1
|
Hsu CR, Sangha G, Fan W, Zheng J, Sugioka K. Contractile ring mechanosensation and its anillin-dependent tuning during early embryogenesis. Nat Commun 2023; 14:8138. [PMID: 38065974 PMCID: PMC10709429 DOI: 10.1038/s41467-023-43996-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Cytokinesis plays crucial roles in morphogenesis. Previous studies have examined how tissue mechanics influences the position and closure direction of the contractile ring. However, the mechanisms by which the ring senses tissue mechanics remain largely elusive. Here, we show the mechanism of contractile ring mechanosensation and its tuning during asymmetric ring closure of Caenorhabditis elegans embryos. Integrative analysis of ring closure and cell cortex dynamics revealed that mechanical suppression of the ring-directed cortical flow is associated with asymmetric ring closure. Consistently, artificial obstruction of ring-directed cortical flow induces asymmetric ring closure in otherwise symmetrically dividing cells. Anillin is vital for mechanosensation. Our genetic analysis suggests that the positive feedback loop among ring-directed cortical flow, myosin enrichment, and ring constriction constitutes a mechanosensitive pathway driving asymmetric ring closure. These findings and developed tools should advance the 4D mechanobiology of cytokinesis in more complex tissues.
Collapse
Affiliation(s)
- Christina Rou Hsu
- Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
- Department of Zoology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
| | - Gaganpreet Sangha
- Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
- Department of Zoology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
| | - Wayne Fan
- Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
- Department of Zoology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
| | - Joey Zheng
- Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
- Department of Zoology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
| | - Kenji Sugioka
- Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada.
- Department of Zoology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada.
| |
Collapse
|
2
|
Shigetomi K, Ono Y, Matsuzawa K, Ikenouchi J. Cholesterol-rich domain formation mediated by ZO proteins is essential for tight junction formation. Proc Natl Acad Sci U S A 2023; 120:e2217561120. [PMID: 36791108 PMCID: PMC9974431 DOI: 10.1073/pnas.2217561120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/17/2023] [Indexed: 02/16/2023] Open
Abstract
Tight junctions (TJs) are cell-adhesion structures responsible for the epithelial barrier. We reported that accumulation of cholesterol at the apical junctions is required for TJ formation [K. Shigetomi, Y. Ono, T. Inai, J. Ikenouchi, J. Cell Biol. 217, 2373-2381 (2018)]. However, it is unclear how cholesterol accumulates and informs TJ formation-and whether cholesterol enrichment precedes or follows the assembly of claudins in the first place. Here, we established an epithelial cell line (claudin-null cells) that lacks TJs by knocking out claudins. Despite the lack of TJs, cholesterol normally accumulated in the vicinity of the apical junctions. Assembly of claudins at TJs is thought to require binding to zonula occludens (ZO) proteins; however, a claudin mutant that cannot bind to ZO proteins still formed TJ strands. ZO proteins were however necessary for cholesterol accumulation at the apical junctions through their effect on the junctional actomyosin cytoskeleton. We propose that ZO proteins not only function as scaffolds for claudins but also promote TJ formation of cholesterol-rich membrane domains at apical junctions.
Collapse
Affiliation(s)
- Kenta Shigetomi
- Department of Biology, Faculty of Sciences, Kyushu University 774 Motooka,Nishi-ku, Fukuoka819-0395, Japan
| | - Yumiko Ono
- Department of Biology, Faculty of Sciences, Kyushu University 774 Motooka,Nishi-ku, Fukuoka819-0395, Japan
| | - Kenji Matsuzawa
- Department of Biology, Faculty of Sciences, Kyushu University 774 Motooka,Nishi-ku, Fukuoka819-0395, Japan
| | - Junichi Ikenouchi
- Department of Biology, Faculty of Sciences, Kyushu University 774 Motooka,Nishi-ku, Fukuoka819-0395, Japan
| |
Collapse
|
3
|
Crellin HA, Buckley CE. Using Optogenetics to Investigate the Shared Mechanisms of Apical-Basal Polarity and Mitosis. Cells Tissues Organs 2023; 213:161-180. [PMID: 36599311 DOI: 10.1159/000528796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/18/2022] [Indexed: 01/05/2023] Open
Abstract
The initiation of apical-basal (AB) polarity and the process of mitotic cell division are both characterised by the generation of specialised plasma membrane and cortical domains. These are generated using shared mechanisms, such as asymmetric protein accumulation, Rho GTPase signalling, cytoskeletal reorganisation, vesicle trafficking, and asymmetric phosphoinositide distribution. In epithelial tissue, the coordination of AB polarity and mitosis in space and time is important both during initial epithelial development and to maintain tissue integrity and ensure appropriate cell differentiation at later stages. Whilst significant progress has been made in understanding the mechanisms underlying cell division and AB polarity, it has so far been challenging to fully unpick the complex interrelationship between polarity, signalling, morphogenesis, and cell division. However, the recent emergence of optogenetic protein localisation techniques is now allowing researchers to reversibly control protein activation, localisation, and signalling with high spatiotemporal resolution. This has the potential to revolutionise our understanding of how subcellular processes such as AB polarity are integrated with cell behaviours such as mitosis and how these processes impact whole tissue morphogenesis. So far, these techniques have been used to investigate processes such as cleavage furrow ingression, mitotic spindle positioning, and in vivo epithelial morphogenesis. This review describes some of the key shared mechanisms of cell division and AB polarity establishment, how they are coordinated during development and how the advance of optogenetic techniques is furthering this research field.
Collapse
Affiliation(s)
- Helena A Crellin
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Clare E Buckley
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Liang X, Weberling A, Hii CY, Zernicka‐Goetz M, Buckley CE. E-cadherin mediates apical membrane initiation site localisation during de novo polarisation of epithelial cavities. EMBO J 2022; 41:e111021. [PMID: 35993232 PMCID: PMC9753465 DOI: 10.15252/embj.2022111021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 01/15/2023] Open
Abstract
Individual cells within de novo polarising tubes and cavities must integrate their forming apical domains into a centralised apical membrane initiation site (AMIS). This is necessary to enable organised lumen formation within multi-cellular tissue. Despite the well-documented importance of cell division in localising the AMIS, we have found a division-independent mechanism of AMIS localisation that relies instead on Cadherin-mediated cell-cell adhesion. Our study of de novo polarising mouse embryonic stem cells (mESCs) cultured in 3D suggests that cell-cell adhesion localises apical proteins such as PAR-6 to a centralised AMIS. Unexpectedly, we also found that mESC clusters lacking functional E-cadherin still formed a lumen-like cavity in the absence of AMIS localisation but did so at a later stage of development via a "closure" mechanism, instead of via hollowing. This work suggests that there are two, interrelated mechanisms of apical polarity localisation: cell adhesion and cell division. Alignment of these mechanisms in space allows for redundancy in the system and ensures the development of a coherent epithelial structure within a growing organ.
Collapse
Affiliation(s)
- Xuan Liang
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Antonia Weberling
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Chun Yuan Hii
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Magdalena Zernicka‐Goetz
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Clare E Buckley
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| |
Collapse
|
5
|
Lobert VH, Skardal ML, Malerød L, Simensen JE, Algra HA, Andersen AN, Fleischer T, Enserink HA, Liestøl K, Heath JK, Rusten TE, Stenmark HA. PHLPP1 regulates CFTR activity and lumen expansion through AMPK. Development 2022; 149:276412. [PMID: 35997536 PMCID: PMC9534488 DOI: 10.1242/dev.200955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/12/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Complex organ development depends on single lumen formation and its expansion during tubulogenesis. This can be achieved by correct mitotic spindle orientation during cell division, combined with luminal fluid filling that generates hydrostatic pressure. Using a human 3D cell culture model, we have identified two regulators of these processes. We find that pleckstrin homology leucine-rich repeat protein phosphatase (PHLPP) 2 regulates mitotic spindle orientation, and thereby midbody positioning and maintenance of a single lumen. Silencing the sole PHLPP family phosphatase in Drosophila melanogaster, phlpp, resulted in defective spindle orientation in Drosophila neuroblasts. Importantly, cystic fibrosis transmembrane conductance regulator (CFTR) is the main channel regulating fluid transport in this system, stimulated by phosphorylation by protein kinase A and inhibited by the AMP-activated protein kinase AMPK. During lumen expansion, CFTR remains open through the action of PHLPP1, which stops activated AMPK from inhibiting ion transport through CFTR. In the absence of PHLPP1, the restraint on AMPK activity is lost and this tips the balance in the favour of channel closing, resulting in the lack of lumen expansion and accumulation of mucus.
Collapse
Affiliation(s)
- Viola H. Lobert
- Institute for Cancer Research, Oslo University Hospital 1 Department of Molecular Cell Biology , , Montebello, Oslo 0379 , Norway
- Centre for Cancer Cell Reprogramming 2 , Faculty of Medicine , , Oslo 0379 , Norway
- University of Oslo 2 , Faculty of Medicine , , Oslo 0379 , Norway
| | - Maren L. Skardal
- Institute for Cancer Research, Oslo University Hospital 1 Department of Molecular Cell Biology , , Montebello, Oslo 0379 , Norway
- Centre for Cancer Cell Reprogramming 2 , Faculty of Medicine , , Oslo 0379 , Norway
- University of Oslo 2 , Faculty of Medicine , , Oslo 0379 , Norway
| | - Lene Malerød
- Institute for Cancer Research, Oslo University Hospital 1 Department of Molecular Cell Biology , , Montebello, Oslo 0379 , Norway
- Centre for Cancer Cell Reprogramming 2 , Faculty of Medicine , , Oslo 0379 , Norway
- University of Oslo 2 , Faculty of Medicine , , Oslo 0379 , Norway
| | - Julia E. Simensen
- Institute for Cancer Research, Oslo University Hospital 1 Department of Molecular Cell Biology , , Montebello, Oslo 0379 , Norway
- Centre for Cancer Cell Reprogramming 2 , Faculty of Medicine , , Oslo 0379 , Norway
- University of Oslo 2 , Faculty of Medicine , , Oslo 0379 , Norway
| | - Hermine A. Algra
- Institute for Cancer Research, Oslo University Hospital 1 Department of Molecular Cell Biology , , Montebello, Oslo 0379 , Norway
- Centre for Cancer Cell Reprogramming 2 , Faculty of Medicine , , Oslo 0379 , Norway
- University of Oslo 2 , Faculty of Medicine , , Oslo 0379 , Norway
| | - Aram N. Andersen
- Institute for Cancer Research, Oslo University Hospital 1 Department of Molecular Cell Biology , , Montebello, Oslo 0379 , Norway
- Centre for Cancer Cell Reprogramming 2 , Faculty of Medicine , , Oslo 0379 , Norway
- University of Oslo 2 , Faculty of Medicine , , Oslo 0379 , Norway
| | - Thomas Fleischer
- Institute for Cancer Research, Oslo University Hospital 3 Department of Cancer Genetics , , Montebello, Oslo 0379 , Norway
| | - Hilde A. Enserink
- Institute for Cancer Research, Oslo University Hospital 1 Department of Molecular Cell Biology , , Montebello, Oslo 0379 , Norway
- Centre for Cancer Cell Reprogramming 2 , Faculty of Medicine , , Oslo 0379 , Norway
- University of Oslo 2 , Faculty of Medicine , , Oslo 0379 , Norway
| | - Knut Liestøl
- University of Oslo 4 Department of Informatics , , Oslo 0316 , Norway
| | - Joan K. Heath
- Walter and Eliza Hall Institute of Medical Research 5 Epigenetics and Development Division , , Parkville, Victoria 3052 , Australia
| | - Tor Erik Rusten
- Institute for Cancer Research, Oslo University Hospital 1 Department of Molecular Cell Biology , , Montebello, Oslo 0379 , Norway
- Centre for Cancer Cell Reprogramming 2 , Faculty of Medicine , , Oslo 0379 , Norway
- University of Oslo 2 , Faculty of Medicine , , Oslo 0379 , Norway
| | - Harald A. Stenmark
- Institute for Cancer Research, Oslo University Hospital 1 Department of Molecular Cell Biology , , Montebello, Oslo 0379 , Norway
- Centre for Cancer Cell Reprogramming 2 , Faculty of Medicine , , Oslo 0379 , Norway
- University of Oslo 2 , Faculty of Medicine , , Oslo 0379 , Norway
| |
Collapse
|
6
|
Cozmescu CA, Gissen P. Rab35 controls formation of luminal projections required for bile canalicular morphogenesis. J Cell Biol 2021; 220:e202108047. [PMID: 34515738 PMCID: PMC8441857 DOI: 10.1083/jcb.202108047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hepatocytes display a unique biaxial polarity with shared apical luminal connections between adjacent hepatocytes that merge into a network of bile canaliculi. Belicova et al. (2021. J. Cell Biol.https://doi.org/10.1083/jcb.202103003) discovered that hepatocyte apical membranes generate Rab35-dependent extensions that traverse the lumen and are essential for bile canalicular formation and maintenance.
Collapse
Affiliation(s)
- Claudiu Andrei Cozmescu
- National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Paul Gissen
- National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
7
|
CD13 orients the apical-basal polarity axis necessary for lumen formation. Nat Commun 2021; 12:4697. [PMID: 34349123 PMCID: PMC8338993 DOI: 10.1038/s41467-021-24993-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 07/09/2021] [Indexed: 02/07/2023] Open
Abstract
Polarized epithelial cells can organize into complex structures with a characteristic central lumen. Lumen formation requires that cells coordinately orient their polarity axis so that the basolateral domain is on the outside and apical domain inside epithelial structures. Here we show that the transmembrane aminopeptidase, CD13, is a key determinant of epithelial polarity orientation. CD13 localizes to the apical membrane and associates with an apical complex with Par6. CD13-deficient cells display inverted polarity in which apical proteins are retained on the outer cell periphery and fail to accumulate at an intercellular apical initiation site. Here we show that CD13 is required to couple apical protein cargo to Rab11-endosomes and for capture of endosomes at the apical initiation site. This role in polarity utilizes the short intracellular domain but is independent of CD13 peptidase activity.
Collapse
|
8
|
Belicova L, Repnik U, Delpierre J, Gralinska E, Seifert S, Valenzuela JI, Morales-Navarrete HA, Franke C, Räägel H, Shcherbinina E, Prikazchikova T, Koteliansky V, Vingron M, Kalaidzidis YL, Zatsepin T, Zerial M. Anisotropic expansion of hepatocyte lumina enforced by apical bulkheads. J Cell Biol 2021; 220:212522. [PMID: 34328499 PMCID: PMC8329733 DOI: 10.1083/jcb.202103003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/11/2021] [Accepted: 07/08/2021] [Indexed: 12/20/2022] Open
Abstract
Lumen morphogenesis results from the interplay between molecular pathways and mechanical forces. In several organs, epithelial cells share their apical surfaces to form a tubular lumen. In the liver, however, hepatocytes share the apical surface only between adjacent cells and form narrow lumina that grow anisotropically, generating a 3D network of bile canaliculi (BC). Here, by studying lumenogenesis in differentiating mouse hepatoblasts in vitro, we discovered that adjacent hepatocytes assemble a pattern of specific extensions of the apical membrane traversing the lumen and ensuring its anisotropic expansion. These previously unrecognized structures form a pattern, reminiscent of the bulkheads of boats, also present in the developing and adult liver. Silencing of Rab35 resulted in loss of apical bulkheads and lumen anisotropy, leading to cyst formation. Strikingly, we could reengineer hepatocyte polarity in embryonic liver tissue, converting BC into epithelial tubes. Our results suggest that apical bulkheads are cell-intrinsic anisotropic mechanical elements that determine the elongation of BC during liver tissue morphogenesis.
Collapse
Affiliation(s)
- Lenka Belicova
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Urska Repnik
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Julien Delpierre
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Elzbieta Gralinska
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Sarah Seifert
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | - Christian Franke
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Helin Räägel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Nelson Laboratories LLC, Salt Lake City, UT
| | | | | | | | - Martin Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Timofei Zatsepin
- Skolkovo Institute of Science and Technology, Skolkovo, Russia.,Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
9
|
Zhang Y, De Mets R, Monzel C, Acharya V, Toh P, Chin JFL, Van Hul N, Ng IC, Yu H, Ng SS, Tamir Rashid S, Viasnoff V. Biomimetic niches reveal the minimal cues to trigger apical lumen formation in single hepatocytes. NATURE MATERIALS 2020; 19:1026-1035. [PMID: 32341512 DOI: 10.1038/s41563-020-0662-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 03/11/2020] [Indexed: 06/11/2023]
Abstract
The symmetry breaking of protein distribution and cytoskeleton organization is an essential aspect for the development of apicobasal polarity. In embryonic cells this process is largely cell autonomous, while differentiated epithelial cells collectively polarize during epithelium formation. Here, we demonstrate that the de novo polarization of mature hepatocytes does not require the synchronized development of apical poles on neighbouring cells. De novo polarization at the single-cell level by mere contact with the extracellular matrix and immobilized cadherin defining a polarizing axis. The creation of these single-cell liver hemi-canaliculi allows unprecedented imaging resolution and control and over the lumenogenesis process. We show that the density and localization of cadherins along the initial cell-cell contact act as key triggers of the reorganization from lateral to apical actin cortex. The minimal cues necessary to trigger the polarization of hepatocytes enable them to develop asymmetric lumens with ectopic epithelial cells originating from the kidney, breast or colon.
Collapse
Affiliation(s)
- Yue Zhang
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Richard De Mets
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Cornelia Monzel
- Experimental Medical Physics, Heinrich-Heine University, Düsseldorf, Germany
| | | | - Pearlyn Toh
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Jasmine Fei Li Chin
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Noémi Van Hul
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Inn Chuan Ng
- Department of Physiology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Hanry Yu
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Soon Seng Ng
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - S Tamir Rashid
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
- Institute for Liver Studies, King's College Hospital, King's College London, London, UK
| | - Virgile Viasnoff
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.
- Department of Biological Science, National University of Singapore, Singapore, Singapore.
- Centre National de la Recherche Scientifique Unité Mixte Internationale, Singapore, Singapore.
| |
Collapse
|
10
|
Blum IR, Behling-Hess C, Padilla-Rodriguez M, Momtaz S, Cox C, Wilson JM. Rab22a regulates the establishment of epithelial polarity. Small GTPases 2020; 12:282-293. [PMID: 32281471 DOI: 10.1080/21541248.2020.1754104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Membrane trafficking establishes and maintains epithelial polarity. Rab22a has a polarized distribution in activated T-cells, but its role in epithelial polarity has not been investigated. We showed previously that Rab14 acts upstream of Arf6 to establish the apical membrane initiation site (AMIS), but its interaction with Rab22a is unknown. Here we show that Rab14 and Rab22a colocalize in endosomes of both unpolarized and polarized MDCK cells and Rab22a localizes to the cell:cell interface of polarizing cell pairs. Knockdown of Rab22a results in a multi-lumen phenotype in three-dimensional culture. Further, overexpression of Rab22a in Rab14 knockdown cells rescues the multi-lumen phenotype observed with Rab14 knockdown, suggesting that Rab22a is downstream of Rab14. Because of the relationship between Rab14 and Arf6, we investigated the effect of Rab22a knockdown on Arf6. We find that Rab22a knockdown results in decreased active Arf6 and that Rab22a co-immunoprecipitates with the Arf6 GEF EFA6. In addition, EFA6 is retained in intracellular puncta in Rab22a KD cells. These results suggest that Rab22a acts downstream of Rab14 to traffic EFA6 to the AMIS to regulate Arf6 in the establishment of polarity.
Collapse
Affiliation(s)
- Isabella R Blum
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ, USA
| | | | | | - Samina Momtaz
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ, USA
| | - Christopher Cox
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ, USA
| | - Jean M Wilson
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
11
|
Fast and efficient generation of knock-in human organoids using homology-independent CRISPR-Cas9 precision genome editing. Nat Cell Biol 2020; 22:321-331. [PMID: 32123335 DOI: 10.1038/s41556-020-0472-5] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 01/20/2020] [Indexed: 12/17/2022]
Abstract
CRISPR-Cas9 technology has revolutionized genome editing and is applicable to the organoid field. However, precise integration of exogenous DNA sequences into human organoids is lacking robust knock-in approaches. Here, we describe CRISPR-Cas9-mediated homology-independent organoid transgenesis (CRISPR-HOT), which enables efficient generation of knock-in human organoids representing different tissues. CRISPR-HOT avoids extensive cloning and outperforms homology directed repair (HDR) in achieving precise integration of exogenous DNA sequences into desired loci, without the necessity to inactivate TP53 in untransformed cells, which was previously used to increase HDR-mediated knock-in. CRISPR-HOT was used to fluorescently tag and visualize subcellular structural molecules and to generate reporter lines for rare intestinal cell types. A double reporter-in which the mitotic spindle was labelled by endogenously tagged tubulin and the cell membrane by endogenously tagged E-cadherin-uncovered modes of human hepatocyte division. Combining tubulin tagging with TP53 knock-out revealed that TP53 is involved in controlling hepatocyte ploidy and mitotic spindle fidelity. CRISPR-HOT simplifies genome editing in human organoids.
Collapse
|
12
|
Bai X, Melesse M, Sorensen Turpin CG, Sloan DE, Chen CY, Wang WC, Lee PY, Simmons JR, Nebenfuehr B, Mitchell D, Klebanow LR, Mattson N, Betzig E, Chen BC, Cheerambathur D, Bembenek JN. Aurora B functions at the apical surface after specialized cytokinesis during morphogenesis in C. elegans. Development 2020; 147:dev.181099. [PMID: 31806662 PMCID: PMC6983721 DOI: 10.1242/dev.181099] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/26/2019] [Indexed: 12/18/2022]
Abstract
Although cytokinesis has been intensely studied, the way it is executed during development is not well understood, despite a long-standing appreciation that various aspects of cytokinesis vary across cell and tissue types. To address this, we investigated cytokinesis during the invariant Caenorhabditis elegans embryonic divisions and found several parameters that are altered at different stages in a reproducible manner. During early divisions, furrow ingression asymmetry and midbody inheritance is consistent, suggesting specific regulation of these events. During morphogenesis, we found several unexpected alterations to cytokinesis, including apical midbody migration in polarizing epithelial cells of the gut, pharynx and sensory neurons. Aurora B kinase, which is essential for several aspects of cytokinesis, remains apically localized in each of these tissues after internalization of midbody ring components. Aurora B inactivation disrupts cytokinesis and causes defects in apical structures, even if inactivated post-mitotically. Therefore, we demonstrate that cytokinesis is implemented in a specialized way during epithelial polarization and that Aurora B has a role in the formation of the apical surface.
Collapse
Affiliation(s)
- Xiaofei Bai
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Michael Melesse
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | | | - Dillon E. Sloan
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA,Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chin-Yi Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Wen-Cheng Wang
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Po-Yi Lee
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - James R. Simmons
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Benjamin Nebenfuehr
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Diana Mitchell
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lindsey R. Klebanow
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Nicholas Mattson
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Eric Betzig
- Janelia Research Campus, HHMI, Ashburn, VA 20147, USA
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan,Janelia Research Campus, HHMI, Ashburn, VA 20147, USA
| | - Dhanya Cheerambathur
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Joshua N. Bembenek
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA,Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA,Author for correspondence ()
| |
Collapse
|
13
|
Peterman E, Prekeris R. The postmitotic midbody: Regulating polarity, stemness, and proliferation. J Cell Biol 2019; 218:3903-3911. [PMID: 31690620 PMCID: PMC6891101 DOI: 10.1083/jcb.201906148] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/17/2019] [Accepted: 10/18/2019] [Indexed: 12/15/2022] Open
Abstract
Peterman and Prekeris review abscission and discuss the diverse roles for the postmitotic midbody in regulating polarity, tumorigenesis, and stemness. Abscission, the final stage of cell division, requires well-orchestrated changes in endocytic trafficking, microtubule severing, actin clearance, and the physical sealing of the daughter cell membranes. These processes are highly regulated, and any missteps in localized membrane and cytoskeleton dynamics often lead to a delay or a failure in cell division. The midbody, a microtubule-rich structure that forms during cytokinesis, is a key regulator of abscission and appears to function as a signaling platform coordinating cytoskeleton and endosomal dynamics during the terminal stages of cell division. It was long thought that immediately following abscission and the conclusion of cell division, the midbody is either released or rapidly degraded by one of the daughter cells. Recently, the midbody has gained prominence for exerting postmitotic functions. In this review, we detail the role of the midbody in orchestrating abscission, as well as discuss the relatively new field of postabscission midbody biology, particularly focusing on how it may act to regulate cell polarity and its potential to regulate cell tumorigenicity or stemness.
Collapse
Affiliation(s)
- Eric Peterman
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
14
|
Dealing with apical–basal polarity and intercellular junctions: a multidimensional challenge for epithelial cell division. Curr Opin Cell Biol 2019; 60:75-83. [DOI: 10.1016/j.ceb.2019.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 02/01/2023]
|
15
|
Antanavičiūtė I, Gibieža P, Prekeris R, Skeberdis VA. Midbody: From the Regulator of Cytokinesis to Postmitotic Signaling Organelle. ACTA ACUST UNITED AC 2018; 54:medicina54040053. [PMID: 30344284 PMCID: PMC6174351 DOI: 10.3390/medicina54040053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/26/2018] [Accepted: 07/26/2018] [Indexed: 01/13/2023]
Abstract
Faithful cell division is crucial for successful proliferation, differentiation, and development of cells, tissue homeostasis, and preservation of genomic integrity. Cytokinesis is a terminal stage of cell division, leaving two genetically identical daughter cells connected by an intercellular bridge (ICB) containing the midbody (MB), a large protein-rich organelle, in the middle. Cell division may result in asymmetric or symmetric abscission of the ICB. In the first case, the ICB is severed on the one side of the MB, and the MB is inherited by the opposite daughter cell. In the second case, the MB is cut from both sides, expelled into the extracellular space, and later it can be engulfed by surrounding cells. Cells with lower autophagic activity, such as stem cells and cancer stem cells, are inclined to accumulate MBs. Inherited MBs affect cell polarity, modulate intra- and intercellular communication, enhance pluripotency of stem cells, and increase tumorigenic potential of cancer cells. In this review, we briefly summarize the latest knowledge on MB formation, inheritance, degradation, and function, and in addition, present and discuss our recent findings on the electrical and chemical communication of cells connected through the MB-containing ICB.
Collapse
Affiliation(s)
- Ieva Antanavičiūtė
- Institute of Cardiology, Medical Academy, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania.
| | - Paulius Gibieža
- Institute of Cardiology, Medical Academy, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania.
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Vytenis Arvydas Skeberdis
- Institute of Cardiology, Medical Academy, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania.
| |
Collapse
|
16
|
Jewett CE, Prekeris R. Insane in the apical membrane: Trafficking events mediating apicobasal epithelial polarity during tube morphogenesis. Traffic 2018; 19:10.1111/tra.12579. [PMID: 29766620 PMCID: PMC6239989 DOI: 10.1111/tra.12579] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/13/2022]
Abstract
The creation of cellular tubes is one of the most vital developmental processes, resulting in the formation of most organ types. Cells have co-opted a number of different mechanisms for tube morphogenesis that vary among tissues and organisms; however, generation and maintenance of cell polarity is fundamental for successful lumenogenesis. Polarized membrane transport has emerged as a key driver not only for establishing individual epithelial cell polarity, but also for coordination of epithelial polarization during apical lumen formation and tissue morphogenesis. In recent years, much work has been dedicated to identifying membrane trafficking regulators required for lumenogenesis. In this review we will summarize the findings from the past couple of decades in defining the molecular machinery governing lumenogenesis both in 3D tissue culture models and during organ development in vivo.
Collapse
Affiliation(s)
- Cayla E. Jewett
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
17
|
Vertii A, Kaufman PD, Hehnly H, Doxsey S. New dimensions of asymmetric division in vertebrates. Cytoskeleton (Hoboken) 2018; 75:87-102. [DOI: 10.1002/cm.21434] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/20/2017] [Accepted: 01/16/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Anastassiia Vertii
- Department of MolecularCell and Cancer Biology University of Massachusetts Medical SchoolWorcester Massachusetts
| | - Paul D. Kaufman
- Department of MolecularCell and Cancer Biology University of Massachusetts Medical SchoolWorcester Massachusetts
| | - Heidi Hehnly
- Department of Cell and Developmental BiologySUNY Upstate Medical UniversitySyracuse New York13210
| | - Stephen Doxsey
- Program in Molecular Medicine University of Massachusetts Medical SchoolWorcester Massachusetts
| |
Collapse
|
18
|
Taulet N, Vitre B, Anguille C, Douanier A, Rocancourt M, Taschner M, Lorentzen E, Echard A, Delaval B. IFT proteins spatially control the geometry of cleavage furrow ingression and lumen positioning. Nat Commun 2017; 8:1928. [PMID: 29203870 PMCID: PMC5715026 DOI: 10.1038/s41467-017-01479-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/20/2017] [Indexed: 11/09/2022] Open
Abstract
Cytokinesis mediates the physical separation of dividing cells and, in 3D epithelia, provides a spatial landmark for lumen formation. Here, we unravel an unexpected role in cytokinesis for proteins of the intraflagellar transport (IFT) machinery, initially characterized for their ciliary role and their link to polycystic kidney disease. Using 2D and 3D cultures of renal cells, we show that IFT proteins are required to correctly shape the central spindle, to control symmetric cleavage furrow ingression and to ensure central lumen positioning. Mechanistically, IFT88 directly interacts with the kinesin MKLP2 and is essential for the correct relocalization of the Aurora B/MKLP2 complex to the central spindle. IFT88 is thus required for proper centralspindlin distribution and central spindle microtubule organization. Overall, this work unravels a novel non-ciliary mechanism for IFT proteins at the central spindle, which could contribute to kidney cyst formation by affecting lumen positioning. Cytokinesis relies on central spindle organization and provides a spatial landmark for lumen formation. Here, the authors show that intraflagellar transport proteins are required for the localization of the cytokinetic regulator Aurora B and subsequent cleavage furrow ingression and lumen positioning.
Collapse
Affiliation(s)
- Nicolas Taulet
- CRBM, CNRS, Univ. Montpellier, Centrosome, Cilia and Pathology Lab, 1919 Route de Mende, 34293, Montpellier, France
| | - Benjamin Vitre
- CRBM, CNRS, Univ. Montpellier, Centrosome, Cilia and Pathology Lab, 1919 Route de Mende, 34293, Montpellier, France
| | - Christelle Anguille
- CRBM, CNRS, Univ. Montpellier, Centrosome, Cilia and Pathology Lab, 1919 Route de Mende, 34293, Montpellier, France
| | - Audrey Douanier
- CRBM, CNRS, Univ. Montpellier, Centrosome, Cilia and Pathology Lab, 1919 Route de Mende, 34293, Montpellier, France
| | - Murielle Rocancourt
- Institut PASTEUR, CNRS UMR 3691 Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department, 25-28 rue du Dr Roux, 75015, Paris, France
| | - Michael Taschner
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, DK-8000, Aarhus C, Denmark
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, DK-8000, Aarhus C, Denmark
| | - Arnaud Echard
- Institut PASTEUR, CNRS UMR 3691 Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department, 25-28 rue du Dr Roux, 75015, Paris, France
| | - Benedicte Delaval
- CRBM, CNRS, Univ. Montpellier, Centrosome, Cilia and Pathology Lab, 1919 Route de Mende, 34293, Montpellier, France.
| |
Collapse
|
19
|
Tanimizu N, Mitaka T. Epithelial Morphogenesis during Liver Development. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a027862. [PMID: 28213465 DOI: 10.1101/cshperspect.a027862] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tissue stem/progenitor cells supply multiple types of epithelial cells that eventually acquire specialized functions during organ development. In addition, three-dimensional (3D) tissue structures need to be established for organs to perform their physiological functions. The liver contains two types of epithelial cells, namely, hepatocytes and cholangiocytes, which are derived from hepatoblasts, fetal liver stem/progenitor cells (LPCs), in mid-gestation. Hepatocytes performing many metabolic reactions form cord-like structures, whereas cholangiocytes, biliary epithelial cells, form tubular structures called intrahepatic bile ducts. Analyses for human genetic diseases and mutant mice have identified crucial molecules for liver organogenesis. Functions of those molecules can be examined in in vitro culture systems where LPCs are induced to differentiate into hepatocytes or cholangiocytes. Recent technical advances have revealed 3D epithelial morphogenesis during liver organogenesis. Therefore, the liver is a good model to understand how tissue stem/progenitor cells differentiate and establish 3D tissue architectures during organ development.
Collapse
Affiliation(s)
- Naoki Tanimizu
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo 060-8556, Japan
| | - Toshihiro Mitaka
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo 060-8556, Japan
| |
Collapse
|
20
|
Lujan P, Rubio T, Varsano G, Köhn M. Keep it on the edge: The post-mitotic midbody as a polarity signal unit. Commun Integr Biol 2017; 10:e1338990. [PMID: 28919938 PMCID: PMC5595415 DOI: 10.1080/19420889.2017.1338990] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 11/26/2022] Open
Abstract
The maintenance of the epithelial architecture during tissue proliferation is achieved by apical positioning of the midbody after cell division. Consequently, midbody mislocalization contributes to epithelial architecture disruption, a fundamental event during epithelial tumorigenesis. Studies in 3D polarized epithelial MDCK or Caco2 cell models, where midbody misplacement leads to multiple ectopic but fully polarized lumen-containing cysts, revealed that this phenotype can be caused by 2 different scenarios: the loss of mitotic spindle orientation or the loss of asymmetric abscission. In addition, we have recently proposed a third cellular mechanism where the midbody mislocalization is achieved through cytokinesis acceleration driven by the cancer-promoting phosphatase of regenerating liver (PRL)-3. Here we critically review these findings, and we furthermore present new data indicating that midbodies themselves might act as signal unit for polarization since they can infer apical characteristics to a basal membrane.
Collapse
Affiliation(s)
- Pablo Lujan
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Teresa Rubio
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Giulia Varsano
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Maja Köhn
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
21
|
Abstract
Cytokinesis is a complex cellular process that leads to a physical separation of two daughter cells. The key to a successful cytokinesis is a coordinated reorganization of cellular cytoskeleton and membrane trafficking pathways. Consequently, Rab GTPases recently emerged as major regulators of cellular division. Rabs belong to a superfamily of small monomeric GTPases that regulate a diverse array of cellular functions. Rabs in particular are well-established regulators of membrane transport and have been shown to mediate several membrane transport steps including vesicle formation, molecular motor-dependent vesicle transport and targeting of transport vesicles and organelles to their correct destinations. Significantly, several Rab GTPases also have been shown to function in regulating cell division. In this review, we discuss latest findings about the function of Rabs and polarized membrane transport during different steps of cytokinesis as well as during the final stage of cell division known as abscission.
Collapse
Affiliation(s)
- Paulius Gibieža
- a Institute of Cardiology, Lithuanian University of Health Sciences , Kaunas , Lithuania
| | - Rytis Prekeris
- b Department of Cell and Developmental Biology , University of Colorado Anschutz Medical Campus , Aurora , CO , USA
| |
Collapse
|
22
|
Thieleke-Matos C, Osório DS, Carvalho AX, Morais-de-Sá E. Emerging Mechanisms and Roles for Asymmetric Cytokinesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 332:297-345. [PMID: 28526136 DOI: 10.1016/bs.ircmb.2017.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cytokinesis completes cell division by physically separating the contents of the mother cell between the two daughter cells. This event requires the highly coordinated reorganization of the cytoskeleton within a precise window of time to ensure faithful genomic segregation. In addition, recent progress in the field highlighted the importance of cytokinesis in providing particularly important cues in the context of multicellular tissues. The organization of the cytokinetic machinery and the asymmetric localization or inheritance of the midbody remnants is critical to define the spatial distribution of mechanical and biochemical signals. After a brief overview of the conserved steps of animal cytokinesis, we review the mechanisms controlling polarized cytokinesis focusing on the challenges of epithelial cytokinesis. Finally, we discuss the significance of these asymmetries in defining embryonic body axes, determining cell fate, and ensuring the correct propagation of epithelial organization during proliferation.
Collapse
Affiliation(s)
- C Thieleke-Matos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cell Division and Genomic stability, IBMC, Instituto de Biologia Molecular e Celular, and i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - D S Osório
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cytoskeletal Dynamics, IBMC, Instituto de Biologia Molecular e Celular, and i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - A X Carvalho
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cytoskeletal Dynamics, IBMC, Instituto de Biologia Molecular e Celular, and i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - E Morais-de-Sá
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cell Division and Genomic stability, IBMC, Instituto de Biologia Molecular e Celular, and i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
23
|
Abstract
The midbody is a protein-dense assembly that forms during cytokinesis when the actomyosin ring constricts around bundling central spindle microtubules. After its initial description by Walther Flemming in the late nineteenth century and its rediscovery through electron microscopy in the 1960s and 1970s, its ultrastructural organization and the sequential recruitment of its molecular constituents has only been elucidated in the past decade. Recently, it has become clear that the midbody can serve as a polarity cue during asymmetric cell division, cell polarization, and spindle orientation by coordinating cytoskeletal organization, vesicular transport, and localized cortical cues. In this chapter, these newly emerging functions will be discussed as well as asymmetries during midbody formation and their consequences for cellular organization in tissues.
Collapse
Affiliation(s)
- Christian Pohl
- Buchmann Institute for Molecular Life Sciences, Institute of Biochemistry II, Goethe University Medical School, Max-von-Laue-Strasse 15, 60438, Frankfurt (Main), Germany.
| |
Collapse
|
24
|
Marciano DK. A holey pursuit: lumen formation in the developing kidney. Pediatr Nephrol 2017; 32:7-20. [PMID: 26902755 PMCID: PMC5495142 DOI: 10.1007/s00467-016-3326-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 12/23/2015] [Accepted: 01/12/2016] [Indexed: 02/07/2023]
Abstract
The formation of polarized epithelial tubules is a hallmark of kidney development. One of the fundamental principles in tubulogenesis is that epithelia coordinate the polarity of individual cells with the surrounding cells and matrix. A central feature in this process is the segregation of membranes into spatially and functionally distinct apical and basolateral domains, and the generation of a luminal space at the apical surface. This review examines our current understanding of the cellular and molecular mechanisms that underlie the establishment of apical-basal polarity and lumen formation in developing renal epithelia, including the roles of cell-cell and cell-matrix interactions and polarity complexes. We highlight growing evidence from animal models, and correlate these findings with models of tubulogenesis from other organ systems, and from in vitro studies.
Collapse
Affiliation(s)
- Denise K. Marciano
- Department of Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd. H5.102, Dallas, TX 75390-8856
| |
Collapse
|
25
|
Lu R, Wilson JM. Rab14 specifies the apical membrane through Arf6-mediated regulation of lipid domains and Cdc42. Sci Rep 2016; 6:38249. [PMID: 27901125 PMCID: PMC5128791 DOI: 10.1038/srep38249] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/07/2016] [Indexed: 12/13/2022] Open
Abstract
The generation of cell polarity is essential for the development of multi-cellular organisms as well as for the function of epithelial organs in the mature animal. Small GTPases regulate the establishment and maintenance of polarity through effects on cytoskeleton, membrane trafficking, and signaling. Using short-term 3-dimensional culture of MDCK cells, we find that the small GTPase Rab14 is required for apical membrane specification. Rab14 knockdown results in disruption of polarized lipid domains and failure of the Par/aPKC/Cdc42 polarity complex to localize to the apical membrane. These effects are mediated through tight control of lipid localization, as overexpression of the phosphatidylinositol 4-phosphate 5-kinase α [PtdIns(4)P5K] activator Arf6 or PtdIns(4)P5K alone, or treatment with the phosphatidylinositol 3-kinase (PtdInsI3K) inhibitor wortmannin, rescued the multiple-apical domain phenotype observed after Rab14 knockdown. Rab14 also co-immunoprecipitates and colocalizes with the small GTPase Cdc42, and Rab14 knockdown results in increased Cdc42 activity. Furthermore, Rab14 regulates trafficking of vesicles to the apical domain, mitotic spindle orientation, and midbody position, consistent with Rab14’s reported localization to the midbody as well as its effects upon Cdc42. These results position Rab14 at the top of a molecular cascade that regulates the establishment of cell polarity.
Collapse
Affiliation(s)
- Ruifeng Lu
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Jean M Wilson
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
26
|
Enrich C, Rentero C, Grewal T. Annexin A6 in the liver: From the endocytic compartment to cellular physiology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:933-946. [PMID: 27984093 DOI: 10.1016/j.bbamcr.2016.10.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 12/15/2022]
Abstract
Annexin A6 (AnxA6) belongs to the conserved annexin family - a group of Ca2+-dependent membrane binding proteins. AnxA6 is the largest of all annexins and highly expressed in smooth muscle, hepatocytes, endothelial cells and cardiomyocytes. Upon activation, AnxA6 binds to negatively charged phospholipids in a wide range of intracellular localizations, in particular the plasma membrane, late endosomes/pre-lysosomes, but also synaptic vesicles and sarcolemma. In these cellular sites, AnxA6 is believed to contribute to the organization of membrane microdomains, such as cholesterol-rich lipid rafts and confer multiple regulatory functions, ranging from vesicle fusion, endocytosis and exocytosis to programmed cell death and muscle contraction. Growing evidence supports that Ca2+ and Ca2+-binding proteins control endocytosis and autophagy. Their regulatory role seems to operate at the level of the signalling pathways that initiate autophagy or at later stages, when autophagosomes fuse with endolysosomal compartments. The convergence of the autophagic and endocytic vesicles to lysosomes shares several features that depend on Ca2+ originating from lysosomes/late endosomes and seems to depend on proteins that are subsequently activated by this cation. However, the involvement of Ca2+ and its effector proteins in these autophagic and endocytic stages still remains poorly understood. Although AnxA6 makes up almost 0.25% of total protein in the liver, little is known about its function in hepatocytes. Within the endocytic route, we identified AnxA6 in endosomes and autophagosomes of hepatocytes. Hence, AnxA6 and possibly other annexins might represent new Ca2+ effectors that regulate converging steps of autophagy and endocytic trafficking in hepatocytes. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cellular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain.
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cellular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Thomas Grewal
- Faculty of Pharmacy A15, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
27
|
Luján P, Varsano G, Rubio T, Hennrich ML, Sachsenheimer T, Gálvez-Santisteban M, Martín-Belmonte F, Gavin AC, Brügger B, Köhn M. PRL-3 disrupts epithelial architecture by altering the post-mitotic midbody position. J Cell Sci 2016; 129:4130-4142. [PMID: 27656108 PMCID: PMC5117205 DOI: 10.1242/jcs.190215] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/16/2016] [Indexed: 12/20/2022] Open
Abstract
Disruption of epithelial architecture is a fundamental event during epithelial tumorigenesis. We show that the expression of the cancer-promoting phosphatase PRL-3 (PTP4A3), which is overexpressed in several epithelial cancers, in polarized epithelial MDCK and Caco2 cells leads to invasion and the formation of multiple ectopic, fully polarized lumens in cysts. Both processes disrupt epithelial architecture and are hallmarks of cancer. The pathological relevance of these findings is supported by the knockdown of endogenous PRL-3 in MCF-7 breast cancer cells grown in three-dimensional branched structures, showing the rescue from multiple-lumen- to single-lumen-containing branch ends. Mechanistically, it has been previously shown that ectopic lumens can arise from midbodies that have been mislocalized through the loss of mitotic spindle orientation or through the loss of asymmetric abscission. Here, we show that PRL-3 triggers ectopic lumen formation through midbody mispositioning without altering the spindle orientation or asymmetric abscission, instead, PRL-3 accelerates cytokinesis, suggesting that this process is an alternative new mechanism for ectopic lumen formation in MDCK cysts. The disruption of epithelial architecture by PRL-3 revealed here is a newly recognized mechanism for PRL-3-promoted cancer progression.
Collapse
Affiliation(s)
- Pablo Luján
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
| | - Giulia Varsano
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
| | - Teresa Rubio
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
| | - Marco L Hennrich
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg 69117, Germany
| | - Timo Sachsenheimer
- Heidelberg University Biochemistry Center, University of Heidelberg, Heidelberg 69120, Germany
| | - Manuel Gálvez-Santisteban
- Department of Development and Differentiation, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| | - Fernando Martín-Belmonte
- Department of Development and Differentiation, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| | - Anne-Claude Gavin
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg 69117, Germany
| | - Britta Brügger
- Heidelberg University Biochemistry Center, University of Heidelberg, Heidelberg 69120, Germany
| | - Maja Köhn
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
| |
Collapse
|
28
|
Freddo AM, Shoffner SK, Shao Y, Taniguchi K, Grosse AS, Guysinger MN, Wang S, Rudraraju S, Margolis B, Garikipati K, Schnell S, Gumucio DL. Coordination of signaling and tissue mechanics during morphogenesis of murine intestinal villi: a role for mitotic cell rounding. Integr Biol (Camb) 2016; 8:918-28. [PMID: 27476872 PMCID: PMC5021607 DOI: 10.1039/c6ib00046k] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Efficient digestion and absorption of nutrients by the intestine requires a very large apical surface area, a feature that is enhanced by the presence of villi, fingerlike epithelial projections that extend into the lumen. Prior to villus formation, the epithelium is a thick pseudostratified layer. In mice, villus formation begins at embryonic day (E)14.5, when clusters of mesenchymal cells form just beneath the thick epithelium. At this time, analysis of the flat lumenal surface reveals a regular pattern of short apical membrane invaginations that form in regions of the epithelium that lie in between the mesenchymal clusters. Apical invaginations begin in the proximal intestine and spread distally, deepening with time. Interestingly, mitotically rounded cells are frequently associated with these invaginations. These mitotic cells are located at the tips of the invaginating membrane (internalized within the epithelium), rather than adjacent to the apical surface. Further investigation of epithelial changes during membrane invagination reveals that epithelial cells located between mesenchymal clusters experience a circumferential compression, as epithelial cells above each cluster shorten and widen. Using a computational model, we examined whether such forces are sufficient to cause apical invaginations. Simulations and in vivo data reveal that proper apical membrane invagination involves intraepithelial compressive forces, mitotic cell rounding in the compressed regions and apico-basal contraction of the dividing cell. Together, these data establish a new model that explains how signaling events intersect with tissue forces to pattern apical membrane invaginations that define the villus boundaries.
Collapse
Affiliation(s)
- Andrew M Freddo
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Rab35 GTPase couples cell division with initiation of epithelial apico-basal polarity and lumen opening. Nat Commun 2016; 7:11166. [PMID: 27040773 PMCID: PMC4822036 DOI: 10.1038/ncomms11166] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/25/2016] [Indexed: 02/08/2023] Open
Abstract
Establishment and maintenance of apico-basal polarity in epithelial organs must be tightly coupled with cell division, but the underlying molecular mechanisms are largely unknown. Using 3D cultures of renal MDCK cells (cysts), we found that the Rab35 GTPase plays a crucial role in polarity initiation and apical lumen positioning during the first cell division of cyst development. At the molecular level, Rab35 physically couples cytokinesis with the initiation of apico-basal polarity by tethering intracellular vesicles containing key apical determinants at the cleavage site. These vesicles transport aPKC, Cdc42, Crumbs3 and the lumen-promoting factor Podocalyxin, and are tethered through a direct interaction between Rab35 and the cytoplasmic tail of Podocalyxin. Consequently, Rab35 inactivation leads to complete inversion of apico-basal polarity in 3D cysts. This novel and unconventional mode of Rab-dependent vesicle targeting provides a simple mechanism for triggering both initiation of apico-basal polarity and lumen opening at the centre of cysts. Establishment and maintenance of apico-basal polarity in epithelial organs needs to be tightly coupled with cell division. Here the authors show that the Rab35 GTPase tethers intracellular vesicles containing key apical determinants at the cleavage site, connecting cytokinesis to apico-basal polarity.
Collapse
|
30
|
Li Q, Zhang Y, Pluchon P, Robens J, Herr K, Mercade M, Thiery JP, Yu H, Viasnoff V. Extracellular matrix scaffolding guides lumen elongation by inducing anisotropic intercellular mechanical tension. Nat Cell Biol 2016; 18:311-8. [PMID: 26878396 DOI: 10.1038/ncb3310] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/08/2016] [Indexed: 02/07/2023]
Abstract
The de novo formation of secretory lumens plays an important role during organogenesis. It involves the establishment of a cellular apical pole and the elongation of luminal cavities. The molecular parameters controlling cell polarization have been heavily scrutinized. In particular, signalling from the extracellular matrix (ECM) proved essential to the proper localization of the apical pole by directed protein transport. However, little is known about the regulation of the shape and the directional development of lumen into tubes. We demonstrate that the spatial scaffolding of cells by ECM can control tube shapes and can direct their elongation. We developed a minimal organ approach comprising of hepatocyte doublets cultured in artificial microniches to precisely control the spatial organization of cellular adhesions in three dimensions. This approach revealed a mechanism by which the spatial repartition of integrin-based adhesion can elicit an anisotropic intercellular mechanical stress guiding the osmotically driven elongation of lumens in the direction of minimal tension. This mechanical guidance accounts for the different morphologies of lumen in various microenvironmental conditions.
Collapse
Affiliation(s)
- Qiushi Li
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Yue Zhang
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Perrine Pluchon
- Department of Biological Sciences, National University of Singapore, Singapore 117411, Singapore
| | - Jeffrey Robens
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Keira Herr
- Institute of Molecular Cell Biology, A∗STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Myriam Mercade
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Université de Toulouse, INSA, INRA, CNRS, 31077 Toulouse, France
| | - Jean-Paul Thiery
- Institute of Molecular Cell Biology, A∗STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Hanry Yu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University Health System, Singapore 117597, Singapore.,Institute of Bioengineering and Nanotechnology (IBN), Agency for Science, Technology and Research, Singapore 138669, Singapore
| | - Virgile Viasnoff
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore 117411, Singapore.,Institute of Molecular Cell Biology, A∗STAR, 61 Biopolis Drive, Singapore 138673, Singapore.,CNRS UMI3639, Singapore 117411, Singapore
| |
Collapse
|
31
|
Blasky AJ, Mangan A, Prekeris R. Polarized protein transport and lumen formation during epithelial tissue morphogenesis. Annu Rev Cell Dev Biol 2015; 31:575-91. [PMID: 26359775 DOI: 10.1146/annurev-cellbio-100814-125323] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
One of the major challenges in biology is to explain how complex tissues and organs arise from the collective action of individual polarized cells. The best-studied model of this process is the cross talk between individual epithelial cells during their polarization to form the multicellular epithelial lumen during tissue morphogenesis. Multiple mechanisms of apical lumen formation have been proposed. Some epithelial lumens form from preexisting polarized epithelial structures. However, de novo lumen formation from nonpolarized cells has recently emerged as an important driver of epithelial tissue morphogenesis, especially during the formation of small epithelial tubule networks. In this review, we discuss the latest findings regarding the mechanisms and regulation of de novo lumen formation in vitro and in vivo.
Collapse
Affiliation(s)
- Alex J Blasky
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045;
| | - Anthony Mangan
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045;
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045;
| |
Collapse
|
32
|
Overeem AW, Bryant DM, van IJzendoorn SC. Mechanisms of apical–basal axis orientation and epithelial lumen positioning. Trends Cell Biol 2015; 25:476-85. [DOI: 10.1016/j.tcb.2015.04.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/24/2015] [Accepted: 04/06/2015] [Indexed: 12/17/2022]
|
33
|
Dionne LK, Wang XJ, Prekeris R. Midbody: from cellular junk to regulator of cell polarity and cell fate. Curr Opin Cell Biol 2015; 35:51-8. [PMID: 25950842 DOI: 10.1016/j.ceb.2015.04.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/14/2015] [Accepted: 04/16/2015] [Indexed: 01/02/2023]
Abstract
At late mitosis, the mother cell divides by the formation of a cleavage furrow, leaving two daughter cells connected by a thin intercellular bridge. During ingression of the cleavage furrow, the central spindle microtubules are compacted to form the structure known as the midbody (MB). The MB is situated within the intercellular bridge, with the abscission site sometimes occurring on one side of the MB. As a result of this one-sided (asymmetric) abscission, only one daughter cell can inherit the post-mitotic MB. Interestingly, recent studies have identified post-mitotic MBs as novel signaling platforms regulating stem cell fate and proliferation. Additionally, MBs were proposed to serve a role of polarity cues during the neurite outgrowth and apical lumen formation. Thus, abscission and MB inheritance is clearly a highly regulated cellular event that can affect development and various other cellular functions. In this review we discuss the latest findings regarding post-mitotic MB functions, as well as the machinery regulating MB inheritance and accumulation.
Collapse
Affiliation(s)
- Lai Kuan Dionne
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
34
|
Wang T, McDonald C, Petrenko NB, Leblanc M, Wang T, Giguere V, Evans RM, Patel VV, Pei L. Estrogen-related receptor α (ERRα) and ERRγ are essential coordinators of cardiac metabolism and function. Mol Cell Biol 2015; 35:1281-98. [PMID: 25624346 PMCID: PMC4355525 DOI: 10.1128/mcb.01156-14] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 10/15/2014] [Accepted: 01/20/2015] [Indexed: 11/20/2022] Open
Abstract
Almost all cellular functions are powered by a continuous energy supply derived from cellular metabolism. However, it is little understood how cellular energy production is coordinated with diverse energy-consuming cellular functions. Here, using the cardiac muscle system, we demonstrate that nuclear receptors estrogen-related receptor α (ERRα) and ERRγ are essential transcriptional coordinators of cardiac energy production and consumption. On the one hand, ERRα and ERRγ together are vital for intact cardiomyocyte metabolism by directly controlling expression of genes important for mitochondrial functions and dynamics. On the other hand, ERRα and ERRγ influence major cardiomyocyte energy consumption functions through direct transcriptional regulation of key contraction, calcium homeostasis, and conduction genes. Mice lacking both ERRα and cardiac ERRγ develop severe bradycardia, lethal cardiomyopathy, and heart failure featuring metabolic, contractile, and conduction dysfunctions. These results illustrate that the ERR transcriptional pathway is essential to couple cellular energy metabolism with energy consumption processes in order to maintain normal cardiac function.
Collapse
Affiliation(s)
- Ting Wang
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Caitlin McDonald
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Nataliya B Petrenko
- Penn Cardiovascular Institute and Section of Cardiac Electrophysiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mathias Leblanc
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Tao Wang
- Penn Cardiovascular Institute and Section of Cardiac Electrophysiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Vincent Giguere
- Departments of Biochemistry, Medicine, and Oncology, McGill University, Montreal, Quebec, Canada
| | - Ronald M Evans
- Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Vickas V Patel
- Penn Cardiovascular Institute and Section of Cardiac Electrophysiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Liming Pei
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
35
|
Horikoshi Y, Kitatani K, Toriumi K, Fukunishi N, Itoh Y, Nakamura N, Ohno S, Matsura T, Takekoshi S. Aberrant activation of atypical protein kinase C in carbon tetrachloride-induced oxidative stress provokes a disturbance of cell polarity and sealing of bile canalicular lumen. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:958-68. [PMID: 25688837 DOI: 10.1016/j.ajpath.2014.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 11/20/2014] [Accepted: 12/11/2014] [Indexed: 02/07/2023]
Abstract
Polarized hepatocytes contain tight junctions (TJs), which are among the most important junctions for sealing the bile canalicular lumen from the sinusoidal space. Alterations in TJs are implicated in chronic cholestatic liver diseases, such as primary biliary cirrhosis and primary sclerosing cholangitis, which have lipid peroxidation marker elevations or antioxidant vitamin decreases. However, the effect of oxidative stress on hepatocyte polarity or liver morphology is unknown. We found that carbon tetrachloride (CCl4)-induced oxidative stress resulted in disassembly of TJs. Ultrastructural analysis revealed disruption in TJs, Golgi morphology, and expansion of the bile canalicular lumen size in CCl4-treated hepatocytes. The Par complex [Par-3-atypical protein kinase C (aPKC) and Par-6 ternary complex] regulates TJs and lumen formation, and the Par-3-aPKC complex formation was inhibited by CCl4 treatment. Moreover, the antioxidant compound vitamin E prohibited a CCl4-induced disturbance in TJs and Par-3-aPKC complex formation. aPKC phosphorylates Par-3 and down-regulates its own affinity with Par-3. Importantly, aPKC kinase activity and Par-3 phosphorylation were significantly increased in CCl4-treated rat livers. These results indicate that the Par-3-aPKC complex plays a crucial role in the maintenance of hepatocyte polarity and sealing of the bile canalicular lumen. Our findings suggest that bile canalicular lumen expansion might explain the presence of cholestasis in patients with primary biliary cirrhosis and primary sclerosing cholangitis.
Collapse
Affiliation(s)
- Yosuke Horikoshi
- Department of Pathology, Tokai University School of Medicine, Isehara, Japan; Division of Medical Biochemistry, Department of Pathophysiological and Therapeutic Science, Tottori University Faculty of Medicine, Yonago, Japan
| | - Kanae Kitatani
- Division of Host Defense Mechanism, Department of Cell Biology, Tokai University School of Medicine, Isehara, Japan
| | - Kentaro Toriumi
- Department of Pathology, Tokai University School of Medicine, Isehara, Japan
| | - Nahoko Fukunishi
- Support Center for Medical Research and Education, Tokai University, Isehara, Japan
| | - Yoshiko Itoh
- Support Center for Medical Research and Education, Tokai University, Isehara, Japan
| | - Naoya Nakamura
- Department of Pathology, Tokai University School of Medicine, Isehara, Japan
| | - Shigeo Ohno
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Japan
| | - Tatsuya Matsura
- Division of Medical Biochemistry, Department of Pathophysiological and Therapeutic Science, Tottori University Faculty of Medicine, Yonago, Japan
| | - Susumu Takekoshi
- Department of Pathology, Tokai University School of Medicine, Isehara, Japan; Division of Host Defense Mechanism, Department of Cell Biology, Tokai University School of Medicine, Isehara, Japan.
| |
Collapse
|
36
|
Müsch A. The unique polarity phenotype of hepatocytes. Exp Cell Res 2014; 328:276-83. [PMID: 24956563 DOI: 10.1016/j.yexcr.2014.06.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/09/2014] [Accepted: 06/12/2014] [Indexed: 01/11/2023]
Abstract
Hepatocytes, the main epithelial cell type of the liver, function like all epithelial cells to mediate the vectorial flow of macromolecules into and out of the organ they encompass. They do so by establishing polarized surface domains and by restricting paracellular flow via their tight junctions and cell-cell adhesion. Yet, the cell and tissue organization of hepatocytes differs profoundly from that of most other epithelia, including those of the digestive and urinary tracts, the lung or the breast. The latter form monolayered tissues in which the apical domains of individual cells align around a central continuous luminal cavity that constitutes the tubules and acini characteristic of these organs. Hepatocytes, by contrast, form capillary-sized lumina with multiple neighbors resulting in a branched, tree-like bile canaliculi network that spreads across the liver parenchyme. I will discuss some of the key molecular features that distinguish the hepatocyte polarity phenotype from that of monopolar, columnar epithelia.
Collapse
Affiliation(s)
- Anne Müsch
- Albert-Einstein College of Medicine, Department of Cell & Molecular Biology, The Bronx, USA.
| |
Collapse
|