1
|
Merz LM, Winter K, Richter S, Kallendrusch S, Horn A, Grunewald S, Klöting N, Krause K, Kiess W, Le Duc D, Garten A. Effects of alpelisib treatment on murine Pten-deficient lipomas. Adipocyte 2025; 14:2468275. [PMID: 39962643 PMCID: PMC11844927 DOI: 10.1080/21623945.2025.2468275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/25/2024] [Revised: 01/20/2025] [Accepted: 01/31/2025] [Indexed: 02/23/2025] Open
Abstract
Phosphatase and tensin homolog (PTEN) hamartoma tumour syndrome (PHTS) is a rare disorder caused by germline mutations in the tumour suppressor gene PTEN, a key negative regulator of phosphatidylinositol 3-kinase (PI3K)/AKT signalling. Children with PHTS often develop lipomas, for which only surgical resection is available as treatment. We investigated the effects of the selective PI3K-inhibitor alpelisib on Pten-deficient lipomas. After incubation with alpelisib or the non-selective PI3K inhibitor wortmannin, we analysed histology, gene expression, and Pi3k pathway in lipoma and control epididymal adipose tissue (epiWAT). Alpelisib increased adipocyte area in lipomas compared to epiWAT. Baseline gene expression showed higher levels of markers for proliferation (Pcna), fibrosis (Tgfb1), and adipogenesis (Pparg) in lipomas, while hormone-sensitive lipase expression was lower than in epiWAT. Following alpelisib incubation, target genes of Pi3k signalling and extracellular matrix factors were reduced. We confirmed Pi3k inhibition through detecting decreased Akt levels compared to control treatment. Human lipoma samples treated with alpelisib showed variable lipolysis responses, suggesting variability in therapeutic outcomes. We established an ex vivo model to study alpelisib effects on Pten-deficient lipomas. These results underscore the therapeutic potential of targeted PI3K inhibition in the treatment of PHTS-associated lipomas, particularly in cases that are inoperable.
Collapse
Affiliation(s)
- Lea M. Merz
- Center for Pediatric Research, University Hospital for Children & Adolescents, Leipzig University, Leipzig, Germany
| | - Karsten Winter
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Sandy Richter
- Center for Pediatric Research, University Hospital for Children & Adolescents, Leipzig University, Leipzig, Germany
| | - Sonja Kallendrusch
- Institute of Anatomy, Leipzig University, Leipzig, Germany
- Institute of Clinical Research and Systems Medicine, Health and Medical University Potsdam, Potsdam, Germany
| | - Andreas Horn
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Sonja Grunewald
- Department for Dermatology, Venereology and Allergology, University Hospital Leipzig, Leipzig, Germany
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Center Munich at the University and University Hospital Leipzig, Leipzig, Germany
| | - Kerstin Krause
- Department of Endocrinology, Nephrology and Rheumatology, University Hospital Leipzig, Leipzig, Germany
| | - Wieland Kiess
- Center for Pediatric Research, University Hospital for Children & Adolescents, Leipzig University, Leipzig, Germany
| | - Diana Le Duc
- Institute of Human Genetics, University Hospital Leipzig, Leipzig, Germany
| | - Antje Garten
- Center for Pediatric Research, University Hospital for Children & Adolescents, Leipzig University, Leipzig, Germany
| |
Collapse
|
2
|
Wen ZH, Wu ZS, Cheng HJ, Huang SY, Tang SH, Teng WN, Su FW, Chen NF, Sung CS. Intrathecal Fumagillin Alleviates Chronic Neuropathy-Induced Nociceptive Sensitization and Modulates Spinal Astrocyte-Neuronal Glycolytic and Angiogenic Proteins. Mol Neurobiol 2025; 62:246-263. [PMID: 38837104 DOI: 10.1007/s12035-024-04254-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/13/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
Nociceptive sensitization is accompanied by the upregulation of glycolysis in the central nervous system in neuropathic pain. Growing evidence has demonstrated glycolysis and angiogenesis to be related to the inflammatory processes. This study investigated whether fumagillin inhibits neuropathic pain by regulating glycolysis and angiogenesis. Fumagillin was administered through an intrathecal catheter implanted in rats with chronic constriction injury (CCI) of the sciatic nerve. Nociceptive, behavioral, and immunohistochemical analyses were performed to evaluate the effects of the inhibition of spinal glycolysis-related enzymes and angiogenic factors on CCI-induced neuropathic pain. Fumagillin reduced CCI-induced thermal hyperalgesia and mechanical allodynia from postoperative days (POD) 7 to 14. The expression of angiogenic factors, vascular endothelial growth factor (VEGF) and angiopoietin 2 (ANG2), increased in the ipsilateral lumbar spinal cord dorsal horn (SCDH) following CCI. The glycolysis-related enzymes, pyruvate kinase M2 (PKM2) and lactate dehydrogenase A (LDHA) significantly increased in the ipsilateral lumbar SCDH following CCI on POD 7 and 14 compared to those in the control rats. Double immunofluorescence staining indicated that VEGF and PKM2 were predominantly expressed in the astrocytes, whereas ANG2 and LDHA were predominantly expressed in the neurons. Intrathecal infusion of fumagillin significantly reduced the expression of angiogenic factors and glycolytic enzymes upregulated by CCI. The expression of hypoxia-inducible factor-1α (HIF-1α), a crucial transcription factor that regulates angiogenesis and glycolysis, was also upregulated after CCI and inhibited by fumagillin. We concluded that intrathecal fumagillin may reduce the expression of ANG2 and LDHA in neurons and VEGF and PKM2 in the astrocytes of the SCDH, further attenuating spinal angiogenesis in neuropathy-induced nociceptive sensitization. Hence, fumagillin may play a role in the inhibition of peripheral neuropathy-induced neuropathic pain by modulating glycolysis and angiogenesis.
Collapse
Affiliation(s)
- Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804201, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Zong-Sheng Wu
- Division of Pain Management, Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
| | - Hao-Jung Cheng
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Shi-Ying Huang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Shih-Hsuan Tang
- Division of Pain Management, Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
| | - Wei-Nung Teng
- Division of Pain Management, Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Fu-Wei Su
- Division of Pain Management, Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Nan-Fu Chen
- Division of Neurosurgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, 80284, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, 804201, Taiwan
| | - Chun-Sung Sung
- Division of Pain Management, Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan.
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, 112304, Taiwan.
| |
Collapse
|
3
|
Lin JY, Kuang HM, Rong K, Peng L, Kuang JJ, Yan X. Effectiveness of desertliving cistanche in managing hyperlipidemic osteoporosis in ovariectomized rats through the PI3K/AKT signaling pathway. J Orthop Surg Res 2024; 19:393. [PMID: 38970109 PMCID: PMC11225217 DOI: 10.1186/s13018-024-04890-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/07/2024] [Accepted: 06/29/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND To aim of this study is to assess the mechanism through which Desertliving Cistanche modulates the PI3K/AKT signaling pathway in the treatment of hyperlipidemic osteoporosis in ovariectomized rats. METHODS We randomly assigned specific-pathogen-free (SPF) rats into five groups (n = 10 per group). The normal control group received a standard diet, while the model group, atorvastatin group, diethylstilbestrol group, and treatment group were fed a high-fat diet. Four weeks later, bilateral ovariectomies were conducted, followed by drug interventions. After six weeks of treatment, relevant indicators were compared and analyzed. RESULTS Compared to the normal control group, rats in the model group exhibited blurred trabecular morphology, disorganized osteocytes, significantly elevated levels of bone-specific alkaline phosphatase (BALP), bone Gla-protein (BGP), total cholesterol (TC), tumor necrosis factor-α (TNF-α), and receptor activator of NF-κB ligand (RANKL). Also, the model group revealed significantly reduced levels of ultimate load, fracture load, estradiol (E2), bone mineral density (BMD), osteoprotegerin (OPG), and phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt) in femoral tissue. The atorvastatin group presented with higher TC and TNF-α levels compared to the normal control group. Conversely, the treatment group demonstrated enhanced trabecular morphology, denser structure, smaller bone marrow cavities, and reduced BALP, BGP, TC, TNF-α, and RANKL levels. Furthermore, the treatment group exhibited higher levels of E2, BMD, OPG, and PI3K and Akt in bone tissue compared to the model group. The treatment group also had lower TC and TNF-α levels than the atorvastatin group. Biomechanical analysis indicated that after administration of Desertliving Cistanche, the treatment group had reduced body mass, increased ultimate and fracture load of the femur, denser bone structure, smaller bone marrow cavities, and altered periosteal arrangement compared to the model group. CONCLUSION Our study revealed that Desertliving Cistanche demonstrated significant efficacy in preventing and treating postmenopausal hyperlipidemic osteoporosis in rats.
Collapse
Affiliation(s)
- Jia-Yue Lin
- Hunan University of Traditional Chinese Medicine, Changsha, 410208, China
| | - Hao-Ming Kuang
- Hunan University of Traditional Chinese Medicine, Changsha, 410208, China
| | - Kuan Rong
- Hunan Academy of Chinese Medicine, No. 58 Lushan Road, Yuelu District, Changsha, Hunan Province, 410006, China
| | - Li Peng
- Hunan University of Traditional Chinese Medicine, Changsha, 410208, China
| | - Jian-Jun Kuang
- Hunan Academy of Chinese Medicine, No. 58 Lushan Road, Yuelu District, Changsha, Hunan Province, 410006, China.
| | - Xu Yan
- Hunan Academy of Chinese Medicine, No. 58 Lushan Road, Yuelu District, Changsha, Hunan Province, 410006, China.
| |
Collapse
|
4
|
Fernando W, MacLean E, Monro S, Power Coombs MR, Marcato P, Rupasinghe HPV, Hoskin DW. Phloridzin Docosahexaenoate, an Omega-3 Fatty Acid Ester of a Flavonoid Precursor, Inhibits Angiogenesis by Suppressing Endothelial Cell Proliferation, Migration, and Differentiation. Biomolecules 2024; 14:769. [PMID: 39062483 PMCID: PMC11274491 DOI: 10.3390/biom14070769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/22/2023] [Revised: 06/15/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
Angiogenesis is a normal physiological process that also contributes to diabetic retinopathy-related complications and facilitates tumor metastasis by promoting the hematogenic dissemination of malignant cells from solid tumors. Here, we investigated the in vitro, ex vivo, and in vivo anti-angiogenic activity of phloridzin docosahexaenoate (PZ-DHA), a novel ω-3 fatty acid ester of a flavonoid precursor. Human umbilical vein endothelial cells (HUVEC) and human dermal microvascular endothelial cells (HMVEC) treated with a sub-cytotoxic concentration of PZ-DHA to assess in vitro anti-angiogenic activity showed impaired tubule formation on a Matrigel matrix. Ex vivo angiogenesis was measured using rat thoracic aortas, which exhibited reduced vessel sprouting and tubule formation in the presence of PZ-DHA. Female BALB/c mice bearing VEGF165- and basic fibroblast growth factor-containing Matrigel plugs showed a significant reduction in blood vessel development following PZ-DHA treatment. PZ-DHA inhibited HUVEC and HMVEC proliferation, as well as the migration of HUVECs in gap closure and trans-well cell migration assays. PZ-DHA inhibited upstream and downstream components of the Akt pathway and vascular endothelial growth factor (VEGF165)-induced overexpression of small molecular Rho GTPases in HUVECs, suggesting a decrease in actin cytoskeletal-mediated stress fiber formation and migration. Taken together, these findings reveal the potential of combined food biomolecules in PZ-DHA to inhibit angiogenesis.
Collapse
Affiliation(s)
- Wasundara Fernando
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (W.F.); (P.M.); (H.P.V.R.)
| | - Emma MacLean
- Department of Medical Sciences, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| | - Susan Monro
- Department of Biology, Faculty of Science, Acadia University, Wolfville, NS B4P 2R6, Canada; (S.M.); (M.R.P.C.)
| | - Melanie R. Power Coombs
- Department of Biology, Faculty of Science, Acadia University, Wolfville, NS B4P 2R6, Canada; (S.M.); (M.R.P.C.)
| | - Paola Marcato
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (W.F.); (P.M.); (H.P.V.R.)
| | - H. P. Vasantha Rupasinghe
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (W.F.); (P.M.); (H.P.V.R.)
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B3H 4R2, Canada
| | - David W. Hoskin
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (W.F.); (P.M.); (H.P.V.R.)
| |
Collapse
|
5
|
Tsuji-Tamura K, Ogawa M. FOXO1 promotes endothelial cell elongation and angiogenesis by up-regulating the phosphorylation of myosin light chain 2. Angiogenesis 2023; 26:523-545. [PMID: 37488325 DOI: 10.1007/s10456-023-09884-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/06/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023]
Abstract
The forkhead box O1 (FOXO1) is an important transcription factor related to proliferation, metabolism, and homeostasis, while the major phenotype of FOXO1-null mice is abnormal vascular morphology, such as vessel enlargement and dilation. In in vitro mouse embryonic stem cell (ESC)-differentiation system, Foxo1-/- vascular endothelial cells (ECs) fail to elongate, and mimic the abnormalities of FOXO1-deficiency in vivo. Here, we identified the PPP1R14C gene as the FOXO1 target genes responsible for elongating using transcriptome analyses in ESC-derived ECs (ESC-ECs), and found that the FOXO1-PPP1R14C-myosin light chain 2 (MLC2) axis is required for EC elongation during angiogenesis. MLC2 is phosphorylated by MLC kinase (MLCK) and dephosphorylated by MLC phosphatase (MLCP). PPP1R14C is an inhibitor of PP1, the catalytic subunit of MLCP. The abnormal morphology of Foxo1-/- ESC-ECs was associated with low level of PPP1R14C and loss of MLC2 phosphorylation, which were reversed by PPP1R14C-introduction. Knockdown of either FOXO1 or PPP1R14C suppressed vascular cord formation and reduced MLC2 phosphorylation in human ECs (HUVECs). The mouse and human PPP1R14C locus possesses an enhancer element containing conserved FOXO1-binding motifs. In vivo chemical inhibition of MLC2 phosphorylation caused dilated vascular structures in mouse embryos. Furthermore, foxo1 or ppp1r14c-knockdown zebrafish exhibited vascular malformations, which were also restored by PPP1R14C-introduction. Mechanistically, FOXO1 suppressed MLCP activity by up-regulating PPP1R14C expression, thereby promoting MLC2 phosphorylation and EC elongation, which are necessary for vascular development. Given the importance of MLC2 phosphorylation in cell morphogenesis, this study may provide novel insights into the role of FOXO1 in control of angiogenesis.
Collapse
Affiliation(s)
- Kiyomi Tsuji-Tamura
- Oral Biochemistry and Molecular Biology, Department of Oral Health Science, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-Ku, Sapporo, 060-8586, Japan.
| | - Minetaro Ogawa
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| |
Collapse
|
6
|
Hwang HJ, Kim N, Herman AB, Gorospe M, Lee JS. Factors and Pathways Modulating Endothelial Cell Senescence in Vascular Aging. Int J Mol Sci 2022; 23:ijms231710135. [PMID: 36077539 PMCID: PMC9456027 DOI: 10.3390/ijms231710135] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/26/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Aging causes a progressive decline in the structure and function of organs. With advancing age, an accumulation of senescent endothelial cells (ECs) contributes to the risk of developing vascular dysfunction and cardiovascular diseases, including hypertension, diabetes, atherosclerosis, and neurodegeneration. Senescent ECs undergo phenotypic changes that alter the pattern of expressed proteins, as well as their morphologies and functions, and have been linked to vascular impairments, such as aortic stiffness, enhanced inflammation, and dysregulated vascular tone. Numerous molecules and pathways, including sirtuins, Klotho, RAAS, IGFBP, NRF2, and mTOR, have been implicated in promoting EC senescence. This review summarizes the molecular players and signaling pathways driving EC senescence and identifies targets with possible therapeutic value in age-related vascular diseases.
Collapse
Affiliation(s)
- Hyun Jung Hwang
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon 22212, Korea
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Korea
| | - Nayeon Kim
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon 22212, Korea
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Korea
- Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon 22212, Korea
| | - Allison B. Herman
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Jae-Seon Lee
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon 22212, Korea
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Korea
- Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon 22212, Korea
- Correspondence:
| |
Collapse
|
7
|
Tsivelekas KK, Evangelopoulos DS, Pallis D, Benetos IS, Papadakis SA, Vlamis J, Pneumaticos SG. Angiogenesis in Spinal Cord Injury: Progress and Treatment. Cureus 2022; 14:e25475. [PMID: 35800787 PMCID: PMC9246426 DOI: 10.7759/cureus.25475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 05/29/2022] [Indexed: 11/22/2022] Open
Abstract
Traumatic spinal cord injury (SCI) provokes the onset of an intricate pathological process. Initial primary injury ruptures local micro-neuro-vascularcomplex triggering the commencement of multi-factorial secondary sequences which exert significant influence on neurological deterioration progress. Stimulating by local ischemia, neovascularization pathways emerge to provide neuroprotection and improve functional recovery. Although angiogenetic processes are prompted, newly formed vascular system is frequently inadequate to distribute sufficient blood supply and improve axonal recovery. Several treatment interventions have been endeavored to achieve the optimal conditions in SCI microenvironment, enhancing angiogenesis and improve functional recovery. In this study we review the revascularization pathogenesis and importance within the secondary processes and condense the proangiogenic influence of several angiogenetic-targeted treatment interventions.
Collapse
|
8
|
Tsuji-Tamura K, Tamura M. Basic fibroblast growth factor uniquely stimulates quiescent vascular smooth muscle cells and induces proliferation and dedifferentiation. FEBS Lett 2022; 596:1686-1699. [PMID: 35363891 DOI: 10.1002/1873-3468.14345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/17/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 11/11/2022]
Abstract
Blood vessels normally remain stable over the long-term. However, in atherosclerosis, vascular cells leave the quiescent state and enter an activated state. Here, we investigated the factors that trigger breakage of the quiescent state by screening growth factors and cytokines using a vascular smooth muscle cell (SMC) line and an endothelial cell (EC) line. Despite known functions of the tested factors, only basic fibroblast growth factor (bFGF) was identified as a potent trigger of quiescence breakage in SMCs, but not ECs. bFGF disrupted tight SMC-monolayers, and caused morphological changes, proliferation and dedifferentiation. Human primary SMCs, but not ECs, also showed similar results. Aberrant SMC-proliferation is a critical histological event in atherosclerosis. We thus provide further insights into the role of bFGF in vascular pathobiology.
Collapse
Affiliation(s)
- Kiyomi Tsuji-Tamura
- Oral Biochemistry and Molecular Biology, Department of Oral Health Science, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo, 060-8586, Japan
| | - Masato Tamura
- Oral Biochemistry and Molecular Biology, Department of Oral Health Science, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo, 060-8586, Japan
| |
Collapse
|
9
|
Liabotis A, Ardidie-Robouant C, Mailly P, Besbes S, Gutierrez C, Atlas Y, Muller L, Germain S, Monnot C. Angiopoietin-like 4-Induced 3D Capillary Morphogenesis Correlates to Stabilization of Endothelial Adherens Junctions and Restriction of VEGF-Induced Sprouting. Biomedicines 2022; 10:biomedicines10020206. [PMID: 35203415 PMCID: PMC8869696 DOI: 10.3390/biomedicines10020206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/22/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 11/22/2022] Open
Abstract
Angiopoietin-like 4 (ANGPTL4) is a target of hypoxia that accumulates in the endothelial extracellular matrix. While ANGPTL4 is known to regulate angiogenesis and vascular permeability, its context-dependent role related to vascular endothelial growth factor (VEGF) has been suggested in capillary morphogenesis. We here thus develop in vitro 3D models coupled to imaging and morphometric analysis of capillaries to decipher ANGPTL4 functions either alone or in the presence of VEGF. ANGPTL4 induces the formation of barely branched and thin endothelial capillaries that display linear adherens junctions. However, ANGPTL4 counteracts VEGF-induced formation of abundant ramified capillaries presenting cell–cell junctions characterized by VE-cadherin containing reticular plaques and serrated structures. We further deciphered the early angiogenesis steps regulated by ANGPTL4. During the initial activation of endothelial cells, ANGPTL4 alone induces cell shape changes but limits the VEGF-induced cell elongation and unjamming. In the growing sprout, ANGPTL4 maintains cohesive VE-cadherin pattern and sustains moderate 3D cell migration but restricts VEGF-induced endothelium remodeling and cell migration. This effect is mediated by differential short- and long-term regulation of P-Y1175-VEGFR2 and ERK1-2 signaling by ANGPTL4. Our in vitro 3D models thus provide the first evidence that ANGPTL4 induces a specific capillary morphogenesis but also overcomes VEGF effect.
Collapse
Affiliation(s)
- Athanasia Liabotis
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, F-75005 Paris, France; (A.L.); (C.A.-R.); (P.M.); (S.B.); (C.G.); (Y.A.); (L.M.)
- Collège Doctoral, Sorbonne Université, F-75006 Paris, France
| | - Corinne Ardidie-Robouant
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, F-75005 Paris, France; (A.L.); (C.A.-R.); (P.M.); (S.B.); (C.G.); (Y.A.); (L.M.)
| | - Philippe Mailly
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, F-75005 Paris, France; (A.L.); (C.A.-R.); (P.M.); (S.B.); (C.G.); (Y.A.); (L.M.)
| | - Samaher Besbes
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, F-75005 Paris, France; (A.L.); (C.A.-R.); (P.M.); (S.B.); (C.G.); (Y.A.); (L.M.)
| | - Charly Gutierrez
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, F-75005 Paris, France; (A.L.); (C.A.-R.); (P.M.); (S.B.); (C.G.); (Y.A.); (L.M.)
| | - Yoann Atlas
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, F-75005 Paris, France; (A.L.); (C.A.-R.); (P.M.); (S.B.); (C.G.); (Y.A.); (L.M.)
- Collège Doctoral, Sorbonne Université, F-75006 Paris, France
| | - Laurent Muller
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, F-75005 Paris, France; (A.L.); (C.A.-R.); (P.M.); (S.B.); (C.G.); (Y.A.); (L.M.)
| | - Stéphane Germain
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, F-75005 Paris, France; (A.L.); (C.A.-R.); (P.M.); (S.B.); (C.G.); (Y.A.); (L.M.)
- Correspondence: (S.G.); (C.M.)
| | - Catherine Monnot
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, F-75005 Paris, France; (A.L.); (C.A.-R.); (P.M.); (S.B.); (C.G.); (Y.A.); (L.M.)
- Correspondence: (S.G.); (C.M.)
| |
Collapse
|
10
|
FOXO1 Is a Critical Switch Molecule for Autophagy and Apoptosis of Sow Endometrial Epithelial Cells Caused by Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2021:1172273. [PMID: 34970413 PMCID: PMC8714345 DOI: 10.1155/2021/1172273] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 07/12/2021] [Revised: 10/17/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023]
Abstract
Oxidative stress (OS) is involved in various reproductive diseases and can induce autophagy and apoptosis, which determine the different fates of cells. However, the sequence and the switch mechanism between autophagy and apoptosis are unclear. Here, we reported that chronic restraint stress (CRS) induced OS (decreased T-AOC, T-SOD, CAT and GSH-Px and increased MDA) and then disturbed the endocrine environment of sows during early pregnancy, including the hypothalamic-pituitary-ovarian (HPO) and the hypothalamic-pituitary-adrenal (HPA) axes. Meanwhile, after CRS, the KEAP1/NRF2 pathway was inhibited and attenuated the antioxidative ability to cause OS of the endometrium. The norepinephrine (NE) triggered β2-AR to activate the FOXO1/NF-κB pathway, which induced endometrial inflammation. CRS induced the caspase-dependent apoptosis pathway and caused MAP1LC3-II accumulation, SQSTM1/p62 degradation, and autophagosome formation to initiate autophagy. Furthermore, in vitro, a cellular OS model was established by adding hydrogen peroxide into cells. Low OS maintained the viability of endometrial epithelial cells by triggering autophagy, while high OS induced cell death by initiating caspase-dependent apoptosis. Autophagy preceded the occurrence of apoptosis, which depended on the subcellular localization of FOXO1. In the low OS group, FOXO1 was exported from the nucleus to be modified into Ac-FOXO1 and bound to ATG7 in the cytoplasm, which promoted autophagy to protect cells. In the high OS group, FOXO1 located in the nucleus to promote transcription of proapoptotic proteins and then induce apoptosis. Here, FOXO1, as a redox sensor switch, regulated the transformation of cell autophagy and apoptosis. In summary, the posttranslational modification of FOXO1 may become the target of OS treatment.
Collapse
|
11
|
Adrian E, Treľová D, Filová E, Kumorek M, Lobaz V, Poreba R, Janoušková O, Pop-Georgievski O, Lacík I, Kubies D. Complexation of CXCL12, FGF-2 and VEGF with Heparin Modulates the Protein Release from Alginate Microbeads. Int J Mol Sci 2021; 22:11666. [PMID: 34769095 PMCID: PMC8583835 DOI: 10.3390/ijms222111666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/19/2022] Open
Abstract
Long-term delivery of growth factors and immunomodulatory agents is highly required to support the integrity of tissue in engineering constructs, e.g., formation of vasculature, and to minimize immune response in a recipient. However, for proteins with a net positive charge at the physiological pH, controlled delivery from negatively charged alginate (Alg) platforms is challenging due to electrostatic interactions that can hamper the protein release. In order to regulate such interactions between proteins and the Alg matrix, we propose to complex proteins of interest in this study - CXCL12, FGF-2, VEGF - with polyanionic heparin prior to their encapsulation into Alg microbeads of high content of α-L-guluronic acid units (high-G). This strategy effectively reduced protein interactions with Alg (as shown by model ITC and SPR experiments) and, depending on the protein type, afforded control over the protein release for at least one month. The released proteins retained their in vitro bioactivity: CXCL12 stimulated the migration of Jurkat cells, and FGF-2 and VEGF induced proliferation and maturation of HUVECs. The presence of heparin also intensified protein biological efficiency. The proposed approach for encapsulation of proteins with a positive net charge into high-G Alg hydrogels is promising for controlled long-term protein delivery under in vivo conditions.
Collapse
Affiliation(s)
- Edyta Adrian
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq.2, 162 06 Prague, Czech Republic; (E.A.); (M.K.); (V.L.); (R.P.); (O.J.); (O.P.-G.)
- Department of Chemical Engineering, University of Chemistry and Technology, Technicka 5, 166 28 Prague, Czech Republic
| | - Dušana Treľová
- Polymer Institute of the Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia; (D.T.); (I.L.)
| | - Elena Filová
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic;
| | - Marta Kumorek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq.2, 162 06 Prague, Czech Republic; (E.A.); (M.K.); (V.L.); (R.P.); (O.J.); (O.P.-G.)
| | - Volodymyr Lobaz
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq.2, 162 06 Prague, Czech Republic; (E.A.); (M.K.); (V.L.); (R.P.); (O.J.); (O.P.-G.)
| | - Rafal Poreba
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq.2, 162 06 Prague, Czech Republic; (E.A.); (M.K.); (V.L.); (R.P.); (O.J.); (O.P.-G.)
| | - Olga Janoušková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq.2, 162 06 Prague, Czech Republic; (E.A.); (M.K.); (V.L.); (R.P.); (O.J.); (O.P.-G.)
| | - Ognen Pop-Georgievski
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq.2, 162 06 Prague, Czech Republic; (E.A.); (M.K.); (V.L.); (R.P.); (O.J.); (O.P.-G.)
| | - Igor Lacík
- Polymer Institute of the Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia; (D.T.); (I.L.)
- Centre for Advanced Materials Application of the Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava, Slovakia
| | - Dana Kubies
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq.2, 162 06 Prague, Czech Republic; (E.A.); (M.K.); (V.L.); (R.P.); (O.J.); (O.P.-G.)
| |
Collapse
|
12
|
Hanidziar D, Robson SC. Synapomorphic features of hepatic and pulmonary vasculatures include comparable purinergic signaling responses in host defense and modulation of inflammation. Am J Physiol Gastrointest Liver Physiol 2021; 321:G200-G212. [PMID: 34105986 PMCID: PMC8410108 DOI: 10.1152/ajpgi.00406.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 01/31/2023]
Abstract
Hepatosplanchnic and pulmonary vasculatures constitute synapomorphic, highly comparable networks integrated with the external environment. Given functionality related to obligatory requirements of "feeding and breathing," these organs are subject to constant environmental challenges entailing infectious risk, antigenic and xenobiotic exposures. Host responses to these stimuli need to be both protective and tightly regulated. These functions are facilitated by dualistic, high-low pressure blood supply of the liver and lungs, as well as tolerogenic characteristics of resident immune cells and signaling pathways. Dysregulation in hepatosplanchnic and pulmonary blood flow, immune responses, and microbiome implicate common pathogenic mechanisms across these vascular networks. Hepatosplanchnic diseases, such as cirrhosis and portal hypertension, often impact lungs and perturb pulmonary circulation and oxygenation. The reverse situation is also noted with lung disease resulting in hepatic dysfunction. Others, and we, have described common features of dysregulated cell signaling during liver and lung inflammation involving extracellular purines (e.g., ATP, ADP), either generated exogenously or endogenously. These metabokines serve as danger signals, when released by bacteria or during cellular stress and cause proinflammatory and prothrombotic signals in the gut/liver-lung vasculature. Dampening of these danger signals and organ protection largely depends upon activities of vascular and immune cell-expressed ectonucleotidases (CD39 and CD73), which convert ATP and ADP into anti-inflammatory adenosine. However, in many inflammatory disorders involving gut, liver, and lung, these protective mechanisms are compromised, causing perpetuation of tissue injury. We propose that interventions that specifically target aberrant purinergic signaling might prevent and/or ameliorate inflammatory disorders of the gut/liver and lung axis.
Collapse
Affiliation(s)
- Dusan Hanidziar
- 1Department of Anesthesia, Critical Care and Pain Medicine, grid.32224.35Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Simon C. Robson
- 2Department of Anesthesia, Critical Care and Pain Medicine, Center for Inflammation Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts,3Department of Medicine, Division of Gastroenterology/Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
13
|
Tsuji-Tamura K, Morino-Koga S, Suzuki S, Ogawa M. The canonical smooth muscle cell marker TAGLN is present in endothelial cells and is involved in angiogenesis. J Cell Sci 2021; 134:jcs254920. [PMID: 34338296 DOI: 10.1242/jcs.254920] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/25/2020] [Accepted: 06/30/2021] [Indexed: 12/24/2022] Open
Abstract
Elongation of vascular endothelial cells (ECs) is an important process in angiogenesis; however, the molecular mechanisms remain unknown. The actin-crosslinking protein TAGLN (transgelin, also known as SM22 or SM22α) is abundantly expressed in smooth muscle cells (SMCs) and is widely used as a canonical marker for this cell type. In the course of studies using mouse embryonic stem cells (ESCs) carrying an Tagln promoter-driven fluorescence marker, we noticed activation of the Tagln promoter during EC elongation. Tagln promoter activation co-occurred with EC elongation in response to vascular endothelial growth factor A (VEGF-A). Inhibition of phosphoinositide 3-kinase (PI3K)-Akt signaling and mTORC1 also induced EC elongation and Tagln promoter activation. Human umbilical vein endothelial cells (HUVECs) elongated, activated the TAGLN promoter and increased TAGLN transcripts in an angiogenesis model. Genetic disruption of TAGLN augmented angiogenic behaviors of HUVECs, as did the disruption of TAGLN2 and TAGLN3 genes. Tagln expression was found in ECs in mouse embryos. Our results identify TAGLN as a putative regulator of angiogenesis whose expression is activated in elongating ECs. This finding provides insight into the cytoskeletal regulation of EC elongation and an improved understanding of the molecular mechanisms underlying the regulation of angiogenesis.
Collapse
Affiliation(s)
- Kiyomi Tsuji-Tamura
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | - Saori Morino-Koga
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | - Shingo Suzuki
- Support Section for Education and Research, Faculty of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo 060-8586, Japan
| | - Minetaro Ogawa
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| |
Collapse
|
14
|
Watterston C, Halabi R, McFarlane S, Childs SJ. Endothelial Semaphorin 3fb regulates Vegf pathway-mediated angiogenic sprouting. PLoS Genet 2021; 17:e1009769. [PMID: 34424892 PMCID: PMC8412281 DOI: 10.1371/journal.pgen.1009769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/01/2021] [Revised: 09/02/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Vessel growth integrates diverse extrinsic signals with intrinsic signaling cascades to coordinate cell migration and sprouting morphogenesis. The pro-angiogenic effects of Vascular Endothelial Growth Factor (VEGF) are carefully controlled during sprouting to generate an efficiently patterned vascular network. We identify crosstalk between VEGF signaling and that of the secreted ligand Semaphorin 3fb (Sema3fb), one of two zebrafish paralogs of mammalian Sema3F. The sema3fb gene is expressed by endothelial cells in actively sprouting vessels. Loss of sema3fb results in abnormally wide and stunted intersegmental vessel artery sprouts. Although the sprouts initiate at the correct developmental time, they have a reduced migration speed. These sprouts have persistent filopodia and abnormally spaced nuclei suggesting dysregulated control of actin assembly. sema3fb mutants show simultaneously higher expression of pro-angiogenic (VEGF receptor 2 (vegfr2) and delta-like 4 (dll4)) and anti-angiogenic (soluble VEGF receptor 1 (svegfr1)/ soluble Fms Related Receptor Tyrosine Kinase 1 (sflt1)) pathway components. We show increased phospho-ERK staining in migrating angioblasts, consistent with enhanced Vegf activity. Reducing Vegfr2 kinase activity in sema3fb mutants rescues angiogenic sprouting. Our data suggest that Sema3fb plays a critical role in promoting endothelial sprouting through modulating the VEGF signaling pathway, acting as an autocrine cue that modulates intrinsic growth factor signaling.
Collapse
Affiliation(s)
- Charlene Watterston
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Rami Halabi
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Sarah McFarlane
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Canada
| | - Sarah J. Childs
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| |
Collapse
|
15
|
Al-Amili M, Jin Z, Wang Z, Guo S. Self-Assembled Micelles of Amphiphilic PEGylated Drugs for Cancer Treatment. Curr Drug Targets 2021; 22:870-881. [PMID: 33390113 DOI: 10.2174/1389450122666201231130702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/02/2020] [Revised: 10/18/2020] [Accepted: 11/11/2020] [Indexed: 11/22/2022]
Abstract
Generally, poor solubility and imprecise delivery of chemotherapeutic drugs can compromise their efficacies for clinical cancer treatment. In order to address such concerns, poor water-soluble drugs are conjugated with poly(ethylene glycol) (PEG) to obtain PEGylated drugs, which have improved water solubility and can also self-assemble in an aqueous solution to form micelles (PEGylated drug micelles). The surface PEG layer enhances the micelles' colloidal stability and reduces the interaction with physiological surroundings. Meanwhile, PEGylated drug micelles are tumor- targeting via the enhanced permeation and retention (EPR) effect to improve antitumor efficacy in comparison with free drugs. PEGylated drug micelles employ drugs as parts of the carrier medium, which increases the micelles' drug loading capacity relatively. The development of stimuli- responsive PEGylated drug micelles facilitates the drug release to be smart and controllable. Moreover, the PEGylated drug micelles show great potentials in overcoming the challenges of cancer therapy, such as multidrug resistance (MDR), angiogenesis, immunosuppression, and so on. In this review, we highlight the research progresses of PEGylated drug micelles, including the structures and properties, smart stimuli-responsive PEGylated drug micelles, and the challenges that have been overcome by PEGylated drug micelles.
Collapse
Affiliation(s)
- Majdi Al-Amili
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhu Jin
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhongmin Wang
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shengrong Guo
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
16
|
Yao C, Cao X, Yu B. Revascularization After Traumatic Spinal Cord Injury. Front Physiol 2021; 12:631500. [PMID: 33995118 PMCID: PMC8119644 DOI: 10.3389/fphys.2021.631500] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/07/2020] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Traumatic spinal cord injury (SCI) is a complex pathological process. The initial mechanical damage is followed by a progressive secondary injury cascade. The injury ruptures the local microvasculature and disturbs blood-spinal cord barriers, exacerbating inflammation and tissue damage. Although endogenous angiogenesis is triggered, the new vessels are insufficient and often fail to function normally. Numerous blood vessel interventions, such as proangiogenic factor administration, gene modulation, cell transplantation, biomaterial implantation, and physical stimulation, have been applied as SCI treatments. Here, we briefly describe alterations and effects of the vascular system on local microenvironments after SCI. Therapies targeted at revascularization for SCI are also summarized.
Collapse
Affiliation(s)
- Chun Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Xuemin Cao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| |
Collapse
|
17
|
Erianthridin suppresses non-small-cell lung cancer cell metastasis through inhibition of Akt/mTOR/p70 S6K signaling pathway. Sci Rep 2021; 11:6618. [PMID: 33758209 PMCID: PMC7987990 DOI: 10.1038/s41598-021-85675-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2020] [Accepted: 03/04/2021] [Indexed: 01/31/2023] Open
Abstract
Cancer metastasis is a major cause of the high mortality rate in lung cancer patients. The cytoskeletal rearrangement and degradation of extracellular matrix are required to facilitate cell migration and invasion and the suppression of these behaviors is an intriguing approach to minimize cancer metastasis. Even though Erianthridin (ETD), a phenolic compound isolated from the Thai orchid Dendrobium formosum exhibits various biological activities, the molecular mechanism of ETD for anti-cancer activity is unclear. In this study, we found that noncytotoxic concentrations of ETD (≤ 50 μM) were able to significantly inhibit cell migration and invasion via disruption of actin stress fibers and lamellipodia formation. The expression of matrix metalloproteinase-2 (MMP-2) and MMP-9 was markedly downregulated in a dose-dependent manner after ETD treatment. Mechanistic studies revealed that protein kinase B (Akt) and its downstream effectors mammalian target of rapamycin (mTOR) and p70 S6 kinase (p70S6K) were strongly attenuated. An in silico study further demonstrated that ETD binds to the protein kinase domain of Akt with both hydrogen bonding and van der Waals interactions. In addition, an in vivo tail vein injection metastasis study demonstrated a significant effect of ETD on the suppression of lung cancer cell metastasis. This study provides preclinical information regarding ETD, which exhibits promising antimetastatic activity against non-small-cell lung cancer through Akt/mTOR/p70S6K-induced actin reorganization and MMPs expression.
Collapse
|
18
|
Hernández-Cáceres MP, Munoz L, Pradenas JM, Pena F, Lagos P, Aceiton P, Owen GI, Morselli E, Criollo A, Ravasio A, Bertocchi C. Mechanobiology of Autophagy: The Unexplored Side of Cancer. Front Oncol 2021; 11:632956. [PMID: 33718218 PMCID: PMC7952994 DOI: 10.3389/fonc.2021.632956] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/24/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Proper execution of cellular function, maintenance of cellular homeostasis and cell survival depend on functional integration of cellular processes and correct orchestration of cellular responses to stresses. Cancer transformation is a common negative consequence of mismanagement of coordinated response by the cell. In this scenario, by maintaining the balance among synthesis, degradation, and recycling of cytosolic components including proteins, lipids, and organelles the process of autophagy plays a central role. Several environmental stresses activate autophagy, among those hypoxia, DNA damage, inflammation, and metabolic challenges such as starvation. In addition to these chemical challenges, there is a requirement for cells to cope with mechanical stresses stemming from their microenvironment. Cells accomplish this task by activating an intrinsic mechanical response mediated by cytoskeleton active processes and through mechanosensitive protein complexes which interface the cells with their mechano-environment. Despite autophagy and cell mechanics being known to play crucial transforming roles during oncogenesis and malignant progression their interplay is largely overlooked. In this review, we highlight the role of physical forces in autophagy regulation and their potential implications in both physiological as well as pathological conditions. By taking a mechanical perspective, we wish to stimulate novel questions to further the investigation of the mechanical requirements of autophagy and appreciate the extent to which mechanical signals affect this process.
Collapse
Affiliation(s)
- Maria Paz Hernández-Cáceres
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Leslie Munoz
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Javiera M. Pradenas
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Laboratory of Investigation in Oncology, Faculty of Biological Sciences Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Pena
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Pablo Lagos
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Pablo Aceiton
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Gareth I. Owen
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Laboratory of Investigation in Oncology, Faculty of Biological Sciences Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Eugenia Morselli
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
- Autophagy Research Center, Santiago de Chile, Chile
| | - Alfredo Criollo
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Autophagy Research Center, Santiago de Chile, Chile
- Facultad De Odontología, Instituto De Investigación En Ciencias Odontológicas (ICOD), Universidad De Chile, Santiago, Chile
| | - Andrea Ravasio
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristina Bertocchi
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| |
Collapse
|
19
|
Ezeani M, Prabhu S. Pathophysiology and therapeutic relevance of PI3K(p110α) protein in atrial fibrillation: A non-interventional molecular therapy strategy. Pharmacol Res 2021; 165:105415. [PMID: 33412279 DOI: 10.1016/j.phrs.2020.105415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/30/2020] [Revised: 12/04/2020] [Accepted: 12/23/2020] [Indexed: 10/22/2022]
Abstract
Genetically modified animal studies have revealed specific expression patterns and unequivocal roles of class I PI3K isoenzymes. PI3K(p110α), a catalytic subunit of class I PI3Ks is ubiquitously expressed and is well characterised in the cardiovascular system. Given that genetic inhibition of PI3K(p110α) causes lethal phenotype embryonically, the catalytic subunit is critically important in housekeeping and biological processes. A growing number of studies underpin crucial roles of PI3K(p110α) in cell survival, proliferation, hypertrophy and arrhythmogenesis. While the studies provide great insights, the precise mechanisms involved in PI3K(p110α) hypofunction and atrial fibrillation (AF) are not fully known. AF is a well recognised clinical problem with significant management limitations. In this translational review, we attempted a narration of PI3K(p110α) hypofunction in the molecular basis of AF pathophysiology. We sought to cautiously highlight the relevance of this molecule in the therapeutic approaches for AF management per se (i.e without conditions associate with cell proliferation, like cancer), and in mitigating effects of clinical risk factors in atrial substrate formation leading to AF progression. We also considered PI3K(p110α) in AF gene association, with the aim of identifying mechanistic links between the ever increasingly well-defined genetic loci (regions and genes) and AF. Such mechanisms will aid in identifying new drug targets for arrhythmogenic substrate and AF.
Collapse
Affiliation(s)
- Martin Ezeani
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia.
| | - Sandeep Prabhu
- The Alfred, and Baker Heart and Diabetes Institute, Melbourne, Australia; University of Melbourne, Melbourne, Australia
| |
Collapse
|
20
|
Tsuji-Tamura K, Sato M, Fujita M, Tamura M. The role of PI3K/Akt/mTOR signaling in dose-dependent biphasic effects of glycine on vascular development. Biochem Biophys Res Commun 2020; 529:596-602. [DOI: 10.1016/j.bbrc.2020.06.085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022]
|
21
|
Jeong YJ, Hwang SK, Magae J, Chang YC. Ascofuranone suppresses invasion and F-actin cytoskeleton organization in cancer cells by inhibiting the mTOR complex 1 signaling pathway. Cell Oncol (Dordr) 2020; 43:793-805. [PMID: 32488849 DOI: 10.1007/s13402-020-00520-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/24/2019] [Revised: 03/29/2020] [Accepted: 04/15/2020] [Indexed: 11/28/2022] Open
Abstract
PURPOSE Ascofuranone is an antiviral antibiotic that is known to exert multiple anti-tumor effects, including cell cycle arrest, inhibition of mitochondrial respiration, and inhibition of angiogenesis. In this study, we investigated the molecular mechanisms underlying the anti-metastatic effects of ascofuranone in insulin-like growth factor-I (IGF-1)-responsive cancer cells. METHODS The inhibitory effect of ascofuranone on cancer cell migration and invasion was assessed using scratch wound healing and Matrigel invasion assays, respectively. F-actin cytoskeleton organization was assessed using FITC conjugated phalloidin staining. Target gene expression was evaluated using Western blotting and gene silencing was performed using siRNA transfections. Finally, the anti-metastatic effect of ascofuranone was investigated in vivo. RESULTS We found that ascofuranone suppressed IGF-1-induced cell migration, invasion and motility in multiple cancer cell lines. The effects of ascofuranone on actin cytoskeleton organization were found to be mediated by suppression of the mTOR/p70S6K/4EBP1 pathway. Ascofuranone inhibited IGF-1-induced mTOR phosphorylation and actin cytoskeleton organization via upregulation of AMPK and downregulation of Akt phosphorylation. It also selectively suppressed the IGF-1-induced mTOR complex (mTORC)1 by phosphorylation of Raptor, but did not affect mTORC2. Furthermore, we found that focal adhesion kinase (FAK) activation decreased in response to ascofuranone, rapamycin, compound C and wortmannin treatment. Finally, we found that ascofuranone suppressed phosphorylation of FAK and mTOR and dephosphorylation of Raptor in cancerous metastatic lung tissues in vivo. CONCLUSIONS Our data indicate that ascofuranone suppresses IGF-1-induced cancer cell migration and invasion by blocking actin cytoskeleton organization and FAK activation through inhibition of the mTORC1 pathway, and reveal a novel anti-metastatic function of this compound.
Collapse
Affiliation(s)
- Yun-Jeong Jeong
- Research Institute of Biomedical Engineering, Department of Medicine, Catholic University of Daegu School of Medicine, 42472, Deagu, Korea
| | - Soon-Kyung Hwang
- Research Institute of Biomedical Engineering, Department of Medicine, Catholic University of Daegu School of Medicine, 42472, Deagu, Korea
| | - Junji Magae
- Magae Bioscience Institute, 49-4 Fujimidai, 300-1263, Tsukuba, Japan
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering, Department of Medicine, Catholic University of Daegu School of Medicine, 42472, Deagu, Korea. .,Department of Cell Biology, Catholic University of Daegu School of Medicine, 3056-6, Daemyung-4-Dong, Nam-gu, 42472, Daegu, Korea.
| |
Collapse
|
22
|
Tsuji-Tamura K, Sato M, Fujita M, Tamura M. Glycine exerts dose-dependent biphasic effects on vascular development of zebrafish embryos. Biochem Biophys Res Commun 2020; 527:539-544. [DOI: 10.1016/j.bbrc.2020.04.098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/15/2020] [Accepted: 04/19/2020] [Indexed: 12/31/2022]
|
23
|
Chen L, Bai J, Li Y. miR‑29 mediates exercise‑induced skeletal muscle angiogenesis by targeting VEGFA, COL4A1 and COL4A2 via the PI3K/Akt signaling pathway. Mol Med Rep 2020; 22:661-670. [PMID: 32467996 PMCID: PMC7339600 DOI: 10.3892/mmr.2020.11164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/26/2019] [Accepted: 03/12/2020] [Indexed: 12/31/2022] Open
Abstract
The present study investigated the molecular changes and related regulatory mechanisms in the response of skeletal muscle to exercise. The microarray dataset ‘GSE109657’ of the skeletal muscle response to high-intensity intermittent exercise training (HIIT) was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened and analyzed using weighted gene co-expression network analysis (WGCNA) to identify the significant functional co-expressed gene modules. Moreover, functional enrichment analysis was performed for the DEGs in the significant modules. In addition, protein-protein interaction (PPI) network and microRNA (miR)-transcription factor (TF)-target regulatory network were constructed. A total of 530 DEGs in the skeletal muscle were screened after HIIT, suggesting an effect of HIIT on the skeletal muscle. Moreover, three significant modules (brown, blue and red modules) were identified after WGCNA, and the genes Collagen Type IV α1 Chain (COL4A1) and COL4A2 in the brown module showed the strongest correlation with HIIT. The DEGs in the three modules were significantly enriched in focal adhesion, extracellular matrix organization and the PI3K/Akt signaling pathway. Furthermore, the PPI network contained 104 nodes and 211 interactions. Vascular endothelial growth factor A (VEGFA), COL4A1 and COL4A2 were the hub genes in the PPI network, and were all regulated by miR-29a/b/c. In addition, VEGFA, COL4A1 and COL4A2 were significantly upregulated in the skeletal muscle response to HIIT. Therefore, the present results suggested that the growth and migration of vascular endothelial cells, and skeletal muscle angiogenesis may be regulated by miR-29a/b/c targeting VEGFA, COL4A1 and COL4A2 via the PI3K/Akt signaling pathway. The present results may provide a theoretical basis to investigate the effect of exercise on skeletal muscle.
Collapse
Affiliation(s)
- Lei Chen
- Department of Physical Education, Shanghai Jiaotong University, Shanghai 200240, P.R. China
| | - Jun Bai
- Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Yanfei Li
- Office of Academic Research, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, P.R. China
| |
Collapse
|
24
|
Khor ES, Wong PF. The roles of MTOR and miRNAs in endothelial cell senescence. Biogerontology 2020; 21:517-530. [PMID: 32246301 DOI: 10.1007/s10522-020-09876-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/21/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022]
Abstract
Accumulation of senescent cells in vascular endothelium is known to contribute to vascular aging and increases the risk of developing cardiovascular diseases. The involvement of classical pathways such as p53/p21 and p16/pRB in cellular senescence are well described but there are emerging evidence supporting the increasingly important role of mammalian target of rapamycin (MTOR) as driver of cellular senescence via these pathways or other effector molecules. MicroRNAs (miRNAs) are a highly conserved group of small non-coding RNAs (18-25 nucleotides), instrumental in modulating the expression of target genes associated with various biological and cellular processes including cellular senescence. The inhibition of MTOR activity is predominantly linked to cellular senescence blunting and prolonged lifespan in model organisms. To date, known miRNAs regulating MTOR in endothelial cell senescence remain limited. Herein, this review discusses the roles of MTOR and MTOR-associated miRNAs in regulating endothelial cell senescence, including the crosstalk between MTOR Complex 1 (MTORC1) and cell cycle pathways and the emerging role of MTORC2 in cellular senescence. New insights on how MTOR and miRNAs coordinate underlying molecular mechanisms of endothelial senescence will provide deeper understanding and clarity to the complexity of the regulation of cellular senescence.
Collapse
Affiliation(s)
- Eng-Soon Khor
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
25
|
Rethineswaran VK, Kim YJ, Jang WB, Ji ST, Kang S, Kim DY, Park JH, Van LTH, Giang LTT, Ha JS, Yun J, Lee DH, Yu SN, Park SG, Ahn SC, Kwon SM. Enzyme-Aided Extraction of Fucoidan by AMG Augments the Functionality of EPCs through Regulation of the AKT/Rheb Signaling Pathway. Mar Drugs 2019; 17:md17070392. [PMID: 31277207 PMCID: PMC6669526 DOI: 10.3390/md17070392] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/20/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 12/21/2022] Open
Abstract
The purpose of the present study is to improve the endothelial progenitor cells (EPC) activation, proliferation, and angiogenesis using enzyme-aided extraction of fucoidan by amyloglucosidase (EAEF-AMG). Enzyme-aided extraction of fucoidan by AMG (EAEF-AMG) significantly increased EPC proliferation by reducing the reactive oxygen species (ROS) and decreasing apoptosis. Notably, EAEF-AMG treated EPCs repressed the colocalization of TSC2/LAMP1 and promoted perinuclear localization of mTOR/LAMP1 and mTOR/Rheb. Moreover, EAEF-AMG enhanced EPC functionalities, including tube formation, cell migration, and wound healing via regulation of AKT/Rheb signaling. Our data provided cell priming protocols to enhance therapeutic applications of EPCs using bioactive compounds for the treatment of CVD.
Collapse
Affiliation(s)
- Vinoth Kumar Rethineswaran
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Yeon-Ju Kim
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Woong Bi Jang
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Seung Taek Ji
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Songhwa Kang
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Da Yeon Kim
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Ji Hye Park
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Le Thi Hong Van
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Ly Thanh Truong Giang
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Jong Seong Ha
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Jisoo Yun
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Dong Hyung Lee
- Department of Obstetrics and Gynecology, Biomedical Research Institute, Pusan National University School of Medicine, Busan 46241, Korea
| | - Sun-Nyoung Yu
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Sul-Gi Park
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Soon-Cheol Ahn
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Sang-Mo Kwon
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea.
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea.
- Research Institute of Convergence Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea.
| |
Collapse
|
26
|
Hao L, Lei X, Zhou H, Marshall AJ, Liu L. Critical role for PI3Kγ-dependent neutrophil reactive oxygen species in WKYMVm-induced microvascular hyperpermeability. J Leukoc Biol 2019; 106:1117-1127. [PMID: 31216371 DOI: 10.1002/jlb.3a0518-184rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/07/2019] [Revised: 04/30/2019] [Accepted: 06/04/2019] [Indexed: 11/06/2022] Open
Abstract
PI3K has been indicated in regulating microvascular permeability changes during inflammation. However, its role in neutrophil-driven microvascular leakage in acute inflammation remains unclear. Using intravital microscopy in mice, we examined the role of PI3Kγ and PI3Kδ in formyl peptide WKYMVm- and chemokine CXCL2-induced permeability changes and assessed simultaneously neutrophil adhesion and emigration in post-capillary venules of murine cremaster muscle. We found a PI3Kγ-specific mechanism in WKYMVm-induced but not CXCL2-induced microvascular hyperpermeability. The increased microvascular permeability triggered by WKYMVm was not entirely due to neutrophil adhesion and emigration in cremasteric microvasculature in different PI3K transgenic mouse strains. The PI3Kγ-specific hyperpermeability was neutrophil-mediated as this was reduced after depletion of neutrophils in mouse circulation. Chimeric mice with PI3Kγ-deficient neutrophils but wild-type endothelium also showed reduced hyperpermeability. Furthermore, we found that the catalytic function of PI3Kγ was required for reactive oxygen species (ROS) generation in neutrophils stimulated with WKYMVm. Pharmacological scavenging PI3Kγ-dependent ROS in the tissue eliminated the discrepancy in hyperpermeability between different PI3K transgenic mice and alleviated WKYMVm-induced microvascular leakage in all mouse strains tested. In conclusion, our study uncovers the critical role for PI3Kγ-dependent ROS generation by neutrophils in formyl peptide-induced microvascular hyperpermeability during neutrophil recruitment.
Collapse
Affiliation(s)
- Li Hao
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Xi Lei
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Hong Zhou
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Aaron J Marshall
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lixin Liu
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
27
|
Abstract
ABSTRACT
Junction dynamics of endothelial cells are based on the integration of signal transduction, cytoskeletal remodeling and contraction, which are necessary for the formation and maintenance of monolayer integrity, but also enable repair and regeneration. The VE-cadherin–catenin complex forms the molecular basis of the adherence junctions and cooperates closely with actin filaments. Several groups have recently described small actin-driven protrusions at the cell junctions that are controlled by the Arp2/3 complex, contributing to cell junction regulation. We identified these protrusions as the driving force for VE-cadherin dynamics, as they directly induce new VE-cadherin-mediated adhesion sites, and have accordingly referred to these structures as junction-associated intermittent lamellipodia (JAIL). JAIL extend over only a few microns and thus provide the basis for a subcellular regulation of adhesion. The local (subcellular) VE-cadherin concentration and JAIL formation are directly interdependent, which enables autoregulation. Therefore, this mechanism can contribute a subcellularly regulated adaptation of cell contact dynamics, and is therefore of great importance for monolayer integrity and relative cell migration during wound healing and angiogenesis, as well as for inflammatory responses. In this Review, we discuss the mechanisms and functions underlying these actin-driven protrusions and consider their contribution to the dynamic regulation of endothelial cell junctions.
Collapse
Affiliation(s)
- Jiahui Cao
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Münster Germany
| | - Hans Schnittler
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Münster Germany
| |
Collapse
|
28
|
Angulo-Urarte A, Casado P, Castillo SD, Kobialka P, Kotini MP, Figueiredo AM, Castel P, Rajeeve V, Milà-Guasch M, Millan J, Wiesner C, Serra H, Muixi L, Casanovas O, Viñals F, Affolter M, Gerhardt H, Huveneers S, Belting HG, Cutillas PR, Graupera M. Endothelial cell rearrangements during vascular patterning require PI3-kinase-mediated inhibition of actomyosin contractility. Nat Commun 2018; 9:4826. [PMID: 30446640 PMCID: PMC6240100 DOI: 10.1038/s41467-018-07172-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/13/2017] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
Angiogenesis is a dynamic process relying on endothelial cell rearrangements within vascular tubes, yet the underlying mechanisms and functional relevance are poorly understood. Here we show that PI3Kα regulates endothelial cell rearrangements using a combination of a PI3Kα-selective inhibitor and endothelial-specific genetic deletion to abrogate PI3Kα activity during vessel development. Quantitative phosphoproteomics together with detailed cell biology analyses in vivo and in vitro reveal that PI3K signalling prevents NUAK1-dependent phosphorylation of the myosin phosphatase targeting-1 (MYPT1) protein, thereby allowing myosin light chain phosphatase (MLCP) activity and ultimately downregulating actomyosin contractility. Decreased PI3K activity enhances actomyosin contractility and impairs junctional remodelling and stabilization. This leads to overstretched endothelial cells that fail to anastomose properly and form aberrant superimposed layers within the vasculature. Our findings define the PI3K/NUAK1/MYPT1/MLCP axis as a critical pathway to regulate actomyosin contractility in endothelial cells, supporting vascular patterning and expansion through the control of cell rearrangement. Angiogenesis requires dynamic endothelial rearrangements and relative position changes within the vascular tubes. Here the authors show that a PI3K/NUAK1/MYPT1/MLCP pathway regulates actomyosin contractility in endothelial cells and cellular rearrangement during vascular patterning.
Collapse
Affiliation(s)
- Ana Angulo-Urarte
- Vascular Signalling Laboratory, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain
| | - Pedro Casado
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Sandra D Castillo
- Vascular Signalling Laboratory, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain
| | - Piotr Kobialka
- Vascular Signalling Laboratory, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain
| | | | - Ana M Figueiredo
- Vascular Signalling Laboratory, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain
| | - Pau Castel
- Helen Diller Family Comprehensive Cancer Center, University of California-San Francisco, 1450 3rd Street, San Francisco, CA, 94158, USA
| | - Vinothini Rajeeve
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Maria Milà-Guasch
- Vascular Signalling Laboratory, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain
| | - Jaime Millan
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Calle Nicolás Cabrera, 28049, Madrid, Spain
| | - Cora Wiesner
- Biozentrum der Universität Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | - Helena Serra
- Vascular Signalling Laboratory, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain
| | - Laia Muixi
- Vascular Signalling Laboratory, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain
| | - Oriol Casanovas
- Translation Research Laboratory, ProCURE, Oncobell Program, IDIBELL, Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain
| | - Francesc Viñals
- Translation Research Laboratory, ProCURE, Oncobell Program, IDIBELL, Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain.,Departament de Ciències Fisiològiques II, Universitat de Barcelona, Carrer de la Feixa Llarga, 08907, L´Hospitalet de Llobregat, Barcelona, Spain
| | - Markus Affolter
- Biozentrum der Universität Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | - Holger Gerhardt
- Max-Delbrueck Center for Molecular Medicine (MDC), Robert-Rössle-Straße 10, 13125, Berlin, Germany.,The German Center for Cardiovascular Research (DZHK), Oudenarder Str. 16, 13347, Berlin, Germany.,The Berlin Institute of Health (BIH), Berlin, 10178, Germany
| | - Stephan Huveneers
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands
| | - Heinz-Georg Belting
- Biozentrum der Universität Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | - Pedro R Cutillas
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Mariona Graupera
- Vascular Signalling Laboratory, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain. .,CIBERONC, Instituto de Salud Carlos III, Av. de Monforte de Lemos, 5, 28029, Madrid, Spain.
| |
Collapse
|
29
|
Tsuji-Tamura K, Ogawa M. Morphology regulation in vascular endothelial cells. Inflamm Regen 2018; 38:25. [PMID: 30214642 PMCID: PMC6130072 DOI: 10.1186/s41232-018-0083-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/29/2018] [Accepted: 08/07/2018] [Indexed: 12/22/2022] Open
Abstract
Morphological change in endothelial cells is an initial and crucial step in the process of establishing a functional vascular network. Following or associated with differentiation and proliferation, endothelial cells elongate and assemble into linear cord-like vessels, subsequently forming a perfusable vascular tube. In vivo and in vitro studies have begun to outline the underlying genetic and signaling mechanisms behind endothelial cell morphology regulation. This review focuses on the transcription factors and signaling pathways regulating endothelial cell behavior, involved in morphology, during vascular development.
Collapse
Affiliation(s)
- Kiyomi Tsuji-Tamura
- 1Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811 Japan.,2Present Address: Oral Biochemistry and Molecular Biology, Department of Oral Health Science, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, 060-8586 Japan
| | - Minetaro Ogawa
- 1Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811 Japan
| |
Collapse
|
30
|
Kashyap D, Sharma A, Tuli HS, Sak K, Garg VK, Buttar HS, Setzer WN, Sethi G. Apigenin: A natural bioactive flavone-type molecule with promising therapeutic function. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.037] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023] Open
|
31
|
Luo X, Wang D, Zhu X, Wang G, You Y, Ning Z, Li Y, Jin S, Huang Y, Hu Y, Chen T, Meng Y, Li X. Autophagic degradation of caveolin-1 promotes liver sinusoidal endothelial cells defenestration. Cell Death Dis 2018; 9:576. [PMID: 29760379 PMCID: PMC5951836 DOI: 10.1038/s41419-018-0567-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/09/2017] [Revised: 03/25/2018] [Accepted: 04/04/2018] [Indexed: 02/07/2023]
Abstract
Autophagy, interacting with actin cytoskeleton and the NO-dependent pathway, may affect the phenotype and function of endothelial cells. Moreover, caveolin-1 (Cav-1), as a structure protein in liver sinusoidal endothelial cells (LSECs), is closely related to autophagy. Hence, we aim to explore the role of autophagic degradation of Cav-1 in LSECs defenestration. In vivo, we found the increase of autophagy in liver sinusoidal endothelium in human fibrotic liver. Furthermore, autophagy, degradation of Cav-1, and actin filament (F-actin) remodeling were triggered during the process of CCl4-induced LSECs defenestration; in contrast, autophagy inhibitor 3MA diminished the degradation of Cav-1 to maintain fenestrae and relieve CCl4-induced fibrosis. In vitro, during LSECs defenestration, the NO-dependent pathway was down-regulated through the reduction of the PI3K–AKT–MTOR pathway and initiation of autophagic degradation of Cav-1; while, these effects were aggravated by starvation. However, VEGF inhibited autophagic degradation of Cav-1 and F-actin remodeling to maintain LSECs fenestrae via activating the PI3K–AKT–MTOR pathway. Additionally, inhibiting autophagy, such as 3MA, bafilomycin, or ATG5-siRNA, could attenuate the depletion of Cav-1 and F-actin remodeling to maintain LSECs fenestrae and improve the NO-dependent pathway; in turn, eNOS-siRNA and L-NAME, for blocking the NO-dependent pathway, could elevate autophagic degradation of Cav-1 to aggravate defenestration. Finally, overexpressed Cav-1 rescued rapamycin-induced autophagic degradation of Cav-1 to maintain LSECs fenestrae; whereas knockdown of Cav-1 facilitated defenestration due to the activation of the AMPK-dependent autophagy. Consequently, autophagic degradation of Cav-1 promotes LSECs defenestration via inhibiting the NO-dependent pathway and F-actin remodeling.
Collapse
Affiliation(s)
- Xiaoying Luo
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dan Wang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xintao Zhu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guozhen Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuehua You
- Department of Stomatology, People's hospital of Longhua, Shenzhen, Guangdong, China
| | - Zuowei Ning
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Siyi Jin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yun Huang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ye Hu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tingting Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Meng
- Department of Respiratory Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Xu Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
32
|
Tsuji-Tamura K, Ogawa M. Dual inhibition of mTORC1 and mTORC2 perturbs cytoskeletal organization and impairs endothelial cell elongation. Biochem Biophys Res Commun 2018; 497:326-331. [DOI: 10.1016/j.bbrc.2018.02.080] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/06/2018] [Accepted: 02/08/2018] [Indexed: 02/03/2023]
|
33
|
|
34
|
Cao J, Ehling M, März S, Seebach J, Tarbashevich K, Sixta T, Pitulescu ME, Werner AC, Flach B, Montanez E, Raz E, Adams RH, Schnittler H. Polarized actin and VE-cadherin dynamics regulate junctional remodelling and cell migration during sprouting angiogenesis. Nat Commun 2017; 8:2210. [PMID: 29263363 PMCID: PMC5738342 DOI: 10.1038/s41467-017-02373-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/06/2016] [Accepted: 11/24/2017] [Indexed: 02/07/2023] Open
Abstract
VEGFR-2/Notch signalling regulates angiogenesis in part by driving the remodelling of endothelial cell junctions and by inducing cell migration. Here, we show that VEGF-induced polarized cell elongation increases cell perimeter and decreases the relative VE-cadherin concentration at junctions, triggering polarized formation of actin-driven junction-associated intermittent lamellipodia (JAIL) under control of the WASP/WAVE/ARP2/3 complex. JAIL allow formation of new VE-cadherin adhesion sites that are critical for cell migration and monolayer integrity. Whereas at the leading edge of the cell, large JAIL drive cell migration with supportive contraction, lateral junctions show small JAIL that allow relative cell movement. VEGFR-2 activation initiates cell elongation through dephosphorylation of junctional myosin light chain II, which leads to a local loss of tension to induce JAIL-mediated junctional remodelling. These events require both microtubules and polarized Rac activity. Together, we propose a model where polarized JAIL formation drives directed cell migration and junctional remodelling during sprouting angiogenesis. The formation of new blood vessels requires both polarized cell migration and coordinated control of endothelial cell contacts. Here, Cao and colleagues describe at the sub-cellular level the cytoskeletal and cell junction dynamics regulating these processes upon VEGF-induced cell elongation.
Collapse
Affiliation(s)
- Jiahui Cao
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Manuel Ehling
- Max Planck Institute for Molecular Biomedicine and Westfälische Wilhelms University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Sigrid März
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Jochen Seebach
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Katsiaryna Tarbashevich
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, D-48149, Münster, Germany
| | - Tomas Sixta
- Department of Cybernetics, Czech Technical University, 16627, Prague 6, Czech Republic
| | - Mara E Pitulescu
- Max Planck Institute for Molecular Biomedicine and Westfälische Wilhelms University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Ann-Cathrin Werner
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, D-81377 Munich, Germany
| | - Boris Flach
- Department of Cybernetics, Czech Technical University, 16627, Prague 6, Czech Republic
| | - Eloi Montanez
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, D-81377 Munich, Germany
| | - Erez Raz
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, D-48149, Münster, Germany
| | - Ralf H Adams
- Max Planck Institute for Molecular Biomedicine and Westfälische Wilhelms University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Hans Schnittler
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms University of Münster, Faculty of Medicine, D-48149, Münster, Germany.
| |
Collapse
|
35
|
Breier G, Chavakis T, Hirsch E. Angiogenesis in metabolic-vascular disease. Thromb Haemost 2017; 117:1289-1295. [PMID: 28594427 DOI: 10.1160/th17-05-0325] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/11/2017] [Accepted: 05/29/2017] [Indexed: 12/15/2022]
Abstract
Angiogenesis, literally formation of new blood vessels, is the main process through which the vascular system expands during embryonic and postnatal development. Endothelial cells, which constitute the inner lining of all blood vessels, are typically in a quiescent state in the healthy adult organism. However, in vascular and metabolic diseases, the endothelium becomes unstable and dysfunctional. The resulting tissue hypoxia may thereby induce pathological angiogenesis, which is a hallmark of disease conditions like cancer or diabetic retinopathy. However, recent evidence suggests that angiogenesis is also a major player in the context of further metabolic diseases, especially in obesity. In particular, deregulated angiogenesis is linked with adipose tissue dysfunction and insulin resistance. On the other hand, signalling pathways, such as the PI3K pathway, may regulate metabolic activities in the endothelium. Endothelial cell metabolism emerges as an important regulator of angiogenesis. This review summarises the role of angiogenesis in metabolic-vascular disease, with specific focus on the role of angiogenesis in obesity-related metabolic dysfunction and on signaling pathways, especially PI3K, linking cell metabolism to endothelial function.
Collapse
Affiliation(s)
| | - Triantafyllos Chavakis
- Triantafyllos Chavakis, Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany, E-mail:
| | | |
Collapse
|
36
|
Yen CN, Cho YS, Kwon HJ. The effect of indatraline on angiogenesis suppression through HIF-1α-mediated VEGF inhibition. Biochem Biophys Res Commun 2017; 485:349-354. [DOI: 10.1016/j.bbrc.2017.02.077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/12/2017] [Accepted: 02/14/2017] [Indexed: 01/01/2023]
|
37
|
Ola R, Dubrac A, Han J, Zhang F, Fang JS, Larrivée B, Lee M, Urarte AA, Kraehling JR, Genet G, Hirschi KK, Sessa WC, Canals FV, Graupera M, Yan M, Young LH, Oh PS, Eichmann A. PI3 kinase inhibition improves vascular malformations in mouse models of hereditary haemorrhagic telangiectasia. Nat Commun 2016; 7:13650. [PMID: 27897192 PMCID: PMC5141347 DOI: 10.1038/ncomms13650] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/11/2016] [Accepted: 10/20/2016] [Indexed: 12/26/2022] Open
Abstract
Activin receptor-like kinase 1 (ALK1) is an endothelial serine-threonine kinase receptor for bone morphogenetic proteins (BMPs) 9 and 10. Inactivating mutations in the ALK1 gene cause hereditary haemorrhagic telangiectasia type 2 (HHT2), a disabling disease characterized by excessive angiogenesis with arteriovenous malformations (AVMs). Here we show that inducible, endothelial-specific homozygous Alk1 inactivation and BMP9/10 ligand blockade both lead to AVM formation in postnatal retinal vessels and internal organs including the gastrointestinal (GI) tract in mice. VEGF and PI3K/AKT signalling are increased on Alk1 deletion and BMP9/10 ligand blockade. Genetic deletion of the signal-transducing Vegfr2 receptor prevents excessive angiogenesis but does not fully revert AVM formation. In contrast, pharmacological PI3K inhibition efficiently prevents AVM formation and reverts established AVMs. Thus, Alk1 deletion leads to increased endothelial PI3K pathway activation that may be a novel target for the treatment of vascular lesions in HHT2.
Collapse
Affiliation(s)
- Roxana Ola
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Alexandre Dubrac
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Jinah Han
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Feng Zhang
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Jennifer S. Fang
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Bruno Larrivée
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Monica Lee
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Ana A. Urarte
- Vascular Signalling Laboratory, Institut d'Investigació Biomèdica de Bellvitge, L'Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Jan R. Kraehling
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Gael Genet
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Karen K. Hirschi
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - William C. Sessa
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Francesc V. Canals
- Translation Research Laboratory, Catalan Institute of Oncology, Idibell, Barcelona 08908, Spain
| | - Mariona Graupera
- Vascular Signalling Laboratory, Institut d'Investigació Biomèdica de Bellvitge, L'Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Minhong Yan
- Molecular Oncology, Genentech, Inc., South San Francisco, California 94080-4990, USA
| | - Lawrence H. Young
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Paul S. Oh
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, PO Box 100274, Gainesville, Florida 32610, USA
| | - Anne Eichmann
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
- Inserm U970, Paris Cardiovascular Research Center, Paris 75015, France
| |
Collapse
|