1
|
Gibbings SL, Haist KC, Redente EF, Henson PM, Bratton DL. TNFα: TNFR1 signaling inhibits maturation and maintains the pro-inflammatory programming of monocyte-derived macrophages in murine chronic granulomatous disease. Front Immunol 2024; 15:1354836. [PMID: 38404573 PMCID: PMC10884288 DOI: 10.3389/fimmu.2024.1354836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction Loss of NADPH oxidase activity results in proinflammatory macrophages that contribute to hyperinflammation in Chronic Granulomatous Disease (CGD). Previously, it was shown in a zymosan-induced peritonitis model that gp91phox-/- (CGD) monocyte-derived macrophages (MoMacs) fail to phenotypically mature into pro-resolving MoMacs characteristic of wild type (WT) but retain the ability to do so when placed in the WT milieu. Accordingly, it was hypothesized that soluble factor(s) in the CGD milieu thwart appropriate programming. Methods We sought to identify key constituents using ex vivo culture of peritoneal inflammatory leukocytes and their conditioned media. MoMac phenotyping was performed via flow cytometry, measurement of efferocytic capacity and multiplex analysis of secreted cytokines. Addition of exogenous TNFα, TNFα neutralizing antibody and TNFR1-/- MoMacs were used to study the role of TNFα: TNFR1 signaling in MoMac maturation. Results More extensive phenotyping defined normal MoMac maturation and demonstrated failure of maturation of CGD MoMacs both ex vivo and in vivo. Protein components, and specifically TNFα, produced and released by CGD neutrophils and MoMacs into conditioned media was identified as critical to preventing maturation. Exogenous addition of TNFα inhibited WT MoMac maturation, and its neutralization allowed maturation of cultured CGD MoMacs. TNFα neutralization also reduced production of IL-1β, IL-6 and CXCL1 by CGD cells though these cytokines played no role in MoMac programming. MoMacs lacking TNFR1 matured more normally in the CGD milieu both ex vivo and following adoptive transfer in vivo. Discussion These data lend mechanistic insights into the utility of TNFα blockade in CGD and to other diseases where such therapy has been shown to be beneficial.
Collapse
Affiliation(s)
- Sophie L. Gibbings
- Department of Pediatrics, National Jewish Health, Denver, CO, United States
| | - Kelsey C. Haist
- Department of Pediatrics, National Jewish Health, Denver, CO, United States
| | - Elizabeth F. Redente
- Department of Pediatrics, National Jewish Health, Denver, CO, United States
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Peter M. Henson
- Department of Pediatrics, National Jewish Health, Denver, CO, United States
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado Denver, Aurora, CO, United States
| | - Donna L. Bratton
- Department of Pediatrics, National Jewish Health, Denver, CO, United States
- Department of Pediatrics, University of Colorado Denver, Aurora, CO, United States
| |
Collapse
|
2
|
Liu C, Fan D, Lei Q, Lu A, He X. Roles of Resolvins in Chronic Inflammatory Response. Int J Mol Sci 2022; 23:ijms232314883. [PMID: 36499209 PMCID: PMC9738788 DOI: 10.3390/ijms232314883] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
An inflammatory response is beneficial to the organism, while an excessive uncontrolled inflammatory response can lead to the nonspecific killing of tissue cells. Therefore, promoting the resolution of inflammation is an important mechanism for protecting an organism suffering from chronic inflammatory diseases. Resolvins are a series of endogenous lipid mediums and have the functions of inhibiting a leukocyte infiltration, increasing macrophagocyte phagocytosis, regulating cytokines, and alleviating inflammatory pain. By promoting the inflammation resolution, resolvins play an irreplaceable role throughout the pathological process of some joint inflammation, neuroinflammation, vascular inflammation, and tissue inflammation. Although a large number of experiments have been conducted to study different subtypes of resolvins in different directions, the differences in the action targets between the different subtypes are rarely compared. Hence, this paper reviews the generation of resolvins, the characteristics of resolvins, and the actions of resolvins under a chronic inflammatory response and clinical translation of resolvins for the treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Chang Liu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Dancai Fan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qian Lei
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai 200052, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510120, China
- Correspondence: (A.L.); (X.H.)
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Correspondence: (A.L.); (X.H.)
| |
Collapse
|
3
|
Klein Y, Levin-Talmor O, Berkstein JG, Wald S, Meirow Y, Maimon A, Leibovich A, Barenholz Y, Polak D, Chaushu S. Resolvin D1 shows osseous-protection via RANK reduction on monocytes during orthodontic tooth movement. Front Immunol 2022; 13:928132. [PMID: 36275768 PMCID: PMC9585452 DOI: 10.3389/fimmu.2022.928132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
The study aimed to investigate the role of RvD1 in acute and prolonged sterile inflammation and bone remodeling. A mouse model of sterile inflammation that involves bone resorption was used to examine endogenous RvD1 kinetics during inflammation. Application of exogenous RvD1 significantly inhibited bone remodeling via osteoclast reduction, alongside an anti-inflammatory secretome shift, increased macrophages recruitment and reduction of T-cytotoxic cells. In vitro and in vivo, RvD1 led to significant reduction in RANK expression which reduce osteoclastogenesis in a dose-dependent manner. Taken together, the data shows a dual role for RvD1, as a potent immunoresolvent agent alongside an osteoresolvent role, showing a potential therapeutic agent in bone resorption associated inflammatory conditions.
Collapse
Affiliation(s)
- Yehuda Klein
- Department of Orthodontics, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Biochemistry, Israel–Canada Medical Research Institute, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- The Institute of Dental Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Offir Levin-Talmor
- Department of Orthodontics, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jaime Garber Berkstein
- Department of Orthodontics, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sharon Wald
- Department of Orthodontics, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yaron Meirow
- Lautenberg Center for General and Tumor Immunology, Israel–Canada Medical Research Institute, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avi Maimon
- The Institute of Dental Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avi Leibovich
- Department of Orthodontics, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yechezkel Barenholz
- Department of Biochemistry, Israel–Canada Medical Research Institute, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Polak
- Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Periodontics, Hadassah Medical Center, Jerusalem, Israel
| | - Stella Chaushu
- Department of Orthodontics, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
4
|
Carrillo I, Rabelo RAN, Barbosa C, Rates M, Fuentes-Retamal S, González-Herrera F, Guzmán-Rivera D, Quintero H, Kemmerling U, Castillo C, Machado FS, Díaz-Araya G, Maya JD. Aspirin-triggered resolvin D1 reduces parasitic cardiac load by decreasing inflammation in a murine model of early chronic Chagas disease. PLoS Negl Trop Dis 2021; 15:e0009978. [PMID: 34784372 PMCID: PMC8631674 DOI: 10.1371/journal.pntd.0009978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/30/2021] [Accepted: 11/05/2021] [Indexed: 12/30/2022] Open
Abstract
Background Chagas disease, caused by the protozoan Trypanosoma cruzi, is endemic in Latin America and is widely distributed worldwide because of migration. In 30% of cases, after years of infection and in the absence of treatment, the disease progresses from an acute asymptomatic phase to a chronic inflammatory cardiomyopathy, leading to heart failure and death. An inadequate balance in the inflammatory response is involved in the progression of chronic Chagas cardiomyopathy. Current therapeutic strategies cannot prevent or reverse the heart damage caused by the parasite. Aspirin-triggered resolvin D1 (AT-RvD1) is a pro-resolving mediator of inflammation that acts through N-formyl peptide receptor 2 (FPR2). AT-RvD1 participates in the modification of cytokine production, inhibition of leukocyte recruitment and efferocytosis, macrophage switching to a nonphlogistic phenotype, and the promotion of healing, thus restoring organ function. In the present study, AT-RvD1 is proposed as a potential therapeutic agent to regulate the pro-inflammatory state during the early chronic phase of Chagas disease. Methodology/Principal findings C57BL/6 wild-type and FPR2 knock-out mice chronically infected with T. cruzi were treated for 20 days with 5 μg/kg/day AT-RvD1, 30 mg/kg/day benznidazole, or the combination of 5 μg/kg/day AT-RvD1 and 5 mg/kg/day benznidazole. At the end of treatment, changes in immune response, cardiac tissue damage, and parasite load were evaluated. The administration of AT-RvD1 in the early chronic phase of T. cruzi infection regulated the inflammatory response both at the systemic level and in the cardiac tissue, and it reduced cellular infiltrates, cardiomyocyte hypertrophy, fibrosis, and the parasite load in the heart tissue. Conclusions/Significance AT-RvD1 was shown to be an attractive therapeutic due to its regulatory effect on the inflammatory response at the cardiac level and its ability to reduce the parasite load during early chronic T. cruzi infection, thereby preventing the chronic cardiac damage induced by the parasite. Chagas disease is prevalent in Latin America and is widely distributed worldwide due to migration. In 30% of patients, if the parasite is left untreated, the disease may progress from an acute symptomless phase to chronic myocardial inflammation, which can cause heart failure and death, years after the infection. Imbalances in the inflammatory response are related to this progression. Current treatments cannot prevent or reverse the cardiac damage inflicted by the parasite. Aspirin-triggered resolvin D1, also named AT-RvD1, can modify cellular and humoral inflammatory responses leading to the resolution of inflammation, thus promoting healing and restoring organ function. In this study, AT-RvD1, in an N-formyl peptide receptor 2 (FPR2)-dependent manner, was shown to regulate local and systemic inflammation and decrease cellular infiltration in the heart tissue of mice chronically infected with the parasite and reduce cardiac hypertrophy and fibrosis in the early stages of the chronic phase of the disease. Importantly, AT-RvD1 was able to decrease parasite load in the infected hearts. Thus, this research indicates that At-RvD1 treatment is a potential therapeutic strategy that offers an improvement on current drug therapies.
Collapse
Affiliation(s)
- Ileana Carrillo
- Programa de Farmacología Molecular y Clínica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Rayane Aparecida Nonato Rabelo
- Programa em Ciências da Saúde, Doenças Infecciosas e Medicina Tropical/ Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - César Barbosa
- Laboratório de Imunorregulação de Doenças Infecciosas, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mariana Rates
- Laboratório de Imunorregulação de Doenças Infecciosas, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sebastián Fuentes-Retamal
- Programa de Farmacología Molecular y Clínica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Fabiola González-Herrera
- Programa de Farmacología Molecular y Clínica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Daniela Guzmán-Rivera
- Programa de Farmacología Molecular y Clínica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Escuela de Farmacia, Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
| | - Helena Quintero
- Programa de Farmacología Molecular y Clínica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ulrike Kemmerling
- Programa de Anatomía y Biología del Desarrollo, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Christian Castillo
- Núcleo de Investigación Aplicada en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Fabiana S. Machado
- Programa em Ciências da Saúde, Doenças Infecciosas e Medicina Tropical/ Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Laboratório de Imunorregulação de Doenças Infecciosas, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Guillermo Díaz-Araya
- Departamento de Farmacología Química y Toxicología, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- * E-mail: (GD-A); (JDM)
| | - Juan D. Maya
- Programa de Farmacología Molecular y Clínica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- * E-mail: (GD-A); (JDM)
| |
Collapse
|
5
|
Singhal A, Kumar S. Neutrophil and remnant clearance in immunity and inflammation. Immunology 2021; 165:22-43. [PMID: 34704249 DOI: 10.1111/imm.13423] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/18/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophil-centred inflammation and flawed clearance of neutrophils cause and exuberate multiple pathological conditions. These most abundant leukocytes exhibit very high daily turnover in steady-state and stress conditions. Various armours including oxidative burst, NETs and proteases function against pathogens, but also dispose neutrophils to spawn pro-inflammatory responses. Neutrophils undergo death through different pathways upon ageing, infection, executing the intruder's elimination. These include non-lytic apoptosis and other lytic deaths including NETosis, necroptosis and pyroptosis with distinct disintegration of the cellular membrane. This causes release and presence of different intracellular cytotoxic, and tissue-damaging content as cell remnants in the extracellular environment. The apoptotic cells and apoptotic bodies get cleared with non-inflammatory outcomes, while lytic deaths associated remnants including histones and cell-free DNA cause pro-inflammatory responses. Indeed, the enhanced frequencies of neutrophil-associated proteases, cell-free DNA and autoantibodies in diverse pathologies including sepsis, asthma, lupus and rheumatoid arthritis, imply disturbed neutrophil resolution programmes in inflammatory and autoimmune diseases. Thus, the clearance mechanisms of neutrophils and associated remnants are vital for therapeutics. Though studies focused on clearance mechanisms of senescent or apoptotic neutrophils so far generated a good understanding of the same, clearance of neutrophils undergoing distinct lytic deaths, including NETs, are being the subjects of intense investigations. Here, in this review, we are providing the current updates in the clearance mechanisms of apoptotic neutrophils and focusing on not so well-defined recognition, uptake and degradation of neutrophils undergoing lytic death and associated remnants that may provide new therapeutic approaches in inflammation and autoimmunity.
Collapse
Affiliation(s)
- Apurwa Singhal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Sachin Kumar
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Postal Staff College Area, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
6
|
Lee HN, Choi YS, Kim SH, Zhong X, Kim W, Park JS, Saeidi S, Han BW, Kim N, Lee HS, Choi YJ, Baek JH, Na HK, Surh YJ. Resolvin D1 suppresses inflammation-associated tumorigenesis in the colon by inhibiting IL-6-induced mitotic spindle abnormality. FASEB J 2021; 35:e21432. [PMID: 33794029 DOI: 10.1096/fj.202002392r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/15/2021] [Accepted: 01/25/2021] [Indexed: 01/07/2023]
Abstract
While failure in resolution of inflammation is considered to increase the risk of tumorigenesis, there is paucity of experimental as well as clinical evidence supporting this association. Resolvin D1 (RvD1) is a representative pro-resolving lipid mediator that is endogenously generated from docosahexaenoic acid for the resolution of inflammation. Here, we report a decreased level of RvD1 in the blood from colorectal cancer patients and mice having inflammation-induced colon cancer, suggesting plasma RvD1 as a potential biomarker for monitoring colorectal cancer. Administration of RvD1 attenuated dextran sodium sulfate (DSS)-induced colitis and azoxymethane (AOM) plus DSS-induced colorectal carcinogenesis by suppressing the production of interleukin-6 (IL-6) and IL-6-mediated chromosomal instability. The protective effect of RvD1 against chromosomal instability is associated with downregulation of IL-6-induced Cyclin D1 expression, which appears to be mediated by blocking the Janus kinase 2 (JAK2)-signal transducer and activator of transcription 3 (STAT3) axis. RvD1 inhibited the STAT3 signaling pathway by interfering with the binding of IL-6 to its receptor (IL-6R), suggesting the novel function of RvD1 as a putative IL-6R antagonist. Together, our findings suggest that RvD1-mediated blockade of IL-6 signal transmission may contribute to inhibition of chromosomal instability and tumorigenesis.
Collapse
Affiliation(s)
- Ha-Na Lee
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Yeon-Seo Choi
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Seong Hoon Kim
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Xiancai Zhong
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Wonki Kim
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Joon Sung Park
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Soma Saeidi
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Byung Woo Han
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Yoon Jin Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jeong-Heum Baek
- Division of Colon and Rectal Surgery, Department of Surgery, Gil Medical Center, Gachon University College of Medicine, Incheon, South Korea
| | - Hye-Kyung Na
- Department of Food and Nutrition, College of Human Ecology, Sungshin Women's University, Seoul, South Korea
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea.,Cancer Research Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
7
|
Decker C, Sadhu S, Fredman G. Pro-Resolving Ligands Orchestrate Phagocytosis. Front Immunol 2021; 12:660865. [PMID: 34177900 PMCID: PMC8222715 DOI: 10.3389/fimmu.2021.660865] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
The resolution of inflammation is a tissue protective program that is governed by several factors including specialized pro-resolving mediators (SPMs), proteins, gasses and nucleotides. Pro-resolving mediators activate counterregulatory programs to quell inflammation and promote tissue repair in a manner that does not compromise host defense. Phagocytes like neutrophils and macrophages play key roles in the resolution of inflammation because of their ability to remove debris, microbes and dead cells through processes including phagocytosis and efferocytosis. Emerging evidence suggests that failed resolution of inflammation and defective phagocytosis or efferocytosis underpins several prevalent human diseases. Therefore, understanding factors and mechanisms associated with enhancing these processes is a critical need. SPMs enhance phagocytosis and efferocytosis and this review will highlight mechanisms associated with their actions.
Collapse
Affiliation(s)
- Christa Decker
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Sudeshna Sadhu
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Gabrielle Fredman
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| |
Collapse
|
8
|
Protective role of resolvin D1, a pro-resolving lipid mediator, in nonsteroidal anti-inflammatory drug-induced small intestinal damage. PLoS One 2021; 16:e0250862. [PMID: 33945545 PMCID: PMC8096073 DOI: 10.1371/journal.pone.0250862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/10/2021] [Indexed: 12/19/2022] Open
Abstract
Resolvin D1, a specialized pro-resolving lipid mediator produced from docosahexaenoic acid by 15- and 5-lipoxygenase, exerts anti-inflammatory effects driving to the resolution of inflammation. The present study aimed to elucidate its role in small intestinal damage induced by nonsteroidal anti-inflammatory drug (NSAID). Indomethacin was administered orally to C57BL/6J male mice, which were sacrificed 24 h later to collect small intestine specimens. Before administration of indomethacin, mice were subjected to intraperitoneal treatment with resolvin D1 or oral administration of baicalein, a 15-lipoxygenase inhibitor. Small intestinal damage induced by indomethacin was attenuated by pretreatment with resolvin D1. Furthermore, resolvin D1 reduced the gene expression levels of interleukin-1β, tumor necrosis factor-α, and CXCL1/keratinocyte chemoattractant. Conversely, the inhibition of 15-lipoxygenase activity by baicalein increased the expression of genes coding for these inflammatory cytokines and chemokine, leading to exacerbated small intestinal damage, and reduced the concentration of resolvin D1 in the small intestinal tissue. Exogenous treatment with resolvin D1 negated the deleterious effect of baicalein. 15-lipoxygenase was mainly expressed in the epithelium and inflammatory cells of the small intestine, and its gene and protein expression was not affected by the administration of indomethacin. Inhibition of the resolvin D1 receptor, lipoxin A4 receptor /formyl peptide receptor 2, by its specific inhibitors Boc-1 and WRW4 aggravated indomethacin-induced small intestinal damage. Collectively, these results indicate that resolvin D1 produced by 15-lipoxygenase contributes to mucoprotection against NSAID-induced small intestinal damage through its anti-inflammatory effect.
Collapse
|
9
|
Roh J, Go EJ, Park JW, Kim YH, Park CK. Resolvins: Potent Pain Inhibiting Lipid Mediators via Transient Receptor Potential Regulation. Front Cell Dev Biol 2020; 8:584206. [PMID: 33363143 PMCID: PMC7758237 DOI: 10.3389/fcell.2020.584206] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic pain is a serious condition that occurs in the peripheral nervous system (PNS) and the central nervous system (CNS). It is caused by inflammation or nerve damage that induces the release of inflammatory mediators from immune cells and/or protein kinase activation in neuronal cells. Both nervous systems are closely linked; therefore, inflammation or nerve damage in the PNS can affect the CNS (central sensitization). In this process, nociceptive transient receptor potential (TRP) channel activation and expression are increased. As a result, nociceptive neurons are activated, and pain signals to the brain are amplified and prolonged. In other words, suppressing the onset of pain signals in the PNS can suppress pain signals to the CNS. Resolvins, endogenous lipid mediators generated during the resolution phase of acute inflammation, inhibit nociceptive TRP ion channels and alleviate chronic pain. This paper summarizes the effect of resolvins in chronic pain control and discusses future scientific perspectives. Further study on the effect of resolvins on neuropathic pain will expand the scope of pain research.
Collapse
Affiliation(s)
- Jueun Roh
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, South Korea
| | - Eun Jin Go
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, South Korea
| | - Jin-Woo Park
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, South Korea
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, South Korea
| |
Collapse
|
10
|
Abshagen K, Hartmann A, Grüner L, Liebig M, Vollmar B. Limited potential of resolvin D1 in treatment of cholestatic liver fibrosis. Hepatobiliary Surg Nutr 2020; 9:587-596. [PMID: 33163509 DOI: 10.21037/hbsn.2019.08.07] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Several studies suggest a role for EPA- and DHA-derived pro-resolving mediators like resolvins in reversing metabolic and inflammatory disturbances seen in various chronic diseases. Here, we investigated the effects of resolvin D1 (RvD1) on bile duct ligation (BDL)-induced cholestatic liver injury. Methods Mice were treated daily with RvD1 or 0.1% ethanol (control) from the day of BDL until the final observation time points. Blood and liver tissue were collected 2, 5 and 14 days after BDL for different analyses. Results RvD1 treatment of mice had no impact on the extent of cholestatic liver injury upon BDL, neither in the acute phase nor in the progressive state of liver fibrosis. Although RvD1 treatment resulted in a significantly reduced activity of hepatic stellate cells as well as reduced deposition of extracellular matrix 2 days after BDL, mice were not protected from inflammation and further fibrosis progression. Conclusions These data indicate that RvD1 has a limited therapeutic potential to treat cholestatic liver diseases, as it has no significant impact on regression of hepatic necroinflammation and fibrotic changes in bile duct-ligated mice.
Collapse
Affiliation(s)
- Kerstin Abshagen
- Institute for Experimental Surgery, University Medicine Rostock, Rostock, Germany
| | - Alexander Hartmann
- Institute for Experimental Surgery, University Medicine Rostock, Rostock, Germany
| | - Laura Grüner
- Institute for Experimental Surgery, University Medicine Rostock, Rostock, Germany
| | - Marie Liebig
- Institute for Experimental Surgery, University Medicine Rostock, Rostock, Germany
| | - Brigitte Vollmar
- Institute for Experimental Surgery, University Medicine Rostock, Rostock, Germany
| |
Collapse
|
11
|
Briottet M, Shum M, Urbach V. The Role of Specialized Pro-Resolving Mediators in Cystic Fibrosis Airways Disease. Front Pharmacol 2020; 11:1290. [PMID: 32982730 PMCID: PMC7493015 DOI: 10.3389/fphar.2020.01290] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/04/2020] [Indexed: 12/26/2022] Open
Abstract
Cystic Fibrosis (CF) is a recessive genetic disease due to mutations of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene encoding the CFTR chloride channel. The ion transport abnormalities related to CFTR mutation generate a dehydrated airway surface liquid (ASL) layer, which is responsible for an altered mucociliary clearance, favors infections and persistent inflammation that lead to progressive lung destruction and respiratory failure. The inflammatory response is normally followed by an active resolution phase to return to tissue homeostasis, which involves specialized pro-resolving mediators (SPMs). SPMs promote resolution of inflammation, clearance of microbes, tissue regeneration and reduce pain, but do not evoke unwanted immunosuppression. The airways of CF patients showed a decreased production of SPMs even in the absence of pathogens. SPMs levels in the airway correlated with CF patients' lung function. The prognosis for CF has greatly improved but there remains a critical need for more effective treatments that prevent excessive inflammation, lung damage, and declining pulmonary function for all CF patients. This review aims to highlight the recent understanding of CF airway inflammation and the possible impact of SPMs on functions that are altered in CF airways.
Collapse
Affiliation(s)
| | | | - Valerie Urbach
- Institut national de la santé et de la recherche médicale (Inserm) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| |
Collapse
|
12
|
Zheng JJ, Pena Calderin E, Hill BG, Bhatnagar A, Hellmann J. Exercise Promotes Resolution of Acute Inflammation by Catecholamine-Mediated Stimulation of Resolvin D1 Biosynthesis. THE JOURNAL OF IMMUNOLOGY 2019; 203:3013-3022. [PMID: 31653685 DOI: 10.4049/jimmunol.1900144] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 09/29/2019] [Indexed: 11/19/2022]
Abstract
The mechanisms by which regular exercise prevents the development and progression of chronic inflammatory diseases are largely unknown. We find that exercise enhances resolution of acute inflammation by augmenting resolvin D1 (RvD1) levels and by promoting macrophage phagocytosis. When compared with sedentary controls, mice that performed a four-week treadmill exercise regimen displayed higher macrophage phagocytic activity, enhanced RvD1 levels, and earlier neutrophil clearance following an acute inflammatory challenge. In acute inflammatory cell extracts from exercised mice, we found elevated expression of Alox15 and Alox5 and higher RvD1 levels. Because exercise stimulates release of epinephrine, which has immunomodulatory effects, we questioned whether epinephrine exerts proresolving actions on macrophages. Epinephrine-treated macrophages displayed higher RvD1 levels and 15-lipoxygenase-1 protein abundance, which were prevented by incubation with the α1 adrenergic receptor (α1-AR) antagonist prazosin. Likewise, stimulation of the α1-AR with phenylephrine enhanced macrophage phagocytosis and RvD1 production. During acute inflammation, prazosin abrogated exercise-enhanced neutrophil clearance, macrophage phagocytosis, and RvD1 biosynthesis. These results suggest that exercise-stimulated epinephrine enhances resolution of acute inflammation in an α1-AR-dependent manner. To our knowledge, our findings provide new mechanistic insights into the proresolving effects of exercise that could lead to the identification of novel pathways to stimulate resolution.
Collapse
Affiliation(s)
- Jing-Juan Zheng
- Christina Lee Brown Envirome Institute, Diabetes and Obesity Center, Division of Environmental Medicine, University of Louisville School of Medicine, Louisville, KY 40202
| | - Ernesto Pena Calderin
- Christina Lee Brown Envirome Institute, Diabetes and Obesity Center, Division of Environmental Medicine, University of Louisville School of Medicine, Louisville, KY 40202
| | - Bradford G Hill
- Christina Lee Brown Envirome Institute, Diabetes and Obesity Center, Division of Environmental Medicine, University of Louisville School of Medicine, Louisville, KY 40202
| | - Aruni Bhatnagar
- Christina Lee Brown Envirome Institute, Diabetes and Obesity Center, Division of Environmental Medicine, University of Louisville School of Medicine, Louisville, KY 40202
| | - Jason Hellmann
- Christina Lee Brown Envirome Institute, Diabetes and Obesity Center, Division of Environmental Medicine, University of Louisville School of Medicine, Louisville, KY 40202
| |
Collapse
|
13
|
Yaribeygi H, Atkin SL, Simental-Mendía LE, Barreto GE, Sahebkar A. Anti-inflammatory effects of resolvins in diabetic nephropathy: Mechanistic pathways. J Cell Physiol 2019; 234:14873-14882. [PMID: 30746696 DOI: 10.1002/jcp.28315] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/19/2019] [Accepted: 01/24/2019] [Indexed: 01/24/2023]
Abstract
The incidence of diabetes mellitus is growing rapidly. The exact pathophysiology of diabetes is unclear, but there is increasing evidence of the role of the inflammatory response in both developing diabetes as well as its complications. Resolvins are naturally occurring polyunsaturated fatty acids that are found in fish oil and sea food that have been shown to possess anti-inflammatory actions in several tissues including the kidneys. The pathways by which resolvins exert this anti-inflammatory effect are unclear. In this review we discuss the evidence showing that resolvins can suppress inflammatory responses via at least five molecular mechanisms through inhibition of the nucleotide-binding oligomerization domain protein 3 inflammasome, inhibition of nuclear factor κB molecular pathways, improvement of oxidative stress, modulation of nitric oxide synthesis/release and prevention of local and systemic leukocytosis. Complete understanding of these molecular pathways is important as this may lead to the development of new effective therapeutic strategies for diabetes and diabetic nephropathy.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Zhong X, Surh YJ, Do SG, Shin E, Shim KS, Lee CK, Na HK. Baicalein Inhibits Dextran Sulfate Sodium-induced Mouse Colitis. J Cancer Prev 2019; 24:129-138. [PMID: 31360692 PMCID: PMC6619857 DOI: 10.15430/jcp.2019.24.2.129] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/20/2022] Open
Abstract
Background Baicalein is a bioactive flavone that is originally extracted from the root of Scutellaria baicalensis Georgi. This plant has long served as Chinese herbal medicine in the management of multiple diseases including inflammatory bowel diseases. Although it has been revealed that baicalein inhibits experimental colitis in mice, the molecular mechanisms still remain largely unrecognized. Methods The experimental colitis was induced in mice by 3% dextran sulfate sodium (DSS) in drinking water. The mice were given baicalein (10 or 25 mg/kg) by gavage for 7 days before and after DSS administration. Expression of COX-2 and inducible nitric oxide synthase (iNOS) and molecules involved in NF-κB signaling, such as inhibitor of κBα (IκBα), pIκBα, p65, and phospho-p65 was examined by Western blot analysis in the tissue of the mouse colon. Activity of IκB kinase β (IKKβ) was assessed by measuring the relative amount of radioactive γ-phosphate of ATP transferred to the IκBα substrate protein. The expression and phosphorylation of STAT3 and its target gene cyclin D1 were also measured. Results Baicalein prominently mitigated the severity of DSS-induced colitis in mice. It inhibited the expression of COX-2 and iNOS. Moreover, baicalein attenuated activity and phosphorylation of IKKβ and subsequent degradation of IκBα. Baicalein suppressed the phosphorylation and nuclear translocation of p65, resulting in a reduced DNA binding activity of NF-κB. Baicalein also suppressed the phosphorylation of STAT3 and expression of cyclin D1. Baicalein exhibited the synergistic effect on inhibition of COX-2 induced by DSS with curcumin, an ingredient of turmeric. Conclusions Protective effects of baicalein on DSS-induced colitis are associated with suppression of NF-κB and STAT3 signaling pathways, which may contribute to its cancer preventive effects on colon carcinogenesis.
Collapse
Affiliation(s)
- Xiancai Zhong
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | | | | | | | - Chong-Kil Lee
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Hye-Kyung Na
- Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul, Korea
| |
Collapse
|
15
|
Integrative transcriptomics, proteomics, and metabolomics data analysis exploring the injury mechanism of ricin on human lung epithelial cells. Toxicol In Vitro 2019; 60:160-172. [PMID: 31103672 DOI: 10.1016/j.tiv.2019.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/05/2019] [Accepted: 05/15/2019] [Indexed: 11/24/2022]
Abstract
Ricin (RT) is a plant toxin belonging to the family of type II ribosome-inactivating protein with high bioterrorism potential. Aerosol RT exposure is the most lethal route, but its mechanism of injury needs further investigation. In the present study, we performed a comprehensive transcriptomics, proteomics and metabolomics analysis on the potential mechanism of injury caused by RT on human lung epithelial cells. In total, 5872 genes, 187 proteins, and 143 metabolites were shown to be significantly changed in human lung epithelial cells after RT treatment. Molecular function, pathway, and network analyses, the genes and proteins regulated in RT-treated cells were mainly attributed to fatty acid metabolism, arginine and proline metabolism and ubiquitin-mediated proteolysis pathway. Furthermore, a comprehensive analysis of transcripts, proteins, and metabolites was performed. The results revealed the correlated genes, proteins, and metabolic pathways regulated in metabolic pathways, amino acid metabolism, transcription and energy metabolism. These genes, proteins, and metabolites involved in these dis-regulated pathways may provide a more targeted and credible direction to study the mechanism of RT injury on human lung epithelial cells. This study provides large-scale omics data that can be used to develop a new strategy for the prevention, rapid diagnosis, and treatment of RT poisoning, especially of RT aerosol.
Collapse
|
16
|
Integration of transcriptomics, proteomics and metabolomics data to reveal the biological mechanisms of abrin injury in human lung epithelial cells. Toxicol Lett 2019; 312:1-10. [PMID: 31054353 DOI: 10.1016/j.toxlet.2019.04.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 04/10/2019] [Accepted: 04/30/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND Abrin toxin (AT) is a potent plant toxin that belongs to the type Ⅱ ribosome inactivating protein family and is recognized as an important toxin agent for potential bioweapons. Exposure to AT by way of aerosol is the most lethal route, but the mechanism of injury requires further investigation. MATERIALS AND METHODS In the present study, we performed a comprehensive analysis of transcriptomics, proteomics and metabolomics on the potential mechanism of abrin injury in human lung epithelial cells. RESULTS In total, 6838 genes, 314 proteins and 178 metabolites showed significant changes in human lung epithelial cells after AT treatment. Using molecular function, pathway, and network analysis, the genes and proteins regulated in AT-treated cells were mainly attributed to amino acid metabolism, lipid metabolism, and genetic information processing. Furthermore, a comprehensive analysis of the transcripts, proteins, and metabolites was performed. The results revealed that the correlated genes, proteins, and metabolism pathways regulated in AT-treated human lung epithelial cells were involved in tryptophan metabolism, biosynthesis of amino acids, and protein digestion and absorption. CONCLUSION This study provides large-scale omics data to develop new strategies for the prevention, rapid diagnosis, and treatment of AT poisoning, especially AT from aerosol.
Collapse
|
17
|
Martinet W, Coornaert I, Puylaert P, De Meyer GRY. Macrophage Death as a Pharmacological Target in Atherosclerosis. Front Pharmacol 2019; 10:306. [PMID: 31019462 PMCID: PMC6458279 DOI: 10.3389/fphar.2019.00306] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 03/12/2019] [Indexed: 12/20/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disorder characterized by the gradual build-up of plaques within the vessel wall of middle-sized and large arteries. Over the past decades, treatment of atherosclerosis mainly focused on lowering lipid levels, which can be accomplished by the use of statins. However, some patients do not respond sufficiently to statin therapy and therefore still have a residual cardiovascular risk. This issue highlights the need for novel therapeutic strategies. As macrophages are implicated in all stages of atherosclerotic lesion development, they represent an important alternative drug target. A variety of anti-inflammatory strategies have recently emerged to treat or prevent atherosclerosis. Here, we review the canonical mechanisms of macrophage death and their impact on atherogenesis and plaque stability. Macrophage death is a prominent feature of advanced plaques and is a major contributor to necrotic core formation and plaque destabilization. Mechanisms of macrophage death in atherosclerosis include apoptosis, passive or accidental necrosis as well as secondary necrosis, a type of death that typically occurs when apoptotic cells are insufficiently cleared by neighboring cells via a phagocytic process termed efferocytosis. In addition, less-well characterized types of regulated necrosis in macrophages such as necroptosis, pyroptosis, ferroptosis, and parthanatos may occur in advanced plaques and are also discussed. Autophagy in plaque macrophages is an important survival pathway that protects against cell death, yet massive stimulation of autophagy promotes another type of death, usually referred to as autosis. Multiple lines of evidence indicate that a better insight into the different mechanisms of macrophage death, and how they mutually interact, will provide novel pharmacological strategies to resolve atherosclerosis and stabilize vulnerable, rupture-prone plaques.
Collapse
Affiliation(s)
- Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Isabelle Coornaert
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Pauline Puylaert
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
18
|
Serhan CN, Chiang N, Dalli J. New pro-resolving n-3 mediators bridge resolution of infectious inflammation to tissue regeneration. Mol Aspects Med 2018; 64:1-17. [PMID: 28802833 PMCID: PMC5832503 DOI: 10.1016/j.mam.2017.08.002] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 08/07/2017] [Indexed: 12/16/2022]
Abstract
While protective, the acute inflammatory response when uncontrolled can lead to further tissue damage and chronic inflammation that is now widely recognized to play important roles in many commonly occurring diseases, such as cardiovascular disease, neurodegenerative diseases, metabolic syndrome, and many other diseases of significant public health concern. The ideal response to initial challenges of the host is complete resolution of the acute inflammatory response, which is now recognized to be a biosynthetically active process governed by specialized pro-resolving mediators (SPM). These chemically distinct families include lipoxins, resolvins, protectins and maresins that are biosynthesized from essential fatty acids. The biosynthesis and complete stereochemical assignments of the major SPM are established, and new profiling procedures have recently been introduced to document the activation of these pathways in vivo with isolated cells and in human tissues. The active resolution phase leads to tissue regeneration, where we've recently identified new molecules that communicate during resolution of inflammation to activate tissue regeneration in model organisms. This review presents an update on the documentation of the roles of SPMs and the biosynthesis and structural elucidation of novel mediators that stimulate tissue regeneration, coined conjugates in tissue regeneration. The identification and actions of the three families, maresin conjugates in tissue regeneration (MCTR), protectin conjugates in tissue regeneration (PCTR), and resolvin conjugates in tissue regeneration (RCTR), are reviewed here. The identification, structural elucidation and the pathways and biosynthesis of these new mediators in tissue regeneration demonstrate the host capacity to protect from collateral tissue damage, stimulate clearance of bacteria and debris, and promote tissue regeneration via endogenous pathways and molecules in the resolution metabolome.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jesmond Dalli
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
19
|
Bates MA, Akbari P, Gilley KN, Wagner JG, Li N, Kopec AK, Wierenga KA, Jackson-Humbles D, Brandenberger C, Holian A, Benninghoff AD, Harkema JR, Pestka JJ. Dietary Docosahexaenoic Acid Prevents Silica-Induced Development of Pulmonary Ectopic Germinal Centers and Glomerulonephritis in the Lupus-Prone NZBWF1 Mouse. Front Immunol 2018; 9:2002. [PMID: 30258439 PMCID: PMC6143671 DOI: 10.3389/fimmu.2018.02002] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/14/2018] [Indexed: 12/27/2022] Open
Abstract
Ectopic lymphoid structures (ELS) consist of B-cell and T-cell aggregates that are initiated de novo in inflamed tissues outside of secondary lymphoid organs. When organized within follicular dendritic cell (FDC) networks, ELS contain functional germinal centers that can yield autoantibody-secreting plasma cells and promote autoimmune disease. Intranasal instillation of lupus-prone mice with crystalline silica (cSiO2), a respirable particle linked to human lupus, triggers ELS formation in the lung, systemic autoantibodies, and early onset of glomerulonephritis. Here we tested the hypothesis that consumption of docosahexaenoic acid (DHA), an ω-3 polyunsaturated fatty acid with anti-inflammatory properties, influences the temporal profile of cSiO2-induced pulmonary ectopic germinal center formation and development of glomerulonephritis. Female NZBWF1 mice (6-wk old) were fed purified isocaloric diets supplemented with 0, 4, or 10 g/kg DHA - calorically equivalent to 0, 2, or 5 g DHA per day consumption by humans, respectively. Beginning at age 8 wk, mice were intranasally instilled with 1 mg cSiO2, or saline vehicle alone, once per wk, for 4 wk. Cohorts were sacrificed 1, 5, 9, or 13 wk post-instillation (PI) of the last cSiO2 dose, and lung and kidney lesions were investigated by histopathology. Tissue fatty acid analyses confirmed uniform dose-dependent DHA incorporation across all cohorts. As early as 1 wk PI, inflammation comprising of B (CD45R+) and T (CD3+) cell accumulation was observed in lungs of cSiO2-treated mice compared to vehicle controls; these responses intensified over time. Marked follicular dendritic cell (FDC; CD21+/CD35+) networking appeared at 9 and 13 wk PI. IgG+ plasma cells suggestive of mature germinal centers were evident at 13 wk. DHA supplementation dramatically suppressed cSiO2-triggered B-cell, T-cell, FDC, and IgG+ plasma cell appearance in the lungs as well as anti-dsDNA IgG in bronchial lavage fluid and plasma over the course of the experiment. cSiO2 induced glomerulonephritis with concomitant B-cell accumulation in the renal cortex at 13 wk PI but this response was abrogated by DHA feeding. Taken together, realistic dietary DHA supplementation prevented initiation and/or progression of ectopic lymphoid neogenesis, germinal center development, systemic autoantibody elevation, and resultant glomerulonephritis in this unique preclinical model of environment-triggered lupus.
Collapse
Affiliation(s)
- Melissa A Bates
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Peyman Akbari
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States.,Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - Kristen N Gilley
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - James G Wagner
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - Ning Li
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - Anna K Kopec
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States.,Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - Kathryn A Wierenga
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Daven Jackson-Humbles
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | | | - Andrij Holian
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT, United States
| | - Abby D Benninghoff
- Department of Animal, Dairy and Veterinary Sciences, School of Veterinary Medicine, Utah State University, Logan, UT, United States
| | - Jack R Harkema
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States.,Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - James J Pestka
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
20
|
Kain V, Halade GV. Immune responsive resolvin D1 programs peritoneal macrophages and cardiac fibroblast phenotypes in diversified metabolic microenvironment. J Cell Physiol 2018; 234:3910-3920. [PMID: 30191990 DOI: 10.1002/jcp.27165] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 07/11/2018] [Indexed: 12/20/2022]
Abstract
Bioactive lipid mediators derived from n-3 and n-6 fatty acids are known to modulate leukocytes. Metabolic transformation of essential fatty acids to endogenous bioactive molecules plays a major role in human health. Here we tested the potential of substrates; linoleic acid (LA) and docosahexaenoic acid (DHA) and their bioactive products; resolvin D1 (RvD1) and 12- S-hydroxyeicosatetraenoic acids (HETE) to modulate macrophage plasticity and cardiac fibroblast phenotype in presence or absence of lipid metabolizing enzyme 12/15-lipoxygenase (LOX). Peritoneal macrophages and cardiac fibroblasts were isolated from wild-type (C57BL/6J) and 12/15LOX -/- mice and treated with DHA, LA, 12(S)-HETE, and RvD1 for 4, 8, 12, and 24 hr. LA, DHA, 12(S)-HETE, and RvD1 elicited mRNA expression of proinflammatory markers; tumor necrosis factor-α ( Tnf-α), interleukin 6 ( IL-6), chemokine (C-C motif) ligand 2 (Ccl2), and IL-1β in wild type (WT) and in 12/15LOX -/- macrophages at early time point (4 hr). Bioactive immunoresolvent RvD1 lowered the levels of Tnf-α, IL-6, and IL-1β at 24 hr time point. Both DHA and RvD1 stimulated the proresolving markers such as arginase 1 ( Arg-1), chitinase-like protein 3 ( Ym-1), and mannose receptor C-type 1 in WT macrophage. RvD1 induced proresolving phenotype Arg-1 expression in both WT 12/15LOX -/- macrophages even in presence of 12(S)-HETE. RvD1 peaked 5LOX expression in both WT and 12/15LOX -/- at 24 hr time point compared with DHA. RvD1 diminished cyclooxygenase-2 but upregulated 5LOX expression in fibroblast compared with DHA. In summary, the feed-forward enzymatic interaction with fatty acids substrates and direct mediators (RvD1 and 12(S)-HETE) are responsive in determining macrophages phenotype and cardiac fibroblast plasticity. Particularly, macrophages and fibroblast phenotypes are responsive to milieu and RvD1 governs the milieu-dependent chemokine signaling in presence or absence of 12/15LOX enzyme to resolve inflammation.
Collapse
Affiliation(s)
- Vasundhara Kain
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Ganesh V Halade
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
21
|
Ye Y, Scheff NN, Bernabé D, Salvo E, Ono K, Liu C, Veeramachaneni R, Viet CT, Viet DT, Dolan JC, Schmidt BL. Anti-cancer and analgesic effects of resolvin D2 in oral squamous cell carcinoma. Neuropharmacology 2018; 139:182-193. [PMID: 30009833 DOI: 10.1016/j.neuropharm.2018.07.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/23/2018] [Accepted: 07/11/2018] [Indexed: 12/31/2022]
Abstract
Oral cancer is often painful and lethal. Oral cancer progression and pain may result from shared pathways that involve unresolved inflammation and elevated levels of pro-inflammatory cytokines. Resolvin D-series (RvDs) are endogenous lipid mediators derived from omega-3 fatty acids that exhibit pro-resolution and anti-inflammatory actions. These mediators have recently emerged as a novel class of therapeutics for diseases that involve inflammation; the specific roles of RvDs in oral cancer and associated pain are not defined. The present study investigated the potential of RvDs (RvD1 and RvD2) to treat oral cancer and alleviate oral cancer pain. We found down-regulated mRNA levels of GPR18 and GPR32 (which code for receptors RvD1 and RvD2) in oral cancer cells. Both RvD1 and RvD2 inhibited oral cancer proliferation in vitro. Using two validated mouse oral squamous cell carcinoma xenograft models, we found that RvD2, the more potent anti-inflammatory lipid mediator, significantly reduced tumor size. The mechanism of this action might involve suppression of IL-6, C-X-C motif chemokine 10 (CXCL10), and reduction of tumor necrosis. RvD2 generated short-lasting analgesia in xenograft cancer models, which coincided with decreased neutrophil infiltration and myeloperoxidase activity. Using a cancer supernatant model, we demonstrated that RvD2 reduced cancer-derived cytokines/chemokines (TNF-α, IL-6, CXCL10, and MCP-1), cancer mediator-induced CD11b+Ly6G- myeloid cells, and nociception. We infer from our results that manipulation of the endogenous pro-resolution pathway might provide a novel approach to improve oral cancer and cancer pain treatment.
Collapse
Affiliation(s)
- Yi Ye
- Bluestone Center for Clinical Research, College of Dentistry, USA; Department of Oral and Maxillofacial Surgery, College of Dentistry, USA.
| | - Nicole N Scheff
- Bluestone Center for Clinical Research, College of Dentistry, USA
| | - Daniel Bernabé
- Bluestone Center for Clinical Research, College of Dentistry, USA
| | - Elizabeth Salvo
- Bluestone Center for Clinical Research, College of Dentistry, USA
| | - Kentaro Ono
- Bluestone Center for Clinical Research, College of Dentistry, USA
| | - Cheng Liu
- Head and Neck Pathology, Langone Medical Center, USA
| | | | - Chi T Viet
- Bluestone Center for Clinical Research, College of Dentistry, USA; Department of Oral and Maxillofacial Surgery, College of Dentistry, USA
| | - Dan T Viet
- Bluestone Center for Clinical Research, College of Dentistry, USA
| | - John C Dolan
- Bluestone Center for Clinical Research, College of Dentistry, USA; Department of Orthodontics, New York University, New York, NY, USA
| | - Brian L Schmidt
- Bluestone Center for Clinical Research, College of Dentistry, USA; Department of Oral and Maxillofacial Surgery, College of Dentistry, USA
| |
Collapse
|
22
|
Hennig B, Petriello MC, Gamble MV, Surh YJ, Kresty LA, Frank N, Rangkadilok N, Ruchirawat M, Suk WA. The role of nutrition in influencing mechanisms involved in environmentally mediated diseases. REVIEWS ON ENVIRONMENTAL HEALTH 2018; 33:87-97. [PMID: 29381475 PMCID: PMC5987536 DOI: 10.1515/reveh-2017-0038] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/13/2017] [Indexed: 05/05/2023]
Abstract
Human exposure to environmental contaminants such as persistent chlorinated organics, heavy metals, pesticides, phthalates, flame retardants, electronic waste and airborne pollutants around the world, and especially in Southeast Asian regions, are significant and require urgent attention. Given this widespread contamination and abundance of such toxins as persistent organic pollutants (POPs) in the ecosystem, it is unlikely that remediation alone will be sufficient to address the health impacts associated with this exposure. Furthermore, we must assume that the impact on health of some of these contaminants results in populations with extraordinary vulnerabilities to disease risks. Further exacerbating risk; infectious diseases, poverty and malnutrition are common in the Southeast Asian regions of the world. Thus, exploring preventive measures of environmental exposure and disease risk through new paradigms of environmental toxicology, optimal and/or healthful nutrition and health is essential. For example, folic acid supplementation can lower blood arsenic levels, and plant-derived bioactive nutrients can lower cardiovascular and cancer risks linked to pollutant exposure. Data also indicate that diets enriched with bioactive food components such as polyphenols and omega-3 polyunsaturated fatty acids can prevent or decrease toxicant-induced inflammation. Thus, consuming healthy diets that exhibit high levels of antioxidant and anti-inflammatory properties, is a meaningful way to reduce the vulnerability to non-communicable diseases linked to environmental toxic insults. This nutritional paradigm in environmental toxicology requires further study in order to improve our understanding of the relationship between nutrition or other lifestyle modifications and toxicant-induced diseases. Understanding mechanistic relationships between nutritional modulation of environmental toxicants and susceptibility to disease development are important for both cumulative risk assessment and the design and implementation of future public health programs and behavioral interventions.
Collapse
Affiliation(s)
- Bernhard Hennig
- University of Kentucky Superfund Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Michael C. Petriello
- University of Kentucky Superfund Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Mary V. Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, NY, USA
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul 151-742 08826, South Korea
| | - Laura A. Kresty
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, 48109, MI, USA
| | - Norbert Frank
- German Cancer Research Center, 69120 Heidelberg, Germany
| | | | | | - William A. Suk
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| |
Collapse
|
23
|
Silva CAM, Belisle JT. Host Lipid Mediators in Leprosy: The Hypothesized Contributions to Pathogenesis. Front Immunol 2018; 9:134. [PMID: 29472920 PMCID: PMC5810268 DOI: 10.3389/fimmu.2018.00134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/16/2018] [Indexed: 12/12/2022] Open
Abstract
The spectrum of clinical forms observed in leprosy and its pathogenesis are dictated by the host's immune response against Mycobacterium leprae, the etiological agent of leprosy. Previous results, based on metabolomics studies, demonstrated a strong relationship between clinical manifestations of leprosy and alterations in the metabolism of ω3 and ω6 polyunsaturated fatty acids (PUFAs), and the diverse set of lipid mediators derived from PUFAs. PUFA-derived lipid mediators provide multiple functions during acute inflammation, and some lipid mediators are able to induce both pro- and anti-inflammatory responses as determined by the cell surface receptors being expressed, as well as the cell type expressing the receptors. However, little is known about how these compounds influence cellular immune activities during chronic granulomatous infectious diseases, such as leprosy. Current evidence suggests that specialized pro-resolving lipid mediators (SPMs) are involved in the down-modulation of the innate and adaptive immune response against M. leprae and that alteration in the homeostasis of pro-inflammatory lipid mediators versus SPMs is associated with dramatic shifts in the pathogenesis of leprosy. In this review, we discuss the possible consequences and present new hypotheses for the involvement of ω3 and ω6 PUFA metabolism in the pathogenesis of leprosy. A specific emphasis is placed on developing models of lipid mediator interactions with the innate and adaptive immune responses and the influence of these interactions on the outcome of leprosy.
Collapse
Affiliation(s)
- Carlos A. M. Silva
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - John T. Belisle
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
24
|
RvD1 inhibits TNFα-induced c-Myc expression in normal intestinal epithelial cells and destabilizes hyper-expressed c-Myc in colon cancer cells. Biochem Biophys Res Commun 2018; 496:316-323. [PMID: 29305860 DOI: 10.1016/j.bbrc.2017.12.171] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/31/2017] [Indexed: 01/13/2023]
Abstract
Inflammatory bowel diseases, including ulcerative colitis and Crohn's disease, are persistent disorders that lead to development of colitis-associated cancer (CAC). Facilitated resolution of colitis has been addressed as a novel therapeutic strategy to control development of CAC. Resolvin D1 (RvD1) is an endogenous lipid mediator that is generated from docosahexaenoic acid during the resolution of inflammation. Although the pro-resolving effects of RvDs have been extensively investigated and well defined, the role for RvD1 in CAC remains largely unknown. In this study, we found that RvD1 inhibited the expression of c-Myc in normal colon cells stimulated with tumor necrosis factor-α (TNFα) and also in colon cancer cells. The suppression of TNFα-induced upregulation of c-Myc in normal cells was mediated through attenuation of NF-κB signaling. Notably, RvD1 destabilized the constitutively overexpressed c-Myc protein in HCT 116 human colon cancer cells by stimulating its ubiquitination and subsequent proteasomal degradation. Further, we revealed that RvD1 stimulated c-Myc degradation through direct interaction with the ALX/FPR2 receptor. This interaction resulted in inhibition of activation of extracellular signal-regulated kinase, thereby attenuating phosphorylation-dependent stabilization of c-Myc.
Collapse
|
25
|
Pineda-Peña EA, Martínez-Pérez Y, Galicia-Moreno M, Navarrete A, Segovia J, Muriel P, Favari L, Castañeda-Hernández G, Chávez-Piña AE. Participation of the anti-inflammatory and antioxidative activity of docosahexaenoic acid on indomethacin-induced gastric injury model. Eur J Pharmacol 2018; 818:585-592. [DOI: 10.1016/j.ejphar.2017.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 02/07/2023]
|
26
|
A Metabolomics-Based Strategy for the Mechanism Exploration of Traditional Chinese Medicine: Descurainia sophia Seeds Extract and Fractions as a Case Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:2845173. [PMID: 28932251 PMCID: PMC5592412 DOI: 10.1155/2017/2845173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/10/2017] [Indexed: 12/14/2022]
Abstract
A UPLC-QTOF-MS based metabolomics research was conducted to explore potential biomarkers which would increase our understanding of the model and to assess the integral efficacy of Descurainia sophia seeds extract (DS-A). Additionally, DS-A was split into five fractions in descending order of polarity, which were utilized to illustrate the mechanism together. The 26 identified biomarkers were mainly related to disturbances in phenylalanine, tyrosine, tryptophan, purine, arginine, and proline metabolism. Furthermore, heat map, hierarchical cluster analysis (HCA), and correlation network diagram of biomarkers perturbed by modeling were all conducted. The results of heat map and HCA suggested that fat oil fraction could reverse the abnormal metabolism in the model to some extent; meanwhile the metabolic inhibitory effect produced by the other four fractions helped to relieve cardiac load and compensate the insufficient energy supplement induced by the existing heart and lung injury in model rats. Briefly, the split fractions interfered with the model from different aspects and ultimately constituted the overall effects of extract. In conclusion, the metabolomics method, combined with split fractions of extract, is a powerful approach for illustrating pathologic changes of Chinese medicine syndrome and action mechanisms of traditional Chinese medicine.
Collapse
|
27
|
Gao Y, Zhang H, Luo L, Lin J, Li D, Zheng S, Huang H, Yan S, Yang J, Hao Y, Li H, Gao Smith F, Jin S. Resolvin D1 Improves the Resolution of Inflammation via Activating NF-κB p50/p50-Mediated Cyclooxygenase-2 Expression in Acute Respiratory Distress Syndrome. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:ji1700315. [PMID: 28794232 PMCID: PMC5583748 DOI: 10.4049/jimmunol.1700315] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/30/2017] [Indexed: 12/21/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a severe illness characterized by uncontrolled inflammation. The resolution of inflammation is a tightly regulated event controlled by endogenous mediators, such as resolvin D1 (RvD1). Cyclooxygenase-2 (COX-2) has been reported to promote inflammation, along with PGE2, in the initiation of inflammation, as well as in prompting resolution, with PGD2 acting in the later phase of inflammation. Our previous work demonstrated that RvD1 enhanced COX-2 and PGD2 expression to resolve inflammation. In this study, we investigated mechanisms underlying the effect of RvD1 in modulating proresolving COX-2 expression. In a self-limited ARDS model, an LPS challenge induced the biphasic activation of COX-2, and RvD1 promoted COX-2 expression during the resolution phase. However, it was significantly blocked by treatment of a NF-κB inhibitor. In pulmonary fibroblasts, NF-κB p50/p50 was shown to be responsible for the proresolving activity of COX-2. Additionally, RvD1 potently promoted p50 homodimer nuclear translocation and robustly triggered DNA-binding activity, upregulating COX-2 expression via lipoxin A4 receptor/formyl peptide receptor 2. Finally, the absence of p50 in knockout mice prevented RvD1 from promoting COX-2 and PGD2 expression and resulted in excessive pulmonary inflammation. In conclusion, RvD1 expedites the resolution of inflammation through activation of lipoxin A4 receptor/formyl peptide receptor 2 receptor and NF-κB p50/p50-COX-2 signaling pathways, indicating that RvD1 might have therapeutic potential in the management of ARDS.
Collapse
Affiliation(s)
- Ye Gao
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Huawei Zhang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Lingchun Luo
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Jing Lin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Dan Li
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Sisi Zheng
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Hua Huang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Songfan Yan
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Jingxiang Yang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Yu Hao
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Hui Li
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Fang Gao Smith
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
- Institute of Inflammation and Ageing, College of Medical and Dental Science, University of Birmingham, Birmingham B15 2WB, United Kingdom
| | - Shengwei Jin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| |
Collapse
|
28
|
Zhao YL, Zhang L, Yang YY, Tang Y, Zhou JJ, Feng YY, Cui TL, Liu F, Fu P. Resolvin D1 Protects Lipopolysaccharide-induced Acute Kidney Injury by Down-regulating Nuclear Factor-kappa B Signal and Inhibiting Apoptosis. Chin Med J (Engl) 2017; 129:1100-7. [PMID: 27098797 PMCID: PMC4852679 DOI: 10.4103/0366-6999.180517] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background: Resolvin D1 (RvD1) is a newly found anti-inflammatory bioactive compound derived from polyunsaturated fatty acids. The current study aimed to explore the protective effect of RvD1 on lipopolysaccharide (LPS)-induced acute kidney injury (AKI) and its possible mechanism. Methods: Both in vivo and in vitro studies were conducted. Male BALB/c mice were randomly divided into control group (saline), LPS group (LPS 5 mg/kg), RvD1 group (RvD1 5 μg/kg + LPS 5 mg/kg), and blockage group (Boc-MLP 5 μg/kg + RvD1 5 μg/kg + LPS 5 mg/kg). Boc-MLP is a RvD1 receptor blocker. The mice were intraperitoneally injected with these drugs and recorded for general condition for 48 h, while the blood and kidneys were harvested at 2, 6, 12, 24, and 48 h time points, respectively (n = 6 in each group at each time point). Human proximal tubule epithelial cells (HK-2) were randomly divided into control group (medium only), LPS group (LPS 5 μg/ml), RvD1 group (RvD1 10 ng/ml + LPS 5 μg/ml), and blockage group (Boc-MLP 10 ng/ml + RvD1 10 ng/ml + LPS 5 μg/ml). The cells were harvested for RNA at 2, 4, 6, 12, and 24 h time points, respectively (n = 6 in each group at each time point). Blood creatinine was tested by using an Abbott i-STAT portable blood gas analyzer. Tumor necrosis factor-α (TNF-α) level was detected by ELISA. Kidney pathology was observed under hematoxylin and eosin (HE) staining and transmission electron microscope (TEM). We hired immune-histological staining, Western blotting, and fluorescence quantitative polymerase chain reaction to detect the expression of RvD1 receptor ALX, nuclear factor-kappa B (NF-κB) signaling pathway as well as caspase-3. Kidney apoptosis was evaluated by TUNEL staining. Results: RvD1 receptor ALX was detected on renal tubular epithelials. Kaplan–Meier analysis indicated that RvD1 improved 48 h animal survival (80%) compared with LPS group (40%) and RvD1 blockage group (60%), while RvD1 also ameliorated kidney pathological injury in HE staining and TEM scan. After LPS stimulation, the mRNA expression of toll-like receptor 4, myeloid differentiation factor 88, and TNF-α in both mice kidneys and HK-2 cells were all up-regulated, while RvD1 substantially inhibited the up-regulation of these genes. Western blotting showed that the phosphorylated-IκB/IκB ratio in LPS group was significantly higher than that in the control group, which was inhibited in the RvD1 group. RvD1 could inhibit the up-regulation of cleaved-caspase-3 protein stimulated by LPS, which was prohibited in RvD1 blockage group. RvD1 group also had a lower proportion of apoptotic nuclei in mice kidney by TUNEL staining compared with LPS group. Conclusion: In LPS-induced AKI, RvD1 could decrease TNF-α level, ameliorate kidney pathological injury, protect kidney function, and improve animal survival by down-regulating NF-κB inflammatory signal as well as inhibiting renal cell apoptosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ping Fu
- Division of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041; West China Kidney Research Institute, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
29
|
Hiroshima Y, Hsu K, Tedla N, Wong SW, Chow S, Kawaguchi N, Geczy CL. S100A8/A9 and S100A9 reduce acute lung injury. Immunol Cell Biol 2017; 95:461-472. [PMID: 28074060 PMCID: PMC5454315 DOI: 10.1038/icb.2017.2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 01/05/2023]
Abstract
S100A8 and S100A9 are myeloid cell-derived proteins that are elevated in several types of inflammatory lung disorders. Pro- and anti-inflammatory properties are reported and these proteins are proposed to activate TLR4. S100A8 and S100A9 can function separately, likely through distinct receptors but a systematic comparison of their effects in vivo are limited. Here we assess inflammation in murine lung following S100A9 and S100A8/A9 inhalation. Unlike S100A8, S100A9 promoted mild neutrophil and lymphocyte influx, possibly mediated in part, by increased mast cell degranulation and selective upregulation of some chemokine genes, particularly CXCL-10. S100 proteins did not significantly induce proinflammatory mediators including TNF-α, interleukin-1β (IL-1β), IL-6 or serum amyloid A3 (SAA3). In contrast to S100A8, neither preparation induced S100A8 or IL-10 mRNA/protein in airway epithelial cells, or in tracheal epithelial cells in vitro. Like S100A8, S100A9 and S100A8/A9 reduced neutrophil influx in acute lung injury provoked by lipopolysaccharide (LPS) challenge but were somewhat less inhibitory, possibly because of differential effects on expression of some chemokines, IL-1β, SAA3 and IL-10. Novel common pathways including increased induction of an NAD+-dependent protein deacetylase sirtuin-1 that may reduce NF-κB signalling, and increased STAT3 activation may reduce LPS activation. Results suggest a role for these proteins in normal homeostasis and protective mechanisms in the lung.
Collapse
Affiliation(s)
- Yuka Hiroshima
- Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Kenneth Hsu
- Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Nicodemus Tedla
- Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sze Wing Wong
- Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sharron Chow
- Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Naomi Kawaguchi
- Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Carolyn L Geczy
- Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
30
|
Zhan Q, Song R, Li F, Ao L, Zeng Q, Xu D, Fullerton DA, Meng X. Double-stranded RNA upregulates the expression of inflammatory mediators in human aortic valve cells through the TLR3-TRIF-noncanonical NF-κB pathway. Am J Physiol Cell Physiol 2017; 312:C407-C417. [PMID: 28052863 DOI: 10.1152/ajpcell.00230.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/08/2016] [Accepted: 01/03/2017] [Indexed: 11/22/2022]
Abstract
Calcific aortic valve disease is a chronic inflammatory condition, and the inflammatory responses of aortic valve interstitial cells (AVICs) play a critical role in the disease progression. Double-stranded RNA (dsRNA) released from damaged or stressed cells is proinflammatory and may contribute to the mechanism of chronic inflammation observed in diseased aortic valves. The objective of this study is to determine the effect of dsRNA on AVIC inflammatory responses and the underlying mechanism. AVICs from normal human aortic valves were stimulated with polyinosinic-polycytidylic acid [poly(I:C)], a mimic of dsRNA. Poly(I:C) increased the production of IL-6, IL-8, monocyte chemoattractant protein-1, and ICAM-1. Poly(I:C) also induced robust activation of ERK1/2 and NF-κB. Knockdown of Toll-like receptor 3 (TLR3) or Toll-IL-1 receptor domain-containing adapter-inducing IFN-β (TRIF) suppressed ERK1/2 and NF-κB p65 phosphorylation and reduced inflammatory mediator production induced by poly(I:C). Inhibition of NF-κB, not ERK1/2, reduced inflammatory mediator production in AVICs exposed to poly(I:C). Interestingly, inhibition of NF-κB by prevention of p50 migration failed to suppress inflammatory mediator production. NF-κB p65 intranuclear translocation induced by the TLR4 agonist was reduced by inhibition of p50 migration; however, poly(I:C)-induced p65 translocation was not, although the p65/p50 heterodimer is present in AVICs. Poly(I:C) upregulates the production of multiple inflammatory mediators through the TLR3-TRIF-NF-κB pathway in human AVICs. The NF-κB activated by dsRNA appears not to be the canonical p65/p50 heterodimers.
Collapse
Affiliation(s)
- Qiong Zhan
- Department of Surgery, University of Colorado Denver, Aurora, Colorado; and.,Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rui Song
- Department of Surgery, University of Colorado Denver, Aurora, Colorado; and
| | - Fei Li
- Department of Surgery, University of Colorado Denver, Aurora, Colorado; and
| | - Lihua Ao
- Department of Surgery, University of Colorado Denver, Aurora, Colorado; and
| | - Qingchun Zeng
- Department of Surgery, University of Colorado Denver, Aurora, Colorado; and.,Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dingli Xu
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - David A Fullerton
- Department of Surgery, University of Colorado Denver, Aurora, Colorado; and
| | - Xianzhong Meng
- Department of Surgery, University of Colorado Denver, Aurora, Colorado; and
| |
Collapse
|
31
|
Kang S, Park SJ, Lee AY, Huang J, Chung HY, Im DS. Ginsenoside Rg 3 promotes inflammation resolution through M2 macrophage polarization. J Ginseng Res 2017; 42:68-74. [PMID: 29348724 PMCID: PMC5766702 DOI: 10.1016/j.jgr.2016.12.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 11/09/2016] [Accepted: 12/22/2016] [Indexed: 11/29/2022] Open
Abstract
Background Ginsenosides have been reported to have many health benefits, including anti-inflammatory effects, and the resolution of inflammation is now considered to be an active process driven by M2-type macrophages. In order to determine whether ginsenosides modulate macrophage phenotypes to reduce inflammation, 11 ginsenosides were studied with respect to macrophage polarization and the resolution of inflammation. Methods Mouse peritoneal macrophages were polarized into M1 or M2 phenotypes. Reverse transcription-polymerase chain reaction, Western blotting, and measurement of nitric oxide (NO) and prostaglandin E2 levels were performed in vitro and in a zymosan-induced peritonitis C57BL/6 mouse model. Results Ginsenoside Rg3 was identified as a proresolving ginseng compound based on the induction of M2 macrophage polarization. Ginsenoside Rg3 not only induced the expression of arginase-1 (a representative M2 marker gene), but also suppressed M1 marker genes, such as inducible NO synthase, and NO levels. The proresolving activity of ginsenoside Rg3 was also observed in vivo in a zymosan-induced peritonitis model. Ginsenoside Rg3 accelerated the resolution process when administered at peak inflammatory response into the peritoneal cavity. Conclusion These results suggest that ginsenoside Rg3 induces the M2 polarization of macrophages and accelerates the resolution of inflammation. This finding opens a new avenue in ginseng pharmacology.
Collapse
Affiliation(s)
- Saeromi Kang
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Soo-Jin Park
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Ae-Yeon Lee
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Jin Huang
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Hae-Young Chung
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Dong-Soon Im
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
32
|
Yum HW, Na HK, Surh YJ. Anti-inflammatory effects of docosahexaenoic acid: Implications for its cancer chemopreventive potential. Semin Cancer Biol 2016; 40-41:141-159. [PMID: 27546289 DOI: 10.1016/j.semcancer.2016.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 08/07/2016] [Accepted: 08/16/2016] [Indexed: 12/11/2022]
Abstract
The implication of inflammatory tissue damage in pathophysiology of human cancer as well as some metabolic disorders has been under intense investigation. Numerous studies have identified a series of critical signaling molecules involved in cellular responses to inflammatory stimuli. These include nuclear factor κB, peroxisome proliferator-activated receptor γ, nuclear factor erythroid 2 p45-related factor 2 and sterol regulatory element-binding protein 1. The proper regulation of these transcription factors mediating pro- and anti-inflammatory signaling hence provides an important strategy for the chemoprevention of inflammation-associated cancer. There is compelling evidence supporting that dietary supplementation with fish oil-derived ω-3 polyunsaturated fatty acids including docosahexaenoic acid (DHA) ameliorates symptomatic inflammation associated with cancer as well as other divergent human disorders. Acute or physiologic inflammation is an essential body's first line of defence to microbial infection and tissue injuries, but it must be properly completed by a process termed 'resolution'. Failure of resolution mechanisms can result in persistence of inflammation, leading to chronic inflammatory conditions and related malignancies. The phagocytic engulfment of apoptotic neutrophils and clearance of their potentially histotoxic contents by macrophages, called efferocytosis is an essential component in resolving inflammation. Of note, DHA is a precursor of endogenous proresolving lipid mediators which regulate the leukocyte trafficking and recruitment and thereby facilitate efferocytosis. Therefore, DHA and its metabolites may have a preventive potential in the management of human cancer which arises as a consequence of impaired resolution of inflammation as well as chronic inflammation.
Collapse
Affiliation(s)
- Hye-Won Yum
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea; Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Hye-Kyung Na
- Department of Food and Nutrition, College of Human Ecology, Sungshin Women's University, Seoul, 01133, South Korea.
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea; Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea; Cancer Research Institute, Seoul National University, Seoul, 110-744, South Korea.
| |
Collapse
|
33
|
Chacon AC, Phillips BE, Chacon MA, Brunke-Reese D, Kelleher SL, Soybel DI. Oral omega-3 fatty acids promote resolution in chemical peritonitis. J Surg Res 2016; 206:190-198. [PMID: 27916361 DOI: 10.1016/j.jss.2016.06.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 06/01/2016] [Accepted: 06/10/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Recent studies suggest that purified omega-3 fatty acids may attenuate acute inflammation and hasten the transition to healing. In this study, we tested the hypothesis that pretreatment with omega-3-rich fish oil (FO) would promote resolution of peritoneal inflammation through production of specific lipid mediators. METHODS C57/BL6 mice were given a daily 200-μL oral gavage of saline (CTL) or FO (1.0-1.5 g/kg/d docosahexaenoic acid and 1.3-2.0 g/kg/d eicosapentaenoic acid) for 7 d before chemical peritonitis was induced with thioglycollate. Peritoneal lavage fluid was collected before induction and at days 2 and 4 after peritonitis onset. Prostaglandin E2 (PGE2), Leukotriene B4 (LTB4), Resolvin D1 (RvD1), and the composition of immune cell populations were examined in peritoneal lavage exudates. Cells harvested from the peritoneum were assessed for macrophage differentiation markers, phagocytosis, and lipopolysaccharide-induced cytokine secretion profiles (interleukin [IL]-6, IL-10, IL-1β, TNFα). RESULTS The ratio of RvD1 to pro-inflammatory PGE2 and LTB4 was increased in the peritoneal cavity of FO-supplemented animals. FO induced a decrease in the number of monocytes in the lavage fluid, with no change in the number of macrophages, neutrophils, or lymphocytes. Macrophage phagocytosis and M1/M2 messenger RNA markers were unchanged by FO with the exception of decreased PPARγ expression. FO increased ex vivo TNFα secretion after stimulation with lipopolysaccharide. CONCLUSIONS Our findings provide evidence that nutraceutically relevant doses of FO supplements given before and during chemical peritonitis shift the balance of lipid mediators towards a proresolution, anti-inflammatory state without drastically altering the number or phenotype of local innate immune cell populations.
Collapse
Affiliation(s)
- Alexander C Chacon
- Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | | | | | | | - Shannon L Kelleher
- Department of Surgery, Hershey, Pennsylvania; Department of Cellular and Molecular Physiology, Hershey, Pennsylvania; Department of Pharmacology, Hershey, Pennsylvania
| | - David I Soybel
- Department of Surgery, Hershey, Pennsylvania; Department of Cellular and Molecular Physiology, Hershey, Pennsylvania.
| |
Collapse
|
34
|
Kang JW, Lee SM. Resolvin D1 protects the liver from ischemia/reperfusion injury by enhancing M2 macrophage polarization and efferocytosis. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1025-1035. [PMID: 27317426 DOI: 10.1016/j.bbalip.2016.06.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/18/2016] [Accepted: 06/10/2016] [Indexed: 02/08/2023]
Abstract
Resolution of inflammation is an active process involving a novel category of lipid factors known as specialized pro-resolving lipid mediators, which includes Resolvin D1 (RvD1). While accumulating evidence suggests that RvD1 counteracts proinflammatory signaling and promotes resolution, the specific cellular targets and mechanisms of action of RvD1 remain largely unknown. In the present study, we investigated the role and molecular mechanisms of RvD1 in ischemia/reperfusion (IR)-induced sterile liver inflammation. Male C57BL/6 mice underwent 70% hepatic ischemia for 60min, followed by reperfusion. RvD1 (5, 10, and 15μg/kg, i.p.) was administered to the mice 1h before ischemia and then immediately prior to reperfusion. RvD1 attenuated IR-induced hepatocellular damage and the proinflammatory response. In purified Kupffer cells (KCs) from mice exposed to IR, the levels of M1 marker genes (Nos2a and Cd40) increased, while those of M2 marker genes (Arg1, Cd206, and Mst1r) decreased, demonstrating a proinflammatory shift. RvD1 markedly attenuated these changes. Depletion of KCs by liposome clodronate abrogated the effects of RvD1 on proinflammatory mediators and macrophage polarization. In addition, RvD1 attenuated increases in myeloperoxidase activity and Cxcl1 and Cxcl2 mRNA expression. RvD1 markedly augmented the efferocytic activity of KCs, as indicated by increases in F4/80(+)Gr-1(+) cells in the liver. However, antagonist pretreatment or gene silencing of the RvD1 receptor, ALX/FPR2, abrogated the anti-inflammatory and pro-resolving actions of RvD1. These data indicate that RvD1 ameliorates IR-induced liver injury, and this protection is associated with enhancement of M2 polarization and efferocytosis via ALX/FPR2 activation.
Collapse
Affiliation(s)
- Jung-Woo Kang
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | - Sun-Mee Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, Republic of Korea.
| |
Collapse
|
35
|
Sugimoto MA, Sousa LP, Pinho V, Perretti M, Teixeira MM. Resolution of Inflammation: What Controls Its Onset? Front Immunol 2016. [PMID: 27199985 DOI: 10.3389/fimmu.2016.00.00160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
An effective resolution program may be able to prevent the progression from non-resolving acute inflammation to persistent chronic inflammation. It has now become evident that coordinated resolution programs initiate shortly after inflammatory responses begin. In this context, several mechanisms provide the fine-tuning of inflammation and create a favorable environment for the resolution phase to take place and for homeostasis to return. In this review, we focus on the events required for an effective transition from the proinflammatory phase to the onset and establishment of resolution. We suggest that several mediators that promote the inflammatory phase of inflammation can simultaneously initiate a program for active resolution. Indeed, several events enact a decrease in the local chemokine concentration, a reduction which is essential to inhibit further infiltration of neutrophils into the tissue. Interestingly, although neutrophils are cells that characteristically participate in the active phase of inflammation, they also contribute to the onset of resolution. Further understanding of the molecular mechanisms that initiate resolution may be instrumental to develop pro-resolution strategies to treat complex chronic inflammatory diseases, in humans. The efforts to develop strategies based on resolution of inflammation have shaped a new area of pharmacology referred to as "resolution pharmacology."
Collapse
Affiliation(s)
- Michelle A Sugimoto
- Laboratório de Sinalização Inflamação, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lirlândia P Sousa
- Laboratório de Sinalização Inflamação, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Pinho
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Laboratório de Resolução da Resposta Inflamatória, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London , London , UK
| | - Mauro M Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| |
Collapse
|
36
|
ResolvinD1 reduces apoptosis and inflammation in primary human alveolar epithelial type 2 cells. J Transl Med 2016; 96:526-36. [PMID: 26878131 DOI: 10.1038/labinvest.2016.31] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/03/2016] [Accepted: 01/15/2016] [Indexed: 01/08/2023] Open
Abstract
Lung epithelial apoptosis and inflammatory responses are important pathological processes in many pulmonary disorders. ResolvinD1 (RvD1), generated in inflammatory resolution processes, reduces inflammatory responses in animal models of lung diseases. The aim of this study was to investigate whether RvD1 attenuates apoptosis and proinflammatory responses in primary human alveolar epithelial type 2 cells (AEC2 cells) that are exposed to lipopolysaccharide (LPS) in vitro. We examined the percentage of apoptotic AEC2 cells by flow cytometry. The expression levels of cytokines and chemokines were determined by ELISA and microarray. The expression levels of molecular signaling modulators were evaluated by western blot. LPS-stimulated AEC2 cells pretreated with RvD1 exhibited a statistically significant reduction in apoptosis. The pretreatment of LPS-stimulated cells with RvD1 stimulated the phosphorylation of AKT and prevented the cleavage of caspase-3, the upregulation of Bax, and the downregulation of Bcl-2. The antiapoptotic effects of RvD1 were abrogated upon pretreatment with a PI3K inhibitor. In addition, RvD1 reduced the release of cytokines and chemokines, and inhibited the degradation and phosphorylation of IκB-α in LPS-stimulated AEC2 cells. RvD1 reduces apoptosis of LPS-exposed AEC2 cells by inducing the phosphorylation of AKT and attenuates the inflammatory response by suppressing the degradation and phosphorylation of IκB-α.
Collapse
|
37
|
Sugimoto MA, Sousa LP, Pinho V, Perretti M, Teixeira MM. Resolution of Inflammation: What Controls Its Onset? Front Immunol 2016; 7:160. [PMID: 27199985 PMCID: PMC4845539 DOI: 10.3389/fimmu.2016.00160] [Citation(s) in RCA: 409] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/12/2016] [Indexed: 12/12/2022] Open
Abstract
An effective resolution program may be able to prevent the progression from non-resolving acute inflammation to persistent chronic inflammation. It has now become evident that coordinated resolution programs initiate shortly after inflammatory responses begin. In this context, several mechanisms provide the fine-tuning of inflammation and create a favorable environment for the resolution phase to take place and for homeostasis to return. In this review, we focus on the events required for an effective transition from the proinflammatory phase to the onset and establishment of resolution. We suggest that several mediators that promote the inflammatory phase of inflammation can simultaneously initiate a program for active resolution. Indeed, several events enact a decrease in the local chemokine concentration, a reduction which is essential to inhibit further infiltration of neutrophils into the tissue. Interestingly, although neutrophils are cells that characteristically participate in the active phase of inflammation, they also contribute to the onset of resolution. Further understanding of the molecular mechanisms that initiate resolution may be instrumental to develop pro-resolution strategies to treat complex chronic inflammatory diseases, in humans. The efforts to develop strategies based on resolution of inflammation have shaped a new area of pharmacology referred to as “resolution pharmacology.”
Collapse
Affiliation(s)
- Michelle A Sugimoto
- Laboratório de Sinalização Inflamação, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lirlândia P Sousa
- Laboratório de Sinalização Inflamação, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Pinho
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Laboratório de Resolução da Resposta Inflamatória, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London , London , UK
| | - Mauro M Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| |
Collapse
|
38
|
The anti-inflammatory and pro-resolution effects of aspirin-triggered RvD1 (AT-RvD1) on peripheral blood mononuclear cells from patients with severe asthma. Int Immunopharmacol 2016; 35:142-148. [PMID: 27044027 DOI: 10.1016/j.intimp.2016.03.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/03/2016] [Accepted: 03/11/2016] [Indexed: 12/19/2022]
Abstract
Asthma is an inflammatory disease that is characterized by a predominance of eosinophils and/or neutrophils in the airways. In the resolution of inflammation, lipid mediators such as resolvin D1 (RvD1) and its epimer aspirin-triggered RvD1 (AT-RvD1) are produced and demonstrate anti-inflammatory and pro-resolution effects. In experimental models such as airway allergic inflammation induced by ovalbumin in mice, RvD1 and AT-RvD1 alleviate some of the most important phenotypes of asthma. Here, we demonstrated the effects of AT-RvD1 on peripheral blood mononuclear cells (PBMCs) from healthy individuals and patients with severe asthma stimulated with lipopolysaccharide (LPS) or Dermatophagoides pteronyssinus (DM). AT-RvD1 (100nM) reduced the concentration of TNF-α in PBMCs from healthy individuals and patients with severe asthma stimulated with LPS or DM. In addition, AT-RvD1 lowered the production of IL-10 only in PBMCs from patients with severe asthma stimulated with LPS. These effects were associated in part with decreasing NF-κB activation. Moreover, AT-RvD1 significantly increased phagocytosis of apoptotic neutrophils by monocytes from patients with severe asthma. In conclusion, AT-RvD1 demonstrated both anti-inflammatory and pro-resolution effects in PBMCs from patients with severe asthma and could become in the future an alternative treatment for asthma.
Collapse
|
39
|
Benabdoune H, Rondon EP, Shi Q, Fernandes J, Ranger P, Fahmi H, Benderdour M. The role of resolvin D1 in the regulation of inflammatory and catabolic mediators in osteoarthritis. Inflamm Res 2016; 65:635-45. [PMID: 27056390 DOI: 10.1007/s00011-016-0946-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/22/2016] [Accepted: 04/01/2016] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE AND DESIGN Resolvin D1 (RvD1), an omega-3 fatty acid derivative, has shown remarkable properties in resolving inflammation, promoting tissue repair and preserving tissue integrity. In this study, we investigated RvD1 effects on major processes involved in osteoarthritis (OA) pathophysiology. MATERIALS AND METHODS Human OA chondrocytes were treated with either 1 ng/ml interleukin-1β (IL-1β) or 20 μM 4-hydroxynonenal (HNE), then treated or not with increased concentrations of RvD1 (0-10 μM). RvD1 levels were measured by enzyme immunoassay in synovial fluids from experimental dog model of OA and sham operated dogs obtained from our previous study. Cell viability was evaluated by 3-(4,5-dimethyl-thiazoyl)-2,5-diphenyl-SH-tetrazolium bromide assay. Parameters related to inflammation, catabolism and apoptosis were determined by enzyme-linked immunosorbent assay, Western blotting, and quantitative polymerase chain reaction. Glutathione (GSH) was assessed by commercial kit. The activation of mitogen-activated protein kinases and nuclear factor-kappaB (NF-κB) pathways was evaluated by Western blot. RESULTS We showed that RvD1 levels were higher in synovial fluids from OA joint compared to controls. In OA human chondrocytes, we demonstrated that RvD1 was not toxic up to 10 μM and stifled IL-1β-induced cyclooxygenase 2, prostaglandin E2, inducible nitric oxide synthase, nitric oxide, and matrix metalloproteinase-13. Our study of signalling pathways revealed that RvD1 suppressed IL-1β-induced activation of NF-κB/p65, p38/MAPK and JNK(1/2). Moreover, RvD1 prevented HNE-induced cell apoptosis and oxidative stress, as indicated by inactivation of caspases, inhibition of lactate dehydrogenase release, and increased levels of Bcl2 and AKT, as well as GSH. CONCLUSION This is the first in vitro study demonstrating the beneficial effect of RvD1 in OA. That RvD1 abolishing a number of factors known to be involved in OA pathogenesis renders it a clinically valuable agent in prevention of the disease.
Collapse
Affiliation(s)
- Houda Benabdoune
- Department of Pharmacology, Université de Montréal, Montreal, QC, Canada.,Orthopedic Research Laboratory, Hôpital du Sacré-Cœur de Montréal, Room K-3045, 5400 Gouin Blvd. West, Montreal, QC, H4J 1C5, Canada
| | - Elsa-Patricia Rondon
- Orthopedic Research Laboratory, Hôpital du Sacré-Cœur de Montréal, Room K-3045, 5400 Gouin Blvd. West, Montreal, QC, H4J 1C5, Canada
| | - Qin Shi
- Orthopedic Research Laboratory, Hôpital du Sacré-Cœur de Montréal, Room K-3045, 5400 Gouin Blvd. West, Montreal, QC, H4J 1C5, Canada
| | - Julio Fernandes
- Orthopedic Research Laboratory, Hôpital du Sacré-Cœur de Montréal, Room K-3045, 5400 Gouin Blvd. West, Montreal, QC, H4J 1C5, Canada
| | - Pierre Ranger
- Orthopedic Research Laboratory, Hôpital du Sacré-Cœur de Montréal, Room K-3045, 5400 Gouin Blvd. West, Montreal, QC, H4J 1C5, Canada
| | - Hassan Fahmi
- Osteoarthritis Research Unit, Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Mohamed Benderdour
- Department of Pharmacology, Université de Montréal, Montreal, QC, Canada. .,Orthopedic Research Laboratory, Hôpital du Sacré-Cœur de Montréal, Room K-3045, 5400 Gouin Blvd. West, Montreal, QC, H4J 1C5, Canada.
| |
Collapse
|
40
|
Liu Y, Zhou D, Long FW, Chen KL, Yang HW, Lv ZY, Zhou B, Peng ZH, Sun XF, Li Y, Zhou ZG. Resolvin D1 protects against inflammation in experimental acute pancreatitis and associated lung injury. Am J Physiol Gastrointest Liver Physiol 2016; 310:G303-9. [PMID: 26702138 DOI: 10.1152/ajpgi.00355.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/03/2015] [Indexed: 02/05/2023]
Abstract
Acute pancreatitis is an inflammatory condition that may lead to multisystemic organ failure with considerable mortality. Recently, resolvin D1 (RvD1) as an endogenous anti-inflammatory lipid mediator has been confirmed to protect against many inflammatory diseases. This study was designed to investigate the effects of RvD1 in acute pancreatitis and associated lung injury. Acute pancreatitis varying from mild to severe was induced by cerulein or cerulein combined with LPS, respectively. Mice were pretreated with RvD1 at a dose of 300 ng/mouse 30 min before the first injection of cerulein. Severity of AP was assessed by biochemical markers and histology. Serum cytokines and myeloperoxidase (MPO) levels in pancreas and lung were determined for assessing the extent of inflammatory response. NF-κB activation was determined by Western blotting. The injection of cerulein or cerulein combined with LPS resulted in local injury in the pancreas and corresponding systemic inflammatory changes with pronounced severity in the cerulein and LPS group. Pretreated RvD1 significantly reduced the degree of amylase, lipase, TNF-α, and IL-6 serum levels; the MPO activities in the pancreas and the lungs; the pancreatic NF-κB activation; and the severity of pancreatic injury and associated lung injury, especially in the severe acute pancreatitis model. These results suggest that RvD1 is capable of improving injury of pancreas and lung and exerting anti-inflammatory effects through the inhibition of NF-κB activation in experimental acute pancreatitis, with more notable protective effect in severe acute pancreatitis. These findings indicate that RvD1 may constitute a novel therapeutic strategy in the management of severe acute pancreatitis.
Collapse
Affiliation(s)
- Yong Liu
- Institute of Digestive Surgery and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterological Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Zhou
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Fei-Wu Long
- Institute of Digestive Surgery and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterological Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ke-Ling Chen
- Institute of Digestive Surgery and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hong-Wei Yang
- Institute of Digestive Surgery and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterological Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhao-Yin Lv
- Institute of Digestive Surgery and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Zhou
- Institute of Digestive Surgery and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhi-Hai Peng
- Department of General Surgery, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China; and
| | - Xiao-Feng Sun
- Institute of Digestive Surgery and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Oncology, Department of Clinical and Experiment Medicine, Linköping University, Linköping, Sweden
| | - Yuan Li
- Institute of Digestive Surgery and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China;
| | - Zong-Guang Zhou
- Institute of Digestive Surgery and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterological Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
41
|
Kang GJ, Lee HJ, Kang YP, Kim EJ, Kim HJ, Byun HJ, Park MK, Cho H, Kwon SW, Lee CH. High-mobility group box 1 suppresses resolvin D1-induced phagocytosis via induction of resolvin D1-inactivating enzyme, 15-hydroxyprostaglandin dehydrogenase. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1981-8. [DOI: 10.1016/j.bbadis.2015.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 06/14/2015] [Accepted: 07/08/2015] [Indexed: 12/15/2022]
|
42
|
Orr SK, Colas RA, Dalli J, Chiang N, Serhan CN. Proresolving actions of a new resolvin D1 analog mimetic qualifies as an immunoresolvent. Am J Physiol Lung Cell Mol Physiol 2015; 308:L904-11. [PMID: 25770181 DOI: 10.1152/ajplung.00370.2014] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/11/2015] [Indexed: 12/31/2022] Open
Abstract
Resolution of inflammation is an active process driven by several new families of endogenous lipid mediators collectively coined specialized proresolving mediators (SPM). Here, we report a synthetic analog of resolvin D1 (RvD1) and aspirin-triggered RvD1, benzo-diacetylenic-17R-RvD1-methyl ester (BDA-RvD1), which was prepared using fewer steps than required for total organic synthesis of natural SPM. BDA-RvD1 was resistant to further metabolism by human recombinant 15-prostaglandin dehydrogenase, a major inactivation pathway for RvD1. In ischemia-reperfusion-initiated second organ injury, BDA-RvD1 intravenously (1 μg) reduced neutrophil infiltration into the lungs by 58 ± 9% and was significantly more potent than native RvD1. BDA-RvD1 at 100 ng/mouse also shortened the resolution interval, Ri, of Escherichia coli peritonitis with a similar potency as RvD1, by ~57%, from Ri 10.5 h to 4.5 h. With isolated human phagocytes, BDA-RvD1 at picomolar concentrations (10(-12) M) stimulated phagocytosis of zymosan A particles. BDA-RvD1 activated human recombinant G protein-coupled receptor 32/DRV1, an RvD1 receptor, in a dose-dependent manner. These results indicate that, both in vivo in mice and with isolated human cells, BDA-RvD1 shares defining proresolving actions of RvD1, including inhibiting leukocyte infiltration and stimulating phagocytosis. Moreover, they provide evidence for a new analog mimetic and example of an immunoresolvent, namely an agent that stimulates active resolution of inflammation, for a potential new therapeutic class.
Collapse
Affiliation(s)
- Sarah K Orr
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Romain A Colas
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jesmond Dalli
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
43
|
Chang HY, Lee HN, Kim W, Surh YJ. Docosahexaenoic acid induces M2 macrophage polarization through peroxisome proliferator-activated receptor γ activation. Life Sci 2015; 120:39-47. [DOI: 10.1016/j.lfs.2014.10.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 10/02/2014] [Accepted: 10/10/2014] [Indexed: 11/29/2022]
|
44
|
Lee KP, Kang S, Noh MS, Park SJ, Kim JM, Chung HY, Je NK, Lee YG, Choi YW, Im DS. Therapeutic effects of s-petasin on disease models of asthma and peritonitis. Biomol Ther (Seoul) 2015; 23:45-52. [PMID: 25593643 PMCID: PMC4286749 DOI: 10.4062/biomolther.2014.069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 06/30/2014] [Accepted: 07/02/2014] [Indexed: 11/05/2022] Open
Abstract
To explore the anti-allergic and anti-inflammatory effects of extracts of Petasites genus, we studied the effects of s-petasin, a major sesquiterpene from Petasites formosanus (a butterbur species) on asthma and peritonitis models. In an ovalbumin-induced mouse asthma model, s-petasin significantly inhibited the accumulations of eosinophils, macrophages, and lymphocytes in bronchoalveolar fluids. S-petasin inhibited the antigen-induced degranulation of β-hexosamidase but did not inhibit intracellular Ca(2+) increase in RBL-2H3 mast cells. S-petasin inhibited the LPS induction of iNOS at the RNA and protein levels in mouse peritoneal macrophages. Furthermore, s-petasin inhibited the production of NO (the product of iNOS) in a concentration-dependent manner in the macrophages. Furthermore, in an LPS-induced mouse model of peritonitis, s-petasin significantly inhibited the accumulation of polymorpho nuclear and mononuclear leukocytes in peritoneal cavity. This study shows that s-petasin in Petasites genus has therapeutic effects on allergic and inflammatory diseases, such as, asthma and peritonitis through degranulation inhibition in mast cells, suppression of iNOS induction and production of NO in macrophages, and suppression of inflammatory cell accumulation.
Collapse
Affiliation(s)
- Kyoung-Pil Lee
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 609-735
| | - Saeromi Kang
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 609-735
| | - Min-Soo Noh
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 609-735
| | - Soo-Jin Park
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 609-735
| | - Jung-Min Kim
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 609-735
| | - Hae Young Chung
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 609-735
| | - Nam Kyung Je
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 609-735
| | - Young-Geun Lee
- Department of Horticultural Bioscience, College of Natural Resources & Life Science, Pusan National University, Miryang 627-706, Republic of Korea
| | - Young-Whan Choi
- Department of Horticultural Bioscience, College of Natural Resources & Life Science, Pusan National University, Miryang 627-706, Republic of Korea
| | - Dong-Soon Im
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 609-735
| |
Collapse
|
45
|
Demarquoy J, Borgne FL. Biosynthesis, metabolism and function of protectins and resolvins. ACTA ACUST UNITED AC 2014. [DOI: 10.2217/clp.14.44] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
46
|
Hsiao HM, Thatcher TH, Levy EP, Fulton RA, Owens KM, Phipps RP, Sime PJ. Resolvin D1 attenuates polyinosinic-polycytidylic acid-induced inflammatory signaling in human airway epithelial cells via TAK1. THE JOURNAL OF IMMUNOLOGY 2014; 193:4980-7. [PMID: 25320283 DOI: 10.4049/jimmunol.1400313] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The respiratory epithelium consists of lung sentinel cells, which are the first to contact inhaled inflammatory insults, including air pollutants, smoke, and microorganisms. To avoid damaging exuberant or chronic inflammation, the inflammatory process must be tightly controlled and terminated once the insult is mitigated. Inflammation resolution is now known to be an active process involving a new genus of lipid mediators, called "specialized proresolving lipid mediators," that includes resolvin D1 (RvD1). We and others have reported that RvD1 counteracts proinflammatory signaling and promotes resolution. A knowledge gap is that the specific cellular targets and mechanisms of action for RvD1 remain largely unknown. In this article, we identified the mechanism whereby RvD1 disrupts inflammatory mediator production induced by the viral mimic polyinosinic-polycytidylic acid [poly(I:C)] in primary human lung epithelial cells. RvD1 strongly suppressed the viral mimic poly(I:C)-induced IL-6 and IL-8 production and proinflammatory signaling involving MAPKs and NF-κB. Most importantly, we found that RvD1 inhibited the phosphorylation of TAK1 (TGF-β-activated kinase 1), a key upstream regulatory kinase common to both the MAPK and NF-κB pathways, by inhibiting the formation of a poly(I:C)-induced signaling complex composed of TAK1, TAB1 (TAK1 binding protein), and TRAF6 (TNF receptor-associated factor 6). We confirmed that ALX/FPR2 and GPR32, two RvD1 receptors, were expressed on human small airway epithelial cells. Furthermore, blocking these receptors abrogated the inhibitory action of RvD1. In this article, we present the idea that RvD1 has the potential to be used as an anti-inflammatory and proresolving agent, possibly in the context of exuberant host responses to damaging respirable agents such as viruses.
Collapse
Affiliation(s)
- Hsi-Min Hsiao
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Thomas H Thatcher
- Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642; Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642; and
| | - Elizabeth P Levy
- Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642; Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642; and
| | - Robert A Fulton
- Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642; Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642; and
| | - Kristina M Owens
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642; and
| | - Richard P Phipps
- Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642; Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Patricia J Sime
- Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642; Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642; and Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| |
Collapse
|
47
|
McCauley LK, Dalli J, Koh AJ, Chiang N, Serhan CN. Cutting edge: Parathyroid hormone facilitates macrophage efferocytosis in bone marrow via proresolving mediators resolvin D1 and resolvin D2. THE JOURNAL OF IMMUNOLOGY 2014; 193:26-9. [PMID: 24890726 DOI: 10.4049/jimmunol.1301945] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bone marrow macrophages stimulate skeletal wound repair and osteoblastic bone formation by poorly defined mechanisms. Specialized proresolving mediators of inflammation drive macrophage efferocytosis (phagocytosis of apoptotic cells) and resolution, but little is known regarding this process in the bone marrow. In this study, metabololipidomic profiling via liquid chromatography mass spectrometry revealed higher levels of specialized proresolving mediators in the bone marrow relative to the spleen. The endocrine and bone anabolic agent parathyroid hormone increased specialized proresolving mediator levels, including resolvins (Rvs), in bone marrow. Human and murine primary macrophages efferocytosed apoptotic osteoblasts in vitro, and RvD1 and RvD2 (10 pM-10 nM) enhanced this process. These findings support a unique profile of specialized lipid mediators in bone marrow that contribute to a feedback system for resolution of inflammation and maintenance of skeletal homeostasis.
Collapse
Affiliation(s)
- Laurie K McCauley
- School of Dentistry, University of Michigan, Ann Arbor, MI 48109; Department of Pathology, Medical School, University of Michigan, Ann Arbor, MI 48109; and
| | - Jesmond Dalli
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Institutes of Medicine, Boston, MA 02115
| | - Amy J Koh
- School of Dentistry, University of Michigan, Ann Arbor, MI 48109
| | - Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Institutes of Medicine, Boston, MA 02115
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Institutes of Medicine, Boston, MA 02115
| |
Collapse
|
48
|
Kang S, Lee KP, Park SJ, Noh DY, Kim JM, Moon HR, Lee YG, Choi YW, Im DS. Identification of a novel anti-inflammatory compound, α-cubebenoate from Schisandra chinensis. JOURNAL OF ETHNOPHARMACOLOGY 2014; 153:242-249. [PMID: 24561384 DOI: 10.1016/j.jep.2014.02.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 02/09/2014] [Accepted: 02/14/2014] [Indexed: 06/03/2023]
Abstract
AIMS OF THE STUDY Extracts of Schisandra chinensis have been used as an anti-fatigue and tonic agent. Because chronic fatigue syndrome is related to inflammatory and oxidative stress, we assessed whether Schisandra chinensis has anti-inflammatory constituents and studied the effect of a novel α-cubebenoate isolated from Schisandra chinensis. MATERIALS AND METHODS α-Cubebenoate was isolated from an extract of Schisandra chinensis fruits. The inductions of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) by lipopolysaccharide (LPS) were quantified by RT-PCR and Western blotting in mouse peritoneal macrophages. Nitric oxide (NO) and prostaglandin E2 (PGE2) were also measured in the media by Griess reagent and EIA method. A mouse model of LPS-induced peritonitis was used to test the in vivo efficacy of α-cubebenoate. RESULTS α-Cubebenoate (5-10μg/ml) inhibited the inductions of iNOS and COX-2 in mouse peritoneal macrophages at the mRNA and protein levels. LPS-induced productions of NO and PGE2 were inhibited by α-cubebenoate (5-10μg/ml). In addition, α-cubebenoate inhibited the LPS-induced activation of JNK, but not those of ERK and p38 MAPK in mouse peritoneal macrophages. Furthermore, in the LPS-induced in vivo peritonitis model, α-cubebenoate (1mg/kg) strongly inhibited the accumulation of polymorph nuclear lymphocytes in the peritoneal cavity. CONCLUSION α-Cubebenoate inhibited LPS-induced expression of iNOS and COX-2 in a concentration-dependent manner, thereby suppressing productions of NO and PGE2 in vitro in peritoneal macrophages. α-Cubebenoate also inhibited LPS-induced accumulation of polymorph nuclear lymphocytes in LPS-induced peritonitis model in vivo. α-Cubebenoate may act as an anti-fatigue constituent of Schisandra chinensis through anti-inflammation and could be of therapeutic use as a treatment for inflammatory diseases.
Collapse
Affiliation(s)
- Saeromi Kang
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, 63 Beon-gil 2, Busandaehag-ro, Geumjeong-gu, Busan 609-735, Republic of Korea
| | - Kyoung-Pil Lee
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, 63 Beon-gil 2, Busandaehag-ro, Geumjeong-gu, Busan 609-735, Republic of Korea
| | - Soo-Jin Park
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, 63 Beon-gil 2, Busandaehag-ro, Geumjeong-gu, Busan 609-735, Republic of Korea
| | - Dae-Young Noh
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, 63 Beon-gil 2, Busandaehag-ro, Geumjeong-gu, Busan 609-735, Republic of Korea
| | - Jung-Min Kim
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, 63 Beon-gil 2, Busandaehag-ro, Geumjeong-gu, Busan 609-735, Republic of Korea
| | - Hyung Ryong Moon
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, 63 Beon-gil 2, Busandaehag-ro, Geumjeong-gu, Busan 609-735, Republic of Korea
| | - Young-Geun Lee
- Department of Horticultural Bioscience, College of Natural Resources & Life Science, Pusan National University, Miryang-si, Gyeongsangnam 627-706, Republic of Korea
| | - Young-Whan Choi
- Department of Horticultural Bioscience, College of Natural Resources & Life Science, Pusan National University, Miryang-si, Gyeongsangnam 627-706, Republic of Korea.
| | - Dong-Soon Im
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, 63 Beon-gil 2, Busandaehag-ro, Geumjeong-gu, Busan 609-735, Republic of Korea.
| |
Collapse
|