1
|
Wenbo L, Yewei Y, Hui Z, Zhongyu L. Hijacking host cell vesicular transport: New insights into the nutrient acquisition mechanism of Chlamydia. Virulence 2024; 15:2351234. [PMID: 38773735 PMCID: PMC11123459 DOI: 10.1080/21505594.2024.2351234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 04/27/2024] [Indexed: 05/24/2024] Open
Abstract
Chlamydia infection is an important cause of public health diseases, and no effective vaccine is currently available. Owing to its unique intracellular lifestyle, Chlamydia requires a variety of nutrients and substrates from host cells, particularly sphingomyelin, cholesterol, iron, amino acids, and the mannose-6-phosphate receptor, which are essential for inclusion development. Here, we summarize the recent advances in Chlamydia nutrient acquisition mechanism by hijacking host cell vesicular transport, which plays an important role in chlamydial growth and development. Chlamydia obtains the components necessary to complete its intracellular developmental cycle by recruiting Rab proteins (major vesicular trafficking regulators) and Rab effector proteins to the inclusion, interfering with Rab-mediated multivesicular trafficking, reorienting the nutrition of host cells, and reconstructing the intracellular niche environment. Consequently, exploring the role of vesicular transport in nutrient acquisition offers a novel perspective on new approaches for preventing and treating Chlamydia infection.
Collapse
Affiliation(s)
- Lei Wenbo
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| | - Yang Yewei
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| | - Zhou Hui
- Department of Laboratory Medicine and Pathology, First Affiliated Hospital of Hunan University of Chinese Traditional Medicine, Changsha, Hunan, P.R. China
| | - Li Zhongyu
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| |
Collapse
|
2
|
Ng ESY, Hu J, Jiang Z, Radu RA. Impaired cathepsin D in retinal pigment epithelium cells mediates Stargardt disease pathogenesis. FASEB J 2024; 38:e23720. [PMID: 38837708 PMCID: PMC11296957 DOI: 10.1096/fj.202400210rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Recessive Stargardt disease (STGD1) is an inherited juvenile maculopathy caused by mutations in the ABCA4 gene, for which there is no suitable treatment. Loss of functional ABCA4 in the retinal pigment epithelium (RPE) alone, without contribution from photoreceptor cells, was shown to induce STGD1 pathology. Here, we identified cathepsin D (CatD), the primary RPE lysosomal protease, as a key molecular player contributing to endo-lysosomal dysfunction in STGD1 using a newly developed "disease-in-a-dish" RPE model from confirmed STGD1 patients. Induced pluripotent stem cell (iPSC)-derived RPE originating from three STGD1 patients exhibited elevated lysosomal pH, as previously reported in Abca4-/- mice. CatD protein maturation and activity were impaired in RPE from STGD1 patients and Abca4-/- mice. Consequently, STGD1 RPE cells have reduced photoreceptor outer segment degradation and abnormal accumulation of α-synuclein, the natural substrate of CatD. Furthermore, dysfunctional ABCA4 in STGD1 RPE cells results in intracellular accumulation of autofluorescent material and phosphatidylethanolamine (PE). The altered distribution of PE associated with the internal membranes of STGD1 RPE cells presumably compromises LC3-associated phagocytosis, contributing to delayed endo-lysosomal degradation activity. Drug-mediated re-acidification of lysosomes in the RPE of STGD1 restores CatD functional activity and reduces the accumulation of immature CatD protein loads. This preclinical study validates the contribution of CatD deficiencies to STGD1 pathology and provides evidence for an efficacious therapeutic approach targeting RPE cells. Our findings support a cell-autonomous RPE-driven pathology, informing future research aimed at targeting RPE cells to treat ABCA4-mediated retinopathies.
Collapse
Affiliation(s)
- Eunice Sze Yin Ng
- UCLA Stein Eye Institute, University of California, Los Angeles, CA 90095, USA
- Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, CA 90095, USA
| | - Jane Hu
- UCLA Stein Eye Institute, University of California, Los Angeles, CA 90095, USA
- Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Zhichun Jiang
- UCLA Stein Eye Institute, University of California, Los Angeles, CA 90095, USA
- Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Roxana A. Radu
- UCLA Stein Eye Institute, University of California, Los Angeles, CA 90095, USA
- Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Bao L, Liu Q, Wang J, Shi L, Pang Y, Niu Y, Zhang R. The interactions of subcellular organelles in pulmonary fibrosis induced by carbon black nanoparticles: a comprehensive review. Arch Toxicol 2024; 98:1629-1643. [PMID: 38536500 DOI: 10.1007/s00204-024-03719-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/29/2024] [Indexed: 05/21/2024]
Abstract
Owing to the widespread use and improper emissions of carbon black nanoparticles (CBNPs), the adverse effects of CBNPs on human health have attracted much attention. In toxicological research, carbon black is frequently utilized as a negative control because of its low toxicity and poor solubility. However, recent studies have indicated that inhalation exposure to CBNPs could be a risk factor for severe and prolonged pulmonary inflammation and fibrosis. At present, the pathogenesis of pulmonary fibrosis induced by CBNPs is still not fully elucidated, but it is known that with small particle size and large surface area, CBNPs are more easily ingested by cells, leading to organelle damage and abnormal interactions between organelles. Damaged organelle and abnormal organelles interactions lead to cell structure and function disorders, which is one of the important factors in the development and occurrence of various diseases, including pulmonary fibrosis. This review offers a comprehensive analysis of organelle structure, function, and interaction mechanisms, while also summarizing the research advancements in organelles and organelle interactions in CBNPs-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Lei Bao
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Qingping Liu
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China
| | - Jingyuan Wang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China
| | - Lili Shi
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Yaxian Pang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China
| | - Yujie Niu
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Rong Zhang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
4
|
Puvvula PK, Martinez-Medina L, Cinar M, Feng L, Pisarev A, Johnson A, Bernal-Mizrachi L. A retrotransposon-derived DNA zip code internalizes myeloma cells through Clathrin-Rab5a-mediated endocytosis. Front Oncol 2024; 14:1288724. [PMID: 38463228 PMCID: PMC10920344 DOI: 10.3389/fonc.2024.1288724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Introduction We have demonstrated that transposons derived from ctDNA can be transferred between cancer cells. The present research aimed to investigate the cellular uptake and intracellular trafficking of Multiple Myeloma-zip code (MM-ZC), a cell-specific zip code, in myeloma cell lines. We demonstrated that MM-ZC uptake by myeloma cells was concentration-, time- and cell-type-dependent. Methods Flow cytometry and confocal microscopy methods were used to identify the level of internalization of the zip codes in MM cells. To screen for the mechanism of internalization, we used multiple inhibitors of endocytosis. These experiments were followed by biotin pulldown and confocal microscopy for validation. Single interference RNA (siRNA) targeting some of the proteins involved in endocytosis was used to validate the role of this pathway in ZC cell internalization. Results Endocytosis inhibitors identified that Monensin and Chlorpromazine hydrochloride significantly reduced MM-ZC internalization. These findings suggested that Clathrin-mediated endocytosis and endosomal maturation play a crucial role in the cellular uptake of MM-ZC. Biotin pulldown and confocal microscopic studies revealed the involvement of proteins such as Clathrin, Rab5a, Syntaxin-6, and RCAS1 in facilitating the internalization of MM-ZC. Knockdown of Rab5a and Clathrin proteins reduced cellular uptake of MM-ZC and conclusively demonstrated the involvement of Clathrin-Rab5a pathways in MM-ZC endocytosis. Furthermore, both Rab5a and Clathrin reciprocally affected their association with MM-ZC when we depleted their proteins by siRNAs. Additionally, the loss of Rab5a decreased the Syntaxin-6 association with MMZC but not vice versa. Conversely, MM-ZC treatment enhanced the association between Clathrin and Rab5a. Conclusion Overall, the current study provides valuable insights into the cellular uptake and intracellular trafficking of MM-ZC in myeloma cells. Identifying these mechanisms and molecular players involved in MM-ZC uptake contributes to a better understanding of the delivery and potential applications of cell-specific Zip-Codes in gene delivery and drug targeting in cancer research.
Collapse
Affiliation(s)
| | | | - Munevver Cinar
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, United States
| | - Lei Feng
- Kodikaz Therapeutic Solutions, New York, NY, United States
| | - Andrey Pisarev
- Kodikaz Therapeutic Solutions, New York, NY, United States
| | | | - Leon Bernal-Mizrachi
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, United States
| |
Collapse
|
5
|
Meindl K, Issler N, Afonso S, Cebrian-Serrano A, Müller K, Sterner C, Othmen H, Tegtmeier I, Witzgall R, Klootwijk E, Davies B, Kleta R, Warth R. A missense mutation in Ehd1 associated with defective spermatogenesis and male infertility. Front Cell Dev Biol 2023; 11:1240558. [PMID: 37900275 PMCID: PMC10600459 DOI: 10.3389/fcell.2023.1240558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
Normal function of the C-terminal Eps15 homology domain-containing protein 1 (EHD1) has previously been associated with endocytic vesicle trafficking, shaping of intracellular membranes, and ciliogenesis. We recently identified an autosomal recessive missense mutation c.1192C>T (p.R398W) of EHD1 in patients who had low molecular weight proteinuria (0.7-2.1 g/d) and high-frequency hearing loss. It was already known from Ehd1 knockout mice that inactivation of Ehd1 can lead to male infertility. However, the exact role of the EHD1 protein and its p.R398W mutant during spermatogenesis remained still unclear. Here, we report the testicular phenotype of a knockin mouse model carrying the p.R398W mutation in the EHD1 protein. Male homozygous knockin mice were infertile, whereas the mutation had no effect on female fertility. Testes and epididymes were significantly reduced in size and weight. The testicular epithelium appeared profoundly damaged and had a disorganized architecture. The composition of developing cell types was altered. Malformed acrosomes covered underdeveloped and misshaped sperm heads. In the sperm tail, midpieces were largely missing indicating disturbed assembly of the sperm tail. Defective structures, i.e., nuclei, acrosomes, and sperm tail midpieces, were observed in large vacuoles scattered throughout the epithelium. Interestingly, cilia formation itself did not appear to be affected, as the axoneme and other parts of the sperm tails except the midpieces appeared to be intact. In wildtype mice, EHD1 co-localized with acrosomal granules on round spermatids, suggesting a role of the EHD1 protein during acrosomal development. Wildtype EHD1 also co-localized with the VPS35 component of the retromer complex, whereas the p.R398W mutant did not. The testicular pathologies appeared very early during the first spermatogenic wave in young mice (starting at 14 dpp) and tubular destruction worsened with age. Taken together, EHD1 plays an important and probably multifaceted role in spermatogenesis in mice. Therefore, EHD1 may also be a hitherto underestimated infertility gene in humans.
Collapse
Affiliation(s)
- Katrin Meindl
- Medical Cell Biology, University Regensburg, Regensburg, Germany
| | - Naomi Issler
- Department of Renal Medicine, University College London, London, United Kingdom
- Pediatric Nephrology Unit and Research Lab, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sara Afonso
- Medical Cell Biology, University Regensburg, Regensburg, Germany
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Alberto Cebrian-Serrano
- Wellcome Centre for Human Genetics, University Oxford, Oxford, United Kingdom
- Helmholtz Zentrum München, Institute of Diabetes and Obesity, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Karin Müller
- Leibniz Institute for Zoo- und Wildlife Research, Berlin, Germany
| | | | - Helga Othmen
- Medical Cell Biology, University Regensburg, Regensburg, Germany
- Molecular and Cellular Anatomy, University Regensburg, Regensburg, Germany
| | - Ines Tegtmeier
- Medical Cell Biology, University Regensburg, Regensburg, Germany
| | - Ralph Witzgall
- Molecular and Cellular Anatomy, University Regensburg, Regensburg, Germany
| | - Enriko Klootwijk
- Department of Renal Medicine, University College London, London, United Kingdom
| | - Benjamin Davies
- Wellcome Centre for Human Genetics, University Oxford, Oxford, United Kingdom
- Genetic Modification Service, The Francis Crick Institute, London, United Kingdom
| | - Robert Kleta
- Department of Renal Medicine, University College London, London, United Kingdom
| | - Richard Warth
- Medical Cell Biology, University Regensburg, Regensburg, Germany
| |
Collapse
|
6
|
Abstract
Phosphoinositides (PIs) are phospholipids derived from phosphatidylinositol. PIs are regulated via reversible phosphorylation, which is directed by the opposing actions of PI kinases and phosphatases. PIs constitute a minor fraction of the total cellular lipid pool but play pleiotropic roles in multiple aspects of cell biology. Genetic mutations of PI regulatory enzymes have been identified in rare congenital developmental syndromes, including ciliopathies, and in numerous human diseases, such as cancer and metabolic and neurological disorders. Accordingly, PI regulatory enzymes have been targeted in the design of potential therapeutic interventions for human diseases. Recent advances place PIs as central regulators of membrane dynamics within functionally distinct subcellular compartments. This brief review focuses on the emerging role PIs play in regulating cell signaling within the primary cilium and in directing transfer of molecules at interorganelle membrane contact sites and identifies new roles for PIs in subcellular spaces.
Collapse
Affiliation(s)
- Elizabeth Michele Davies
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Christina Anne Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Harald Alfred Stenmark
- Department of Molecular Cell Biology, Institute for Cancer Research. The Norwegian Radium Hospital, Montebello, N-0379 Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway
| |
Collapse
|
7
|
Feng F, Bouma EM, Hu G, Zhu Y, Yu Y, Smit JM, Diamond MS, Zhang R. Colocalization of Chikungunya Virus with Its Receptor MXRA8 during Cell Attachment, Internalization, and Membrane Fusion. J Virol 2023; 97:e0155722. [PMID: 37133449 PMCID: PMC10231136 DOI: 10.1128/jvi.01557-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 04/11/2023] [Indexed: 05/04/2023] Open
Abstract
Arthritogenic alphaviruses, including chikungunya virus (CHIKV), preferentially target joint tissues and cause chronic rheumatic disease that adversely impacts the quality of life of patients. Viruses enter target cells via interaction with cell surface receptor(s), which determine the viral tissue tropism and pathogenesis. Although MXRA8 is a recently identified receptor for several clinically relevant arthritogenic alphaviruses, its detailed role in the cell entry process has not been fully explored. We found that in addition to its localization on the plasma membrane, MXRA8 is present in acidic organelles, endosomes, and lysosomes. Moreover, MXRA8 is internalized into cells without a requirement for its transmembrane and cytoplasmic domains. Confocal microscopy and live cell imaging revealed that MXRA8 interacts with CHIKV at the cell surface and then enters cells along with CHIKV particles. At the moment of membrane fusion in the endosomes, many viral particles are still colocalized with MXRA8. These findings provide insight as to how MXRA8 functions in alphavirus internalization and suggest possible targets for antiviral development. IMPORTANCE The globally distributed arthritogenic alphaviruses have infected millions of humans and induce rheumatic disease, such as severe polyarthralgia/polyarthritis, for weeks to years. Alphaviruses infect target cells through receptor(s) followed by clathrin-mediated endocytosis. MXRA8 was recently identified as an entry receptor that shapes the tropism and pathogenesis for multiple arthritogenic alphaviruses, including chikungunya virus (CHIKV). Nonetheless, the exact functions of MXRA8 during the process of viral cell entry remain undetermined. Here, we have provided compelling evidence for MXRA8 as a bona fide entry receptor that mediates the uptake of alphavirus virions. Small molecules that disrupt MXRA8-dependent binding of alphaviruses or internalization steps could serve as a platform for unique classes of antiviral drugs.
Collapse
Affiliation(s)
- Fei Feng
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ellen M. Bouma
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gaowei Hu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yunkai Zhu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yin Yu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jolanda M. Smit
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Rong Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Targeted Protein Unfolding at the Golgi Apparatus. Methods Mol Biol 2022; 2557:645-659. [PMID: 36512243 DOI: 10.1007/978-1-0716-2639-9_39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Maintaining protein homeostasis (proteostasis) is vital to cellular and organismal health. How the Golgi apparatus, the central protein maturation and sorting station in the cell, manages misfolded proteins to maintain proteostasis is still poorly understood. Here we present a strategy for targeted protein unfolding at the Golgi that enables studying Golgi-related protein quality control and stress-signaling pathways. Targeted protein unfolding is induced by small molecule-based chemical biology approaches-hydrophobic tagging and the use of a destabilization domain. Imaging studies allow visualizing quality control (QC) phenotypes, such as the formation of QC carriers and Golgi-to-endoplasmic reticulum trafficking, and correlating these phenotypes with other trafficking processes.
Collapse
|
9
|
Schor S, Pu S, Nicolaescu V, Azari S, Kõivomägi M, Karim M, Cassonnet P, Saul S, Neveu G, Yueh A, Demeret C, Skotheim JM, Jacob Y, Randall G, Einav S. The cargo adapter protein CLINT1 is phosphorylated by the Numb-associated kinase BIKE and mediates dengue virus infection. J Biol Chem 2022; 298:101956. [PMID: 35452674 PMCID: PMC9133654 DOI: 10.1016/j.jbc.2022.101956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/25/2022] Open
Abstract
The signaling pathways and cellular functions regulated by the four Numb-associated kinases are largely unknown. We reported that AAK1 and GAK control intracellular trafficking of RNA viruses and revealed a requirement for BIKE in early and late stages of dengue virus (DENV) infection. However, the downstream targets phosphorylated by BIKE have not yet been identified. Here, to identify BIKE substrates, we conducted a barcode fusion genetics-yeast two-hybrid screen and retrieved publicly available data generated via affinity-purification mass spectrometry. We subsequently validated 19 of 47 putative BIKE interactors using mammalian cell-based protein-protein interaction assays. We found that CLINT1, a cargo-specific adapter implicated in bidirectional Golgi-to-endosome trafficking, emerged as a predominant hit in both screens. Our experiments indicated that BIKE catalyzes phosphorylation of a threonine 294 CLINT1 residue both in vitro and in cell culture. Our findings revealed that CLINT1 phosphorylation mediates its binding to the DENV nonstructural 3 protein and subsequently promotes DENV assembly and egress. Additionally, using live-cell imaging we revealed that CLINT1 cotraffics with DENV particles and is involved in mediating BIKE's role in DENV infection. Finally, our data suggest that additional cellular BIKE interactors implicated in the host immune and stress responses and the ubiquitin proteasome system might also be candidate phosphorylation substrates of BIKE. In conclusion, these findings reveal cellular substrates and pathways regulated by the understudied Numb-associated kinase enzyme BIKE, a mechanism for CLINT1 regulation, and control of DENV infection via BIKE signaling, with potential implications for cell biology, virology, and host-targeted antiviral design.
Collapse
Affiliation(s)
- Stanford Schor
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology, Stanford University, California, USA
| | - Szuyuan Pu
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology, Stanford University, California, USA
| | - Vlad Nicolaescu
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Siavash Azari
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology, Stanford University, California, USA
| | | | - Marwah Karim
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology, Stanford University, California, USA
| | - Patricia Cassonnet
- Department of Virology, Molecular Genetics of RNA Virus Genetics (GMVR), Pasteur Institute, National Center for Scientific Research, and Paris Diderot University, Paris, France
| | - Sirle Saul
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology, Stanford University, California, USA
| | - Gregory Neveu
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology, Stanford University, California, USA
| | - Andrew Yueh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Caroline Demeret
- Department of Virology, Molecular Genetics of RNA Virus Genetics (GMVR), Pasteur Institute, National Center for Scientific Research, and Paris Diderot University, Paris, France
| | - Jan M Skotheim
- Department of Biology, Stanford University, California, USA
| | - Yves Jacob
- Department of Virology, Molecular Genetics of RNA Virus Genetics (GMVR), Pasteur Institute, National Center for Scientific Research, and Paris Diderot University, Paris, France
| | - Glenn Randall
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Shirit Einav
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology, Stanford University, California, USA; Chan Zuckerberg Biohub, San Francisco, California, USA.
| |
Collapse
|
10
|
Priya A, Datta S. Monitoring Endosomal Cargo Retrieval to the Trans-Golgi Network by Microscopic and Biochemical Approaches. Methods Mol Biol 2022; 2473:213-236. [PMID: 35819769 DOI: 10.1007/978-1-0716-2209-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The endosomal recycling pathway plays a crucial role in diverse physiologically important biological processes such as cell-to-cell signaling, nutrient uptake, immune response, and autophagy. A selective subset of these recycling cargoes, mostly transmembrane proteins, is retrieved from endosomes to the trans-Golgi network (TGN) by a retrograde transport process. Endosome-to-TGN retrograde trafficking is crucial for maintaining cellular homeostasis and signaling by preventing proteins and lipids from degradation in the lysosome. Many of the membrane sorting machinery, such as the retromer complex and sorting nexins (SNXs) are involved in endosomal retrieval and recycling of various transmembrane proteins. Recent technological advances in the resolution of light microscopy and unbiased analytical approaches in quantitative image analysis enable us to explore and understand the regulation of membrane trafficking pathways in greater detail. In this chapter, we describe quantitative imaging-based methods for analyzing the roles of proteins involved in the retrograde trafficking in retromer dependent or independent fashion, using cation-independent mannose-6-phosphate receptor (CIM6PR) as an example.
Collapse
Affiliation(s)
- Amulya Priya
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France.
| | - Sunando Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
11
|
C-Terminal Domain of Aquaporin-5 Is Required to Pass Its Protein Quality Control and Ensure Its Trafficking to Plasma Membrane. Int J Mol Sci 2021; 22:ijms222413461. [PMID: 34948259 PMCID: PMC8707437 DOI: 10.3390/ijms222413461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 01/25/2023] Open
Abstract
Aquaporin-5 (AQP5) is selectively expressed in the apical membrane of exocrine glands, such as salivary, lacrimal, and submucosal glands. It is important for the secretory function of exocrine glands because mice with the knockout of AQP5 exhibit a significant reduction in secretion from these glands. Previous reports indicated that the AQP5 C-terminal domain is crucial for the localization of AQP5 at the plasma membrane, but it remains unclear which motif or amino acid residues in the C-terminal domain are essential for this. In this study, we examined the effects of various AQP5 C-terminal deletions or mutations on the expression of AQP5 on the cell surface. AQP5 C-terminal domain mutants did not localize on the plasma membrane, and Leu262 was shown to be crucial for AQP5′s plasma membrane localization. The mutants localized in the autophagosome or lysosome and showed decreased protein stability via lysosomal degradation. Taking these findings together, our study suggests that the C-terminal domain is required for AQP5 to pass protein quality control and be trafficked to the plasma membrane.
Collapse
|
12
|
Lu CL, Kim J. Craniofacial Diseases Caused by Defects in Intracellular Trafficking. Genes (Basel) 2021; 12:726. [PMID: 34068038 PMCID: PMC8152478 DOI: 10.3390/genes12050726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Cells use membrane-bound carriers to transport cargo molecules like membrane proteins and soluble proteins, to their destinations. Many signaling receptors and ligands are synthesized in the endoplasmic reticulum and are transported to their destinations through intracellular trafficking pathways. Some of the signaling molecules play a critical role in craniofacial morphogenesis. Not surprisingly, variants in the genes encoding intracellular trafficking machinery can cause craniofacial diseases. Despite the fundamental importance of the trafficking pathways in craniofacial morphogenesis, relatively less emphasis is placed on this topic, thus far. Here, we describe craniofacial diseases caused by lesions in the intracellular trafficking machinery and possible treatment strategies for such diseases.
Collapse
Affiliation(s)
| | - Jinoh Kim
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
| |
Collapse
|
13
|
Li G, Hu X, Wu X, Zhang Y. Microtubule-Targeted Self-Assembly Triggers Prometaphase-Metaphase Oscillations Suppressing Tumor Growth. NANO LETTERS 2021; 21:3052-3059. [PMID: 33756080 DOI: 10.1021/acs.nanolett.1c00233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microtubules are highly strategic targets of cancer therapies. Small molecule antimitotic agents are so far the best chemotherapeutic medication in cancer treatment. However, the high rate of neuropathy and drug resistance limit their clinical usage. Inspired by the multicomponent-targeting feature of molecular self-assembly (MSA) overcoming drug resistance, we synthesized peptide-based rotor molecules that self-assemble in response to the surrounding environment to target the microtubule array. The MSAs self-adjust morphologically in response to the pH change and viscosity variations during Golgi-endosome trafficking, escape trafficking cargos, and eventually bind to the microtubule array physically in a nonspecific manner. Such unrefined nano-bio interactions suppress regional tubulin polymerization triggering atypical prometaphase--metaphase oscillations to inhibit various cancer cells proliferating without inducing obvious neurotoxicity. The MSA also exerts potent antiproliferative effects in the subcutaneous cervix cancer xenograft tumor model equivalent to Cisplatin, better than the classic antimitotic drug Taxol.
Collapse
Affiliation(s)
- Guanying Li
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xunwu Hu
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Xia Wu
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Ye Zhang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
14
|
Michaud P, Shah VN, Adjibade P, Houle F, Quévillon Huberdeau M, Rioux R, Lavoie-Ouellet C, Gu W, Mazroui R, Simard MJ. The RabGAP TBC-11 controls Argonaute localization for proper microRNA function in C. elegans. PLoS Genet 2021; 17:e1009511. [PMID: 33826611 PMCID: PMC8055011 DOI: 10.1371/journal.pgen.1009511] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/19/2021] [Accepted: 03/26/2021] [Indexed: 12/18/2022] Open
Abstract
Once loaded onto Argonaute proteins, microRNAs form a silencing complex called miRISC that targets mostly the 3'UTR of mRNAs to silence their translation. How microRNAs are transported to and from their target mRNA remains poorly characterized. While some reports linked intracellular trafficking to microRNA activity, it is still unclear how these pathways coordinate for proper microRNA-mediated gene silencing and turnover. Through a forward genetic screen using Caenorhabditis elegans, we identified the RabGAP tbc-11 as an important factor for the microRNA pathway. We show that TBC-11 acts mainly through the small GTPase RAB-6 and that its regulation is required for microRNA function. The absence of functional TBC-11 increases the pool of microRNA-unloaded Argonaute ALG-1 that is likely associated to endomembranes. Furthermore, in this condition, this pool of Argonaute accumulates in a perinuclear region and forms a high molecular weight complex. Altogether, our data suggest that the alteration of TBC-11 generates a fraction of ALG-1 that cannot bind to target mRNAs, leading to defective gene repression. Our results establish the importance of intracellular trafficking for microRNA function and demonstrate the involvement of a small GTPase and its GAP in proper Argonaute localization in vivo.
Collapse
Affiliation(s)
- Pascale Michaud
- CHU de Québec-Université Laval Research Center (Oncology division), Québec, Canada
- Université Laval Cancer Research Centre, Québec, Québec, Canada
| | - Vivek Nilesh Shah
- CHU de Québec-Université Laval Research Center (Oncology division), Québec, Canada
- Université Laval Cancer Research Centre, Québec, Québec, Canada
| | - Pauline Adjibade
- CHU de Québec-Université Laval Research Center (Oncology division), Québec, Canada
- Université Laval Cancer Research Centre, Québec, Québec, Canada
| | - Francois Houle
- CHU de Québec-Université Laval Research Center (Oncology division), Québec, Canada
- Université Laval Cancer Research Centre, Québec, Québec, Canada
| | - Miguel Quévillon Huberdeau
- CHU de Québec-Université Laval Research Center (Oncology division), Québec, Canada
- Université Laval Cancer Research Centre, Québec, Québec, Canada
| | - Rachel Rioux
- CHU de Québec-Université Laval Research Center (Oncology division), Québec, Canada
- Université Laval Cancer Research Centre, Québec, Québec, Canada
| | - Camille Lavoie-Ouellet
- CHU de Québec-Université Laval Research Center (Oncology division), Québec, Canada
- Université Laval Cancer Research Centre, Québec, Québec, Canada
| | - Weifeng Gu
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Rachid Mazroui
- CHU de Québec-Université Laval Research Center (Oncology division), Québec, Canada
- Université Laval Cancer Research Centre, Québec, Québec, Canada
| | - Martin J. Simard
- CHU de Québec-Université Laval Research Center (Oncology division), Québec, Canada
- Université Laval Cancer Research Centre, Québec, Québec, Canada
| |
Collapse
|
15
|
Matrix Vesicles: Role in Bone Mineralization and Potential Use as Therapeutics. Pharmaceuticals (Basel) 2021; 14:ph14040289. [PMID: 33805145 PMCID: PMC8064082 DOI: 10.3390/ph14040289] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Bone is a complex organ maintained by three main cell types: osteoblasts, osteoclasts, and osteocytes. During bone formation, osteoblasts deposit a mineralized organic matrix. Evidence shows that bone cells release extracellular vesicles (EVs): nano-sized bilayer vesicles, which are involved in intercellular communication by delivering their cargoes through protein–ligand interactions or fusion to the plasma membrane of the recipient cell. Osteoblasts shed a subset of EVs known as matrix vesicles (MtVs), which contain phosphatases, calcium, and inorganic phosphate. These vesicles are believed to have a major role in matrix mineralization, and they feature bone-targeting and osteo-inductive properties. Understanding their contribution in bone formation and mineralization could help to target bone pathologies or bone regeneration using novel approaches such as stimulating MtV secretion in vivo, or the administration of in vitro or biomimetically produced MtVs. This review attempts to discuss the role of MtVs in biomineralization and their potential application for bone pathologies and bone regeneration.
Collapse
|
16
|
Law ZJ, Khoo XH, Lim PT, Goh BH, Ming LC, Lee WL, Goh HP. Extracellular Vesicle-Mediated Chemoresistance in Oral Squamous Cell Carcinoma. Front Mol Biosci 2021; 8:629888. [PMID: 33768115 PMCID: PMC7985159 DOI: 10.3389/fmolb.2021.629888] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Oral Squamous Cell Carcinoma (OSCC) remains a cancer with poor prognosis and high recurrence rate. Even with multimodal treatment options available for OSCC, tumor drug resistance is still a persistent problem, leading to increased tumor invasiveness among OSCC patients. An emerging trend of thought proposes that extracellular vesicles (EVs) play a role in facilitating tumor progression and chemoresistance via signaling between tumor cells. In particular, exosomes and microvesicles are heavily implicated in this process by various studies. Where primary studies into a particular EV-mediated chemoresistance mechanism in OSCC are limited, similar studies on other cancer cell types will be used in the discussion below to provide ideas for a new line of investigation into OSCC chemoresistance. By understanding how EVs are or may be involved in OSCC chemoresistance, novel targeted therapies such as EV inhibition may be an effective alternative to current treatment options in the near future. In this review, the current understandings on OSCC drug mechanisms under the novel context of exosomes and microvesicles were reviewed, including shuttling of miRNA content, drug efflux, alteration of vesicular pH, anti-apoptotic signaling, modulation of DNA damage repair, immunomodulation, epithelial-to-mesenchymal transition and maintenance of tumor by cancer stem cells.
Collapse
Affiliation(s)
- Zhu-Jun Law
- School of Science, Monash University Malaysia, Selangor, Malaysia
| | - Xin Hui Khoo
- School of Science, Monash University Malaysia, Selangor, Malaysia
| | - Pei Tee Lim
- School of Science, Monash University Malaysia, Selangor, Malaysia
| | - Bey Hing Goh
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Selangor, Malaysia
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Wai-Leng Lee
- School of Science, Monash University Malaysia, Selangor, Malaysia
| | - Hui Poh Goh
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| |
Collapse
|
17
|
Turnšek J, Brunson JK, Viedma MDPM, Deerinck TJ, Horák A, Oborník M, Bielinski VA, Allen AE. Proximity proteomics in a marine diatom reveals a putative cell surface-to-chloroplast iron trafficking pathway. eLife 2021; 10:e52770. [PMID: 33591270 PMCID: PMC7972479 DOI: 10.7554/elife.52770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
Iron is a biochemically critical metal cofactor in enzymes involved in photosynthesis, cellular respiration, nitrate assimilation, nitrogen fixation, and reactive oxygen species defense. Marine microeukaryotes have evolved a phytotransferrin-based iron uptake system to cope with iron scarcity, a major factor limiting primary productivity in the global ocean. Diatom phytotransferrin is endocytosed; however, proteins downstream of this environmentally ubiquitous iron receptor are unknown. We applied engineered ascorbate peroxidase APEX2-based subcellular proteomics to catalog proximal proteins of phytotransferrin in the model marine diatom Phaeodactylum tricornutum. Proteins encoded by poorly characterized iron-sensitive genes were identified including three that are expressed from a chromosomal gene cluster. Two of them showed unambiguous colocalization with phytotransferrin adjacent to the chloroplast. Further phylogenetic, domain, and biochemical analyses suggest their involvement in intracellular iron processing. Proximity proteomics holds enormous potential to glean new insights into iron acquisition pathways and beyond in these evolutionarily, ecologically, and biotechnologically important microalgae.
Collapse
Affiliation(s)
- Jernej Turnšek
- Biological and Biomedical Sciences, The Graduate School of Arts and Sciences, Harvard UniversityCambridgeUnited States
- Department of Systems Biology, Harvard Medical SchoolBostonUnited States
- Wyss Institute for Biologically Inspired Engineering, Harvard UniversityBostonUnited States
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San DiegoLa JollaUnited States
- Center for Research in Biological Systems, University of California San DiegoLa JollaUnited States
- Microbial and Environmental Genomics, J. Craig Venter InstituteLa JollaUnited States
| | - John K Brunson
- Microbial and Environmental Genomics, J. Craig Venter InstituteLa JollaUnited States
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San DiegoLa JollaUnited States
| | | | - Thomas J Deerinck
- National Center for Microscopy and Imaging Research, University of California San DiegoLa JollaUnited States
| | - Aleš Horák
- Biology Centre CAS, Institute of ParasitologyČeské BudějoviceCzech Republic
- University of South Bohemia, Faculty of ScienceČeské BudějoviceCzech Republic
| | - Miroslav Oborník
- Biology Centre CAS, Institute of ParasitologyČeské BudějoviceCzech Republic
- University of South Bohemia, Faculty of ScienceČeské BudějoviceCzech Republic
| | - Vincent A Bielinski
- Synthetic Biology and Bioenergy, J. Craig Venter InstituteLa JollaUnited States
| | - Andrew Ellis Allen
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San DiegoLa JollaUnited States
- Microbial and Environmental Genomics, J. Craig Venter InstituteLa JollaUnited States
| |
Collapse
|
18
|
de Souza Cardoso R, Viana RMM, Vitti BC, Coelho ACL, de Jesus BLS, de Paula Souza J, Pontelli MC, Murakami T, Ventura AM, Ono A, Arruda E. Human Respiratory Syncytial Virus Infection in a Human T Cell Line Is Hampered at Multiple Steps. Viruses 2021; 13:v13020231. [PMID: 33540662 PMCID: PMC7913106 DOI: 10.3390/v13020231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 11/19/2022] Open
Abstract
Human respiratory syncytial virus (HRSV) is the most frequent cause of severe respiratory disease in children. The main targets of HRSV infection are epithelial cells of the respiratory tract, and the great majority of the studies regarding HRSV infection are done in respiratory cells. Recently, the interest on respiratory virus infection of lymphoid cells has been growing, but details of the interaction of HRSV with lymphoid cells remain unknown. Therefore, this study was done to assess the relationship of HRSV with A3.01 cells, a human CD4+ T cell line. Using flow cytometry and fluorescent focus assay, we found that A3.01 cells are susceptible but virtually not permissive to HRSV infection. Dequenching experiments revealed that the fusion process of HRSV in A3.01 cells was nearly abolished in comparison to HEp-2 cells, an epithelial cell lineage. Quantification of viral RNA by RT-qPCR showed that the replication of HRSV in A3.01 cells was considerably reduced. Western blot and quantitative flow cytometry analyses demonstrated that the production of HRSV proteins in A3.01 was significantly lower than in HEp-2 cells. Additionally, using fluorescence in situ hybridization, we found that the inclusion body-associated granules (IBAGs) were almost absent in HRSV inclusion bodies in A3.01 cells. We also assessed the intracellular trafficking of HRSV proteins and found that HRSV proteins colocalized partially with the secretory pathway in A3.01 cells, but these HRSV proteins and viral filaments were present only scarcely at the plasma membrane. HRSV infection of A3.01 CD4+ T cells is virtually unproductive as compared to HEp-2 cells, as a result of defects at several steps of the viral cycle: Fusion, genome replication, formation of inclusion bodies, recruitment of cellular proteins, virus assembly, and budding.
Collapse
Affiliation(s)
- Ricardo de Souza Cardoso
- Department of Cell and Molecular Biology, School of Medicine of Ribeirao Preto, University of Sao Paulo, São Paulo 14049-900, Brazil; (R.d.S.C.); (R.M.M.V.); (B.C.V.); (A.C.L.C.); (B.L.S.d.J.); (J.d.P.S.); (M.C.P.)
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (T.M.); (A.O.)
| | - Rosa Maria Mendes Viana
- Department of Cell and Molecular Biology, School of Medicine of Ribeirao Preto, University of Sao Paulo, São Paulo 14049-900, Brazil; (R.d.S.C.); (R.M.M.V.); (B.C.V.); (A.C.L.C.); (B.L.S.d.J.); (J.d.P.S.); (M.C.P.)
| | - Brenda Cristina Vitti
- Department of Cell and Molecular Biology, School of Medicine of Ribeirao Preto, University of Sao Paulo, São Paulo 14049-900, Brazil; (R.d.S.C.); (R.M.M.V.); (B.C.V.); (A.C.L.C.); (B.L.S.d.J.); (J.d.P.S.); (M.C.P.)
| | - Ana Carolina Lunardello Coelho
- Department of Cell and Molecular Biology, School of Medicine of Ribeirao Preto, University of Sao Paulo, São Paulo 14049-900, Brazil; (R.d.S.C.); (R.M.M.V.); (B.C.V.); (A.C.L.C.); (B.L.S.d.J.); (J.d.P.S.); (M.C.P.)
| | - Bruna Laís Santos de Jesus
- Department of Cell and Molecular Biology, School of Medicine of Ribeirao Preto, University of Sao Paulo, São Paulo 14049-900, Brazil; (R.d.S.C.); (R.M.M.V.); (B.C.V.); (A.C.L.C.); (B.L.S.d.J.); (J.d.P.S.); (M.C.P.)
| | - Juliano de Paula Souza
- Department of Cell and Molecular Biology, School of Medicine of Ribeirao Preto, University of Sao Paulo, São Paulo 14049-900, Brazil; (R.d.S.C.); (R.M.M.V.); (B.C.V.); (A.C.L.C.); (B.L.S.d.J.); (J.d.P.S.); (M.C.P.)
| | - Marjorie Cornejo Pontelli
- Department of Cell and Molecular Biology, School of Medicine of Ribeirao Preto, University of Sao Paulo, São Paulo 14049-900, Brazil; (R.d.S.C.); (R.M.M.V.); (B.C.V.); (A.C.L.C.); (B.L.S.d.J.); (J.d.P.S.); (M.C.P.)
| | - Tomoyuki Murakami
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (T.M.); (A.O.)
| | - Armando Morais Ventura
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil;
| | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (T.M.); (A.O.)
| | - Eurico Arruda
- Department of Cell and Molecular Biology, School of Medicine of Ribeirao Preto, University of Sao Paulo, São Paulo 14049-900, Brazil; (R.d.S.C.); (R.M.M.V.); (B.C.V.); (A.C.L.C.); (B.L.S.d.J.); (J.d.P.S.); (M.C.P.)
- Correspondence:
| |
Collapse
|
19
|
Kloc M, Uosef A, Villagran M, Zdanowski R, Kubiak JZ, Wosik J, Ghobrial RM. RhoA- and Actin-Dependent Functions of Macrophages from the Rodent Cardiac Transplantation Model Perspective -Timing Is the Essence. BIOLOGY 2021; 10:biology10020070. [PMID: 33498417 PMCID: PMC7909416 DOI: 10.3390/biology10020070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary The functions of animal and human cells depend on the actin cytoskeleton and its regulating protein called the RhoA. The actin cytoskeleton and RhoA also regulate the response of the immune cells such as macrophages to the microbial invasion and/or the presence of a non-self, such as a transplanted organ. The immune response against transplant occurs in several steps. The early step occurring within days post-transplantation is called the acute rejection and the late step, occurring months to years post-transplantation, is called the chronic rejection. In clinical transplantation, acute rejection is easily manageable by the anti-rejection drugs. However, there is no cure for chronic rejection, which is caused by the macrophages entering the transplant and promoting blockage of its blood vessels and destruction of tissue. We discuss here how the inhibition of the RhoA and actin cytoskeleton polymerization in the macrophages, either by genetic interference or pharmacologically, prevents macrophage entry into the transplanted organ and prevents chronic rejection, and also how it affects the anti-microbial function of the macrophages. We also focus on the importance of timing of the macrophage functions in chronic rejection and how the circadian rhythm may affect the anti-chronic rejection and anti-microbial therapies. Abstract The small GTPase RhoA, and its down-stream effector ROCK kinase, and the interacting Rac1 and mTORC2 pathways, are the principal regulators of the actin cytoskeleton and actin-related functions in all eukaryotic cells, including the immune cells. As such, they also regulate the phenotypes and functions of macrophages in the immune response and beyond. Here, we review the results of our and other’s studies on the role of the actin and RhoA pathway in shaping the macrophage functions in general and macrophage immune response during the development of chronic (long term) rejection of allografts in the rodent cardiac transplantation model. We focus on the importance of timing of the macrophage functions in chronic rejection and how the circadian rhythm may affect the anti-chronic rejection therapies.
Collapse
Affiliation(s)
- Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX 77030, USA; (A.U.); (R.M.G.)
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
- M.D. Anderson Cancer Center, Department of Genetics, The University of Texas, Houston, TX 77030, USA
- Correspondence:
| | - Ahmed Uosef
- The Houston Methodist Research Institute, Houston, TX 77030, USA; (A.U.); (R.M.G.)
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
| | - Martha Villagran
- Electrical and Computer Engineering Department, University of Houston, Houston, TX 77204, USA; (M.V.); (J.W.)
- Texas Center for Superconductivity, University of Houston, Houston, TX 77204, USA
| | - Robert Zdanowski
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine (WIM), 04-141 Warsaw, Poland;
| | - Jacek Z. Kubiak
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology (WIHE), 01-163 Warsaw, Poland;
- Cell Cycle Group, CNRS, Faculty of Medicine, Institute of Genetics and Development of Rennes, University of Rennes, UMR, 6290 Rennes, France
| | - Jarek Wosik
- Electrical and Computer Engineering Department, University of Houston, Houston, TX 77204, USA; (M.V.); (J.W.)
- Texas Center for Superconductivity, University of Houston, Houston, TX 77204, USA
| | - Rafik M. Ghobrial
- The Houston Methodist Research Institute, Houston, TX 77030, USA; (A.U.); (R.M.G.)
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
20
|
Li S, Ghosh C, Xing Y, Sun Y. Phosphatidylinositol 4,5-bisphosphate in the Control of Membrane Trafficking. Int J Biol Sci 2020; 16:2761-2774. [PMID: 33061794 PMCID: PMC7545710 DOI: 10.7150/ijbs.49665] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022] Open
Abstract
Phosphoinositides are membrane lipids generated by phosphorylation on the inositol head group of phosphatidylinositol. By specifically distributed to distinct subcellular membrane locations, different phosphoinositide species play diverse roles in modulating membrane trafficking. Among the seven known phosphoinositide species, phosphatidylinositol 4,5-bisphosphate (PI4,5P2) is the one species most abundant at the plasma membrane. Thus, the PI4,5P2 function in membrane trafficking is first identified in controlling plasma membrane dynamic-related events including endocytosis and exocytosis. However, recent studies indicate that PI4,5P2 is also critical in many other membrane trafficking events such as endosomal trafficking, hydrolases sorting to lysosomes, autophagy initiation, and autophagic lysosome reformation. These findings suggest that the role of PI4,5P2 in membrane trafficking is far beyond just plasma membrane. This review will provide a concise synopsis of how PI4,5P2 functions in multiple membrane trafficking events. PI4,5P2, the enzymes responsible for PI4,5P2 production at specific subcellular locations, and distinct PI4,5P2 effector proteins compose a regulation network to control the specific membrane trafficking events.
Collapse
Affiliation(s)
- Suhua Li
- Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Chinmoy Ghosh
- Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Yanli Xing
- Department of Otolaryngology, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Yue Sun
- Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
21
|
Seoane PI, Lee B, Hoyle C, Yu S, Lopez-Castejon G, Lowe M, Brough D. The NLRP3-inflammasome as a sensor of organelle dysfunction. J Cell Biol 2020; 219:191204. [PMID: 33044555 PMCID: PMC7543090 DOI: 10.1083/jcb.202006194] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 02/08/2023] Open
Abstract
Diverse pathogen- and damage-associated stresses drive inflammation via activation of the multimolecular NLRP3-inflammasome complex. How the effects of diverse stimuli are integrated by the cell to regulate NLRP3 has been the subject of intense research, and yet an accepted unifying hypothesis for the control of NLRP3 remains elusive. Here, we review the literature on the effects of NLRP3-activating stimuli on subcellular organelles and conclude that a shared feature of NLRP3-activating stresses is an organelle dysfunction. In particular, we propose that the endosome may be more important than previously recognized as a signal-integrating hub for NLRP3 activation in response to many stimuli and may also link to the dysfunction of other organelles. In addition, NLRP3-inflammasome-activating stimuli trigger diverse posttranslational modifications of NLRP3 that are important in controlling its activation. Future research should focus on how organelles respond to specific NLRP3-activating stimuli, and how this relates to posttranslational modifications, to delineate the organellar control of NLRP3.
Collapse
Affiliation(s)
- Paula I. Seoane
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK,The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Bali Lee
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK,The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Christopher Hoyle
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK,The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Shi Yu
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK,The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Gloria Lopez-Castejon
- Division of Infection, Immunity, and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK,The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Martin Lowe
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - David Brough
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK,The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK,Correspondence to David Brough:
| |
Collapse
|
22
|
Role of Armadillo repeat 2 and kinesin-II motor subunit Klp64D for wingless signaling in Drosophila. Sci Rep 2020; 10:13864. [PMID: 32807823 PMCID: PMC7431425 DOI: 10.1038/s41598-020-70759-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/30/2020] [Indexed: 11/25/2022] Open
Abstract
Armadillo (Arm) is crucial for transducing Wingless (Wg) signaling. Previously, we have shown that Klp64D, a motor subunit of Drosophila kinesin-II, interacts with Arm for Wg signaling. Molecular basis for this interaction has remained unknown. Here we identify a critical Arm repeat (AR) required for binding Klp64D and Wg signaling. Arm/\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\varvec{\beta}}$$\end{document}β-catenin family proteins contain a conserved domain of 12 Arm repeats (ARs). Five of these ARs can interact with Klp64D, but only the second AR (AR2) binds to the cargo/tail domain of Klp64D. Overexpression of AR2 in wing imaginal disc is sufficient to cause notched wing margin. This phenotype by AR2 is enhanced or suppressed by reducing or increasing Klp64D expression, respectively. AR2 overexpression inhibits Wg signaling activity in TopFlash assay, consistent with its dominant-negative effects on Klp64D-dependent Wg signaling. Overexpression of the Klp64D cargo domain also results in dominant-negative wing notching. Genetic rescue data indicate that both AR2 and Klp64D cargo regions are required for the function of Arm and Klp64D, respectively. AR2 overexpression leads to an accumulation of Arm with GM130 Golgi marker in Klp64D knockdown. This study suggests that Wg signaling for wing development is regulated by specific interaction between AR2 and the cargo domain of Klp64D.
Collapse
|
23
|
Xu H, Gao J, Cai M, Chen J, Zhang Q, Li H, Wang H. Structural Mechanism Analysis of Orderly and Efficient Vesicle Transport by High-Resolution Imaging and Fluorescence Tracking. Anal Chem 2020; 92:6555-6563. [PMID: 32290652 DOI: 10.1021/acs.analchem.0c00197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The orderly organelle interaction network is essential for normal biological activity of cells. However, the mechanism of orderly organelle interaction remains elusive. In this report, we analyzed the structure characteristics of the cell membrane, endocytic vesicles, and the Golgi membrane through a high-resolution imaging technique and further comprehensively investigated the vesicle-transport process via epidermal growth factor receptor endocytosis and a recycling pathway using a real-time fluorescence tracing method. Our data suggest that orderly vesicle transport is due to protein protrusion from the outer surface of endocytic vesicles and that full membrane fusion between homotypic endocytic vesicles is a result of the rough outer surface. Finally, the kiss-and-run method, which is utilized by endocytic vesicles to communicate with the trans-Golgi network (TGN) is attributed to a dense protein layer at the outer surface of the TGN. In summary, by combining static structural analysis with dynamic tracing, we elucidate the mechanism of orderly vesicle transport from the overall structural features of the membrane. This work provides insight into the structural mechanisms underlying vital biological processes involving organelle interactions at the molecular level.
Collapse
Affiliation(s)
- Haijiao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R. China.,Graduate University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jing Gao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R. China
| | - Mingjun Cai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R. China
| | - Junling Chen
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P.R. China
| | - Qingrong Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R. China
| | - Hongru Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R. China.,Laboratory for Marine Biology and Biotechnology, Qing Dao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, P.R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| |
Collapse
|
24
|
Morshed A, Karawdeniya BI, Bandara Y, Kim MJ, Dutta P. Mechanical characterization of vesicles and cells: A review. Electrophoresis 2020; 41:449-470. [PMID: 31967658 PMCID: PMC7567447 DOI: 10.1002/elps.201900362] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/05/2019] [Accepted: 12/08/2019] [Indexed: 12/30/2022]
Abstract
Vesicles perform many essential functions in all living organisms. They respond like a transducer to mechanical stress in converting the applied force into mechanical and biological responses. At the same time, both biochemical and biophysical signals influence the vesicular response in bearing mechanical loads. In recent years, liposomes, artificial lipid vesicles, have gained substantial attention from the pharmaceutical industry as a prospective drug carrier which can also serve as an artificial cell-mimetic system. The ability of these vesicles to enter through pores of even smaller size makes them ideal candidates for therapeutic agents to reach the infected sites effectively. Engineering of vesicles with desired mechanical properties that can encapsulate drugs and release as required is the prime challenge in this field. This requirement has led to the modifications of the composition of the bilayer membrane by adding cholesterol, sphingomyelin, etc. In this article, we review the manufacturing and characterization techniques of various artificial/synthetic vesicles. We particularly focus on the electric field-driven characterization techniques to determine different properties of vesicle and its membranes, such as bending rigidity, viscosity, capacitance, conductance, etc., which are indicators of their content and mobility. Similarities and differences between artificial vesicles, natural vesicles, and cells are highlighted throughout the manuscript since most of these artificial vesicles are intended for cell mimetic functions.
Collapse
Affiliation(s)
- Adnan Morshed
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920
| | - Buddini Iroshika Karawdeniya
- Department of Mechanical Engineering, Lyle School of Engineering, Southern Methodist University, Dallas, Texas, USA
| | - Y.M.NuwanD.Y. Bandara
- Department of Mechanical Engineering, Lyle School of Engineering, Southern Methodist University, Dallas, Texas, USA
| | - Min Jun Kim
- Department of Mechanical Engineering, Lyle School of Engineering, Southern Methodist University, Dallas, Texas, USA
| | - Prashanta Dutta
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920
| |
Collapse
|
25
|
Szczałuba K, Mierzewska H, Śmigiel R, Kosińska J, Koppolu A, Biernacka A, Stawiński P, Pollak A, Rydzanicz M, Płoski R. AP4B1-associated hereditary spastic paraplegia: expansion of phenotypic spectrum related to homozygous p.Thr387fs variant. J Appl Genet 2020; 61:213-218. [PMID: 32166732 PMCID: PMC7148264 DOI: 10.1007/s13353-020-00552-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/05/2020] [Accepted: 02/12/2020] [Indexed: 11/11/2022]
Abstract
Biallelic mutations in the AP4B1 gene, encoding adaptor-related protein complex 4 beta-1 subunit, have been recognized as an important cause of a group of conditions leading to adaptor-related protein complex 4 (AP4)-associated hereditary spastic paraplegia (SPG47). We describe a homozygous, known variant c.1160_1161delCA (p.Thr387fs) that was found in the largest ever group of patients coming from four families. The patients exhibited early hypotonia progressing to spastic paraplegia, microcephaly, epilepsy, and central nervous system (CNS) defects and global developmental delay that are consistent with the nature of SPG47. Our findings expand phenotypic spectrum of SPG47 to include polymorphic seizures, mild/moderate intellectual disability, and intracerebral cysts as well as point to founder mutation in AP4 deficiency disorders in apparently non-consanguineous Polish families without shared ancestry.
Collapse
Affiliation(s)
- Krzysztof Szczałuba
- Department of Medical Genetics, Medical University of Warsaw, ul. Pawinskiego 3c, 02-106, Warsaw, Poland
| | - Hanna Mierzewska
- Department of Child and Adolescent Neurology, Institute of Mother and Child, Warsaw, Poland
| | - Robert Śmigiel
- Department of Paediatrics, Division of Paediatric Propaedeutics and Rare Disorders, Wroclawa Medical University, Wroclaw, Poland
| | - Joanna Kosińska
- Department of Medical Genetics, Medical University of Warsaw, ul. Pawinskiego 3c, 02-106, Warsaw, Poland
| | - Agnieszka Koppolu
- Department of Medical Genetics, Medical University of Warsaw, ul. Pawinskiego 3c, 02-106, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Anna Biernacka
- Department of Medical Genetics, Medical University of Warsaw, ul. Pawinskiego 3c, 02-106, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Piotr Stawiński
- Department of Medical Genetics, Medical University of Warsaw, ul. Pawinskiego 3c, 02-106, Warsaw, Poland.,Department of Genetics, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Agnieszka Pollak
- Department of Medical Genetics, Medical University of Warsaw, ul. Pawinskiego 3c, 02-106, Warsaw, Poland
| | - Małgorzata Rydzanicz
- Department of Medical Genetics, Medical University of Warsaw, ul. Pawinskiego 3c, 02-106, Warsaw, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, ul. Pawinskiego 3c, 02-106, Warsaw, Poland.
| |
Collapse
|
26
|
Leidal AM, Huang HH, Marsh T, Solvik T, Zhang D, Ye J, Kai F, Goldsmith J, Liu JY, Huang YH, Monkkonen T, Vlahakis A, Huang EJ, Goodarzi H, Yu L, Wiita AP, Debnath J. The LC3-conjugation machinery specifies the loading of RNA-binding proteins into extracellular vesicles. Nat Cell Biol 2020; 22:187-199. [PMID: 31932738 PMCID: PMC7007875 DOI: 10.1038/s41556-019-0450-y] [Citation(s) in RCA: 297] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022]
Abstract
Traditionally viewed as an autodigestive pathway, autophagy also facilitates cellular secretion; however, the mechanisms underlying these processes remain unclear. Here, we demonstrate that components of the autophagy machinery specify secretion within extracellular vesicles (EVs). Using a proximity-dependent biotinylation proteomics strategy, we identify 200 putative targets of LC3-dependent secretion. This secretome consists of a highly interconnected network enriched in RNA-binding proteins (RBPs) and EV cargoes. Proteomic and RNA profiling of EVs identifies diverse RBPs and small non-coding RNAs requiring the LC3-conjugation machinery for packaging and secretion. Focusing on two RBPs, heterogeneous nuclear ribonucleoprotein K (HNRNPK) and scaffold-attachment factor B (SAFB), we demonstrate that these proteins interact with LC3 and are secreted within EVs enriched with lipidated LC3. Furthermore, their secretion requires the LC3-conjugation machinery, neutral sphingomyelinase 2 (nSMase2) and LC3-dependent recruitment of factor associated with nSMase2 activity (FAN). Hence, the LC3-conjugation pathway controls EV cargo loading and secretion.
Collapse
Affiliation(s)
- Andrew M Leidal
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Hector H Huang
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Timothy Marsh
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Tina Solvik
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Dachuan Zhang
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jordan Ye
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - FuiBoon Kai
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Juliet Goldsmith
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Jennifer Y Liu
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Yu-Hsin Huang
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Teresa Monkkonen
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Ariadne Vlahakis
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Eric J Huang
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, Department of Urology, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Li Yu
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Arun P Wiita
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Jayanta Debnath
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
27
|
Makowski SL, Kuna RS, Field SJ. Induction of membrane curvature by proteins involved in Golgi trafficking. Adv Biol Regul 2019; 75:100661. [PMID: 31668661 PMCID: PMC7056495 DOI: 10.1016/j.jbior.2019.100661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 12/22/2022]
Abstract
The Golgi apparatus serves a key role in processing and sorting lipids and proteins for delivery to their final cellular destinations. Vesicle exit from the Golgi initiates with directional deformation of the lipid bilayer to produce a bulge. Several mechanisms have been described by which lipids and proteins can induce directional membrane curvature to promote vesicle budding. Here we review some of the mechanisms implicated in inducing membrane curvature at the Golgi to promote vesicular trafficking to various cellular destinations.
Collapse
Affiliation(s)
- Stefanie L Makowski
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ramya S Kuna
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Seth J Field
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
28
|
The NAE Pathway: Autobahn to the Nucleus for Cell Surface Receptors. Cells 2019; 8:cells8080915. [PMID: 31426451 PMCID: PMC6721735 DOI: 10.3390/cells8080915] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 12/19/2022] Open
Abstract
Various growth factors and full-length cell surface receptors such as EGFR are translocated from the cell surface to the nucleoplasm, baffling cell biologists to the mechanisms and functions of this process. Elevated levels of nuclear EGFR correlate with poor prognosis in various cancers. In recent years, nuclear EGFR has been implicated in regulating gene transcription, cell proliferation and DNA damage repair. Different models have been proposed to explain how the receptors are transported into the nucleus. However, a clear consensus has yet to be reached. Recently, we described the nuclear envelope associated endosomes (NAE) pathway, which delivers EGFR from the cell surface to the nucleus. This pathway involves transport, docking and fusion of NAEs with the outer membrane of the nuclear envelope. EGFR is then presumed to be transported through the nuclear pore complex, extracted from membranes and solubilised. The SUN1/2 nuclear envelope proteins, Importin-beta, nuclear pore complex proteins and the Sec61 translocon have been implicated in the process. While this framework can explain the cell surface to nucleus traffic of EGFR and other cell surface receptors, it raises several questions that we consider in this review, together with implications for health and disease.
Collapse
|
29
|
Rab GTPases: Switching to Human Diseases. Cells 2019; 8:cells8080909. [PMID: 31426400 PMCID: PMC6721686 DOI: 10.3390/cells8080909] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023] Open
Abstract
Rab proteins compose the largest family of small GTPases and control the different steps of intracellular membrane traffic. More recently, they have been shown to also regulate cell signaling, division, survival, and migration. The regulation of these processes generally occurs through recruitment of effectors and regulatory proteins, which control the association of Rab proteins to membranes and their activation state. Alterations in Rab proteins and their effectors are associated with multiple human diseases, including neurodegeneration, cancer, and infections. This review provides an overview of how the dysregulation of Rab-mediated functions and membrane trafficking contributes to these disorders. Understanding the altered dynamics of Rabs and intracellular transport defects might thus shed new light on potential therapeutic strategies.
Collapse
|
30
|
Hellerschmied D, Serebrenik YV, Shao L, Burslem GM, Crews CM. Protein folding state-dependent sorting at the Golgi apparatus. Mol Biol Cell 2019; 30:2296-2308. [PMID: 31166830 PMCID: PMC6743468 DOI: 10.1091/mbc.e19-01-0069] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 12/14/2022] Open
Abstract
In eukaryotic cells, organelle-specific protein quality control (PQC) is critical for maintaining cellular homeostasis. Despite the Golgi apparatus being the major protein processing and sorting site within the secretory pathway, how it contributes to PQC has remained largely unknown. Using different chemical biology-based protein unfolding systems, we reveal the segregation of unfolded proteins from folded proteins in the Golgi. Quality control (QC) substrates are subsequently exported in distinct carriers, which likely contain unfolded proteins as well as highly oligomerized cargo that mimic protein aggregates. At an additional sorting step, oligomerized proteins are committed to lysosomal degradation, while unfolded proteins localize to the endoplasmic reticulum (ER) and associate with chaperones. These results highlight the existence of checkpoints at which QC substrates are selected for Golgi export and lysosomal degradation. Our data also suggest that the steady-state ER localization of misfolded proteins, observed for several disease-causing mutants, may have different origins.
Collapse
Affiliation(s)
| | | | - Lin Shao
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520
| | | | - Craig M. Crews
- Department of Molecular, Cellular and Developmental Biology
- Department of Chemistry, Yale University, New Haven, CT 06511
- Department of Pharmacology, Yale University, New Haven, CT 06511
| |
Collapse
|
31
|
Datta G, Miller NM, Afghah Z, Geiger JD, Chen X. HIV-1 gp120 Promotes Lysosomal Exocytosis in Human Schwann Cells. Front Cell Neurosci 2019; 13:329. [PMID: 31379513 PMCID: PMC6650616 DOI: 10.3389/fncel.2019.00329] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/03/2019] [Indexed: 12/31/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) associated neuropathy is the most common neurological complication of HIV-1, with debilitating pain affecting the quality of life. HIV-1 gp120 plays an important role in the pathogenesis of HIV neuropathy via direct neurotoxic effects or indirect pro-inflammatory responses. Studies have shown that gp120-induced release of mediators from Schwann cells induce CCR5-dependent DRG neurotoxicity, however, CCR5 antagonists failed to improve pain in HIV- infected individuals. Thus, there is an urgent need for a better understanding of neuropathic pain pathogenesis and developing effective therapeutic strategies. Because lysosomal exocytosis in Schwann cells is an indispensable process for regulating myelination and demyelination, we determined the extent to which gp120 affected lysosomal exocytosis in human Schwann cells. We demonstrated that gp120 promoted the movement of lysosomes toward plasma membranes, induced lysosomal exocytosis, and increased the release of ATP into the extracellular media. Mechanistically, we demonstrated lysosome de-acidification, and activation of P2X4 and VNUT to underlie gp120-induced lysosome exocytosis. Functionally, we demonstrated that gp120-induced lysosome exocytosis and release of ATP from Schwann cells leads to increases in intracellular calcium and generation of cytosolic reactive oxygen species in DRG neurons. Our results suggest that gp120-induced lysosome exocytosis and release of ATP from Schwann cells and DRG neurons contribute to the pathogenesis of HIV-1 associated neuropathy.
Collapse
Affiliation(s)
- Gaurav Datta
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Nicole M Miller
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Zahra Afghah
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| |
Collapse
|
32
|
Li Y, Cookson MR. Proteomics; applications in familial Parkinson's disease. J Neurochem 2019; 151:446-458. [PMID: 31022302 DOI: 10.1111/jnc.14708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/25/2019] [Accepted: 04/16/2019] [Indexed: 12/17/2022]
Abstract
Our understanding of the biological basis of Parkinson's disease (PD) has been greatly improved in recent years by the identification of mutations that lead to inherited PD. One of the strengths of using genetics to try to understand disease biology is that it is inherently unbiased and can be applied at a genome-wide scale. More recently, many studies have used another set of unbiased approaches, proteomics, to query the function of familial PD genes in a variety of contexts. We will discuss some specific examples, including; elucidation of protein-protein interaction networks for two dominantly inherited genes, α-synuclein and leucine rich-repeat kinase 2 (LRRK2); the identification of substrates for three genes for familial PD that are also enzymes, namely LRRK2, pink1, and parkin; and changes in protein abundance that arise downstream to introduction of mutations associated with familial PD. We will also discuss those situations where we can integrate multiple proteomics approaches to nominate deeper networks of inter-related events that outline pathways relevant to inherited PD. This article is part of the Special Issue "Proteomics".
Collapse
Affiliation(s)
- Yan Li
- Protein/peptide Sequencing facility, National Institute of Neurological, Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
33
|
The Membrane-Spanning Peptide and Acidic Cluster Dileucine Sorting Motif of UL138 Are Required To Downregulate MRP1 Drug Transporter Function in Human Cytomegalovirus-Infected Cells. J Virol 2019; 93:JVI.00430-19. [PMID: 30894470 DOI: 10.1128/jvi.00430-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 01/08/2023] Open
Abstract
The human cytomegalovirus (HCMV) UL138 protein downregulates the cell surface expression of the multidrug resistance-associated protein 1 (MRP1) transporter. We examined the genetic requirements within UL138 for MRP1 downregulation. We determined that the acidic cluster dileucine motif is essential for UL138-mediated downregulation of MRP1 steady-state levels and inhibition of MRP1 efflux activity. We also discovered that the naturally occurring UL138 protein isoforms, the full-length long isoform of UL138 and a short isoform missing the N-terminal membrane-spanning domain, have different abilities to inhibit MRP1 function. Cells expressing the long isoform of UL138 show decreased MRP1 steady-state levels and fail to efflux an MRP1 substrate. Cells expressing the short isoform of UL138 also show decreased MRP1 levels, but the magnitude of the decrease is not the same, and they continue to efficiently efflux an MRP1 substrate. Thus, the membrane-spanning domain, while dispensable for a UL138-mediated decrease in MRP1 protein levels, is necessary for a functional inhibition of MRP1 activity. Our work defines the genetic requirements for UL138-mediated MRP1 downregulation and anticipates the possible evolution of viral escape mutants during the use of therapies targeting this function of UL138.IMPORTANCE HCMV UL138 curtails the activity of the MRP1 drug transporter by reducing its steady-state levels, leaving cells susceptible to killing by cytotoxic agents normally exported by MRP1. It has been suggested in the literature that capitalizing on this UL138-induced vulnerability could be a potential antiviral strategy against virally infected cells, particularly those harboring a latent infection during which UL138 is one of the few viral proteins expressed. Therefore, identifying the regions of UL138 required for MRP1 downregulation and predicting genetic variants that may be selected upon UL138-targeted chemotherapy are important ventures. Here we present the first structure-function examination of UL138 activity and determine that its transmembrane domain and acidic cluster dileucine Golgi sorting motif are required for functional MRP1 downregulation.
Collapse
|
34
|
Kamata H, Sadahiro S, Yamori T. Discovery of Inhibitors of Membrane Traffic from a Panel of Clinically Effective Anticancer Drugs. Biol Pharm Bull 2019; 42:814-818. [DOI: 10.1248/bpb.b18-01026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hiroko Kamata
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research
- Graduate School of Medicine, Tokai University
| | | | - Takao Yamori
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research
| |
Collapse
|
35
|
Manganese-induced cellular disturbance in the baker's yeast, Saccharomyces cerevisiae with putative implications in neuronal dysfunction. Sci Rep 2019; 9:6563. [PMID: 31024033 PMCID: PMC6484083 DOI: 10.1038/s41598-019-42907-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 04/09/2019] [Indexed: 12/24/2022] Open
Abstract
Manganese (Mn) is an essential element, but in humans, chronic and/or acute exposure to this metal can lead to neurotoxicity and neurodegenerative disorders including Parkinsonism and Parkinson’s Disease by unclear mechanisms. To better understand the effects that exposure to Mn2+ exert on eukaryotic cell biology, we exposed a non-essential deletion library of the yeast Saccharomyces cerevisiae to a sub-inhibitory concentration of Mn2+ followed by targeted functional analyses of the positive hits. This screen produced a set of 43 sensitive deletion mutants that were enriched for genes associated with protein biosynthesis. Our follow-up investigations demonstrated that Mn reduced total rRNA levels in a dose-dependent manner and decreased expression of a β-galactosidase reporter gene. This was subsequently supported by analysis of ribosome profiles that suggested Mn-induced toxicity was associated with a reduction in formation of active ribosomes on the mRNAs. Altogether, these findings contribute to the current understanding of the mechanism of Mn-triggered cytotoxicity. Lastly, using the Comparative Toxicogenomic Database, we revealed that Mn shared certain similarities in toxicological mechanisms with neurodegenerative disorders including amyotrophic lateral sclerosis, Alzheimer’s, Parkinson’s and Huntington’s diseases.
Collapse
|
36
|
Xiao X, Yang Y, Mao B, Cheng CY, Ni Y. Emerging role for SRC family kinases in junction dynamics during spermatogenesis. Reproduction 2019; 157:R85-R94. [PMID: 30608903 PMCID: PMC6602873 DOI: 10.1530/rep-18-0440] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/03/2019] [Indexed: 12/22/2022]
Abstract
SRC family kinases (SFKs) are known regulators of multiple cellular events, including cell movement, differentiation, proliferation, survival and apoptosis. SFKs are expressed virtually by all mammalian cells. They are non-receptor protein kinases that phosphorylate a variety of cellular proteins on tyrosine, leading to the activation of protein targets in response to environmental stimuli. Among SFKs, SRC, YES and FYN are the ubiquitously expressed and best studied members. In fact, SRC, the prototypical SFK, was the first tyrosine kinase identified in mammalian cells. Studies have shown that SFKs are regulators of cell junctions, and function in endocytosis and membrane trafficking to regulate junction restructuring events. Herein, we briefly summarize the recent findings in the field regarding the role of SFKs in the testis in regulating spermatogenesis, particularly in Sertoli-Sertoli and Sertoli-germ cell adhesion. While it is almost 50 years since the identification of the oncogene v-Src encoded by Rous sarcoma transforming virus, the understanding of SFK involvement during spermatogenesis in the testis remains far behind that in other epithelia and tissues. The goal of this review is to bridge this gap.
Collapse
Affiliation(s)
- Xiang Xiao
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou 310013, Zhejiang, China
| | - Yue Yang
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou 310013, Zhejiang, China
| | - Baiping Mao
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - C. Yan Cheng
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Ya Ni
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou 310013, Zhejiang, China
| |
Collapse
|
37
|
Song K, Gras C, Capin G, Gimber N, Lehmann M, Mohd S, Puchkov D, Rödiger M, Wilhelmi I, Daumke O, Schmoranzer J, Schürmann A, Krauss M. A SEPT1-based scaffold is required for Golgi integrity and function. J Cell Sci 2019; 132:132/3/jcs225557. [PMID: 30709970 PMCID: PMC6382012 DOI: 10.1242/jcs.225557] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022] Open
Abstract
Compartmentalization of membrane transport and signaling processes is of pivotal importance to eukaryotic cell function. While plasma membrane compartmentalization and dynamics are well known to depend on the scaffolding function of septin GTPases, the roles of septins at intracellular membranes have remained largely elusive. Here, we show that the structural and functional integrity of the Golgi depends on its association with a septin 1 (SEPT1)-based scaffold, which promotes local microtubule nucleation and positioning of the Golgi. SEPT1 function depends on the Golgi matrix protein GM130 (also known as GOLGA2) and on centrosomal proteins, including CEP170 and components of γ-tubulin ring complex (γ-Turc), to facilitate the perinuclear concentration of Golgi membranes. Accordingly, SEPT1 depletion triggers a massive fragmentation of the Golgi ribbon, thereby compromising anterograde membrane traffic at the level of the Golgi.
Collapse
Affiliation(s)
- Kyungyeun Song
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Berlin, Molecular Pharmacology and Cell Biology, 13125 Berlin, Germany
| | - Claudia Gras
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Berlin, Molecular Pharmacology and Cell Biology, 13125 Berlin, Germany
| | - Gabrielle Capin
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Berlin, Molecular Pharmacology and Cell Biology, 13125 Berlin, Germany
| | - Niclas Gimber
- Charité Universitätsmedizin Berlin, Advanced Medical Bioimaging Core Facility - AMBIO, 10117 Berlin, Germany
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Berlin, Cellular Imaging Facility, 13125 Berlin, Germany
| | - Saif Mohd
- Max-Delmbrück-Centrum für Molekulare Medizin, 13125 Berlin, Germany
| | - Dmytro Puchkov
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Berlin, Cellular Imaging Facility, 13125 Berlin, Germany
| | - Maria Rödiger
- Deutsches Institut für Ernährungsforschung, Potsdam Rehbrücke, and German Center for Diabetes Research (DZD), München-Neuherberg, 14558 Potsdam-Rehbrücke, Germany
| | - Ilka Wilhelmi
- Deutsches Institut für Ernährungsforschung, Potsdam Rehbrücke, and German Center for Diabetes Research (DZD), München-Neuherberg, 14558 Potsdam-Rehbrücke, Germany
| | - Oliver Daumke
- Max-Delmbrück-Centrum für Molekulare Medizin, 13125 Berlin, Germany
| | - Jan Schmoranzer
- Charité Universitätsmedizin Berlin, Advanced Medical Bioimaging Core Facility - AMBIO, 10117 Berlin, Germany
| | - Annette Schürmann
- Deutsches Institut für Ernährungsforschung, Potsdam Rehbrücke, and German Center for Diabetes Research (DZD), München-Neuherberg, 14558 Potsdam-Rehbrücke, Germany
| | - Michael Krauss
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Berlin, Molecular Pharmacology and Cell Biology, 13125 Berlin, Germany
| |
Collapse
|
38
|
Lučin P, Kareluša L, Blagojević Zagorac G, Mahmutefendić Lučin H, Pavišić V, Jug Vučko N, Lukanović Jurić S, Marcelić M, Lisnić B, Jonjić S. Cytomegaloviruses Exploit Recycling Rab Proteins in the Sequential Establishment of the Assembly Compartment. Front Cell Dev Biol 2018; 6:165. [PMID: 30564576 PMCID: PMC6288171 DOI: 10.3389/fcell.2018.00165] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/19/2018] [Indexed: 12/19/2022] Open
Abstract
Cytomegaloviruses (CMV) reorganize membranous system of the cell in order to develop a virion assembly compartment (VAC). The development starts in the early (E) phase of infection with the reorganization of the endosomal system and the Golgi and proceeds to the late phase until newly formed virions are assembled and released. The events in the E phase involve reorganization of the endosomal recycling compartment (ERC) in a series of cellular alterations that are mostly unknown. In this minireview, we discuss the effect of murine CMV infection on Rab proteins, master regulators of membrane trafficking pathways, which in the cascades with their GEFs and GAPs organize the flow of membranes through the ERC. Immunofluorescence analyzes of murine CMV infected cells suggest perturbations of Rab cascades that operate at the ERC. Analysis of cellular transcriptome in the course of both murine and human CMV infection demonstrates the alteration in expression of cellular genes whose products are known to build Rab cascades. These alterations, however, cannot explain perturbations of the ERC. Cellular proteome data available for human CMV infected cells suggests the potential role of RabGAP downregulation at the end of the E phase. However, the very early onset of the ERC alterations in the course of MCMV infection indicates that CMVs exploit Rab cascades to reorganize the ERC, which represents the earliest step in the sequential establishment of the cVAC.
Collapse
Affiliation(s)
- Pero Lučin
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.,University North - University Center Varaždin, Varaždin, Croatia
| | - Ljerka Kareluša
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | | | - Hana Mahmutefendić Lučin
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.,University North - University Center Varaždin, Varaždin, Croatia
| | - Valentino Pavišić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Natalia Jug Vučko
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Silvija Lukanović Jurić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Marina Marcelić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Berislav Lisnić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Stipan Jonjić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
39
|
Mayorga LS, Cebrian I, Verma M, Hoops S, Bassaganya-Riera J. Reconstruction of endosomal organization and function by a combination of ODE and agent-based modeling strategies. Biol Direct 2018; 13:25. [PMID: 30621747 PMCID: PMC6883406 DOI: 10.1186/s13062-018-0227-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/16/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Reproducing cell processes using an in silico system is an essential tool for understanding the underlying mechanisms and emergent properties of this extraordinary complex biological machine. However, computational models are seldom applied in the field of intracellular trafficking. In a cell, numerous molecular interactions occur on the surface or in the interior of membrane-bound compartments that continually change position and undergo dynamic processes of fusion and fission. At present, the available simulation tools are not suitable to develop models that incorporate the dynamic evolution of the cell organelles. RESULTS We developed a modeling platform combining Repast (Agent-Based Modeling, ABM) and COPASI (Differential Equations, ODE) that can be used to reproduce complex networks of molecular interactions. These interactions occur in dynamic cell organelles that change position and composition over the course of time. These two modeling strategies are fundamentally different and comprise of complementary capabilities. The ODEs can easily model the networks of molecular interactions, signaling cascades, and complex metabolic reactions. On the other hand, ABM software is especially suited to simulate the movement, interaction, fusion, and fission of dynamic organelles. We used the combined ABM-ODE platform to simulate the transport of soluble and membrane-associated cargoes that move along an endocytic route composed of early, sorting, recycling and late endosomes. We showed that complex processes that strongly depend on transport can be modeled. As an example, the hydrolysis of a GM2-like glycolipid was programmed by adding a trans-Golgi network compartment, lysosomal enzyme trafficking, endosomal acidification, and cholesterol processing to the simulation model. CONCLUSIONS The model captures the highly dynamic nature of cell compartments that fuse and divide, creating different conditions for each organelle. We expect that this modeling strategy will be useful to understand the logic underlying the organization and function of the endomembrane system. REVIEWERS This article was reviewed by Drs. Rafael Fernández-Chacón, James Faeder, and Thomas Simmen.
Collapse
Affiliation(s)
- Luis S Mayorga
- Facultad de Ciencias Médicas, Facultad de Ciencias Exactas y Naturales, IHEM (Universidad Nacional de Cuyo, CONICET), Casilla de Correo 56, 5500, Mendoza, Argentina.
| | - Ignacio Cebrian
- Facultad de Ciencias Médicas, Facultad de Ciencias Exactas y Naturales, IHEM (Universidad Nacional de Cuyo, CONICET), Casilla de Correo 56, 5500, Mendoza, Argentina
| | - Meghna Verma
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA.,Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Blacksburg, VA, USA
| | - Stefan Hoops
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA.,Biocomplexity Institute and Initiative University of Virginia, 995 Research Park Boulevard, Charlottesville, VA, 22911, USA
| | - Josep Bassaganya-Riera
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
40
|
Liang XH, Sun H, Nichols JG, Allen N, Wang S, Vickers TA, Shen W, Hsu CW, Crooke ST. COPII vesicles can affect the activity of antisense oligonucleotides by facilitating the release of oligonucleotides from endocytic pathways. Nucleic Acids Res 2018; 46:10225-10245. [PMID: 30239896 PMCID: PMC6212795 DOI: 10.1093/nar/gky841] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/23/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022] Open
Abstract
RNase H1-dependent, phosphorothioate-modified antisense oligonucleotides (PS-ASOs) can enter cells through endocytic pathways and need to be released from the membrane-enclosed organelles, a limiting step for antisense activity. Accumulating evidence has suggested that productive PS-ASO release mainly occurs from late endosomes (LEs). However, how PS-ASOs escape from LEs is not well understood. Here, we report that upon PS-ASO incubation, COPII vesicles, normally involved in ER-Golgi transport, can re-locate to PS-ASO-containing LEs. Reduction of COPII coat proteins significantly decreased PS-ASO activity, without affecting the levels of PS-ASO uptake and early-to-late endosome transport, but caused slower PS-ASO release from LEs. COPII co-localization with PS-ASOs at LEs does not require de novo assembly of COPII at ER. Interestingly, reduction of STX5 and P115, proteins involved in tethering and fusion of COPII vesicles with Golgi membranes, impaired COPII re-localization to LEs and decreased PS-ASO activity. STX5 can re-locate to LEs upon PS-ASO incubation, can bind PS-ASOs, and the binding appears to be required for this pathway. Our study reveals a novel release pathway in which PS-ASO incubation causes LE re-localization of STX5, which mediates the recruitment of COPII vesicles to LEs to facilitate endosomal PS-ASO release, and identifies another key PS-ASO binding protein.
Collapse
Affiliation(s)
- Xue-hai Liang
- Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Hong Sun
- Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Joshua G Nichols
- Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Nickolas Allen
- Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Shiyu Wang
- Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Timothy A Vickers
- Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Wen Shen
- Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Chih-Wei Hsu
- Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Stanley T Crooke
- Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| |
Collapse
|
41
|
Serebrenik YV, Hellerschmied D, Toure M, López-Giráldez F, Brookner D, Crews CM. Targeted protein unfolding uncovers a Golgi-specific transcriptional stress response. Mol Biol Cell 2018; 29:1284-1298. [PMID: 29851555 PMCID: PMC5994893 DOI: 10.1091/mbc.e17-11-0693] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/26/2018] [Accepted: 03/30/2018] [Indexed: 12/12/2022] Open
Abstract
In eukaryotic cells, organelle-specific stress-response mechanisms are vital for maintaining cellular homeostasis. The Golgi apparatus, an essential organelle of the secretory system, is the major site of protein modification and sorting within a cell and functions as a platform for spatially regulated signaling. Golgi homeostasis mechanisms that regulate organelle structure and ensure precise processing and localization of protein substrates remain poorly understood. Using a chemical biology strategy to induce protein unfolding, we uncover a Golgi-specific transcriptional response. An RNA-sequencing profile of this stress response compared with the current state-of-the-art Golgi stressors, nigericin and xyloside, demonstrates the enhanced precision of Golgi targeting achieved with our system. The data set further reveals previously uncharacterized genes that we find to be essential for Golgi structural integrity. These findings highlight the Golgi's ability to sense misfolded proteins and establish new aspects of Golgi autoregulation.
Collapse
Affiliation(s)
- Yevgeniy V. Serebrenik
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
| | - Doris Hellerschmied
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
| | - Momar Toure
- Department of Chemistry, Yale University, New Haven, CT 06511
| | | | - Dennis Brookner
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
| | - Craig M. Crews
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
- Department of Chemistry, Yale University, New Haven, CT 06511
- Department of Pharmacology, Yale University, New Haven, CT 06511
| |
Collapse
|
42
|
Podinovskaia M, Spang A. The Endosomal Network: Mediators and Regulators of Endosome Maturation. ENDOCYTOSIS AND SIGNALING 2018; 57:1-38. [DOI: 10.1007/978-3-319-96704-2_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
43
|
Bärlocher K, Welin A, Hilbi H. Formation of the Legionella Replicative Compartment at the Crossroads of Retrograde Trafficking. Front Cell Infect Microbiol 2017; 7:482. [PMID: 29226112 PMCID: PMC5706426 DOI: 10.3389/fcimb.2017.00482] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/06/2017] [Indexed: 12/13/2022] Open
Abstract
Retrograde trafficking from the endosomal system through the Golgi apparatus back to the endoplasmic reticulum is an essential pathway in eukaryotic cells, serving to maintain organelle identity and to recycle empty cargo receptors delivered by the secretory pathway. Intracellular replication of several bacterial pathogens, including Legionella pneumophila, is restricted by the retrograde trafficking pathway. L. pneumophila employs the Icm/Dot type IV secretion system (T4SS) to form the replication-permissive Legionella-containing vacuole (LCV), which is decorated with multiple components of the retrograde trafficking machinery as well as retrograde cargo receptors. The L. pneumophila effector protein RidL is secreted by the T4SS and interferes with retrograde trafficking. Here, we review recent evidence that the LCV interacts with the retrograde trafficking pathway, discuss the possible sites of action and function of RidL in the retrograde route, and put forth the hypothesis that the LCV is an acceptor compartment of retrograde transport vesicles.
Collapse
Affiliation(s)
- Kevin Bärlocher
- Institute of Medical Microbiology, University of Zürich, Zurich, Switzerland
| | - Amanda Welin
- Institute of Medical Microbiology, University of Zürich, Zurich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zurich, Switzerland
| |
Collapse
|