1
|
Cohen BE. The Role of the Swollen State in Cell Proliferation. J Membr Biol 2025; 258:1-13. [PMID: 39482485 DOI: 10.1007/s00232-024-00328-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/17/2024] [Indexed: 11/03/2024]
Abstract
Cell swelling is known to be involved in various stages of the growth of plant cells and microorganisms but in mammalian cells how crucial a swollen state is for determining the fate of the cellular proliferation remains unclear. Recent evidence has increased our understanding of how the loss of the cell surface interactions with the extracellular matrix at early mitosis decreases the membrane tension triggering curvature changes in the plasma membrane and the activation of the sodium/hydrogen (Na +/H +) exchanger (NHE1) that drives osmotic swelling. Such a swollen state is temporary, but it is critical to alter essential membrane biophysical parameters that are required to activate Ca2 + channels and modulate the opening of K + channels involved in setting the membrane potential. A decreased membrane potential across the mitotic cell membrane enhances the clustering of Ras proteins involved in the Ca2 + and cytoskeleton-driven events that lead to cell rounding. Changes in the external mechanical and osmotic forces also have an impact on the lipid composition of the plasma membrane during mitosis.
Collapse
|
2
|
Tricou LP, Mouton W, Cara A, Trouillet-Assant S, Bouvard D, Laurent F, Diot A, Josse J. Staphylococcus aureus can use an alternative pathway to be internalized by osteoblasts in absence of β1 integrins. Sci Rep 2024; 14:28643. [PMID: 39562631 PMCID: PMC11576967 DOI: 10.1038/s41598-024-78754-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024] Open
Abstract
Staphylococcus aureus main internalization mechanism in osteoblasts relies on a tripartite interaction between bacterial fibronectin-binding proteins, extracellular matrix soluble fibronectin, and osteoblasts' β1 integrins. Caveolins, and particularly caveolin-1, have been shown to limit the plasma membrane microdomain mobility, and consequently reduce the uptake of S. aureus in keratinocytes. In this study, we aimed to deepen our understanding of the molecular mechanisms underlying S. aureus internalization in osteoblasts. Mechanistically, S. aureus internalization requires endosomal recycling of β1 integrins as well as downstream effectors such as Src, Rac1, and PAK1. Surprisingly, in β1 integrin deficient osteoblasts, S. aureus internalization is restored when Caveolin-1 is absent and requires αvβ3/5 integrins as backup fibronectin receptors. Altogether, our data support that β1 integrins regulate the level of detergent-resistant membrane at the plasma membrane in a an endosomal and Caveolin-1 dependent manner.
Collapse
Affiliation(s)
- Léo-Paul Tricou
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, CNRS, UMR5308, ENS de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, Lyon, France
- ISPB Faculté de Pharmacie, Université Claude Bernard Lyon 1, Lyon, France
- Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - William Mouton
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, CNRS, UMR5308, ENS de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, Lyon, France
- Joint Research Unit Civils Hospices of Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Andréa Cara
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, CNRS, UMR5308, ENS de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, Lyon, France
| | - Sophie Trouillet-Assant
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, CNRS, UMR5308, ENS de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, Lyon, France
- Joint Research Unit Civils Hospices of Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Daniel Bouvard
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), CNRS UMR 5237, Université de Montpellier, Montpellier, France
| | - Frédéric Laurent
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, CNRS, UMR5308, ENS de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, Lyon, France
- ISPB Faculté de Pharmacie, Université Claude Bernard Lyon 1, Lyon, France
- Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
- Centre Interrégional de Référence pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France
| | - Alan Diot
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, CNRS, UMR5308, ENS de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, Lyon, France
| | - Jérôme Josse
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, CNRS, UMR5308, ENS de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, Lyon, France.
- ISPB Faculté de Pharmacie, Université Claude Bernard Lyon 1, Lyon, France.
- Centre Interrégional de Référence pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France.
| |
Collapse
|
3
|
Tosi G, Paoli A, Zuccolotto G, Turco E, Simonato M, Tosoni D, Tucci F, Lugato P, Giomo M, Elvassore N, Rosato A, Cogo P, Pece S, Santoro MM. Cancer cell stiffening via CoQ 10 and UBIAD1 regulates ECM signaling and ferroptosis in breast cancer. Nat Commun 2024; 15:8214. [PMID: 39294175 PMCID: PMC11410950 DOI: 10.1038/s41467-024-52523-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
CoQ10 (Coenzyme Q10) is an essential fat-soluble metabolite that plays a key role in cellular metabolism. A less-known function of CoQ10 is whether it may act as a plasma membrane-stabilizing agent and whether this property can affect cancer development and progression. Here, we show that CoQ10 and its biosynthetic enzyme UBIAD1 play a critical role in plasmamembrane mechanical properties that are of interest for breast cancer (BC) progression and treatment. CoQ10 and UBIAD1 increase membrane fluidity leading to increased cell stiffness in BC. Furthermore, CoQ10 and UBIAD1 states impair ECM (extracellular matrix)-mediated oncogenic signaling and reduce ferroptosis resistance in BC settings. Analyses on human patients and mouse models reveal that UBIAD1 loss is associated with BC development and progression and UBIAD1 expression in BC limits CTCs (circulating tumor cells) survival and lung metastasis formation. Overall, this study reveals that CoQ10 and UBIAD1 can be further investigated to develop therapeutic interventions to treat BC patients with poor prognosis.
Collapse
Affiliation(s)
- Giovanni Tosi
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padova, Padova, Italy
| | - Alessandro Paoli
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padova, Padova, Italy
| | - Gaia Zuccolotto
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Emilia Turco
- Molecular Biotechnology Center, University of Turin, Torino, Italy
| | - Manuela Simonato
- Pediatric Research Institute "Città della Speranza", Padova, Italy
| | | | | | - Pietro Lugato
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padova, Padova, Italy
| | - Monica Giomo
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Nicola Elvassore
- Department of Industrial Engineering, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Antonio Rosato
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Paola Cogo
- Pediatric Research Institute "Città della Speranza", Padova, Italy
- Division of Pediatrics, Department of Medicine, Udine University, Udine, Italy
| | - Salvatore Pece
- IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milan, Milano, Italy
| | - Massimo M Santoro
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padova, Padova, Italy.
- Veneto Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
4
|
Romenskaja D, Jonavičė U, Pivoriūnas A. Extracellular vesicles promote autophagy in human microglia through lipid raft-dependent mechanisms. FEBS J 2024; 291:3706-3722. [PMID: 38840471 DOI: 10.1111/febs.17192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/05/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
Autophagy dysfunction has been closely related with pathogenesis of many neurodegenerative diseases and therefore represents a potential therapeutic target. Extracellular vesicles (EVs) may act as potent anti-inflammatory agents and also modulators of autophagy in target cells. However, the molecular mechanisms by which EVs modulate autophagy flux in human microglia remain largely unexplored. In the present study, we investigated the effects of EVs derived from human oral mucosa stem cells on the autophagy in human microglia. We demonstrate that EVs promoted autophagy and autophagic flux in human microglia and that this process was dependent on the integrity of lipid rafts. Lipopolysaccharide (LPS) also activated autophagy, but combined treatment with EVs and LPS suppressed autophagy response, indicating interference between these signaling pathways. Blockage of Toll-like receptor 4 (TLR4) with anti-TLR4 antibody suppressed EV-induced autophagy. Furthermore, inhibition of the EV-associated heat shock protein (HSP70) chaperone which is one of the endogenous ligands of the TLR4 also suppressed EV-induced lipid raft formation and autophagy. Pre-treatment of microglia with a selective inhibitor of αvβ3/αvβ5 integrins cilengitide inhibited EV-induced autophagy. Finally, blockage of purinergic P2X4 receptor (P2X4R) with selective inhibitor 5-BDBD also suppressed EV-induced autophagy. In conclusion, we demonstrate that EVs activate autophagy in human microglia through interaction with HSP70/TLR4, αVβ3/αVβ5, and P2X4R signaling pathways and that these effects depend on the integrity of lipid rafts. Our findings could be used to develop new therapeutic strategies targeting disease-associated microglia.
Collapse
Affiliation(s)
- Diana Romenskaja
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Ugnė Jonavičė
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Augustas Pivoriūnas
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| |
Collapse
|
5
|
Xu C, Wu J, Ye J, Si Y, Zhang J, Wu B, Pan L, Fu J, Ren Q, Xie S, Tang B, Xiao Y, Hong T. Multiomics integration-based immunological characterizations of adamantinomatous craniopharyngioma in relation to keratinization. Cell Death Dis 2024; 15:439. [PMID: 38906852 PMCID: PMC11192745 DOI: 10.1038/s41419-024-06840-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Although adamantinomatous craniopharyngioma (ACP) is a tumour with low histological malignancy, there are very few therapeutic options other than surgery. ACP has high histological complexity, and the unique features of the immunological microenvironment within ACP remain elusive. Further elucidation of the tumour microenvironment is particularly important to expand our knowledge of potential therapeutic targets. Here, we performed integrative analysis of 58,081 nuclei through single-nucleus RNA sequencing and spatial transcriptomics on ACP specimens to characterize the features and intercellular network within the microenvironment. The ACP environment is highly immunosuppressive with low levels of T-cell infiltration/cytotoxicity. Moreover, tumour-associated macrophages (TAMs), which originate from distinct sources, highly infiltrate the microenvironment. Using spatial transcriptomic data, we observed one kind of non-microglial derived TAM that highly expressed GPNMB close to the terminally differentiated epithelial cell characterized by RHCG, and this colocalization was verified by asmFISH. We also found the positive correlation of infiltration between these two cell types in datasets with larger cohort. According to intercellular communication analysis, we report a regulatory network that could facilitate the keratinization of RHCG+ epithelial cells, eventually causing tumour progression. Our findings provide a comprehensive analysis of the ACP immune microenvironment and reveal a potential therapeutic strategy base on interfering with these two types of cells.
Collapse
Affiliation(s)
- Chunming Xu
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jie Wu
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jiye Ye
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yuancheng Si
- Department of Mathematics, University of Manchester, Manchester, UK
- The School of Economics, Fudan University, Shanghai, China
| | - Jinshi Zhang
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Bowen Wu
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Laisheng Pan
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jun Fu
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Quan Ren
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Shenhao Xie
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Bin Tang
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yingqun Xiao
- Department of Pathology, Affiliated Infectious Disease Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Tao Hong
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
6
|
Alhamdan F, Bayarsaikhan G, Yuki K. Toll-like receptors and integrins crosstalk. Front Immunol 2024; 15:1403764. [PMID: 38915411 PMCID: PMC11194410 DOI: 10.3389/fimmu.2024.1403764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/24/2024] [Indexed: 06/26/2024] Open
Abstract
Immune system recognizes invading microbes at both pathogen and antigen levels. Toll-like receptors (TLRs) play a key role in the first-line defense against pathogens. Major functions of TLRs include cytokine and chemokine production. TLRs share common downstream signaling pathways with other receptors. The crosstalk revolving around TLRs is rather significant and complex, underscoring the intricate nature of immune system. The profiles of produced cytokines and chemokines via TLRs can be affected by other receptors. Integrins are critical heterodimeric adhesion molecules expressed on many different cells. There are studies describing synergetic or inhibitory interplay between TLRs and integrins. Thus, we reviewed the crosstalk between TLRs and integrins. Understanding the nature of the crosstalk could allow us to modulate TLR functions via integrins.
Collapse
Affiliation(s)
- Fahd Alhamdan
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia, Boston Children’s Hospital, Boston, MA, United States
- Department of Anesthesia and Immunology, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Ganchimeg Bayarsaikhan
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia, Boston Children’s Hospital, Boston, MA, United States
- Department of Anesthesia and Immunology, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Koichi Yuki
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia, Boston Children’s Hospital, Boston, MA, United States
- Department of Anesthesia and Immunology, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
7
|
Wang T, Kimmel HRC, Park C, Ryoo H, Liu J, Underhill GH, Pattabiraman PP. Regulatory role of cholesterol in modulating actin dynamics and cell adhesive interactions in the trabecular meshwork. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578717. [PMID: 38352310 PMCID: PMC10862777 DOI: 10.1101/2024.02.02.578717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The trabecular meshwork (TM) tissue plays a crucial role in maintaining intraocular pressure (IOP) homeostasis. Increased TM contractility and stiffness are directly correlated with elevated IOP. Although cholesterol is known to be a determinant of glaucoma occurrence and elevated IOP, the underlying mechanisms remain elusive. In this study, we used human TM (HTM) cells to unravel the effects of cholesterol on TM stiffness. We achieved this by performing acute cholesterol depletion with Methyl-β-cyclodextrin (MβCD) and cholesterol enrichment/replenishment with MβCD cholesterol complex (CHOL). Interestingly, cholesterol depletion triggered notable actin depolymerization and decreased focal adhesion formation, while enrichment/replenishment promoted actin polymerization, requiring the presence of actin monomers. Using a specific reporter of phosphatidylinositol 4,5-bisphosphate (PIP2), we demonstrated that cholesterol depletion decreases PIP2 levels on the cell membrane, whereas enrichment increases them. Given the critical role of PIP2 in actin remodeling and focal adhesion formation, we postulate that cholesterol regulates actin dynamics by modulating PIP2 levels on the membrane. Furthermore, we showed that cholesterol levels regulate integrin α5β1 and αVβ3 distribution and activation, subsequently altering cell-extracellular matrix (ECM) interactions. Notably, the depletion of cholesterol, as a major lipid constituent of the cell membrane, led to a decrease in HTM cell membrane tension, which was reversed upon cholesterol replenishment. Overall, our systematic exploration of cholesterol modulation on TM stiffness highlights the critical importance of maintaining appropriate membrane and cellular cholesterol levels for achieving IOP homeostasis.
Collapse
Affiliation(s)
- Ting Wang
- Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, 1160 West Michigan Street, Indianapolis, Indiana, 46202, United States of America
- Stark Neuroscience Research Institute, Medical Neuroscience Graduate Program, Indiana University School of Medicine, 320 W. 15th Street, Indiana, 46202, United States of America
| | - Hannah R C Kimmel
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, United States of America
| | - Charles Park
- Deparment of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, Indiana, 47907, United States of America
| | - Hyeon Ryoo
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, United States of America
| | - Jing Liu
- Deparment of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, Indiana, 47907, United States of America
| | - Gregory H Underhill
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, United States of America
| | - Padmanabhan P Pattabiraman
- Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, 1160 West Michigan Street, Indianapolis, Indiana, 46202, United States of America
- Stark Neuroscience Research Institute, Medical Neuroscience Graduate Program, Indiana University School of Medicine, 320 W. 15th Street, Indiana, 46202, United States of America
| |
Collapse
|
8
|
Sarkar T, Farago O. Characterizing the heterogeneity of membrane liquid-ordered domains. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:99. [PMID: 37847322 DOI: 10.1140/epje/s10189-023-00359-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/27/2023] [Indexed: 10/18/2023]
Abstract
We use a lattice model of a ternary mixture containing saturated and unsaturated lipids with cholesterol (Chol), to study the structural properties characterizing the coexistence between the liquid-disordered and liquid-ordered phases. Depending on the affinity of the saturated and unsaturated lipids, the system may exhibit macroscopic (thermodynamic) liquid-liquid phase separation or be divided into small-size liquid-ordered domains surrounded by a liquid-disordered matrix. In both cases, it is found that the nanoscale structure of the liquid-ordered regions is heterogeneous, and that they are partitioned into Chol-rich sub-domains and Chol-free, gel-like, nano-clusters. This emerges as a characteristic feature of the liquid-ordered state, which helps distinguishing between liquid-ordered domains in a two-phase mixture, and similar-looking domains in a one-phase mixture that are rich in saturated lipids and Chol, but are merely thermal density fluctuations. The nano-structure heterogeneity of the liquid-ordered phase can be detected by suitable experimental spectroscopic methods and is observed also in atomistic computer simulations.
Collapse
Affiliation(s)
- Tanmoy Sarkar
- Department of Theoretical Physics, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Oded Farago
- Biomedical Engineering Department, Ben Gurion University of the Negev, 84105, Beer Sheva, Israel.
| |
Collapse
|
9
|
Xue Y, Lin L, Li Q, Liu K, Hu M, Ye J, Cao J, Zhai J, Zheng F, Wang Y, Zhang T, Du L, Gao C, Wang G, Wang X, Qin J, Liao X, Kong X, Sorokin L, Shi Y, Wang Y. SCD1 Sustains Homeostasis of Bulge Niche via Maintaining Hemidesmosomes in Basal Keratinocytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2201949. [PMID: 36507562 PMCID: PMC9896058 DOI: 10.1002/advs.202201949] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/22/2022] [Indexed: 06/18/2023]
Abstract
Niche for stem cells profoundly influences their maintenance and fate during tissue homeostasis and pathological disorders; however, the underlying mechanisms and tissue-specific features remain poorly understood. Here, it is reported that fatty acid desaturation catabolized by stearoyl-coenzyme A desaturase 1 (SCD1) regulates hair follicle stem cells (HFSCs) and hair growth by maintaining the bulge, niche for HFSCs. Scd1 deletion in mice results in abnormal hair growth, an effect exerted directly on keratin K14+ keratinocytes rather than on HFSCs. Mechanistically, Scd1 deficiency impairs the level of integrin α6β4 complex and thus the assembly of hemidesmosomes (HDs). The disruption of HDs allows the aberrant activation of focal adhesion kinase and PI3K in K14+ keratinocytes and subsequently their differentiation and proliferation. The overgrowth of basal keratinocytes results in downward extension of the outer root sheath and interruption of bulge formation. Then, inhibition of PI3K signaling in Scd1-/- mice normalizes the bulge, HFSCs, and hair growth. Additionally, supplementation of oleic acid to Scd1-/- mice reestablishes HDs and the homeostasis of bulge niche, and restores hair growth. Thus, SCD1 is critical in regulating hair growth through stabilizing HDs in basal keratinocytes and thus sustaining bulge for HFSC residence and periodic activity.
Collapse
Affiliation(s)
- Yueqing Xue
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Liangyu Lin
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Qing Li
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Keli Liu
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Mingyuan Hu
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Jiayin Ye
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Jianchang Cao
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Jingjie Zhai
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Fanjun Zheng
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Yu Wang
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Tao Zhang
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Liming Du
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Cheng Gao
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Guan Wang
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Xuefeng Wang
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Xinhua Liao
- School of Life SciencesShanghai UniversityShanghai200444China
| | - Xiangyin Kong
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Lydia Sorokin
- Institute of Physiological Chemistry and PathobiochemistryCells in Motion Interfaculty Centre (CIMIC)University of MünsterD‐48149MünsterGermany
| | - Yufang Shi
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
- The Third Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and Protection, Institutes for Translational MedicineSoochow University Medical CollegeSuzhouJiangsu215123China
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| |
Collapse
|
10
|
Rezende L, Couto NFD, Fernandes-Braga W, Epshtein Y, Alvarez-Leite JI, Levitan I, Andrade LDO. OxLDL induces membrane structure rearrangement leading to biomechanics alteration and migration deficiency in macrophage. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183951. [PMID: 35504320 DOI: 10.1016/j.bbamem.2022.183951] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
Cholesterol sequestration from plasma membrane has been shown to induce lipid packing disruption, causing actin cytoskeleton reorganization and polymerization, increasing cell stiffness and inducing lysosomal exocytosis in non-professional phagocytes. Similarly, oxidized form of low-density lipoprotein (oxLDL) has also been shown to disrupt lipid organization and packing in endothelial cells, leading to biomechanics alterations that interfere with membrane injury and repair. For macrophages, much is known about oxLDL effects in cell activation, cytokine production and foam cell formation. However, little is known about its impact in the organization of macrophage membrane structured domains and cellular mechanics, the focus of the present study. Treatment of bone marrow-derived macrophages (BMDM) with oxLDL not only altered membrane structure, and potentially the distribution of raft domains, but also induced actin rearrangement, diffuse integrin distribution and cell shrinkage, similarly to observed upon treatment of these cells with MβCD. Those alterations led to decreased migration efficiency. For both treatments, higher co-localization of actin cytoskeleton and GM1 was observed, indicating a similar mechanism of action involving raft-like domain dynamics. Lastly, like MβCD treatment, oxLDL also induced lysosomal spreading in BMDM. We propose that OxLDL induced re-organization of membrane/cytoskeleton complex in macrophages can be attributed to the insertion of oxysterols into the membrane, which lead to changes in lipid organization and disruption of membrane structure, similar to the effect of cholesterol depletion by MβCD treatment. These results indicate that oxLDL can induce physical alterations in the complex membrane/cytoskeleton of macrophages, leading to significant biomechanical changes that compromise cell behavior.
Collapse
Affiliation(s)
- Luisa Rezende
- Department of Morphology/Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Natalia Fernanda Do Couto
- Department of Morphology/Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Medicine, University of Illinois at Chicago, Chicago, USA
| | - Weslley Fernandes-Braga
- Department of Biochemistry and Immunology/Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Yulia Epshtein
- Department of Medicine, University of Illinois at Chicago, Chicago, USA
| | | | - Irena Levitan
- Department of Medicine, University of Illinois at Chicago, Chicago, USA
| | | |
Collapse
|
11
|
Ma Z, Zhu K, Gao Y, Tan S, Miao Y. Molecular condensation and mechanoregulation of plant class I formin, an integrin‐like actin nucleator. FEBS J 2022. [DOI: 10.1111/febs.16571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/29/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Zhiming Ma
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
| | - Kexin Zhu
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
| | - Yong‐Gui Gao
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
| | - Suet‐Mien Tan
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
| | - Yansong Miao
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
- Institute for Digital Molecular Analytics and Science Nanyang Technological University Singapore City Singapore
| |
Collapse
|
12
|
Mariano A, Lubrano C, Bruno U, Ausilio C, Dinger NB, Santoro F. Advances in Cell-Conductive Polymer Biointerfaces and Role of the Plasma Membrane. Chem Rev 2022; 122:4552-4580. [PMID: 34582168 PMCID: PMC8874911 DOI: 10.1021/acs.chemrev.1c00363] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Indexed: 02/07/2023]
Abstract
The plasma membrane (PM) is often described as a wall, a physical barrier separating the cell cytoplasm from the extracellular matrix (ECM). Yet, this wall is a highly dynamic structure that can stretch, bend, and bud, allowing cells to respond and adapt to their surrounding environment. Inspired by shapes and geometries found in the biological world and exploiting the intrinsic properties of conductive polymers (CPs), several biomimetic strategies based on substrate dimensionality have been tailored in order to optimize the cell-chip coupling. Furthermore, device biofunctionalization through the use of ECM proteins or lipid bilayers have proven successful approaches to further maximize interfacial interactions. As the bio-electronic field aims at narrowing the gap between the electronic and the biological world, the possibility of effectively disguising conductive materials to "trick" cells to recognize artificial devices as part of their biological environment is a promising approach on the road to the seamless platform integration with cells.
Collapse
Affiliation(s)
- Anna Mariano
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| | - Claudia Lubrano
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Dipartimento
di Chimica, Materiali e Produzione Industriale, Università di Napoli Federico II, 80125 Naples, Italy
| | - Ugo Bruno
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Dipartimento
di Chimica, Materiali e Produzione Industriale, Università di Napoli Federico II, 80125 Naples, Italy
| | - Chiara Ausilio
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| | - Nikita Bhupesh Dinger
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Dipartimento
di Chimica, Materiali e Produzione Industriale, Università di Napoli Federico II, 80125 Naples, Italy
| | - Francesca Santoro
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| |
Collapse
|
13
|
Hou Z, Chen J, Yang H, Hu X, Yang F. microRNA-26a shuttled by extracellular vesicles secreted from adipose-derived mesenchymal stem cells reduce neuronal damage through KLF9-mediated regulation of TRAF2/KLF2 axis. Adipocyte 2021; 10:378-393. [PMID: 34311651 PMCID: PMC8320674 DOI: 10.1080/21623945.2021.1938829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs) are nano-sized vesicles secreted actively by numeorus cells and have fundamental roles in intercellular communication through shuttling functional RNAs. This study sets out to elucidate the role of microRNA-26a (miR-26a) shuttled by EVs derived from adipose-derived mesenchymal stem cells (ASCs) in neuronal damage. After extraction and identification of ASC-derived EVs (ASC-EVs), mouse cortical neuronal cells were selected to establish an in vivo cerebral ischemia/reperfusion mouse model and an in vitro oxygen glucose deprivation/reperfusion (OGD/RP) cell model. The downstream genes of miR-26a were analyzed. The gain- and loss-of function of miR-26a and KLF9 was performed in mouse and cell models. Neuronal cells were subjected to co-culture with ASC-EVs and biological behaviors were detected by flow cytometry, Motic Images Plus, TTC, TUNEL staining, qRT-PCR and western blot analysis. ASC-EVs protected neuronal cells against neuronal damage following cerebral ischemia/reperfusion, which was related to transfer of miR-26a into neuronal cells. In neuronal cells, miR-26a targeted KLF9. KLF9 could suppress the expression of TRAF2 and KLF2 to facilitate neuronal damage. In vitro and in vivo results showed that miR-26a delivered by ASC-EVs inhibited neuronal damage. In summary, ASC-EVs-derived miR-26a can arrest neuronal damage by disrupting the KLF9-meidated suppression on TRAF2/KLF2 axis.
Collapse
Affiliation(s)
- Zixin Hou
- Department of Anesthesiology, The First Affiliated Hospital of University of South China, Hengyang, P. R. China
| | - Ji Chen
- Department of Endocrinology, The First Affiliated Hospital of University of South China, Hengyang, P. R. China
| | - Huan Yang
- Department of Anesthesiology, The First Affiliated Hospital of University of South China, Hengyang, P. R. China
| | - Xiaoling Hu
- Department of Anesthesiology, The First Affiliated Hospital of University of South China, Hengyang, P. R. China
| | - Fengrui Yang
- Department of Anesthesiology, The First Affiliated Hospital of University of South China, Hengyang, P. R. China
| |
Collapse
|
14
|
Rieck S, Kilgus S, Meyer JH, Huang H, Zhao L, Matthey M, Wang X, Schmitz-Valckenberg S, Fleischmann BK, Wenzel D. Inhibition of Vascular Growth by Modulation of the Anandamide/Fatty Acid Amide Hydrolase Axis. Arterioscler Thromb Vasc Biol 2021; 41:2974-2989. [PMID: 34615374 PMCID: PMC8608012 DOI: 10.1161/atvbaha.121.316973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supplemental Digital Content is available in the text. Objective: Pathological angiogenesis is a hallmark of various diseases characterized by local hypoxia and inflammation. These disorders can be treated with inhibitors of angiogenesis, but current compounds display a variety of side effects and lose efficacy over time. This makes the identification of novel signaling pathways and pharmacological targets involved in angiogenesis a top priority. Approach and Results: Here, we show that inactivation of FAAH (fatty acid amide hydrolase), the enzyme responsible for degradation of the endocannabinoid anandamide, strongly impairs angiogenesis in vitro and in vivo. Both, the pharmacological FAAH inhibitor URB597 and anandamide induce downregulation of gene sets for cell cycle progression and DNA replication in endothelial cells. This is underscored by cell biological experiments, in which both compounds inhibit proliferation and migration and evoke cell cycle exit of endothelial cells. This prominent antiangiogenic effect is also of pathophysiological relevance in vivo, as laser-induced choroidal neovascularization in the eye of FAAH−/− mice is strongly reduced. Conclusions: Thus, elevation of endogenous anandamide levels by FAAH inhibition represents a novel antiangiogenic mechanism.
Collapse
Affiliation(s)
- Sarah Rieck
- Institute of Physiology I, Life&Brain Center, Medical Faculty (S.R., S.K., B.K.F., D.W.), University of Bonn, Germany
| | - Sofia Kilgus
- Institute of Physiology I, Life&Brain Center, Medical Faculty (S.R., S.K., B.K.F., D.W.), University of Bonn, Germany
| | - Johanna H Meyer
- Department of Ophthalmology (J.H.M., S.S.-V.), University of Bonn, Germany
| | - Hao Huang
- Department of Biomedical Sciences, City University of Hong Kong (H.H., L.Z., X.W.)
| | - Lan Zhao
- Department of Biomedical Sciences, City University of Hong Kong (H.H., L.Z., X.W.)
| | - Michaela Matthey
- Department of Systems Physiology, Institute of Physiology, Medical Faculty, Ruhr University of Bochum, Germany (M.M., D.W.)
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong (H.H., L.Z., X.W.)
| | - Steffen Schmitz-Valckenberg
- Department of Ophthalmology (J.H.M., S.S.-V.), University of Bonn, Germany.,John A. Moran Eye Center, Ophthalmology & Visual Science, University of Utah, Salt Lake City (S.S.-V.)
| | - Bernd K Fleischmann
- Institute of Physiology I, Life&Brain Center, Medical Faculty (S.R., S.K., B.K.F., D.W.), University of Bonn, Germany
| | - Daniela Wenzel
- Institute of Physiology I, Life&Brain Center, Medical Faculty (S.R., S.K., B.K.F., D.W.), University of Bonn, Germany.,Department of Systems Physiology, Institute of Physiology, Medical Faculty, Ruhr University of Bochum, Germany (M.M., D.W.)
| |
Collapse
|
15
|
Reconstitution of Functional Integrin αIIbβ3 and Its Activation in Plasma Membrane-Mimetic Lipid Environments. MEMBRANES 2021; 11:membranes11070499. [PMID: 34209233 PMCID: PMC8304682 DOI: 10.3390/membranes11070499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 11/29/2022]
Abstract
The study of the platelet receptor integrin αIIbβ3 in a membrane-mimetic environment without interfering signalling pathways is crucial to understand protein structure and dynamics. Our understanding of this receptor and its sequential activation steps has been tremendously progressing using structural and reconstitution approaches in model membranes, such as liposomes or supported-lipid bilayers. For most αIIbβ3 reconstitution approaches, saturated short-chain lipids have been used, which is not reflecting the native platelet cell membrane composition. We report here on the reconstitution of label-free full-length αIIbβ3 in liposomes containing cholesterol, sphingomyelin, and unsaturated phosphatidylcholine mimicking the plasma membrane that formed supported-lipid bilayers for quartz-crystal microbalance with dissipation (QCM-D) experiments. We demonstrate the relevance of the lipid environment and its resulting physicochemical properties on integrin reconstitution efficiency and its conformational dynamics. We present here an approach to investigate αIIbβ3 in a biomimetic membrane system as a useful platform do dissect disease-relevant integrin mutations and effects on ligand binding in a lipid-specific context, which might be applicable for drug screening.
Collapse
|
16
|
One Raft to Guide Them All, and in Axon Regeneration Inhibit Them. Int J Mol Sci 2021; 22:ijms22095009. [PMID: 34066896 PMCID: PMC8125918 DOI: 10.3390/ijms22095009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022] Open
Abstract
Central nervous system damage caused by traumatic injuries, iatrogenicity due to surgical interventions, stroke and neurodegenerative diseases is one of the most prevalent reasons for physical disability worldwide. During development, axons must elongate from the neuronal cell body to contact their precise target cell and establish functional connections. However, the capacity of the adult nervous system to restore its functionality after injury is limited. Given the inefficacy of the nervous system to heal and regenerate after damage, new therapies are under investigation to enhance axonal regeneration. Axon guidance cues and receptors, as well as the molecular machinery activated after nervous system damage, are organized into lipid raft microdomains, a term typically used to describe nanoscale membrane domains enriched in cholesterol and glycosphingolipids that act as signaling platforms for certain transmembrane proteins. Here, we systematically review the most recent findings that link the stability of lipid rafts and their composition with the capacity of axons to regenerate and rebuild functional neural circuits after damage.
Collapse
|
17
|
Shannon MJ, Mace EM. Natural Killer Cell Integrins and Their Functions in Tissue Residency. Front Immunol 2021; 12:647358. [PMID: 33777044 PMCID: PMC7987804 DOI: 10.3389/fimmu.2021.647358] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Integrins are transmembrane receptors associated with adhesion and migration and are often highly differentially expressed receptors amongst natural killer cell subsets in microenvironments. Tissue resident natural killer cells are frequently defined by their differential integrin expression compared to other NK cell subsets, and integrins can further localize tissue resident NK cells to tissue microenvironments. As such, integrins play important roles in both the phenotypic and functional identity of NK cell subsets. Here we review the expression of integrin subtypes on NK cells and NK cell subsets with the goal of better understanding how integrin selection can dictate tissue residency and mediate function from the nanoscale to the tissue environment.
Collapse
Affiliation(s)
| | - Emily M. Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| |
Collapse
|
18
|
Greenlee JD, Subramanian T, Liu K, King MR. Rafting Down the Metastatic Cascade: The Role of Lipid Rafts in Cancer Metastasis, Cell Death, and Clinical Outcomes. Cancer Res 2021; 81:5-17. [PMID: 32999001 PMCID: PMC7952000 DOI: 10.1158/0008-5472.can-20-2199] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/01/2020] [Accepted: 09/21/2020] [Indexed: 11/16/2022]
Abstract
Lipid rafts are tightly packed, cholesterol- and sphingolipid-enriched microdomains within the plasma membrane that play important roles in many pathophysiologic processes. Rafts have been strongly implicated as master regulators of signal transduction in cancer, where raft compartmentalization can promote transmembrane receptor oligomerization, shield proteins from enzymatic degradation, and act as scaffolds to enhance intracellular signaling cascades. Cancer cells have been found to exploit these mechanisms to initiate oncogenic signaling and promote tumor progression. This review highlights the roles of lipid rafts within the metastatic cascade, specifically within tumor angiogenesis, cell adhesion, migration, epithelial-to-mesenchymal transition, and transendothelial migration. In addition, the interplay between lipid rafts and different modes of cancer cell death, including necrosis, apoptosis, and anoikis, will be described. The clinical role of lipid raft-specific proteins, caveolin and flotillin, in assessing patient prognosis and evaluating metastatic potential of various cancers will be presented. Collectively, elucidation of the complex roles of lipid rafts and raft components within the metastatic cascade may be instrumental for therapeutic discovery to curb prometastatic processes.
Collapse
Affiliation(s)
- Joshua D Greenlee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Tejas Subramanian
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Kevin Liu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Michael R King
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
19
|
Nagano T, Iwasaki T, Onishi K, Awai Y, Terachi A, Kuwaba S, Asano S, Katasho R, Nagai K, Nakashima A, Kikkawa U, Kamada S. LY6D-induced macropinocytosis as a survival mechanism of senescent cells. J Biol Chem 2021; 296:100049. [PMID: 33168631 PMCID: PMC7948989 DOI: 10.1074/jbc.ra120.013500] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 10/23/2020] [Accepted: 11/09/2020] [Indexed: 01/16/2023] Open
Abstract
Although senescent cells display various morphological changes including vacuole formation, it is still unclear how these processes are regulated. We have recently identified the gene, lymphocyte antigen 6 complex, locus D (LY6D), to be upregulated specifically in senescent cells. LY6D is a glycosylphosphatidylinositol-anchored cell-surface protein whose function remains unknown. Here, we analyzed the functional relationship between LY6D and the senescence processes. We found that overexpression of LY6D induced vacuole formation and knockdown of LY6D suppressed the senescence-associated vacuole formation. The LY6D-induced vacuoles were derived from macropinocytosis, a distinct form of endocytosis. Furthermore, Src family kinases and Ras were found to be recruited to membrane lipid rafts in an LY6D-dependent manner, and inhibition of their activity impaired the LY6D-induced macropinocytosis. Finally, reduction of senescent-cell survival induced by glutamine deprivation was recovered by albumin supplementation to the culture media in an LY6D-dependent manner. Because macropinocytosis acts as an amino acid supply route, these results suggest that LY6D-mediated macropinocytosis contributes to senescent-cell survival through the incorporation of extracellular nutrients.
Collapse
Affiliation(s)
- Taiki Nagano
- Biosignal Research Center, Kobe University, Kobe, Japan
| | - Tetsushi Iwasaki
- Biosignal Research Center, Kobe University, Kobe, Japan; Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan; Department of Biology, Faculty of Science, Kobe University, Kobe, Japan
| | - Kengo Onishi
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Yuto Awai
- Department of Biology, Faculty of Science, Kobe University, Kobe, Japan
| | - Anju Terachi
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Shione Kuwaba
- Department of Biology, Faculty of Science, Kobe University, Kobe, Japan
| | - Shota Asano
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Ryoko Katasho
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Kiyoko Nagai
- Biosignal Research Center, Kobe University, Kobe, Japan
| | - Akio Nakashima
- Biosignal Research Center, Kobe University, Kobe, Japan; Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Ushio Kikkawa
- Biosignal Research Center, Kobe University, Kobe, Japan; Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Shinji Kamada
- Biosignal Research Center, Kobe University, Kobe, Japan; Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan; Department of Biology, Faculty of Science, Kobe University, Kobe, Japan.
| |
Collapse
|
20
|
Koganti R, Suryawanshi R, Shukla D. Heparanase, cell signaling, and viral infections. Cell Mol Life Sci 2020; 77:5059-5077. [PMID: 32462405 PMCID: PMC7252873 DOI: 10.1007/s00018-020-03559-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/17/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022]
Abstract
Heparanase (HPSE) is a multifunctional protein endowed with many non-enzymatic functions and a unique enzymatic activity as an endo-β-D-glucuronidase. The latter allows it to serve as a key modulator of extracellular matrix (ECM) via a well-regulated cleavage of heparan sulfate side chains of proteoglycans at cell surfaces. The cleavage and associated changes at the ECM cause release of multiple signaling molecules with important cellular and pathological functions. New and emerging data suggest that both enzymatic as well as non-enzymatic functions of HPSE are important for health and illnesses including viral infections and virally induced cancers. This review summarizes recent findings on the roles of HPSE in activation, inhibition, or bioavailability of key signaling molecules such as AKT, VEGF, MAPK-ERK, and EGFR, which are known regulators of common viral infections in immune and non-immune cell types. Altogether, our review provides a unique overview of HPSE in cell-survival signaling pathways and how they relate to viral infections.
Collapse
Affiliation(s)
- Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St, Chicago, IL, 60612, USA
| | - Rahul Suryawanshi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St, Chicago, IL, 60612, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St, Chicago, IL, 60612, USA.
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
21
|
Maynard SA, Winter CW, Cunnane EM, Stevens MM. Advancing Cell-Instructive Biomaterials Through Increased Understanding of Cell Receptor Spacing and Material Surface Functionalization. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020; 7:553-547. [PMID: 34805482 PMCID: PMC8594271 DOI: 10.1007/s40883-020-00180-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract Regenerative medicine is aimed at restoring normal tissue function and can benefit from the application of tissue engineering and nano-therapeutics. In order for regenerative therapies to be effective, the spatiotemporal integration of tissue-engineered scaffolds by the native tissue, and the binding/release of therapeutic payloads by nano-materials, must be tightly controlled at the nanoscale in order to direct cell fate. However, due to a lack of insight regarding cell–material interactions at the nanoscale and subsequent downstream signaling, the clinical translation of regenerative therapies is limited due to poor material integration, rapid clearance, and complications such as graft-versus-host disease. This review paper is intended to outline our current understanding of cell–material interactions with the aim of highlighting potential areas for knowledge advancement or application in the field of regenerative medicine. This is achieved by reviewing the nanoscale organization of key cell surface receptors, the current techniques used to control the presentation of cell-interactive molecules on material surfaces, and the most advanced techniques for characterizing the interactions that occur between cell surface receptors and materials intended for use in regenerative medicine. Lay Summary The combination of biology, chemistry, materials science, and imaging technology affords exciting opportunities to better diagnose and treat a wide range of diseases. Recent advances in imaging technologies have enabled better understanding of the specific interactions that occur between human cells and their immediate surroundings in both health and disease. This biological understanding can be used to design smart therapies and tissue replacements that better mimic native tissue. Here, we discuss the advances in molecular biology and technologies that can be employed to functionalize materials and characterize their interaction with biological entities to facilitate the design of more sophisticated medical therapies.
Collapse
Affiliation(s)
- Stephanie A. Maynard
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| | - Charles W. Winter
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| | - Eoghan M. Cunnane
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| | - Molly M. Stevens
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| |
Collapse
|
22
|
Xie X, Hu X, Li Q, Yin M, Song H, Hu J, Wang L, Fan C, Chen N. Unraveling Cell-Type-Specific Targeted Delivery of Membrane-Camouflaged Nanoparticles with Plasmonic Imaging. NANO LETTERS 2020; 20:5228-5235. [PMID: 32510963 DOI: 10.1021/acs.nanolett.0c01503] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cell-membrane-camouflaged nanoparticles (CMC-NPs) have been increasingly exploited to develop various therapeutic tools due to their high biocompatibility and cell-type-specific tumor-targeting properties. However, the molecular mechanism of CMC-NPs for homotypic targeting remains elusive. Here, we develop a plasmonic imaging method by coating gold nanoparticles (AuNPs) with cancer cell membranes and perform plasmonic imaging of the interactions between CMC-NPs and living cells at the single-cell level. Quantitative analysis of CMC-NPs in a different clustering status reveals that the presence of cell membranes on CMC-NPs results in a 7-fold increase in homotypic cell delivery and nearly 2 orders of magnitude acceleration of the intracellular agglomeration process. Significantly, we identify that integrin αvβ3, a cell surface receptor abundantly expressed in tumor cells, is critical for the selective cell recognition of CMC-NPs. We thus establish a single-cell plasmonic imaging platform for probing NP-cell interactions, which sheds new light on the therapeutic applications of CMC-NPs.
Collapse
Affiliation(s)
- Xiaodong Xie
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Xingjie Hu
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, and Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Min Yin
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Haiyun Song
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jun Hu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, and Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nan Chen
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
23
|
Kim J, Lee J, Jang J, Ye F, Hong SJ, Petrich BG, Ulmer TS, Kim C. Topological Adaptation of Transmembrane Domains to the Force-Modulated Lipid Bilayer Is a Basis of Sensing Mechanical Force. Curr Biol 2020; 30:1614-1625.e5. [PMID: 32169208 DOI: 10.1016/j.cub.2020.02.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/23/2020] [Accepted: 02/12/2020] [Indexed: 12/27/2022]
Abstract
Cells can sense and respond to various mechanical stimuli from their surrounding environment. One of the explanations for mechanosensitivity, a lipid-bilayer model, suggests that a stretch of the membrane induced by mechanical force alters the physical state of the lipid bilayer, driving mechanosensors to assume conformations better matched to the altered membrane. However, mechanosensors of this class are restricted to ion channels. Here, we reveal that integrin αIIbβ3, a prototypic adhesion receptor, can be activated by various mechanical stimuli including stretch, shear stress, and osmotic pressure. The force-induced integrin activation was not dependent on its known intracellular activation signaling events and was even observed in reconstituted cell-free liposomes. Instead, these mechanical stimuli were found to alter the lipid embedding of the integrin β3 transmembrane domain (TMD) and subsequently weaken the αIIb-β3 TMD interaction, which results in activation of the receptor. Moreover, artificial modulation of the membrane curvature near integrin αIIbβ3 can induce its activation in cells as well as in lipid nanodiscs, suggesting that physical deformation of the lipid bilayer, either by mechanical force or curvature, can induce integrin activation. Thus, our results establish the adhesion receptor as a bona fide mechanosensor that directly senses and responds to the force-modulated lipid environment. Furthermore, this study expands the lipid-bilayer model by suggesting that the force-induced topological change of TMDs and subsequent alteration in the TMD interactome is a molecular basis of sensing mechanical force transmitted via the lipid bilayer.
Collapse
Affiliation(s)
- Jiyoon Kim
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Joonha Lee
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Jiyoung Jang
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Feng Ye
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Soon Jun Hong
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul 02841, Republic of Korea
| | - Brian G Petrich
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tobias S Ulmer
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - Chungho Kim
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
24
|
Smith LK, Kuhn TB, Chen J, Bamburg JR. HIV Associated Neurodegenerative Disorders: A New Perspective on the Role of Lipid Rafts in Gp120-Mediated Neurotoxicity. Curr HIV Res 2019; 16:258-269. [PMID: 30280668 PMCID: PMC6398609 DOI: 10.2174/1570162x16666181003144740] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/17/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023]
Abstract
The implementation of combination antiretroviral therapy (cART) as the primary means of treatment for HIV infection has achieved a dramatic decline in deaths attributed to AIDS and the reduced incidence of severe forms of HIV-associated neurocognitive disorders (HAND) in infected individuals. Despite these advances, milder forms of HAND persist and prevalence of these forms of neurocognitive impairment are rising with the aging population of HIV infected individuals. HIV enters the CNS early in the pathophysiology establishing persistent infection in resident macrophages and glial cells. These infected cells, in turn, secrete neurotoxic viral proteins, inflammatory cytokines, and small metabolites thought to contribute to neurodegenerative processes. The viral envelope protein gp120 has been identified as a potent neurotoxin affecting neurodegeneration via indirect and direct mechanisms involving interactions with chemokine co-receptors CCR5 and CXCR4. This short review focuses on gp120 neurotropism and associated mechanisms of neurotoxicity linked to chemokine receptors CCR5 and CXCR4 with a new perspective on plasma membrane lipid rafts as an active participant in gp120-mediated neurodegeneration underlying HIV induced CNS pathology.
Collapse
Affiliation(s)
- Lisa K Smith
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Thomas B Kuhn
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Jack Chen
- Department of Biology and Wildlife, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - James R Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
25
|
Alomari M, Almohazey D, Almofty SA, Khan FA, Al Hamad M, Ababneh D. Role of Lipid Rafts in Hematopoietic Stem Cells Homing, Mobilization, Hibernation, and Differentiation. Cells 2019; 8:cells8060630. [PMID: 31234505 PMCID: PMC6627378 DOI: 10.3390/cells8060630] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/07/2019] [Accepted: 06/14/2019] [Indexed: 12/17/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are multipotent, self-renewing cells that can differentiate into myeloid or lymphoid cells. The mobilization and differentiation processes are affected by the external environment, such as extracellular matrix and soluble molecules in the niche, where the lipid rafts (LRs) of the HSCs act as the receptors and control platforms for these effectors. LRs are membrane microdomains that are enriched in cholesterol, sphingolipid, and proteins. They are involved in diverse cellular processes including morphogenesis, cytokinesis, signaling, endocytic events, and response to the environment. They are also involved in different types of diseases, such as cancer, Alzheimer's, and prion disease. LR clustering and disruption contribute directly to the differentiation, homing, hibernation, or mobilization of HSCs. Thus, characterization of LR integrity may provide a promising approach to controlling the fate of stem cells for clinical applications. In this review, we show the critical role of LR modification (clustering, disruption, protein incorporation, and signal responding) in deciding the fate of HSCs, under the effect of soluble cytokines such as stem cell factor (SCF), transforming growth factor- β (TGF-β), hematopoietic-specific phospholipase Cβ2 (PLC-β2), and granulocyte colony-stimulating factor (G-CSF).
Collapse
Affiliation(s)
- Munther Alomari
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia.
| | - Dana Almohazey
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia.
| | - Sarah Ameen Almofty
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia.
| | - Firdos Alam Khan
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia.
| | - Mohammad Al Hamad
- Department of Pathology, College of Medicine, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia.
| | - Deena Ababneh
- Department of Basic Sciences and Humanities, College of Engineering, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia.
| |
Collapse
|
26
|
Ge Y, Gao J, Jordan R, Naumann CA. Changes in Cholesterol Level Alter Integrin Sequestration in Raft-Mimicking Lipid Mixtures. Biophys J 2019; 114:158-167. [PMID: 29320683 DOI: 10.1016/j.bpj.2017.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/06/2017] [Indexed: 11/30/2022] Open
Abstract
The influence of cholesterol (CHOL) level on integrin sequestration in raft-mimicking lipid mixtures forming coexisting liquid-ordered (lo) and liquid-disordered (ld) lipid domains is investigated using complementary, single-molecule-sensitive, confocal detection methods. Systematic analysis of membrane protein distribution in such a model membrane environment demonstrates that variation of CHOL level has a profound influence on lo-ld sequestration of integrins, thereby exhibiting overall ld preference in the absence of ligands and lo affinity upon vitronectin addition. Accompanying photon-counting histogram analysis of integrins in the different model membrane mixtures shows that the observed changes of integrin sequestration in response to variations of membrane CHOL level are not associated with altering integrin oligomerization states. Instead, our experiments suggest that the strong CHOL dependence of integrin sequestration can be attributed to CHOL-mediated changes of lipid packing and bilayer thickness in coexisting lo and ld domains, highlighting the significance of a biophysical mechanism of CHOL-mediated regulation of integrin sequestration. We envision that this model membrane study may help clarify the influence of CHOL in integrin functionality in plasma membranes, thus providing further insight into the role of lipid heterogeneities in membrane protein distribution and function in a cellular membrane environment.
Collapse
Affiliation(s)
- Yifan Ge
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Jiayun Gao
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Rainer Jordan
- Makromolekulare Chemie, TU Dresden, Dresden, Germany
| | - Christoph A Naumann
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana; Integrated Nanosystems Development Institute, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana.
| |
Collapse
|
27
|
Zhang T, Wang Q, Wang Y, Wang J, Su Y, Wang F, Wang G. AIBP and APOA-I synergistically inhibit intestinal tumor growth and metastasis by promoting cholesterol efflux. J Transl Med 2019; 17:161. [PMID: 31101050 PMCID: PMC6524272 DOI: 10.1186/s12967-019-1910-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/07/2019] [Indexed: 12/24/2022] Open
Abstract
Background The roles played by cholesterol in cancer development and progression represent a popular field in the cancer community. High cholesterol levels are positively correlated with the risk of various types of cancer. APOA-I binding protein (AIBP) promotes the reverse cholesterol transport pathway (RCT) in cooperation with Apolipoprotein A-I (APOA-I) or high-density lipoprotein cholesterol. However, the combined effect of AIBP and APOA-I on intestinal tumor cells is still unclear. Methods Immunohistochemistry, western blot and qPCR were performed to investigate the expression of AIBP and APOA-I in intestinal tumor tissues and cell lines. The anti-tumor activity of AIBP and APOA-I was evaluated by overexpression or recombinant protein treatment. Cholesterol efflux and localization of lipid raft-related proteins were analyzed by a cholesterol efflux assay and lipid raft fraction assay, respectively. Results Here, we reported that both AIBP expression and APOA-I expression were associated with the degree of malignancy in intestinal tumors. Co-overexpression of AIBP and APOA-I more potently inhibited colon cancer cell-mediated tumor growth and metastasis compared to overexpression of each protein individually. Additionally, the recombinant fusion proteins of AIBP and APOA-I exhibited a significant therapeutic effect on tumor growth in Apcmin/+ mice as an inherited intestinal tumor model. The synergistic effect of the two proteins inhibited colon cancer cell migration, invasion and tumor-induced angiogenesis by promoting cholesterol efflux, reducing the membrane raft content, and eventually disrupting the proper localization of migration- and invasion-related proteins on the membrane raft. Moreover, cyclosporine A, a cholesterol efflux inhibitor, rescued the inhibitory effect induced by the combination of AIBP and APOA-I. Conclusions These results indicate that the combination of APOA-I and AIBP has an obvious anticancer effect on colorectal cancer by promoting cholesterol efflux. Electronic supplementary material The online version of this article (10.1186/s12967-019-1910-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.,Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, China
| | - Qilong Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Yeqi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Junping Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, China
| | - Yongping Su
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, China
| | - Fengchao Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| |
Collapse
|
28
|
Roselló-Busquets C, de la Oliva N, Martínez-Mármol R, Hernaiz-Llorens M, Pascual M, Muhaisen A, Navarro X, Del Valle J, Soriano E. Cholesterol Depletion Regulates Axonal Growth and Enhances Central and Peripheral Nerve Regeneration. Front Cell Neurosci 2019; 13:40. [PMID: 30809129 PMCID: PMC6379282 DOI: 10.3389/fncel.2019.00040] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/25/2019] [Indexed: 11/13/2022] Open
Abstract
Axonal growth during normal development and axonal regeneration rely on the action of many receptor signaling systems and complexes, most of them located in specialized raft membrane microdomains with a precise lipid composition. Cholesterol is a component of membrane rafts and the integrity of these structures depends on the concentrations present of this compound. Here we explored the effect of cholesterol depletion in both developing neurons and regenerating axons. First, we show that cholesterol depletion in vitro in developing neurons from the central and peripheral nervous systems increases the size of growth cones, the density of filopodium-like structures and the number of neurite branching points. Next, we demonstrate that cholesterol depletion enhances axonal regeneration after axotomy in vitro both in a microfluidic system using dissociated hippocampal neurons and in a slice-coculture organotypic model of axotomy and regeneration. Finally, using axotomy experiments in the sciatic nerve, we also show that cholesterol depletion favors axonal regeneration in vivo. Importantly, the enhanced regeneration observed in peripheral axons also correlated with earlier electrophysiological responses, thereby indicating functional recovery following the regeneration. Taken together, our results suggest that cholesterol depletion per se is able to promote axonal growth in developing axons and to increase axonal regeneration in vitro and in vivo both in the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Cristina Roselló-Busquets
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Natalia de la Oliva
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ramón Martínez-Mármol
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Marc Hernaiz-Llorens
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Pascual
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Ashraf Muhaisen
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Xavier Navarro
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jaume Del Valle
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,ICREA Academia, Barcelona, Spain
| |
Collapse
|
29
|
Bi J, Wang R, Zeng X. Lipid rafts regulate the lamellipodia formation of melanoma A375 cells via actin cytoskeleton-mediated recruitment of β1 and β3 integrin. Oncol Lett 2018; 16:6540-6546. [PMID: 30405793 PMCID: PMC6202517 DOI: 10.3892/ol.2018.9466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/16/2018] [Indexed: 01/08/2023] Open
Abstract
Lipid rafts, distinct liquid-ordered plasma membrane microdomains, have been shown to regulate tumor cell migration by internalizing and recycling cell-surface proteins. The present study reports that lipid rafts are a prerequisite for lamellipodia formation, which is the first step in the processes of tumor cell migration. The results from the wound-healing assay and immunostaining indicated that lipid rafts were asymmetrically distributed to the leading edge of migrating melanoma A375 cells during lamellipodia formation. When the integrity of lipids rafts was disrupted, lamellipodia formation was inhibited. The investigation of possible molecular mechanisms indicated that lipid rafts recruited β1 and β3 integrins, two important adhesion proteins for cell migration, to the lamellipodia. However, the different distribution characteristics of β1 and β3 integrins implied disparate functions in lamellipodia formation. Further immunostaining experiments showed that the actin cytoskeleton was responsible for lipid raft-mediated β1 and β3 integrin distribution in the lamellipodia. Together, these findings provide novel insights into the regulation of lipid rafts in lamellipodia formation, and suggest that lipid rafts may be novel and attractive targets for cancer therapy.
Collapse
Affiliation(s)
- Jiajia Bi
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Ruifei Wang
- Key Laboratory for Microorganisms and Functional Molecules, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| | - Xianlu Zeng
- Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| |
Collapse
|
30
|
Xiang RF, Li S, Ogbomo H, Stack D, Mody CH. β1 Integrins Are Required To Mediate NK Cell Killing of Cryptococcus neoformans. THE JOURNAL OF IMMUNOLOGY 2018; 201:2369-2376. [PMID: 30201811 DOI: 10.4049/jimmunol.1701805] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 08/08/2018] [Indexed: 12/22/2022]
Abstract
Cryptococcus neoformans is a fungal pathogen that causes fatal meningitis and pneumonia. During host defense to Cryptococcus, NK cells directly recognize and kill C. neoformans using cytolytic degranulation analogous to killing of tumor cells. This fungal killing requires independent activation of Src family kinase (SFK) and Rac1-mediated pathways. Recognition of C. neoformans requires the natural cytotoxicity receptor, NKp30; however, it is not known whether NKp30 activates both signal transduction pathways or whether a second receptor is involved in activation of one of the pathways. We used primary human NK cells and a human NK cell line and found that NKp30 activates SFK → PI3K but not Rac1 cytotoxic signaling, which led to a search for the receptor leading to Rac1 activation. We found that NK cells require integrin-linked kinase (ILK) to activate Rac1 for effective fungal killing. This observation led to our identification of β1 integrin as an essential anticryptococcal receptor. These findings demonstrate that multiple receptors, including β1 integrins and NKp30 and their proximal signaling pathways, are required for recognition of Cryptococcus, which activates a central cytolytic antimicrobial pathway leading to fungal killing.
Collapse
Affiliation(s)
- Richard F Xiang
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada; and
| | - ShuShun Li
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada; and
| | - Henry Ogbomo
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada; and
| | - Danuta Stack
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada; and
| | - Christopher H Mody
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada; .,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada; and.,Department of Internal Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
31
|
Ikenouchi J. Roles of membrane lipids in the organization of epithelial cells: Old and new problems. Tissue Barriers 2018; 6:1-8. [PMID: 30156967 DOI: 10.1080/21688370.2018.1502531] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Epithelial cells have characteristic membrane domains. Identification of membrane proteins playing an important role in these membrane domains has progressed and numerous studies have been performed on the functional analysis of these membrane proteins. On the other hand, the precise roles of membrane lipids in the organization of these membrane domains are largely unknown. Historically, the concept of lipid raft arose from the analysis of lipid composition of the apical membrane, and it can be said that epithelial cells are an optimal experimental model for elucidating the functions of lipids. In this review, I discuss the role of lipids in the formation of epithelial polarity and in the formation of cell membrane structures of epithelial cells such as microvilli in the apical domain, cell-cell adhesion apparatus in the lateral domain and cell-matrix adhesion in the basal domain.
Collapse
Affiliation(s)
- Junichi Ikenouchi
- a Department of Biology, Faculty of Sciences , Kyushu University , Fukuoka , Nishi-ku , Japan.,b AMED-PRIME, Japan Agency for Medical Research and Development , Tokyo , Japan
| |
Collapse
|
32
|
Santos AL, Preta G. Lipids in the cell: organisation regulates function. Cell Mol Life Sci 2018; 75:1909-1927. [PMID: 29427074 PMCID: PMC11105414 DOI: 10.1007/s00018-018-2765-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/04/2018] [Accepted: 01/29/2018] [Indexed: 12/19/2022]
Abstract
Lipids are fundamental building blocks of all cells and play important roles in the pathogenesis of different diseases, including inflammation, autoimmune disease, cancer, and neurodegeneration. The lipid composition of different organelles can vary substantially from cell to cell, but increasing evidence demonstrates that lipids become organised specifically in each compartment, and this organisation is essential for regulating cell function. For example, lipid microdomains in the plasma membrane, known as lipid rafts, are platforms for concentrating protein receptors and can influence intra-cellular signalling. Lipid organisation is tightly regulated and can be observed across different model organisms, including bacteria, yeast, Drosophila, and Caenorhabditis elegans, suggesting that lipid organisation is evolutionarily conserved. In this review, we summarise the importance and function of specific lipid domains in main cellular organelles and discuss recent advances that investigate how these specific and highly regulated structures contribute to diverse biological processes.
Collapse
Affiliation(s)
- Ana L Santos
- Institut National de la Santé et de la Recherche Médicale, U1001 and Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Giulio Preta
- Institute of Biochemistry, Vilnius University, Sauletekio 7, LT-10257, Vilnius, Lithuania.
| |
Collapse
|
33
|
Casal JI, Bartolomé RA. RGD cadherins and α2β1 integrin in cancer metastasis: A dangerous liaison. Biochim Biophys Acta Rev Cancer 2018; 1869:321-332. [PMID: 29673969 DOI: 10.1016/j.bbcan.2018.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/13/2018] [Accepted: 04/14/2018] [Indexed: 12/24/2022]
Abstract
We propose a new cadherin family classification comprising epithelial cadherins (cadherin 17 [CDH17], cadherin 16, VE-cadherin, cadherin 6 and cadherin 20) containing RGD motifs within their sequences. Expression of some RGD cadherins is associated with aggressive forms of cancer during the late stages of metastasis, and CDH17 and VE-cadherin have emerged as critical actors in cancer metastasis. After binding to α2β1 integrin, these cadherins promote integrin β1 activation, and thereby cell adhesion, invasion and proliferation, in liver and lung metastasis. Activation of α2β1 integrin provokes an affinity increase for type IV collagen, a major component of the basement membrane and a critical partner for cell anchoring in liver and other metastatic organs. Activation of α2β1 integrin by RGD motifs breaks an old paradigm of integrin classification and supports an important role of this integrin in cancer metastasis. Recently, synthetic peptides containing the RGD motif of CDH17 elicited highly specific and selective antibodies that block the ability of CDH17 RGD to activate α2β1 integrin. These monoclonal antibodies inhibit metastatic colonization in orthotopic mouse models of liver and lung metastasis for colorectal cancer and melanoma, respectively. Hopefully, blocking the cadherin RGD ligand capacity will give us control over the integrin activity in solid tumors metastasis, paving the way for development of new agents of cancer treatment.
Collapse
Affiliation(s)
- J Ignacio Casal
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28039 Madrid, Spain.
| | - Rubén A Bartolomé
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28039 Madrid, Spain
| |
Collapse
|
34
|
MT4-MMP deficiency increases patrolling monocyte recruitment to early lesions and accelerates atherosclerosis. Nat Commun 2018; 9:910. [PMID: 29500407 PMCID: PMC5834547 DOI: 10.1038/s41467-018-03351-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 02/07/2018] [Indexed: 12/16/2022] Open
Abstract
Matrix metalloproteinases are involved in vascular remodeling. Little is known about their immune regulatory role in atherosclerosis. Here we show that mice deficient for MT4-MMP have increased adherence of macrophages to inflamed peritonea, and larger lipid deposits and macrophage burden in atherosclerotic plaques. We also demonstrate that MT4-MMP deficiency results in higher numbers of patrolling monocytes crawling and adhered to inflamed endothelia, and the accumulation of Mafb+ apoptosis inhibitor of macrophage (AIM)+ macrophages at incipient atherosclerotic lesions in mice. Functionally, MT4-MMP-null Mafb+AIM+ peritoneal macrophages express higher AIM and scavenger receptor CD36, are more resistant to apoptosis, and bind acLDL avidly, all of which contribute to atherosclerosis. CCR5 inhibition alleviates these effects by hindering the enhanced recruitment of MT4-MMP-null patrolling monocytes to early atherosclerotic lesions, thus blocking Mafb+AIM+ macrophage accumulation and atherosclerosis acceleration. Our results suggest that MT4-MMP targeting may constitute a novel strategy to boost patrolling monocyte activity in early inflammation.
Collapse
|
35
|
Tumor cell cholesterol depletion and V-ATPase inhibition as an inhibitory mechanism to prevent cell migration and invasiveness in melanoma. Biochim Biophys Acta Gen Subj 2017; 1862:684-691. [PMID: 29253593 DOI: 10.1016/j.bbagen.2017.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/18/2017] [Accepted: 12/13/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND V-ATPase interactions with cholesterol enriched membrane microdomains have been related to metastasis in a variety of cancers, but the underlying mechanism remains at its beginnings. It has recently been reported that the inhibition of this H+ pump affects cholesterol mobilization to the plasma membrane. METHODS Inhibition of melanoma cell migration and invasiveness was assessed by wound healing and Transwell assays in murine cell lines (B16F10 and Melan-A). V-ATPase activity was measured in vitro by ATP hydrolysis and H+ transport in membrane vesicles, and intact cell H+ fluxes were measured by using a non-invasive Scanning Ion-selective Electrode Technique (SIET). RESULTS Cholesterol depletion by 5mM MβCD was found to be inhibitory to the hydrolytic and H+ pumping activities of the V-ATPase of melanoma cell lines, as well as to the migration and invasiveness capacities of these cells. Nearly the same effects were obtained using concanamycin A, a specific inhibitor of V-ATPase, which also promoted a decrease of the H+ efflux in live cells at the same extent of MβCD. CONCLUSIONS We found that cholesterol depletion significantly affects the V-ATPase activity and the initial metastatic processes following a profile similar to those observed in the presence of the V-ATPase specific inhibitor, concanamycin. GENERAL SIGNIFICANCE The results shed new light on the functional role of the interactions between V-ATPases and cholesterol-enriched microdomains of cell membranes that contribute with malignant phenotypes in melanoma.
Collapse
|
36
|
López-Ortega O, Santos-Argumedo L. Myosin 1g Contributes to CD44 Adhesion Protein and Lipid Rafts Recycling and Controls CD44 Capping and Cell Migration in B Lymphocytes. Front Immunol 2017; 8:1731. [PMID: 29321775 PMCID: PMC5732150 DOI: 10.3389/fimmu.2017.01731] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/23/2017] [Indexed: 12/30/2022] Open
Abstract
Cell migration and adhesion are critical for immune system function and involve many proteins, which must be continuously transported and recycled in the cell. Recycling of adhesion molecules requires the participation of several proteins, including actin, tubulin, and GTPases, and of membrane components such as sphingolipids and cholesterol. However, roles of actin motor proteins in adhesion molecule recycling are poorly understood. In this study, we identified myosin 1g as one of the important motor proteins that drives recycling of the adhesion protein CD44 in B lymphocytes. We demonstrate that the lack of Myo1g decreases the cell-surface levels of CD44 and of the lipid raft surrogate GM1. In cells depleted of Myo1g, the recycling of CD44 was delayed, the delay seems to be caused at the level of formation of recycling complex and entry into recycling endosomes. Moreover, a defective lipid raft recycling in Myo1g-deficient cells had an impact both on the capping of CD44 and on cell migration. Both processes required the transportation of lipid rafts to the cell surface to deliver signaling components. Furthermore, the extramembrane was essential for cell expansion and remodeling of the plasma membrane topology. Therefore, Myo1g is important during the recycling of lipid rafts to the membrane and to the accompanied proteins that regulate plasma membrane plasticity. Thus, Myosin 1g contributes to cell adhesion and cell migration through CD44 recycling in B lymphocytes.
Collapse
Affiliation(s)
- Orestes López-Ortega
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Leopoldo Santos-Argumedo
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
37
|
β 1-Integrin-Mediated Adhesion Is Lipid-Bilayer Dependent. Biophys J 2017; 113:1080-1092. [PMID: 28877491 DOI: 10.1016/j.bpj.2017.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/19/2017] [Accepted: 07/13/2017] [Indexed: 11/21/2022] Open
Abstract
Integrin-mediated adhesion is a central feature of cellular adhesion, locomotion, and endothelial cell mechanobiology. Although integrins are known to be transmembrane proteins, little is known about the role of membrane biophysics and dynamics in integrin adhesion. We treated human aortic endothelial cells with exogenous amphiphiles, shown previously in model membranes, and computationally, to affect bilayer thickness and lipid phase separation, and subsequently measured single-integrin-molecule adhesion kinetics using an optical trap, and diffusion using fluorescence correlation spectroscopy. Benzyl alcohol (BA) partitions to liquid-disordered (Ld) domains, thins them, and causes the greatest increase in hydrophobic mismatch between liquid-ordered (Lo) and Ld domains among the three amphiphiles, leading to domain separation. In human aortic endothelial cells, BA increased β1-integrin-Arg-Gly-Asp-peptide affinity by 18% with a transition from single to double valency, consistent with a doubling of the molecular brightness of mCherry-tagged β1-integrins measured using fluorescence correlation spectroscopy. Accordingly, BA caused an increase in the size of focal-adhesion-kinase/paxillin-positive peripheral adhesions and reduced migration speeds as measured using wound-healing assays. Vitamin E, which thickens Lo domains and disperses them by lowering edge energy on domain boundaries, left integrin affinity unchanged but reduced binding probability, leading to smaller focal adhesions and equivalent migration speed relative to untreated cells. Vitamin E reversed the BA-induced decrease in migration speed. Triton X-100 also thickens Lo domains, but partitions to both lipid phases and left unchanged binding kinetics, focal adhesion sizes, and migration speed. These results demonstrate that only the amphiphile that thinned Ld lipid domains increased β1-integrin-Arg-Gly-Asp-peptide affinity and valency, thus implicating Ld domains in modulation of integrin adhesion, nascent adhesion formation, and cell migration.
Collapse
|
38
|
Mechanotransduction of matrix stiffness in regulation of focal adhesion size and number: reciprocal regulation of caveolin-1 and β1 integrin. Sci Rep 2017; 7:15008. [PMID: 29118431 PMCID: PMC5678369 DOI: 10.1038/s41598-017-14932-6] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/18/2017] [Indexed: 01/06/2023] Open
Abstract
Focal adhesion (FA) assembly, mediated by integrin activation, responds to matrix stiffness; however, the underlying mechanisms are unclear. Here, we showed that β1 integrin and caveolin-1 (Cav1) levels were decreased with declining matrix stiffness. Soft matrix selectively downregulated β1 integrin by endocytosis and subsequent lysosomal degradation. Disruption of lipid rafts with methyl-β-cyclodextrin or nystatin, or knockdown of Cav1 by siRNA decreased cell spreading, FA assembly, and β1 integrin protein levels in cells cultured on stiff matrix. Overexpression of Cav1, particularly the phospho-mimetic mutant Cav1-Y14D, averted soft matrix-induced decreases in β1 integrin protein levels, cell spreading, and FA assembly in NMuMG cells. Interestingly, overexpression of an auto-clustering β1 integrin hindered soft matrix-induced reduction of Cav1 and cell spreading, which suggests a reciprocal regulation between β1 integrin and Cav1. Finally, co-expression of this auto-clustering β1 integrin and Cav1-Y14D synergistically enhanced cell spreading, and FA assembly in HEK293T cells cultured on either stiff ( > G Pa) or soft (0.2 kPa) matrices. Collectively, these results suggest that matrix stiffness governs the expression of β1 integrin and Cav1, which reciprocally control each other, and subsequently determine FA assembly and turnover.
Collapse
|
39
|
Chen YC, Gowda R, Newswanger RK, Leibich P, Fell B, Rosenberg G, Robertson GP. Targeting cholesterol transport in circulating melanoma cells to inhibit metastasis. Pigment Cell Melanoma Res 2017; 30:541-552. [PMID: 28685959 DOI: 10.1111/pcmr.12614] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 06/23/2017] [Indexed: 02/02/2023]
Abstract
Despite recent breakthroughs in targeted- and immune-based therapies, rapid development of drug resistance remains a hurdle for the long-term treatment of patients with melanoma. Targeting metastatically spreading circulating tumor cells (CTCs) may provide an additional approach to manage melanoma. This study investigates whether targeting cholesterol transport in melanoma CTCs can retard metastasis development. Nanolipolee-007, the liposomal form of leelamine, reduced melanoma metastasis in both a novel in vitro flow system mimicking the circulating system and in experimental as well as spontaneous animal metastasis models, irrespective of the BRAF mutational status of the CTCs. Leelamine led to cholesterol trapping in lysosomes, which subsequently shut down receptor-mediated endocytosis, endosome trafficking, and inhibited the major oncogenic signaling cascades important for survival such as the AKT pathway. As pAKT is important in CTC survival, inhibition by targeting cholesterol metabolism led to apoptosis, suggesting this approach might be particularly effective for those CTCs having high levels of pAKT to aid survival in the circulation system.
Collapse
Affiliation(s)
- Yu-Chi Chen
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Raghavendra Gowda
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Raymond K Newswanger
- Department of Surgery, Division of Applied Biomedical Engineering, Hershey, PA, USA
| | - Patrick Leibich
- Department of Surgery, Division of Applied Biomedical Engineering, Hershey, PA, USA
| | - Barry Fell
- Thermoplastic Products Corporation, Hummelstown, PA, USA
| | - Gerson Rosenberg
- Department of Surgery, Division of Applied Biomedical Engineering, Hershey, PA, USA
| | - Gavin P Robertson
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA.,Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, PA, USA.,Department of Dermatology, The Pennsylvania State University College of Medicine, Hershey, PA, USA.,Penn State Hershey Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, PA, USA.,Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA, USA.,The Foreman Foundation for Melanoma Research, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
40
|
Wan Q, TruongVo T, Steele HE, Ozcelikkale A, Han B, Wang Y, Oh J, Yokota H, Na S. Subcellular domain-dependent molecular hierarchy of SFK and FAK in mechanotransduction and cytokine signaling. Sci Rep 2017; 7:9033. [PMID: 28831165 PMCID: PMC5567257 DOI: 10.1038/s41598-017-09495-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/26/2017] [Indexed: 01/23/2023] Open
Abstract
Focal adhesion kinase (FAK) and Src family kinases (SFK) are known to play critical roles in mechanotransduction and other crucial cell functions. Recent reports indicate that they reside in different microdomains of the plasma membrane. However, little is known about their subcellular domain-dependent roles and responses to extracellular stimuli. Here, we employed fluorescence resonance energy transfer (FRET)-based biosensors in conjunction with collagen-coupled agarose gels to detect subcellular activities of SFK and FAK in three-dimensional (3D) settings. We observed that SFK and FAK in the lipid rafts and nonrafts are differently regulated by fluid flow and pro-inflammatory cytokines. Inhibition of FAK in the lipid rafts blocked SFK response to fluid flow, while inhibition of SFK in the non-rafts blocked FAK activation by the cytokines. Ex-vivo FRET imaging of mouse cartilage explants showed that intermediate level of interstitial fluid flow selectively decreased cytokine-induced SFK/FAK activation. These findings suggest that SFK and FAK exert distinctive molecular hierarchy depending on their subcellular location and extracellular stimuli.
Collapse
Affiliation(s)
- Qiaoqiao Wan
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, 46202, USA
- School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - ThucNhi TruongVo
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, 46202, USA
| | - Hannah E Steele
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, 46202, USA
| | - Altug Ozcelikkale
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Bumsoo Han
- School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Yingxiao Wang
- Department of Bioengineering, University of California San Diego, La Jolla, California, 92093, USA
| | - Junghwan Oh
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, 46202, USA
- School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Sungsoo Na
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, 46202, USA.
- School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, 47907, USA.
| |
Collapse
|
41
|
Abstract
Endogenous electric fields (EFs) are involved in developmental regulation and wound healing. Although the phenomenon is known for more than a century, it is not clear how cells perceive the external EF. Membrane proteins, responding to electrophoretic and electroosmotic forces, have long been proposed as the sensing molecules. However, specific charge modification of surface proteins did not change cell migration motility nor directionality in EFs. Moreover, symmetric alternating current (AC) EF directs cell migration in a frequency-dependent manner. Due to their charge and ability to coalesce, glycolipids are therefore the likely primary EF sensor driving polarization of membrane proteins and intracellular signaling. We demonstrate that detergent-resistant membrane nanodomains, also known as lipid rafts, are the primary response element in EF sensing. The clustering and activation of caveolin and signaling proteins further stabilize raft structure and feed-forward downstream signaling events, such as rho and PI3K activation. Theoretical modeling supports the experimental results and predicts AC frequency-dependent cell and raft migration. Our results establish a fundamental mechanism for cell electrosensing and provide a role in lipid raft mechanotransduction.
Collapse
|
42
|
Borger JG, Morrison VL, Filby A, Garcia C, Uotila LM, Simbari F, Fagerholm SC, Zamoyska R. Caveolin-1 Influences LFA-1 Redistribution upon TCR Stimulation in CD8 T Cells. THE JOURNAL OF IMMUNOLOGY 2017. [PMID: 28637901 PMCID: PMC5523581 DOI: 10.4049/jimmunol.1700431] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
TCR stimulation by peptide-MHC complexes on APCs requires precise reorganization of molecules into the area of cellular contact to form an immunological synapse from where T cell signaling is initiated. Caveolin (Cav)1, a widely expressed transmembrane protein, is involved in the regulation of membrane composition, cellular polarity and trafficking, and the organization of signal transduction pathways. The presence of Cav1 protein in T cells was identified only recently, and its function in this context is not well understood. We show that Cav1-knockout CD8 T cells have a reduction in membrane cholesterol and sphingomyelin, and upon TCR triggering they exhibit altered morphology and polarity, with reduced effector function compared with Cav1 wild-type CD8 T cells. In particular, redistribution of the β2 integrin LFA-1 to the immunological synapse is compromised in Cav1-knockout T cells, as is the ability of LFA-1 to form high-avidity interactions with ICAM-1. Our results identify a role for Cav1 in membrane organization and β2 integrin function in primary CD8 T cells.
Collapse
Affiliation(s)
- Jessica G Borger
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | | | - Andrew Filby
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom; and
| | - Celine Garcia
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Liisa M Uotila
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Fabio Simbari
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | | | - Rose Zamoyska
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom;
| |
Collapse
|
43
|
Li G, Sasaki T, Asahina S, Roy MC, Mochizuki T, Koizumi K, Zhang Y. Patching of Lipid Rafts by Molecular Self-Assembled Nanofibrils Suppresses Cancer Cell Migration. Chem 2017. [DOI: 10.1016/j.chempr.2017.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
Li J, Rao H, Bin Q, Fan YW, Li HY, Deng ZY. Linolelaidic acid induces apoptosis, cell cycle arrest and inflammation stronger than elaidic acid in human umbilical vein endothelial cells through lipid rafts. EUR J LIPID SCI TECH 2016. [DOI: 10.1002/ejlt.201600374] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Jing Li
- State Key Laboratory of Food Science and Technology; Nanchang University; Nanchang P. R. China
| | - Huan Rao
- State Key Laboratory of Food Science and Technology; Nanchang University; Nanchang P. R. China
- College of Food Science and Nutritional Engineering; China Agricultural University; Beijing P. R. China
| | - Qiu Bin
- State Key Laboratory of Food Science and Technology; Nanchang University; Nanchang P. R. China
- Institute of Agro-Food Science and Technology; Shandong Academy of Agricultural Sciences; Jinan P. R. China
| | - Ya-Wei Fan
- State Key Laboratory of Food Science and Technology; Nanchang University; Nanchang P. R. China
| | - Hong-Yan Li
- State Key Laboratory of Food Science and Technology; Nanchang University; Nanchang P. R. China
| | - Ze-Yuan Deng
- State Key Laboratory of Food Science and Technology; Nanchang University; Nanchang P. R. China
| |
Collapse
|
45
|
Richardson DD, Fernandez-Borja M. Leukocyte adhesion and polarization: Role of glycosylphosphatidylinositol-anchored proteins. BIOARCHITECTURE 2016; 5:61-9. [PMID: 26744925 PMCID: PMC4832445 DOI: 10.1080/19490992.2015.1127466] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Leukocyte traffic out of the blood stream is crucial for an adequate immune response. Leukocyte extravasation is critically dependent on the binding of leukocyte integrins to their endothelial counterreceptors. This interaction enables the firm adhesion of leukocytes to the luminal side of the vascular wall and allows for leukocyte polarization, crawling and diapedesis. Leukocyte adhesion, polarization and migration requires the orchestrated regulation of integrin adhesion/de-adhesion dynamics and actin cytoskeleton rearrangements. Adhesion strength depends on conformational changes of integrin molecules (affinity) as well as the number of integrin molecules engaged at adhesion sites (valency). These two processes can be independently regulated and several molecules modulate either one or both processes. Cholesterol-rich membrane domains (lipid rafts) participate in integrin regulation and play an important role in leukocyte adhesion, polarization and motility. In particular, lipid raft-resident glycosyl-phosphatidyl-inositol-anchored proteins (GPI-APs) have been reported to regulate leukocyte adhesion, polarization and motility in both integrin-dependent and independent manners. Here, we present our recent discovery concerning the novel role of the GPI-AP prion protein (PrP) in the regulation of β1 integrin-mediated monocyte adhesion, migration and shape polarization in the context of existing literature on GPI-AP-dependent regulation of integrins.
Collapse
Affiliation(s)
- Dion D Richardson
- a Deptartment of Molecular Cell Biology ; Sanquin Research and Landsteiner Laboratory; University of Amsterdam ; Amsterdam , Netherlands
| | - Mar Fernandez-Borja
- a Deptartment of Molecular Cell Biology ; Sanquin Research and Landsteiner Laboratory; University of Amsterdam ; Amsterdam , Netherlands
| |
Collapse
|
46
|
Lin MC, Chen SY, Tsai HM, He PL, Lin YC, Herschman H, Li HJ. PGE 2 /EP 4 Signaling Controls the Transfer of the Mammary Stem Cell State by Lipid Rafts in Extracellular Vesicles. Stem Cells 2016; 35:425-444. [PMID: 27506158 DOI: 10.1002/stem.2476] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/05/2016] [Accepted: 07/25/2016] [Indexed: 01/09/2023]
Abstract
Prostaglandin E2 (PGE2 )-initiated signaling contributes to stem cell homeostasis and regeneration. However, it is unclear how PGE2 signaling controls cell stemness. This study identifies a previously unknown mechanism by which PGE2 /prostaglandin E receptor 4 (EP4 ) signaling regulates multiple signaling pathways (e.g., PI3K/Akt signaling, TGFβ signaling, Wnt signaling, EGFR signaling) which maintain the basal mammary stem cell phenotype. A shift of basal mammary epithelial stem cells (MaSCs) from a mesenchymal/stem cell state to a non-basal-MaSC state occurs in response to prostaglandin E receptor 4 (EP4 ) antagonism. EP4 antagonists elicit release of signaling components, by controlling their trafficking into extracellular vesicles/exosomes in a lipid raft/caveolae-dependent manner. Consequently, EP4 antagonism indirectly inactivates, through induced extracellular vesicle/exosome release, pathways required for mammary epithelial stem cell homeostasis, e.g. canonical/noncanonical Wnt, TGFβ and PI3K/Akt pathways. EP4 antagonism causes signaling receptors and signaling components to shift from non-lipid raft fractions to lipid raft fractions, and to then be released in EP4 antagonist-induced extracellular vesicles/exosomes, resulting in the loss of the stem cell state by mammary epithelial stem cells. In contrast, luminal mammary epithelial cells can acquire basal stem cell properties following ingestion of EP4 antagonist-induced stem cell extracellular vesicles/exosomes, and can then form mammary glands. These findings demonstrate that PGE2 /EP4 signaling controls homeostasis of mammary epithelial stem cells through regulating extracellular vesicle/exosome release. Reprogramming of mammary epithelial cells can result from EP4 -mediated stem cell property transfer by extracellular vesicles/exosomes containing caveolae-associated proteins, between mammary basal and luminal epithelial cells. Stem Cells 2017;35:425-444.
Collapse
Affiliation(s)
- Meng-Chieh Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Shih-Yin Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Ho-Min Tsai
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Pei-Lin He
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Yen-Chun Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan.,Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Harvey Herschman
- Department of Molecular & Medical Pharmacology, University of California, Los Angeles, Los Angeles, California, USA.,Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Hua-Jung Li
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
47
|
Reinforcement of integrin-mediated T-Lymphocyte adhesion by TNF-induced Inside-out Signaling. Sci Rep 2016; 6:30452. [PMID: 27466027 PMCID: PMC4964354 DOI: 10.1038/srep30452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/06/2016] [Indexed: 01/21/2023] Open
Abstract
Integrin-mediated leukocyte adhesion to endothelial cells is a crucial step in immunity against pathogens. Whereas the outside-in signaling pathway in response to the pro-inflammatory cytokine tumour necrosis factor (TNF) has already been studied in detail, little knowledge exists about a supposed TNF-mediated inside-out signaling pathway. In contrast to the outside-in signaling pathway, which relies on the TNF-induced upregulation of surface molecules on endothelium, inside-out signaling should also be present in an endothelium-free environment. Using single-cell force spectroscopy, we show here that stimulating Jurkat cells with TNF significantly reinforces their adhesion to fibronectin in a biomimetic in vitro assay for cell-surface contact times of about 1.5 seconds, whereas for larger contact times the effect disappears. Analysis of single-molecule ruptures further demonstrates that TNF strengthens sub-cellular single rupture events at short cell-surface contact times. Hence, our results provide quantitative evidence for the significant impact of TNF-induced inside-out signaling in the T-lymphocyte initial adhesion machinery.
Collapse
|
48
|
Trubiani O, Guarnieri S, Orciani M, Salvolini E, Di Primio R. Sphingolipid Microdomains Mediate CD38 Internalization: Topography of the Endocytosis. Int J Immunopathol Pharmacol 2016; 17:293-300. [PMID: 15461863 DOI: 10.1177/039463200401700309] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Plasma membranes of several cell types contain specialized microdomains (or lipid rafts) enriched in sphingolipids, cholesterol, sphingomyelin, and glycosyl-phosphatidylinositol-anchored proteins. These membrane domains are characterized by detergent insolubility at low temperatures and low buoyant density. Human CD38 is the prototype of a gene family encoding surface molecules endowed with multiple functional activities. The endocytosis of the human CD38 molecule has been investigated in normal lymphocytes and in a number of leukemia- and lymphoma-derived cell lines demonstrating that internalization after CD38 ligation is a reproducible event involving only a fraction of the whole amount of the surface molecule. This study reports the results obtained by conventional, confocal, and electron microscopy on the effects induced by the engagement of the molecule with agonistic mAb, reproducing the signals mediated by its natural ligand. The results demonstrate that the endocytosis induced as consequence of CD38 ligation is preceded by a thorough rearrangement of the cell surface with formation of glycosphingolipid- and cholesterol-rich plasma membrane microdomains. These data suggest that specialized raft microdomains might be the plasma membrane structure through which CD38 translocates at intracellular level. The CD38/lipid interactions during the coated pit formation trigger a process that generate membrane curvature, considered as the first step of CD38 endocytosis. Moreover, ultrastructural studies show that early CD38+ endosomes are pleiomorphic and contain cisternal and vesicular regions. Late endosomes exhibit a complex organisation, containing uncoupled CD38-ligand multivesicular- or multilamellar-regions.
Collapse
Affiliation(s)
- O Trubiani
- Dipartimento di Scienze Odontostomatologiche, University of Chieti, Italy
| | | | | | | | | |
Collapse
|
49
|
The Rap1-RIAM-talin axis of integrin activation and blood cell function. Blood 2016; 128:479-87. [PMID: 27207789 DOI: 10.1182/blood-2015-12-638700] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/07/2016] [Indexed: 12/14/2022] Open
Abstract
Integrin adhesion receptors mediate the adhesion of blood cells, such as leukocytes, to other cells, such as endothelial cells. Integrins also are critical for anchorage of hematopoietic precursors to the extracellular matrix. Blood cells can dynamically regulate the affinities of integrins for their ligands ("activation"), an event central to their functions. Here we review recent progress in understanding the mechanisms of integrin activation with a focus on the functions of blood cells. We discuss how talin binding to the integrin β cytoplasmic domain, in conjunction with the plasma membrane, induces long-range allosteric rearrangements that lead to integrin activation. Second, we review our understanding of how signaling events, particularly those involving Rap1 small guanosine triphosphate (GTP)hydrolases, can regulate the talin-integrin interaction and resulting activation. Third, we review recent findings that highlight the role of the Rap1-GTP-interacting adapter molecule (RIAM), encoded by the APBB1IP gene, in leukocyte integrin activation and consequently in leukocyte trafficking.
Collapse
|
50
|
Maza PK, Suzuki E. Histoplasma capsulatum-Induced Cytokine Secretion in Lung Epithelial Cells Is Dependent on Host Integrins, Src-Family Kinase Activation, and Membrane Raft Recruitment. Front Microbiol 2016; 7:580. [PMID: 27148251 PMCID: PMC4840283 DOI: 10.3389/fmicb.2016.00580] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/08/2016] [Indexed: 01/30/2023] Open
Abstract
Histoplasma capsulatum var. capsulatum is a dimorphic fungus that causes histoplasmosis, a human systemic mycosis with worldwide distribution. In the present work, we demonstrate that H. capsulatum yeasts are able to induce cytokine secretion by the human lung epithelial cell line A549 in integrin- and Src-family kinase (SFK)-dependent manners. This conclusion is supported by small interfering RNA (siRNA) directed to α3 and α5 integrins, and PP2, an inhibitor of SFK activation. siRNA and PP2 reduced IL-6 and IL-8 secretion in H. capsulatum-infected A549 cell cultures. In addition, α3 and α5 integrins from A549 cells were capable of associating with H. capsulatum yeasts, and this fungus promotes recruitment of these integrins and SFKs to A549 cell membrane rafts. Corroborating this finding, membrane raft disruption with the cholesterol-chelator methyl-β-cyclodextrin reduced the levels of integrins and SFKs in these cell membrane domains. Finally, pretreatment of A549 cells with the cholesterol-binding compound, and also a membrane raft disruptor, filipin, significantly reduced IL-6 and IL-8 levels in A549-H.capsulatum cultures. Taken together, these results indicate that H. capsulatum yeasts induce secretion of IL-6 and IL-8 in human lung epithelial cells by interacting with α3 and α5 integrins, recruiting these integrins to membrane rafts, and promoting SFK activation.
Collapse
Affiliation(s)
- Paloma K Maza
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Erika Suzuki
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| |
Collapse
|