Indexed: 01/12/2023] Open
Abstract
Mutation of the LMNA gene, encoding nuclear lamin A and lamin C (hereafter lamin A/C), is a common cause of familial dilated cardiomyopathy (DCM). Among Finnish DCM patients, the founder mutation c.427T>C (p.S143P) is the most frequently reported genetic variant. Here, we show that p.S143P lamin A/C is more nucleoplasmic and soluble than wild-type lamin A/C and accumulates into large intranuclear aggregates in a fraction of cultured patient fibroblasts as well as in cells ectopically expressing either FLAG- or GFP-tagged p.S143P lamin A. In fluorescence loss in photobleaching (FLIP) experiments, non-aggregated EGFP-tagged p.S143P lamin A was significantly more dynamic. In in vitro association studies, p.S143P lamin A failed to form appropriate filament structures but instead assembled into disorganized aggregates similar to those observed in patient cell nuclei. A whole-genome expression analysis revealed an elevated unfolded protein response (UPR) in cells expressing p.S143P lamin A/C. Additional endoplasmic reticulum (ER) stress induced by tunicamycin reduced the viability of cells expressing mutant lamin further. In summary, p.S143P lamin A/C affects normal lamina structure and influences the cellular stress response, homeostasis and viability.
Collapse
Affiliation(s)
- Gun West
- Department of Pathology, University of Turku and Turku University Hospital, 20520 Turku, Finland MediCity Research Laboratory, 20520 Turku, Finland
| | - Josef Gullmets
- Department of Pathology, University of Turku and Turku University Hospital, 20520 Turku, Finland MediCity Research Laboratory, 20520 Turku, Finland Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Laura Virtanen
- Department of Pathology, University of Turku and Turku University Hospital, 20520 Turku, Finland MediCity Research Laboratory, 20520 Turku, Finland
| | - Song-Ping Li
- Department of Pathology, University of Turku and Turku University Hospital, 20520 Turku, Finland MediCity Research Laboratory, 20520 Turku, Finland
| | - Anni Keinänen
- Department of Pathology, University of Turku and Turku University Hospital, 20520 Turku, Finland MediCity Research Laboratory, 20520 Turku, Finland
| | - Takeshi Shimi
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Monika Mauermann
- Division of Molecular Genetics, German Cancer Research Center, 69120 Heidelberg, Germany Institute of Neuropathology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Tiina Heliö
- Heart and Lung Center Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
| | - Maija Kaartinen
- Heart and Lung Center Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
| | - Laura Ollila
- Heart and Lung Center Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
| | - Johanna Kuusisto
- Department of Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - John E Eriksson
- Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Robert D Goldman
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Harald Herrmann
- Division of Molecular Genetics, German Cancer Research Center, 69120 Heidelberg, Germany Institute of Neuropathology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Pekka Taimen
- Department of Pathology, University of Turku and Turku University Hospital, 20520 Turku, Finland MediCity Research Laboratory, 20520 Turku, Finland
| |
Collapse
|
35
|
Marullo F, Cesarini E, Antonelli L, Gregoretti F, Oliva G, Lanzuolo C. Nucleoplasmic Lamin A/C and Polycomb group of proteins: An evolutionarily conserved interplay. Nucleus 2016; 7:103-11. [PMID: 26930442 PMCID: PMC4916880 DOI: 10.1080/19491034.2016.1157675] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Nuclear lamins are the main components of the nuclear lamina at the nuclear periphery, providing mechanical support to the nucleus. However, recent findings suggest that lamins also reside in the nuclear interior, as a distinct and dynamic pool with critical roles in transcriptional regulation. In our work we found a functional and evolutionary conserved crosstalk between Lamin A/C and the Polycomb group (PcG) of proteins, this being required for the maintenance of the PcG repressive functions. Indeed, Lamin A/C knock-down causes PcG foci dispersion and defects in PcG-mediated higher order structures, thereby leading to impaired PcG mediated transcriptional repression. By using ad-hoc algorithms for image analysis and PLA approaches we hereby show that PcG proteins are preferentially located in the nuclear interior where they interact with nucleoplasmic Lamin A/C. Taken together, our findings suggest that nuclear components, such as Lamin A/C, functionally interact with epigenetic factors to ensure the correct transcriptional program maintenance.
Collapse
Affiliation(s)
- F Marullo
- a CNR Institute of Cell Biology and Neurobiology, IRCCS Santa Lucia Foundation , Rome , Italy
| | - E Cesarini
- a CNR Institute of Cell Biology and Neurobiology, IRCCS Santa Lucia Foundation , Rome , Italy
| | - L Antonelli
- b CNR Institute for High Performance Computing and Networking (ICAR) , Naples, Italy
| | - F Gregoretti
- b CNR Institute for High Performance Computing and Networking (ICAR) , Naples, Italy
| | - G Oliva
- b CNR Institute for High Performance Computing and Networking (ICAR) , Naples, Italy
| | - C Lanzuolo
- a CNR Institute of Cell Biology and Neurobiology, IRCCS Santa Lucia Foundation , Rome , Italy.,c Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi , Milan , Italy
| |
Collapse
|
36
|
Sun J, Groppi VE, Gui H, Chen L, Xie Q, Liu L, Omary MB. High-Throughput Screening for Drugs that Modulate Intermediate Filament Proteins. Methods Enzymol 2015; 568:163-85. [PMID: 26795471 DOI: 10.1016/bs.mie.2015.09.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Intermediate filament (IF) proteins have unique and complex cell and tissue distribution. Importantly, IF gene mutations cause or predispose to more than 80 human tissue-specific diseases (IF-pathies), with the most severe disease phenotypes being due to mutations at conserved residues that result in a disrupted IF network. A critical need for the entire IF-pathy field is the identification of drugs that can ameliorate or cure these diseases, particularly since all current therapies target the IF-pathy complication, such as diabetes or cardiovascular disease, rather than the mutant IF protein or gene. We describe a high-throughput approach to identify drugs that can normalize disrupted IF proteins. This approach utilizes transduction of lentivirus that expresses green fluorescent protein-tagged keratin 18 (K18) R90C in A549 cells. The readout is drug "hits" that convert the dot-like keratin filament distribution, due to the R90C mutation, to a wild-type-like filamentous array. A similar strategy can be used to screen thousands of compounds and can be utilized for practically any IF protein with a filament-disrupting mutation, and could therefore potentially target many IF-pathies. "Hits" of interest require validation in cell culture then using in vivo experimental models. Approaches to study the mechanism of mutant IF normalization by potential drugs of interest are also described. The ultimate goal of this drug screening approach is to identify effective and safe compounds that can potentially be tested for clinical efficacy in patients.
Collapse
Affiliation(s)
- Jingyuan Sun
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA; Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA; VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA; Hepatology Unit, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, PR China; Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Vincent E Groppi
- Department of Pharmacology, The Center for Chemical Genomics, University of Michigan, Ann Arbor, Michigan, USA
| | - Honglian Gui
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA; Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA; VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA; Department of Infectious Diseases, Ruijin Hospital, Jiaotong University School of Medicine, Shanghai, PR China
| | - Lu Chen
- Department of Infectious Diseases, Ruijin Hospital, Jiaotong University School of Medicine, Shanghai, PR China
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Jiaotong University School of Medicine, Shanghai, PR China
| | - Li Liu
- Hepatology Unit, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, PR China; Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - M Bishr Omary
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA; Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA; VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA.
| |
Collapse
|
37
|
Chaoui A, Kavo A, Baral V, Watanabe Y, Lecerf L, Colley A, Mendoza-Londono R, Pingault V, Bondurand N. Subnuclear re-localization of SOX10 and p54NRB correlates with a unique neurological phenotype associated with SOX10 missense mutations. Hum Mol Genet 2015; 24:4933-47. [PMID: 26060192 DOI: 10.1093/hmg/ddv215] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/04/2015] [Indexed: 11/12/2022] Open
Abstract
SOX10 is a transcription factor with well-known functions in neural crest and oligodendrocyte development. Mutations in SOX10 were first associated with Waardenburg-Hirschsprung disease (WS4; deafness, pigmentation defects and intestinal aganglionosis). However, variable phenotypes that extend beyond the WS4 definition are now reported. The neurological phenotypes associated with some truncating mutations are suggested to be the result of escape from the nonsense-mediated mRNA decay pathway; but, to date, no mechanism has been suggested for missense mutations, of which approximately 20 have now been reported, with about half of the latter shown to be redistributed to nuclear bodies of undetermined nature and function in vitro. Here, we report that p54NRB, which plays a crucial role in the regulation of gene expression during many cellular processes including differentiation, interacts synergistically with SOX10 to regulate several target genes. Interestingly, this paraspeckle protein, as well as two other members of the Drosophila behavior human splicing (DBHS) protein family, co-localize with SOX10 mutants in nuclear bodies, suggesting the possible paraspeckle nature of these foci or re-localization of the DBHS members to other subnuclear compartments. Remarkably, the co-transfection of wild-type and mutant SOX10 constructs led to the sequestration of wild-type protein in mutant-induced foci. In contrast to mutants presenting with additional cytoplasmic re-localization, those exclusively found in the nucleus alter synergistic activity between SOX10 and p54NRB. We propose that such a dominant negative effect may contribute to or be at the origin of the unique progressive and severe neurological phenotype observed in affected patients.
Collapse
Affiliation(s)
- Asma Chaoui
- INSERM, U955, Equipe 6, 51 Avenue du Maréchal de Lattre de Tassigny, F-94000 Créteil, France, Université Paris-Est, UPEC, F-94000 Créteil, France, DHU Ageing-Thorax-Vessel-Blood, F-94000 Créteil, France
| | - Anthula Kavo
- INSERM, U955, Equipe 6, 51 Avenue du Maréchal de Lattre de Tassigny, F-94000 Créteil, France, Université Paris-Est, UPEC, F-94000 Créteil, France, DHU Ageing-Thorax-Vessel-Blood, F-94000 Créteil, France
| | - Viviane Baral
- INSERM, U955, Equipe 6, 51 Avenue du Maréchal de Lattre de Tassigny, F-94000 Créteil, France, Université Paris-Est, UPEC, F-94000 Créteil, France, DHU Ageing-Thorax-Vessel-Blood, F-94000 Créteil, France
| | - Yuli Watanabe
- INSERM, U955, Equipe 6, 51 Avenue du Maréchal de Lattre de Tassigny, F-94000 Créteil, France, Université Paris-Est, UPEC, F-94000 Créteil, France, DHU Ageing-Thorax-Vessel-Blood, F-94000 Créteil, France
| | - Laure Lecerf
- INSERM, U955, Equipe 6, 51 Avenue du Maréchal de Lattre de Tassigny, F-94000 Créteil, France, Université Paris-Est, UPEC, F-94000 Créteil, France, DHU Ageing-Thorax-Vessel-Blood, F-94000 Créteil, France
| | - Alison Colley
- Department of Clinical Genetics, Liverpool Hospital, Australia and
| | - Roberto Mendoza-Londono
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children and University of Toronto, Toronto, Canada
| | - Veronique Pingault
- INSERM, U955, Equipe 6, 51 Avenue du Maréchal de Lattre de Tassigny, F-94000 Créteil, France, Université Paris-Est, UPEC, F-94000 Créteil, France, DHU Ageing-Thorax-Vessel-Blood, F-94000 Créteil, France
| | - Nadege Bondurand
- INSERM, U955, Equipe 6, 51 Avenue du Maréchal de Lattre de Tassigny, F-94000 Créteil, France, Université Paris-Est, UPEC, F-94000 Créteil, France, DHU Ageing-Thorax-Vessel-Blood, F-94000 Créteil, France,
| |
Collapse
|
38
|
Myopathic lamin mutations cause reductive stress and activate the nrf2/keap-1 pathway. PLoS Genet 2015; 11:e1005231. [PMID: 25996830 PMCID: PMC4440730 DOI: 10.1371/journal.pgen.1005231] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 04/20/2015] [Indexed: 12/29/2022] Open
Abstract
Mutations in the human LMNA gene cause muscular dystrophy by mechanisms that are incompletely understood. The LMNA gene encodes A-type lamins, intermediate filaments that form a network underlying the inner nuclear membrane, providing structural support for the nucleus and organizing the genome. To better understand the pathogenesis caused by mutant lamins, we performed a structural and functional analysis on LMNA missense mutations identified in muscular dystrophy patients. These mutations perturb the tertiary structure of the conserved A-type lamin Ig-fold domain. To identify the effects of these structural perturbations on lamin function, we modeled these mutations in Drosophila Lamin C and expressed the mutant lamins in muscle. We found that the structural perturbations had minimal dominant effects on nuclear stiffness, suggesting that the muscle pathology was not accompanied by major structural disruption of the peripheral nuclear lamina. However, subtle alterations in the lamina network and subnuclear reorganization of lamins remain possible. Affected muscles had cytoplasmic aggregation of lamins and additional nuclear envelope proteins. Transcription profiling revealed upregulation of many Nrf2 target genes. Nrf2 is normally sequestered in the cytoplasm by Keap-1. Under oxidative stress Nrf2 dissociates from Keap-1, translocates into the nucleus, and activates gene expression. Unexpectedly, biochemical analyses revealed high levels of reducing agents, indicative of reductive stress. The accumulation of cytoplasmic lamin aggregates correlated with elevated levels of the autophagy adaptor p62/SQSTM1, which also binds Keap-1, abrogating Nrf2 cytoplasmic sequestration, allowing Nrf2 nuclear translocation and target gene activation. Elevated p62/SQSTM1 and nuclear enrichment of Nrf2 were identified in muscle biopsies from the corresponding muscular dystrophy patients, validating the disease relevance of our Drosophila model. Thus, novel connections were made between mutant lamins and the Nrf2 signaling pathway, suggesting new avenues of therapeutic intervention that include regulation of protein folding and metabolism, as well as maintenance of redox homoeostasis.
Collapse
|
39
|
Nuclear envelope and striated muscle diseases. Curr Opin Cell Biol 2014; 32:1-6. [PMID: 25290386 DOI: 10.1016/j.ceb.2014.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/17/2014] [Accepted: 09/21/2014] [Indexed: 12/22/2022]
Abstract
The nuclear lamina is a mesh-like network of intermediate filaments localized mainly at the inner surface of the inner nuclear membrane and is composed of proteins called lamins. Many inherited diseases are linked with mutations in nuclear lamins and integral proteins of the inner nuclear membrane. In this article, we summarize basic aspects of the nuclear envelope architecture and provide some remarkable findings of the involvement of lamins in striated muscle disorders.
Collapse
|
40
|
Amin NM, Greco TM, Kuchenbrod LM, Rigney MM, Chung MI, Wallingford JB, Cristea IM, Conlon FL. Proteomic profiling of cardiac tissue by isolation of nuclei tagged in specific cell types (INTACT). Development 2014; 141:962-73. [PMID: 24496632 DOI: 10.1242/dev.098327] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The proper dissection of the molecular mechanisms governing the specification and differentiation of specific cell types requires isolation of pure cell populations from heterogeneous tissues and whole organisms. Here, we describe a method for purification of nuclei from defined cell or tissue types in vertebrate embryos using INTACT (isolation of nuclei tagged in specific cell types). This method, previously developed in plants, flies and worms, utilizes in vivo tagging of the nuclear envelope with biotin and the subsequent affinity purification of the labeled nuclei. In this study we successfully purified nuclei of cardiac and skeletal muscle from Xenopus using this strategy. We went on to demonstrate the utility of this approach by coupling the INTACT approach with liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomic methodologies to profile proteins expressed in the nuclei of developing hearts. From these studies we have identified the Xenopus orthologs of 12 human proteins encoded by genes, which when mutated in human lead to congenital heart disease. Thus, by combining these technologies we are able to identify tissue-specific proteins that are expressed and required for normal vertebrate organ development.
Collapse
Affiliation(s)
- Nirav M Amin
- University of North Carolina McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Nuclear Envelope Regulation of Signaling Cascades. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 773:187-206. [DOI: 10.1007/978-1-4899-8032-8_9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Lindenboim L, Sasson T, Worman HJ, Borner C, Stein R. Cellular stress induces Bax-regulated nuclear bubble budding and rupture followed by nuclear protein release. Nucleus 2014; 5:527-41. [PMID: 25482068 PMCID: PMC4615202 DOI: 10.4161/19491034.2014.970105] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/31/2014] [Accepted: 09/15/2014] [Indexed: 11/19/2022] Open
Abstract
Cellular stress triggers many pathways including nuclear protein redistribution. We previously discovered that this process is regulated by Bax but the underlying mechanism has not yet been studied. Here we define this mechanism by showing that apoptotic stimuli cause Bax-regulated disturbances in lamin A/C and nuclear envelope (NE)-associated proteins which results in the generation and subsequent rupture of nuclear protein-containing bubbles. The bubbles do not contain DNA and are encapsulated by impaired nuclear pore-depleted NE. Stress-induced generation and rupture of nuclear bubbles ultimately leads to the discharge of nuclear proteins into the cytoplasm. This process precedes morphological changes of apoptosis and occurs independently of caspases. Rescue experiments revealed that this Bax effect is non-canonical, i.e. it requires the BH3 domain and α-helices 5 and 6 but it is not inhibited by Bcl(-)xL. Targeting Bax to the NE by the Klarsicht/ANC-1/Syne-1 homology (KASH) domain effectively triggers the generation and rupture of nuclear bubbles. Overall, our findings provide evidence for a novel stress-response, which is regulated by a non-canonical action of Bax on the NE.
Collapse
Key Words
- Bax
- Bax/Bak, Bax and Bak
- DKO, double knockout
- INM, inner nuclear membrane
- KASH, Klarsicht: ANC-1, Syne homology
- LAP, lamina-associated polypeptide
- LINC, links nucleoskeleton and cytoskeleton
- MEFs, mouse embryonic fibroblasts
- MOMP, mitochondrial outer membrane permeabilization
- NE, nuclear envelope
- NPCs, nuclear pore complexes
- NPM, nucleophosmin
- NPR, nuclear protein redistribution
- ONM, outer nuclear membrane
- PI, propidium iodide
- Q-VD-OPH, quinoline-Val-Asp(OMe)-CH2-OPH.
- SIGRUNB, stress-induced generation and rupture of nuclear bubbles
- apoptosis
- lamin
- nuclear envelope
- nucleus
Collapse
Affiliation(s)
- Liora Lindenboim
- Department of Neurobiology; George S. Wise Faculty of Life Sciences; Tel Aviv University; Ramat Aviv, Israel
| | - Tiki Sasson
- Department of Neurobiology; George S. Wise Faculty of Life Sciences; Tel Aviv University; Ramat Aviv, Israel
| | - Howard J Worman
- Department of Medicine and Department of Pathology and Cell Biology; College of Physicians and Surgeons; Columbia University; New York, NY, USA
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research; Albert Ludwigs University Freiburg; Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM); Albert Ludwigs University Freiburg; Freiburg, Germany
- Excellence Cluster, Centre for Biological Signaling Studies (BIOSS); Albert Ludwigs University Freiburg; Freiburg, Germany
| | - Reuven Stein
- Department of Neurobiology; George S. Wise Faculty of Life Sciences; Tel Aviv University; Ramat Aviv, Israel
| |
Collapse
|
43
|
Bhattacharjee P, Banerjee A, Banerjee A, Dasgupta D, Sengupta K. Structural Alterations of Lamin A Protein in Dilated Cardiomyopathy. Biochemistry 2013; 52:4229-41. [DOI: 10.1021/bi400337t] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pritha Bhattacharjee
- Biophysics
Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Avinanda Banerjee
- Biophysics
Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Amrita Banerjee
- Biophysics
Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Dipak Dasgupta
- Biophysics
Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Kaushik Sengupta
- Biophysics
Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| |
Collapse
|
44
|
Saj M, Bilinska ZT, Tarnowska A, Sioma A, Bolongo P, Sobieszczanska-Malek M, Michalak E, Golen D, Mazurkiewicz L, Malek L, Walczak E, Fidzianska A, Grzybowski J, Przybylski A, Zielinski T, Korewicki J, Tesson F, Ploski R. LMNA mutations in Polish patients with dilated cardiomyopathy: prevalence, clinical characteristics, and in vitro studies. BMC MEDICAL GENETICS 2013; 14:55. [PMID: 23702046 PMCID: PMC3666888 DOI: 10.1186/1471-2350-14-55] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 05/17/2013] [Indexed: 12/11/2022]
Abstract
Background LMNA mutations are most frequently involved in the pathogenesis of dilated cardiomyopathy with conduction disease. The goal of this study was to identify LMNA mutations, estimate their frequency among Polish dilated cardiomyopathy patients and characterize their effect both in vivo and in vitro. Methods Between January, 2008 and June, 2012 two patient populations were screened for the presence of LMNA mutations by direct sequencing: 66 dilated cardiomyopathy patients including 27 heart transplant recipients and 39 dilated cardiomyopathy patients with heart failure referred for heart transplantation evaluation, and 44 consecutive dilated cardiomyopathy patients, referred for a family evaluation and mutation screening. Results We detected nine non-synonymous mutations including three novel mutations: p.Ser431*, p.Val256Gly and p.Gly400Argfs*11 deletion. There were 25 carriers altogether in nine families. The carriers were mostly characterized by dilated cardiomyopathy and heart failure with conduction system disease and/or complex ventricular arrhythmia, although five were asymptomatic. Among the LMNA mutation carriers, six underwent heart transplantation, fourteen ICD implantation and eight had pacemaker. In addition, we obtained ultrastructural images of cardiomyocytes from the patient carrying p.Thr510Tyrfs*42. Furthermore, because the novel p.Val256Gly mutation was found in a sporadic case, we verified its pathogenicity by expressing the mutation in a cellular model. Conclusions In conclusion, in the two referral centre populations, the screening revealed five mutations among 66 heart transplant recipients or patients referred for heart transplantation (7.6%) and four mutations among 44 consecutive dilated cardiomyopathy patients referred for familial evaluation (9.1%). Dilated cardiomyopathy patients with LMNA mutations have poor prognosis, however considerable clinical variability is present among family members.
Collapse
Affiliation(s)
- Michal Saj
- Laboratory of Molecular Biology, Institute of Cardiology, Warsaw, Alpejska 42 04-628, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zwerger M, Jaalouk DE, Lombardi ML, Isermann P, Mauermann M, Dialynas G, Herrmann H, Wallrath LL, Lammerding J. Myopathic lamin mutations impair nuclear stability in cells and tissue and disrupt nucleo-cytoskeletal coupling. Hum Mol Genet 2013; 22:2335-49. [PMID: 23427149 DOI: 10.1093/hmg/ddt079] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lamins are intermediate filament proteins that assemble into a meshwork underneath the inner nuclear membrane, the nuclear lamina. Mutations in the LMNA gene, encoding lamins A and C, cause a variety of diseases collectively called laminopathies. The disease mechanism for these diverse conditions is not well understood. Since lamins A and C are fundamental determinants of nuclear structure and stability, we tested whether defects in nuclear mechanics could contribute to the disease development, especially in laminopathies affecting mechanically stressed tissue such as muscle. Using skin fibroblasts from laminopathy patients and lamin A/C-deficient mouse embryonic fibroblasts stably expressing a broad panel of laminopathic lamin A mutations, we found that several mutations associated with muscular dystrophy and dilated cardiomyopathy resulted in more deformable nuclei; in contrast, lamin mutants responsible for diseases without muscular phenotypes did not alter nuclear deformability. We confirmed our results in intact muscle tissue, demonstrating that nuclei of transgenic Drosophila melanogaster muscle expressing myopathic lamin mutations deformed more under applied strain than controls. In vivo and in vitro studies indicated that the loss of nuclear stiffness resulted from impaired assembly of mutant lamins into the nuclear lamina. Although only a subset of lamin mutations associated with muscular diseases caused increased nuclear deformability, almost all mutations tested had defects in force transmission between the nucleus and cytoskeleton. In conclusion, our results indicate that although defective nuclear stability may play a role in the development of muscle diseases, other factors, such as impaired nucleo-cytoskeletal coupling, likely contribute to the muscle phenotype.
Collapse
Affiliation(s)
- Monika Zwerger
- Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Speese SD, Ashley J, Jokhi V, Nunnari J, Barria R, Li Y, Ataman B, Koon A, Chang YT, Li Q, Moore MJ, Budnik V. Nuclear envelope budding enables large ribonucleoprotein particle export during synaptic Wnt signaling. Cell 2012; 149:832-46. [PMID: 22579286 PMCID: PMC3371233 DOI: 10.1016/j.cell.2012.03.032] [Citation(s) in RCA: 259] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 12/08/2011] [Accepted: 03/14/2012] [Indexed: 01/25/2023]
Abstract
Localized protein synthesis requires assembly and transport of translationally silenced ribonucleoprotein particles (RNPs), some of which are exceptionally large. Where in the cell such large RNP granules first assemble was heretofore unknown. We previously reported that during synapse development, a fragment of the Wnt-1 receptor, DFrizzled2, enters postsynaptic nuclei where it forms prominent foci. Here we show that these foci constitute large RNP granules harboring synaptic protein transcripts. These granules exit the nucleus by budding through the inner and the outer nuclear membranes in a nuclear egress mechanism akin to that of herpes viruses. This budding involves phosphorylation of A-type lamin, a protein linked to muscular dystrophies. Thus nuclear envelope budding is an endogenous nuclear export pathway for large RNP granules.
Collapse
Affiliation(s)
- Sean D Speese
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, 01605, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Over the past two decades, the biomechanical properties of cells have emerged as key players in a broad range of cellular functions, including migration, proliferation, and differentiation. Although much of the attention has focused on the cytoskeletal networks and the cell's microenvironment, relatively little is known about the contribution of the cell nucleus. Here, we present an overview of the structural elements that determine the physical properties of the nucleus and discuss how changes in the expression of nuclear components or mutations in nuclear proteins can not only affect nuclear mechanics but also modulate cytoskeletal organization and diverse cellular functions. These findings illustrate that the nucleus is tightly integrated into the surrounding cellular structure. Consequently, changes in nuclear structure and composition are highly relevant to normal development and physiology and can contribute to many human diseases, such as muscular dystrophy, dilated cardiomyopathy, (premature) aging, and cancer.
Collapse
Affiliation(s)
- Monika Zwerger
- Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
48
|
Lamin misexpression upregulates three distinct ubiquitin ligase systems that degrade ATR kinase in HeLa cells. Mol Cell Biochem 2012; 365:323-32. [PMID: 22382637 DOI: 10.1007/s11010-012-1272-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/16/2012] [Indexed: 12/27/2022]
Abstract
Lamins are the major structural components of the nucleus and mutations in the human lamin A gene cause a number of genetic diseases collectively termed laminopathies. At the cellular level, lamin A mutations cause aberrant nuclear morphology and defects in nuclear functions such as the response to DNA damage. We have investigated the mechanism of depletion of a key damage sensor, ATR (Ataxia-telangiectasia-mutated-and-Rad3-related) kinase, in HeLa cells expressing lamin A mutants or lamin A shRNA. The degradation of ATR kinase in these cells was through the proteasomal pathway as it was reversed by the proteasomal inhibitor MG132. Expression of lamin A mutants or shRNA led to transcriptional activation of three ubiquitin ligase components, namely, RNF123 (ring finger protein 123), HECW2 (HECT domain ligase W2) and the F-box protein FBXW10. Ectopic expression of RNF123, HECW2 or FBXW10 directly resulted in proteasomal degradation of ATR kinase and the ring domain of RNF123 was required for this degradation. However, these ligases did not alter the stability of DNA-dependent protein kinase, which is not depleted upon lamin misexpression. Although degradation of ATR kinase was reversed by MG132, it was not affected by the nuclear export inhibitor, leptomycin B, suggesting that ATR kinase is degraded within the nucleus. Our findings indicate that lamin misexpression can lead to deleterious effects on the stability of the key DNA damage sensor, ATR kinase by upregulation of specific components of the ubiquitination pathway.
Collapse
|
49
|
Huang ZP, Young Seok H, Zhou B, Chen J, Chen JF, Tao Y, Pu WT, Wang DZ. CIP, a cardiac Isl1-interacting protein, represses cardiomyocyte hypertrophy. Circ Res 2012; 110:818-30. [PMID: 22343712 DOI: 10.1161/circresaha.111.259663] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RATIONALE Mammalian heart has minimal regenerative capacity. In response to mechanical or pathological stress, the heart undergoes cardiac remodeling. Pressure and volume overload in the heart cause increased size (hypertrophic growth) of cardiomyocytes. Whereas the regulatory pathways that activate cardiac hypertrophy have been well-established, the molecular events that inhibit or repress cardiac hypertrophy are less known. OBJECTIVE To identify and investigate novel regulators that modulate cardiac hypertrophy. METHODS AND RESULTS Here, we report the identification, characterization, and functional examination of a novel cardiac Isl1-interacting protein (CIP). CIP was identified from a bioinformatic search for novel cardiac-expressed genes in mouse embryonic hearts. CIP encodes a nuclear protein without recognizable motifs. Northern blotting, in situ hybridization, and reporter gene tracing demonstrated that CIP is highly expressed in cardiomyocytes of developing and adult hearts. Yeast two-hybrid screening identified Isl1, a LIM/homeodomain transcription factor essential for the specification of cardiac progenitor cells in the second heart field, as a cofactor of CIP. CIP directly interacted with Isl1, and we mapped the domains of these two proteins, which mediate their interaction. We show that CIP represses the transcriptional activity of Isl1 in the activation of the myocyte enhancer factor 2C. The expression of CIP was dramatically reduced in hypertrophic cardiomyocytes. Most importantly, overexpression of CIP repressed agonist-induced cardiomyocyte hypertrophy. CONCLUSIONS Our studies therefore identify CIP as a novel regulator of cardiac hypertrophy.
Collapse
Affiliation(s)
- Zhan-Peng Huang
- Department of Cardiology, Children's Hospital Boston, Harvard Medical School, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Inner nuclear membrane proteins: impact on human disease. Chromosoma 2012; 121:153-67. [DOI: 10.1007/s00412-012-0360-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 01/02/2012] [Accepted: 01/03/2012] [Indexed: 02/01/2023]
|