1
|
Yan H, Zang R, Cui T, Liu Y, Zhang B, Zhao L, Li H, Zhou J, Wang H, Zeng Q, Xu L, Zhou Y, Pei X, Xi J, Yue W. PROTAC-mediated vimentin degradation promotes terminal erythroid differentiation of pluripotent stem cells. Stem Cell Res Ther 2024; 15:310. [PMID: 39294765 PMCID: PMC11412063 DOI: 10.1186/s13287-024-03910-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs), can undergo erythroid differentiation, offering a potentially invaluable resource for generating large quantities of erythroid cells. However, the majority of erythrocytes derived from hPSCs fail to enucleate compared with those derived from cord blood progenitors, with an unknown molecular basis for this difference. The expression of vimentin (VIM) is retained in erythroid cells differentiated from hPSCs but is absent in mature erythrocytes. Further exploration is required to ascertain whether VIM plays a critical role in enucleation and to elucidate the underlying mechanisms. METHODS In this study, we established a hESC line with reversible vimentin degradation (dTAG-VIM-H9) using the proteolysis-targeting chimera (PROTAC) platform. Various time-course studies, including erythropoiesis from CD34+ human umbilical cord blood and three-dimensional (3D) organoid culture from hESCs, morphological analysis, quantitative real-time PCR (qRT-PCR), western blotting, flow cytometry, karyotyping, cytospin, Benzidine-Giemsa staining, immunofluorescence assay, and high-speed cell imaging analysis, were conducted to examine and compare the characteristics of hESCs and those with vimentin degradation, as well as their differentiated erythroid cells. RESULTS Vimentin expression diminished during normal erythropoiesis in CD34+ cord blood cells, whereas it persisted in erythroid cells differentiated from hESC. Depletion of vimentin using the degradation tag (dTAG) system promotes erythroid enucleation in dTAG-VIM-H9 cells. Nuclear polarization of erythroblasts is elevated by elimination of vimentin. CONCLUSIONS VIM disappear during the normal maturation of erythroid cells, whereas they are retained in erythroid cells differentiated from hPSCs. We found that retention of vimentin during erythropoiesis impairs erythroid enucleation from hPSCs. Using the PROTAC platform, we validated that vimentin degradation by dTAG accelerates the enucleation rate in dTAG-VIM-H9 cells by enhancing nuclear polarization.
Collapse
Affiliation(s)
- Hao Yan
- Beijing Institute of Radiation Medicine, Beijing, 100850, P. R. China
| | - Ruge Zang
- Beijing Institute of Radiation Medicine, Beijing, 100850, P. R. China.
| | - Tiantian Cui
- Beijing Institute of Radiation Medicine, Beijing, 100850, P. R. China
| | - Yiming Liu
- Beijing Institute of Radiation Medicine, Beijing, 100850, P. R. China
| | - Biao Zhang
- Beijing Institute of Radiation Medicine, Beijing, 100850, P. R. China
| | - Lingpin Zhao
- Beijing Institute of Radiation Medicine, Beijing, 100850, P. R. China
| | - Hongyu Li
- Beijing Institute of Radiation Medicine, Beijing, 100850, P. R. China
| | - Juannian Zhou
- Beijing Institute of Radiation Medicine, Beijing, 100850, P. R. China
| | - Haiyang Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, P. R. China
| | - Quan Zeng
- Beijing Institute of Radiation Medicine, Beijing, 100850, P. R. China
| | - Lei Xu
- Beijing Institute of Radiation Medicine, Beijing, 100850, P. R. China
| | - Yuqi Zhou
- Beijing Institute of Radiation Medicine, Beijing, 100850, P. R. China
| | - Xuetao Pei
- Beijing Institute of Radiation Medicine, Beijing, 100850, P. R. China
| | - Jiafei Xi
- Beijing Institute of Radiation Medicine, Beijing, 100850, P. R. China.
| | - Wen Yue
- Beijing Institute of Radiation Medicine, Beijing, 100850, P. R. China.
| |
Collapse
|
2
|
D'Aversa E, Salvatori F, Vaccarezza M, Antonica B, Grisafi M, Singh AV, Secchiero P, Zauli G, Tisato V, Gemmati D. circRNAs as Epigenetic Regulators of Integrity in Blood-Brain Barrier Architecture: Mechanisms and Therapeutic Strategies in Multiple Sclerosis. Cells 2024; 13:1316. [PMID: 39195206 DOI: 10.3390/cells13161316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative disease leading to progressive demyelination and neuronal loss, with extensive neurological symptoms. As one of the most widespread neurodegenerative disorders, with an age onset of about 30 years, it turns out to be a socio-health and economic issue, thus necessitating therapeutic interventions currently unavailable. Loss of integrity in the blood-brain barrier (BBB) is one of the distinct MS hallmarks. Brain homeostasis is ensured by an endothelial cell-based monolayer at the interface between the central nervous system (CNS) and systemic bloodstream, acting as a selective barrier. MS results in enhanced barrier permeability, mainly due to the breakdown of tight (TJs) and adherens junctions (AJs) between endothelial cells. Specifically, proinflammatory mediator release causes failure in cytoplasmic exposure of junctions, resulting in compromised BBB integrity that enables blood cells to cross the barrier, establishing iron deposition and neuronal impairment. Cells with a compromised cytoskeletal protein network, fiber reorganization, and discontinuous junction structure can occur, resulting in BBB dysfunction. Recent investigations on spatial transcriptomics have proven circularRNAs (circRNAs) to be powerful multi-functional molecules able to epigenetically regulate transcription and structurally support proteins. In the present review, we provide an overview of the recent role ascribed to circRNAs in maintaining BBB integrity/permeability via cytoskeletal stability. Increased knowledge of the mechanisms responsible for impairment and circRNA's role in driving BBB damage and dysfunction might be helpful for the recognition of novel therapeutic targets to overcome BBB damage and unrestrained neurodegeneration.
Collapse
Affiliation(s)
- Elisabetta D'Aversa
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Francesca Salvatori
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Mauro Vaccarezza
- Curtin Medical School & Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Bianca Antonica
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Miriana Grisafi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Paola Secchiero
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh 11462, Saudi Arabia
| | - Veronica Tisato
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- University Strategic Centre for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- University Strategic Centre for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- Centre Haemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
3
|
Venugopal S, Dan Q, Sri Theivakadadcham VS, Wu B, Kofler M, Layne MD, Connelly KA, Rzepka MF, Friedberg MK, Kapus A, Szászi K. Regulation of the RhoA exchange factor GEF-H1 by profibrotic stimuli through a positive feedback loop involving RhoA, MRTF, and Sp1. Am J Physiol Cell Physiol 2024; 327:C387-C402. [PMID: 38912734 DOI: 10.1152/ajpcell.00088.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
RhoA and its effectors, the transcriptional coactivators myocardin-related transcription factor (MRTF) and serum response factor (SRF), control epithelial phenotype and are indispensable for profibrotic epithelial reprogramming during fibrogenesis. Context-dependent control of RhoA and fibrosis-associated changes in its regulators, however, remain incompletely characterized. We previously identified the guanine nucleotide exchange factor GEF-H1 as a central mediator of RhoA activation in renal tubular cells exposed to inflammatory or fibrotic stimuli. Here we found that GEF-H1 expression and phosphorylation were strongly elevated in two animal models of fibrosis. In the Unilateral Ureteral Obstruction mouse kidney fibrosis model, GEF-H1 was upregulated predominantly in the tubular compartment. GEF-H1 was also elevated and phosphorylated in a rat pulmonary artery banding (PAB) model of right ventricular fibrosis. Prolonged stimulation of LLC-PK1 tubular cells with tumor necrosis factor (TNF)-α or transforming growth factor (TGF)-β1 increased GEF-H1 expression and activated a luciferase-coupled GEF-H1 promoter. Knockdown and overexpression studies revealed that these effects were mediated by RhoA, cytoskeleton remodeling, and MRTF, indicative of a positive feedback cycle. Indeed, silencing endogenous GEF-H1 attenuated activation of the GEF-H1 promoter. Of importance, inhibition of MRTF using CCG-1423 prevented GEF-H1 upregulation in both animal models. MRTF-dependent increase in GEF-H1 was prevented by inhibition of the transcription factor Sp1, and mutating putative Sp1 binding sites in the GEF-H1 promoter eliminated its MRTF-dependent activation. As the GEF-H1/RhoA axis is key for fibrogenesis, this novel MRTF/Sp1-dependent regulation of GEF-H1 abundance represents a potential target for reducing renal and cardiac fibrosis.NEW & NOTEWORTHY We show that expression of the RhoA regulator GEF-H1 is upregulated in tubular cells exposed to fibrogenic cytokines and in animal models of kidney and heart fibrosis. We identify a pathway wherein GEF-H1/RhoA-dependent MRTF activation through its noncanonical partner Sp1 upregulates GEF-H1. Our data reveal the existence of a positive feedback cycle that enhances Rho signaling through control of both GEF-H1 activation and expression. This feedback loop may play an important role in organ fibrosis.
Collapse
Affiliation(s)
- Shruthi Venugopal
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Qinghong Dan
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Veroni S Sri Theivakadadcham
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Brian Wu
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Michael Kofler
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Matthew D Layne
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States
| | - Kim A Connelly
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Mark F Rzepka
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Mark K Friedberg
- Division of Cardiology, Labatt Family Heart Center Toronto, Hospital for Sick Children, Toronto, Ontario, Canada
- Translational Medicine, Hospital for Sick Children Research Institute and University of Toronto, Toronto, Ontario, Canada
| | - András Kapus
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Katalin Szászi
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Pathni A, Wagh K, Rey-Suarez I, Upadhyaya A. Mechanical regulation of lymphocyte activation and function. J Cell Sci 2024; 137:jcs219030. [PMID: 38995113 PMCID: PMC11267459 DOI: 10.1242/jcs.219030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
Mechanosensing, or how cells sense and respond to the physical environment, is crucial for many aspects of biological function, ranging from cell movement during development to cancer metastasis, the immune response and gene expression driving cell fate determination. Relevant physical stimuli include the stiffness of the extracellular matrix, contractile forces, shear flows in blood vessels, complex topography of the cellular microenvironment and membrane protein mobility. Although mechanosensing has been more widely studied in non-immune cells, it has become increasingly clear that physical cues profoundly affect the signaling function of cells of the immune system. In this Review, we summarize recent studies on mechanical regulation of immune cells, specifically lymphocytes, and explore how the force-generating cytoskeletal machinery might mediate mechanosensing. We discuss general principles governing mechanical regulation of lymphocyte function, spanning from the molecular scale of receptor activation to cellular responses to mechanical stimuli.
Collapse
Affiliation(s)
- Aashli Pathni
- Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, USA
| | - Kaustubh Wagh
- Department of Physics, University of Maryland, College Park, MD 20742, USA
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ivan Rey-Suarez
- Insitute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
- Microcore, Universidad de Los Andes, Bogota, DC 111711, USA
| | - Arpita Upadhyaya
- Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, USA
- Department of Physics, University of Maryland, College Park, MD 20742, USA
- Insitute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
- Biophysics Program, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
5
|
Ho Thanh MT, Poudel A, Ameen S, Carroll B, Wu M, Soman P, Zhang T, Schwarz JM, Patteson AE. Vimentin promotes collective cell migration through collagen networks via increased matrix remodeling and spheroid fluidity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599259. [PMID: 38948855 PMCID: PMC11212918 DOI: 10.1101/2024.06.17.599259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The intermediate filament (IF) protein vimentin is associated with many diseases with phenotypes of enhanced cellular migration and aggressive invasion through the extracellular matrix (ECM) of tissues, but vimentin's role in in-vivo cell migration is still largely unclear. Vimentin is important for proper cellular adhesion and force generation, which are critical to cell migration; yet the vimentin cytoskeleton also hinders the ability of cells to squeeze through small pores in ECM, resisting migration. To identify the role of vimentin in collective cell migration, we generate spheroids of wide-type and vimentin-null mouse embryonic fibroblasts (mEFs) and embed them in a 3D collagen matrix. We find that loss of vimentin significantly impairs the ability of the spheroid to collectively expand through collagen networks and remodel the collagen network. Traction force analysis reveals that vimentin null spheroids exert less contractile force than their wild-type counterparts. In addition, spheroids made of mEFs with only vimentin unit length filaments (ULFs) exhibit similar behavior as vimentin-null spheroids, suggesting filamentous vimentin is required to promote 3D collective cell migration. We find the vimentin-mediated collective cell expansion is dependent on matrix metalloproteinase (MMP) degradation of the collagen matrix. Further, 3D vertex model simulation of spheroid and embedded ECM indicates that wild-type spheroids behave more fluid-like, enabling more active pulling and reconstructing the surrounding collagen network. Altogether, these results signify that VIF plays a critical role in enhancing migratory persistence in 3D matrix environments through MMP transportation and tissue fluidity.
Collapse
Affiliation(s)
- Minh Tri Ho Thanh
- Physics Department, Syracuse University; Syracuse, New York, USA
- BioInspired Institute, Syracuse University; Syracuse, New York, USA
| | - Arun Poudel
- BioInspired Institute, Syracuse University; Syracuse, New York, USA
- Biomedical and Chemical Engineering Department, Syracuse University; Syracuse, New York, USA
| | - Shabeeb Ameen
- Physics Department, Syracuse University; Syracuse, New York, USA
- BioInspired Institute, Syracuse University; Syracuse, New York, USA
| | - Bobby Carroll
- Physics Department, Syracuse University; Syracuse, New York, USA
- BioInspired Institute, Syracuse University; Syracuse, New York, USA
| | - M Wu
- Department of Biological and Environmental Engineering, Cornell University; Ithaca, New York, USA
| | - Pranav Soman
- BioInspired Institute, Syracuse University; Syracuse, New York, USA
- Biomedical and Chemical Engineering Department, Syracuse University; Syracuse, New York, USA
| | - Tao Zhang
- Department of Polymer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - J M Schwarz
- Physics Department, Syracuse University; Syracuse, New York, USA
- BioInspired Institute, Syracuse University; Syracuse, New York, USA
- Indian Creek Farm, Ithaca, New York, USA
| | - Alison E Patteson
- Physics Department, Syracuse University; Syracuse, New York, USA
- BioInspired Institute, Syracuse University; Syracuse, New York, USA
| |
Collapse
|
6
|
Seetharaman S, Devany J, Kim HR, van Bodegraven E, Chmiel T, Tzu-Pin S, Chou WH, Fang Y, Gardel ML. Mechanosensitive FHL2 tunes endothelial function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.16.599227. [PMID: 38948838 PMCID: PMC11212908 DOI: 10.1101/2024.06.16.599227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Endothelial tissues are essential mechanosensors in the vasculature and facilitate adaptation to various blood flow-induced mechanical cues. Defects in endothelial mechanoresponses can perturb tissue remodelling and functions leading to cardiovascular disease progression. In this context, the precise mechanisms of endothelial mechanoresponses contributing to normal and diseased tissue functioning remain elusive. Here, we sought to uncover how flow-mediated transcriptional regulation drives endothelial mechanoresponses in healthy and atherosclerotic-prone tissues. Using bulk RNA sequencing, we identify novel mechanosensitive genes in response to healthy unidirectional flow (UF) and athero-prone disturbed flow (DF). We find that the transcription as well as protein expression of Four-and-a-half LIM protein 2 (FHL2) are enriched in athero-prone DF both in vitro and in vivo. We then demonstrate that the exogenous expression of FHL2 is necessary and sufficient to drive discontinuous adherens junction morphology and increased tissue permeability. This athero-prone phenotype requires the force-sensitive binding of FHL2 to actin. In turn, the force-dependent localisation of FHL2 to stress fibres promotes microtubule dynamics to release the RhoGEF, GEF-H1, and activate the Rho-ROCK pathway. Thus, we unravelled a novel mechanochemical feedback wherein force-dependent FHL2 localisation promotes hypercontractility. This misregulated mechanoresponse creates highly permeable tissues, depicting classic hallmarks of atherosclerosis progression. Overall, we highlight crucial functions for the FHL2 force-sensitivity in tuning multi-scale endothelial mechanoresponses.
Collapse
Affiliation(s)
- Shailaja Seetharaman
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - John Devany
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Ha Ram Kim
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, 60637, USA
| | - Emma van Bodegraven
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Theresa Chmiel
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Shentu Tzu-Pin
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, 60637, USA
| | - Wen-hung Chou
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Yun Fang
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, 60637, USA
| | - Margaret Lise Gardel
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
7
|
Zhang F, Liu W, Mao Y, Yang Y, Ling C, Liu Y, Yao F, Zhen Y, Wang X, Zou M. Migrasome, a migration-dependent organelle. Front Cell Dev Biol 2024; 12:1417242. [PMID: 38903534 PMCID: PMC11187097 DOI: 10.3389/fcell.2024.1417242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Abstract
Migrasomes are organelles produced by migrating cells that form on retraction fibers and are released during cell migration. Migrasomes are involved in physiological and pathological processes such as intercellular communication, cell homeostasis maintenance, signal transduction, disease occurrence and development, and cancer metastasis. In addition, methods and techniques for studying migrasomes are constantly evolving. Here, we review the discovery, formation process, regulation, and known functions of migrasomes, summarize the commonly used specific markers of migrasomes, and the methods for observing migrasomes. Meanwhile, this review also discusses the potential applications of migrasomes in physiological processes, disease diagnosis, treatment, and prognosis, and looks forward to their wider application in biomedicine. In addition, the study of migrasomes will also reveal a new perspective on the mechanism of intercellular communication and promote the further development of life science.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Mincheng Zou
- Department of Orthopaedics, Children’s Hospital of Soochow University, Suzhou, China
| |
Collapse
|
8
|
Wang L, Tsang HY, Yan Z, Tojkander S, Ciuba K, Kogan K, Liu X, Zhao H. LUZP1 regulates the maturation of contractile actomyosin bundles. Cell Mol Life Sci 2024; 81:248. [PMID: 38832964 PMCID: PMC11335285 DOI: 10.1007/s00018-024-05294-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/07/2024] [Accepted: 05/25/2024] [Indexed: 06/06/2024]
Abstract
Contractile actomyosin bundles play crucial roles in various physiological processes, including cell migration, morphogenesis, and muscle contraction. The intricate assembly of actomyosin bundles involves the precise alignment and fusion of myosin II filaments, yet the underlying mechanisms and factors involved in these processes remain elusive. Our study reveals that LUZP1 plays a central role in orchestrating the maturation of thick actomyosin bundles. Loss of LUZP1 caused abnormal cell morphogenesis, migration, and the ability to exert forces on the environment. Importantly, knockout of LUZP1 results in significant defects in the concatenation and persistent association of myosin II filaments, severely impairing the assembly of myosin II stacks. The disruption of these processes in LUZP1 knockout cells provides mechanistic insights into the defective assembly of thick ventral stress fibers and the associated cellular contractility abnormalities. Overall, these results significantly contribute to our understanding of the molecular mechanism involved in actomyosin bundle formation and highlight the essential role of LUZP1 in this process.
Collapse
Affiliation(s)
- Liang Wang
- Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014, Helsinki, Finland
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hoi Ying Tsang
- Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014, Helsinki, Finland
| | - Ziyi Yan
- Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014, Helsinki, Finland
| | - Sari Tojkander
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Katarzyna Ciuba
- Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Konstantin Kogan
- Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Xiaonan Liu
- Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Hongxia Zhao
- Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014, Helsinki, Finland.
| |
Collapse
|
9
|
Eibauer M, Weber MS, Kronenberg-Tenga R, Beales CT, Boujemaa-Paterski R, Turgay Y, Sivagurunathan S, Kraxner J, Köster S, Goldman RD, Medalia O. Vimentin filaments integrate low-complexity domains in a complex helical structure. Nat Struct Mol Biol 2024; 31:939-949. [PMID: 38632361 PMCID: PMC11189308 DOI: 10.1038/s41594-024-01261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 03/01/2024] [Indexed: 04/19/2024]
Abstract
Intermediate filaments (IFs) are integral components of the cytoskeleton. They provide cells with tissue-specific mechanical properties and are involved in numerous cellular processes. Due to their intricate architecture, a 3D structure of IFs has remained elusive. Here we use cryo-focused ion-beam milling, cryo-electron microscopy and tomography to obtain a 3D structure of vimentin IFs (VIFs). VIFs assemble into a modular, intertwined and flexible helical structure of 40 α-helices in cross-section, organized into five protofibrils. Surprisingly, the intrinsically disordered head domains form a fiber in the lumen of VIFs, while the intrinsically disordered tails form lateral connections between the protofibrils. Our findings demonstrate how protein domains of low sequence complexity can complement well-folded protein domains to construct a biopolymer with striking mechanical strength and stretchability.
Collapse
Affiliation(s)
- Matthias Eibauer
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| | - Miriam S Weber
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | | | - Charlie T Beales
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | | | - Yagmur Turgay
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Suganya Sivagurunathan
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Julia Kraxner
- Institute for X-Ray Physics, University of Göttingen, Göttingen, Germany
- MDC Berlin-Buch, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Sarah Köster
- Institute for X-Ray Physics, University of Göttingen, Göttingen, Germany
| | - Robert D Goldman
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
10
|
Saldanha R, Ho Thanh MT, Krishnan N, Hehnly H, Patteson A. Vimentin supports cell polarization by enhancing centrosome function and microtubule acetylation. J R Soc Interface 2024; 21:20230641. [PMID: 38835244 DOI: 10.1098/rsif.2023.0641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/10/2024] [Indexed: 06/06/2024] Open
Abstract
Cell polarity is important for controlling cell shape, motility and cell division processes. Vimentin intermediate filaments are important for cell migration and cell polarization in mesenchymal cells and assembly of vimentin and microtubule networks is dynamically coordinated, but the precise details of how vimentin mediates cell polarity remain unclear. Here, we characterize the effects of vimentin on the structure and function of the centrosome and the stability of microtubule filaments in wild-type and vimentin-null mouse embryonic fibroblasts. We find that vimentin mediates the structure of the pericentriolar material, promotes centrosome-mediated microtubule regrowth and increases the level of stable acetylated microtubules in the cell. Loss of vimentin also impairs centrosome repositioning during cell polarization and migration processes that occur during wound closure. Our results suggest that vimentin modulates centrosome structure and function as well as microtubule network stability, which has important implications for how cells establish proper cell polarization and persistent migration.
Collapse
Affiliation(s)
- Renita Saldanha
- Physics Department, Syracuse University , Syracuse, NY, USA
- BioInspired Institute, Syracuse University , Syracuse, NY, USA
| | - Minh Tri Ho Thanh
- Physics Department, Syracuse University , Syracuse, NY, USA
- BioInspired Institute, Syracuse University , Syracuse, NY, USA
| | - Nikhila Krishnan
- BioInspired Institute, Syracuse University , Syracuse, NY, USA
- Department of Biology, Syracuse University , Syracuse, NY, USA
| | - Heidi Hehnly
- BioInspired Institute, Syracuse University , Syracuse, NY, USA
- Department of Biology, Syracuse University , Syracuse, NY, USA
| | - Alison Patteson
- Physics Department, Syracuse University , Syracuse, NY, USA
- BioInspired Institute, Syracuse University , Syracuse, NY, USA
| |
Collapse
|
11
|
Conboy JP, Istúriz Petitjean I, van der Net A, Koenderink GH. How cytoskeletal crosstalk makes cells move: Bridging cell-free and cell studies. BIOPHYSICS REVIEWS 2024; 5:021307. [PMID: 38840976 PMCID: PMC11151447 DOI: 10.1063/5.0198119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
Cell migration is a fundamental process for life and is highly dependent on the dynamical and mechanical properties of the cytoskeleton. Intensive physical and biochemical crosstalk among actin, microtubules, and intermediate filaments ensures their coordination to facilitate and enable migration. In this review, we discuss the different mechanical aspects that govern cell migration and provide, for each mechanical aspect, a novel perspective by juxtaposing two complementary approaches to the biophysical study of cytoskeletal crosstalk: live-cell studies (often referred to as top-down studies) and cell-free studies (often referred to as bottom-up studies). We summarize the main findings from both experimental approaches, and we provide our perspective on bridging the two perspectives to address the open questions of how cytoskeletal crosstalk governs cell migration and makes cells move.
Collapse
Affiliation(s)
- James P. Conboy
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Irene Istúriz Petitjean
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Anouk van der Net
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Gijsje H. Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| |
Collapse
|
12
|
Alisafaei F, Mandal K, Saldanha R, Swoger M, Yang H, Shi X, Guo M, Hehnly H, Castañeda CA, Janmey PA, Patteson AE, Shenoy VB. Vimentin is a key regulator of cell mechanosensing through opposite actions on actomyosin and microtubule networks. Commun Biol 2024; 7:658. [PMID: 38811770 PMCID: PMC11137025 DOI: 10.1038/s42003-024-06366-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/21/2024] [Indexed: 05/31/2024] Open
Abstract
The cytoskeleton is a complex network of interconnected biopolymers consisting of actin filaments, microtubules, and intermediate filaments. These biopolymers work in concert to transmit cell-generated forces to the extracellular matrix required for cell motility, wound healing, and tissue maintenance. While we know cell-generated forces are driven by actomyosin contractility and balanced by microtubule network resistance, the effect of intermediate filaments on cellular forces is unclear. Using a combination of theoretical modeling and experiments, we show that vimentin intermediate filaments tune cell stress by assisting in both actomyosin-based force transmission and reinforcement of microtubule networks under compression. We show that the competition between these two opposing effects of vimentin is regulated by the microenvironment stiffness. These results reconcile seemingly contradictory results in the literature and provide a unified description of vimentin's effects on the transmission of cell contractile forces to the extracellular matrix.
Collapse
Affiliation(s)
- Farid Alisafaei
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Kalpana Mandal
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Medicine and Engineering, University of Pennsylvania, 3340 Smith Walk, Philadelphia, PA, 19104, USA
| | - Renita Saldanha
- Physics Department, Syracuse University, Syracuse, NY, 13244, USA
- BioInspired Institute, Syracuse University, Syracuse, NY, 13244, USA
| | - Maxx Swoger
- Physics Department, Syracuse University, Syracuse, NY, 13244, USA
- BioInspired Institute, Syracuse University, Syracuse, NY, 13244, USA
| | - Haiqian Yang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Xuechen Shi
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Medicine and Engineering, University of Pennsylvania, 3340 Smith Walk, Philadelphia, PA, 19104, USA
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Heidi Hehnly
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA
| | - Carlos A Castañeda
- Departments of Biology and Chemistry, Syracuse University, Syracuse, NY, 13244, USA
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY, 13244, USA
| | - Paul A Janmey
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Medicine and Engineering, University of Pennsylvania, 3340 Smith Walk, Philadelphia, PA, 19104, USA
- Departments of Physiology, and Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alison E Patteson
- Physics Department, Syracuse University, Syracuse, NY, 13244, USA
- BioInspired Institute, Syracuse University, Syracuse, NY, 13244, USA
| | - Vivek B Shenoy
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
13
|
Pajares MA, Pérez-Sala D. Type III intermediate filaments in redox interplay: key role of the conserved cysteine residue. Biochem Soc Trans 2024; 52:849-860. [PMID: 38451193 PMCID: PMC11088922 DOI: 10.1042/bst20231059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Intermediate filaments (IFs) are cytoskeletal elements involved in mechanotransduction and in the integration of cellular responses. They are versatile structures and their assembly and organization are finely tuned by posttranslational modifications. Among them, type III IFs, mainly vimentin, have been identified as targets of multiple oxidative and electrophilic modifications. A characteristic of most type III IF proteins is the presence in their sequence of a single, conserved cysteine residue (C328 in vimentin), that is a hot spot for these modifications and appears to play a key role in the ability of the filament network to respond to oxidative stress. Current structural models and experimental evidence indicate that this cysteine residue may occupy a strategic position in the filaments in such a way that perturbations at this site, due to chemical modification or mutation, impact filament assembly or organization in a structure-dependent manner. Cysteine-dependent regulation of vimentin can be modulated by interaction with divalent cations, such as zinc, and by pH. Importantly, vimentin remodeling induced by C328 modification may affect its interaction with cellular organelles, as well as the cross-talk between cytoskeletal networks, as seems to be the case for the reorganization of actin filaments in response to oxidants and electrophiles. In summary, the evidence herein reviewed delineates a complex interplay in which type III IFs emerge both as targets and modulators of redox signaling.
Collapse
Affiliation(s)
- María A. Pajares
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., Ramiro de Maeztu, 9, 28040 Madrid, Spain
| |
Collapse
|
14
|
Kumari R, Ven K, Chastney M, Kokate SB, Peränen J, Aaron J, Kogan K, Almeida-Souza L, Kremneva E, Poincloux R, Chew TL, Gunning PW, Ivaska J, Lappalainen P. Focal adhesions contain three specialized actin nanoscale layers. Nat Commun 2024; 15:2547. [PMID: 38514695 PMCID: PMC10957975 DOI: 10.1038/s41467-024-46868-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
Focal adhesions (FAs) connect inner workings of cell to the extracellular matrix to control cell adhesion, migration and mechanosensing. Previous studies demonstrated that FAs contain three vertical layers, which connect extracellular matrix to the cytoskeleton. By using super-resolution iPALM microscopy, we identify two additional nanoscale layers within FAs, specified by actin filaments bound to tropomyosin isoforms Tpm1.6 and Tpm3.2. The Tpm1.6-actin filaments, beneath the previously identified α-actinin cross-linked actin filaments, appear critical for adhesion maturation and controlled cell motility, whereas the adjacent Tpm3.2-actin filament layer beneath seems to facilitate adhesion disassembly. Mechanistically, Tpm3.2 stabilizes ACF-7/MACF1 and KANK-family proteins at adhesions, and hence targets microtubule plus-ends to FAs to catalyse their disassembly. Tpm3.2 depletion leads to disorganized microtubule network, abnormally stable FAs, and defects in tail retraction during migration. Thus, FAs are composed of distinct actin filament layers, and each may have specific roles in coupling adhesions to the cytoskeleton, or in controlling adhesion dynamics.
Collapse
Affiliation(s)
- Reena Kumari
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Katharina Ven
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Megan Chastney
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Shrikant B Kokate
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Johan Peränen
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Jesse Aaron
- Advanced Imaging Center, HHMI Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Konstantin Kogan
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Leonardo Almeida-Souza
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Elena Kremneva
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Renaud Poincloux
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Teng-Leong Chew
- Advanced Imaging Center, HHMI Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Peter W Gunning
- School of Biomedical Sciences, UNSW Sydney, Wallace Wurth Building, Sydney, NSW 2052, Australia
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
- Department of Life Technologies, University of Turku, FI-20520, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Foundation for the Finnish Cancer Institute, Tukholmankatu 8, FI-00014, Helsinki, Finland
| | - Pekka Lappalainen
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland.
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
15
|
Grolleman J, van Engeland NCA, Raza M, Azimi S, Conte V, Sahlgren CM, Bouten CVC. Environmental stiffness restores mechanical homeostasis in vimentin-depleted cells. Sci Rep 2023; 13:18374. [PMID: 37884575 PMCID: PMC10603057 DOI: 10.1038/s41598-023-44835-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Recent experimental evidence indicates a role for the intermediate filament vimentin in regulating cellular mechanical homeostasis, but its precise contribution remains to be discovered. Mechanical homeostasis requires a balanced bi-directional interplay between the cell's microenvironment and the cellular morphological and mechanical state-this balance being regulated via processes of mechanotransduction and mechanoresponse, commonly referred to as mechanoreciprocity. Here, we systematically analyze vimentin-expressing and vimentin-depleted cells in a swatch of in vitro cellular microenvironments varying in stiffness and/or ECM density. We find that vimentin-expressing cells maintain mechanical homeostasis by adapting cellular morphology and mechanics to micromechanical changes in the microenvironment. However, vimentin-depleted cells lose this mechanoresponse ability on short timescales, only to reacquire it on longer time scales. Indeed, we find that the morphology and mechanics of vimentin-depleted cell in stiffened microenvironmental conditions can get restored to the homeostatic levels of vimentin-expressing cells. Additionally, we observed vimentin-depleted cells increasing collagen matrix synthesis and its crosslinking, a phenomenon which is known to increase matrix stiffness, and which we now hypothesize to be a cellular compensation mechanism for the loss of vimentin. Taken together, our findings provide further insight in the regulating role of intermediate filament vimentin in mediating mechanoreciprocity and mechanical homeostasis.
Collapse
Affiliation(s)
- Janine Grolleman
- Department of Biomedical Engineering, Soft Tissue Engineering and Mechanobiology, Eindhoven University of Technology, Eindhoven, 5612AE, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600MB, The Netherlands
| | - Nicole C A van Engeland
- Department of Biomedical Engineering, Soft Tissue Engineering and Mechanobiology, Eindhoven University of Technology, Eindhoven, 5612AE, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600MB, The Netherlands
- Faculty of Science and Engineering, Cell Biology, Åbobo Akademi University, 20520, Turku, Finland
| | - Minahil Raza
- Faculty of Science and Engineering, Information Technology, Åbobo Akademi University, 20500, Turku, Finland
| | - Sepinoud Azimi
- Faculty of Science and Engineering, Information Technology, Åbobo Akademi University, 20500, Turku, Finland
- Department of Information and Communication Technology, Technology, Policy and Management, Delft University of Technology, Delft, 2600GA, The Netherlands
| | - Vito Conte
- Department of Biomedical Engineering, Soft Tissue Engineering and Mechanobiology, Eindhoven University of Technology, Eindhoven, 5612AE, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600MB, The Netherlands.
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, 08036, Barcelona, Spain.
| | - Cecilia M Sahlgren
- Department of Biomedical Engineering, Soft Tissue Engineering and Mechanobiology, Eindhoven University of Technology, Eindhoven, 5612AE, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600MB, The Netherlands.
- Faculty of Science and Engineering, Cell Biology, Åbobo Akademi University, 20520, Turku, Finland.
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Soft Tissue Engineering and Mechanobiology, Eindhoven University of Technology, Eindhoven, 5612AE, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600MB, The Netherlands.
| |
Collapse
|
16
|
Saldanha R, Tri Ho Thanh M, Krishnan N, Hehnly H, Patteson AE. Vimentin supports cell polarization by enhancing centrosome function and microtubule acetylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.528977. [PMID: 36824848 PMCID: PMC9949120 DOI: 10.1101/2023.02.17.528977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Cell polarity is important for controlling cell shape, motility, and cell division processes. Vimentin intermediate filaments are necessary for proper polarization of migrating fibroblasts and assembly of vimentin and microtubule networks is dynamically coordinated, but the precise details of how vimentin mediates cell polarity remain unclear. Here, we characterize the effects of vimentin on the structure and function of the centrosome and the stability of microtubule filaments in wild-type and vimentin-null mouse embryonic fibroblasts (mEFs). We find that vimentin mediates the structure of the pericentrosomal material, promotes centrosome-mediated microtubule regrowth, and increases the level of stable acetylated microtubules in the cell. Loss of vimentin also impairs centrosome repositioning during cell polarization and migration processes that occur during wound closure. Our results suggest that vimentin modulates centrosome structure and function as well as microtubule network stability, which has important implications for how cells establish proper cell polarization and persistent migration.
Collapse
|
17
|
Huang X, Xing Y, Cui Y, Ji B, Ding B, Zhong J, Jiu Y. Actomyosin-dependent cell contractility orchestrates Zika virus infection. J Cell Sci 2023; 136:jcs261301. [PMID: 37622381 DOI: 10.1242/jcs.261301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Emerging pathogen infections, such as Zika virus (ZIKV), pose an increasing threat to human health, but the role of mechanobiological attributes of host cells during ZIKV infection is largely unknown. Here, we reveal that ZIKV infection leads to increased contractility of host cells. Importantly, we investigated whether host cell contractility contributes to ZIKV infection efficacy, from both the intracellular and extracellular perspective. By performing drug perturbation and gene editing experiments, we confirmed that disruption of contractile actomyosin compromises ZIKV infection efficiency, viral genome replication and viral particle production. By culturing on compliant matrix, we further demonstrate that a softer substrate, leading to less contractility of host cells, compromises ZIKV infection, which resembles the effects of disrupting intracellular actomyosin organization. Together, our work provides evidence to support a positive correlation between host cell contractility and ZIKV infection efficacy, thus unveiling an unprecedented layer of interplay between ZIKV and the host cell.
Collapse
Affiliation(s)
- Xinyi Huang
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yifan Xing
- Unit of Viral Hepatitis, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| | - Yanqin Cui
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Baohua Ji
- Biomechanics and Mechanomedicine Laboratory, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310058, China
| | - Binbin Ding
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jin Zhong
- Unit of Viral Hepatitis, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| | - Yaming Jiu
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| |
Collapse
|
18
|
López-Guajardo A, Zafar A, Al Hennawi K, Rossi V, Alrwaili A, Medcalf JD, Dunning M, Nordgren N, Pettersson T, Estabrook ID, Hawkins RJ, Gad AKB. Regulation of cellular contractile force, shape and migration of fibroblasts by oncogenes and Histone deacetylase 6. Front Mol Biosci 2023; 10:1197814. [PMID: 37564130 PMCID: PMC10411354 DOI: 10.3389/fmolb.2023.1197814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023] Open
Abstract
The capacity of cells to adhere to, exert forces upon and migrate through their surrounding environment governs tissue regeneration and cancer metastasis. The role of the physical contractile forces that cells exert in this process, and the underlying molecular mechanisms are not fully understood. We, therefore, aimed to clarify if the extracellular forces that cells exert on their environment and/or the intracellular forces that deform the cell nucleus, and the link between these forces, are defective in transformed and invasive fibroblasts, and to indicate the underlying molecular mechanism of control. Confocal, Epifluorescence and Traction force microscopy, followed by computational analysis, showed an increased maximum contractile force that cells apply on their environment and a decreased intracellular force on the cell nucleus in the invasive fibroblasts, as compared to normal control cells. Loss of HDAC6 activity by tubacin-treatment and siRNA-mediated HDAC6 knockdown also reversed the reduced size and more circular shape and defective migration of the transformed and invasive cells to normal. However, only tubacin-mediated, and not siRNA knockdown reversed the increased force of the invasive cells on their surrounding environment to normal, with no effects on nuclear forces. We observed that the forces on the environment and the nucleus were weakly positively correlated, with the exception of HDAC6 siRNA-treated cells, in which the correlation was weakly negative. The transformed and invasive fibroblasts showed an increased number and smaller cell-matrix adhesions than control, and neither tubacin-treatment, nor HDAC6 knockdown reversed this phenotype to normal, but instead increased it further. This highlights the possibility that the control of contractile force requires separate functions of HDAC6, than the control of cell adhesions, spreading and shape. These data are consistent with the possibility that defective force-transduction from the extracellular environment to the nucleus contributes to metastasis, via a mechanism that depends upon HDAC6. To our knowledge, our findings present the first correlation between the cellular forces that deforms the surrounding environment and the nucleus in fibroblasts, and it expands our understanding of how cells generate contractile forces that contribute to cell invasion and metastasis.
Collapse
Affiliation(s)
- Ana López-Guajardo
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Azeer Zafar
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Khairat Al Hennawi
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Valentina Rossi
- Immunology and Molecular Oncology Diagnostics, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Abdulaziz Alrwaili
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Jessica D. Medcalf
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Mark Dunning
- Bioinformatics Core, The Medical School, The University of Sheffield, Sheffield, United Kingdom
| | - Niklas Nordgren
- Division Bioeconomy and Health, RISE Research Institutes of Sweden, Stockholm, Sweden
| | - Torbjörn Pettersson
- Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Ian D. Estabrook
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
- Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, Germany
| | - Rhoda J. Hawkins
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
- African Institute for Mathematical Sciences, Accra, Ghana
| | - Annica K. B. Gad
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
- Madeira Chemistry Research Centre, University of Madeira, Funchal, Portugal
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
19
|
Lopez-Cavestany M, Hahn SB, Hope JM, Reckhorn NT, Greenlee JD, Schwager SC, VanderBurgh JA, Reinhart-King CA, King MR. Matrix stiffness induces epithelial-to-mesenchymal transition via Piezo1-regulated calcium flux in prostate cancer cells. iScience 2023; 26:106275. [PMID: 36950111 PMCID: PMC10025097 DOI: 10.1016/j.isci.2023.106275] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/21/2023] [Accepted: 02/18/2023] [Indexed: 02/27/2023] Open
Abstract
Cells utilize calcium channels as one of the main signaling mechanisms to sense changes in the extracellular space and convert these changes to intracellular signals. Calcium regulates several key signaling networks, such as the induction of EMT. The current study expands on the understanding of how EMT is controlled via the mechanosensitive calcium channel Piezo1 in cancerous cells, which senses changes in the extracellular matrix stiffness. We model the biophysical environment of healthy and cancerous prostate tissue using polyacrylamide gels of different stiffnesses. Significant increases in calcium steady-state concentration, vimentin expression, and aspect ratio, and decreases in E-cadherin expression were observed by increasing matrix stiffness and also after treatment with Yoda1, a chemical agonist of Piezo1. Overall, this study concludes that Piezo1-regulated calcium flux plays a role in prostate cancer cell metastatic potential by sensing changes in ECM stiffness and modulating EMT markers.
Collapse
Affiliation(s)
- Maria Lopez-Cavestany
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Su Bin Hahn
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Jacob M. Hope
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Noah T. Reckhorn
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Joshua D. Greenlee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Samantha C. Schwager
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Jacob A. VanderBurgh
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | | | - Michael R. King
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
20
|
Hohmann T, Hohmann U, Dehghani F. MACC1-induced migration in tumors: Current state and perspective. Front Oncol 2023; 13:1165676. [PMID: 37051546 PMCID: PMC10084939 DOI: 10.3389/fonc.2023.1165676] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Malignant tumors are still a global, heavy health burden. Many tumor types cannot be treated curatively, underlining the need for new treatment targets. In recent years, metastasis associated in colon cancer 1 (MACC1) was identified as a promising biomarker and drug target, as it is promoting tumor migration, initiation, proliferation, and others in a multitude of solid cancers. Here, we will summarize the current knowledge about MACC1-induced tumor cell migration with a special focus on the cytoskeletal and adhesive systems. In addition, a brief overview of several in vitro models used for the analysis of cell migration is given. In this context, we will point to issues with the currently most prevalent models used to study MACC1-dependent migration. Lastly, open questions about MACC1-dependent effects on tumor cell migration will be addressed.
Collapse
|
21
|
Salmonella effector SopB reorganizes cytoskeletal vimentin to maintain replication vacuoles for efficient infection. Nat Commun 2023; 14:478. [PMID: 36717589 PMCID: PMC9885066 DOI: 10.1038/s41467-023-36123-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
A variety of intracellular bacteria modulate the host cytoskeleton to establish subcellular niches for replication. However, the role of intermediate filaments, which are crucial for mechanical strength and resilience of the cell, and in bacterial vacuole preservation remains unclear. Here, we show that Salmonella effector SopB reorganizes the vimentin network to form cage-like structures that surround Salmonella-containing vacuoles (SCVs). Genetic removal of vimentin markedly disrupts SCV organization, significantly reduces bacterial replication and cell death. Mechanistically, SopB uses its N-terminal Cdc42-binding domain to interact with and activate Cdc42 GTPase, which in turn recruits vimentin around SCVs. A high-content imaging-based screening identified that MEK1/2 inhibition led to vimentin dispersion. Our work therefore elucidates the signaling axis SopB-Cdc42-MEK1/2 as mobilizing host vimentin to maintain concrete SCVs and identifies a mechanism contributing to Salmonella replication. Importantly, Trametinib, a clinically-approved MEK1/2 inhibitor identified in the screen, displayed significant anti-infection efficacy against Salmonella both in vitro and in vivo, and may provide a therapeutic option for treating drug-tolerant salmonellosis.
Collapse
|
22
|
Kim HR, Warrington SJ, López-Guajardo A, Al Hennawi K, Cook SL, Griffith ZDJ, Symmes D, Zhang T, Qu Z, Xu Y, Chen R, Gad AKB. ALD-R491 regulates vimentin filament stability and solubility, cell contractile force, cell migration speed and directionality. Front Cell Dev Biol 2022; 10:926283. [PMID: 36483676 PMCID: PMC9723350 DOI: 10.3389/fcell.2022.926283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 11/07/2022] [Indexed: 08/12/2023] Open
Abstract
Metastasizing cells express the intermediate filament protein vimentin, which is used to diagnose invasive tumors in the clinic. However, the role of vimentin in cell motility, and if the assembly of non-filamentous variants of vimentin into filaments regulates cell migration remains unclear. We observed that the vimentin-targeting drug ALD-R491 increased the stability of vimentin filaments, by reducing filament assembly and/or disassembly. ALD-R491-treatment also resulted in more bundled and disorganized filaments and an increased pool of non-filamentous vimentin. This was accompanied by a reduction in size of cell-matrix adhesions and increased cellular contractile forces. Moreover, during cell migration, cells showed erratic formation of lamellipodia at the cell periphery, loss of coordinated cell movement, reduced cell migration speed, directionality and an elongated cell shape with long thin extensions at the rear that often detached. Taken together, these results indicate that the stability of vimentin filaments and the soluble pool of vimentin regulate the speed and directionality of cell migration and the capacity of cells to migrate in a mechanically cohesive manner. These observations suggest that the stability of vimentin filaments governs the adhesive, physical and migratory properties of cells, and expands our understanding of vimentin functions in health and disease, including cancer metastasis.
Collapse
Affiliation(s)
- Hyejeong Rosemary Kim
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | | | - Ana López-Guajardo
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Khairat Al Hennawi
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Sarah L. Cook
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Zak D. J. Griffith
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Deebie Symmes
- Aluda Pharmaceuticals, Inc., Menlo Park, CA, United States
| | - Tao Zhang
- Cambridge-Su Genomic Resource Center, Medical School of Soochow University, Suzhou, China
| | - Zhipeng Qu
- Cambridge-Su Genomic Resource Center, Medical School of Soochow University, Suzhou, China
| | - Ying Xu
- Cambridge-Su Genomic Resource Center, Medical School of Soochow University, Suzhou, China
| | - Ruihuan Chen
- Aluda Pharmaceuticals, Inc., Menlo Park, CA, United States
| | - Annica K. B. Gad
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
- Madeira Chemistry Research Centre, University of Madeira, Funchal, Portugal
| |
Collapse
|
23
|
Alexandrova A, Lomakina M. How does plasticity of migration help tumor cells to avoid treatment: Cytoskeletal regulators and potential markers. Front Pharmacol 2022; 13:962652. [PMID: 36278174 PMCID: PMC9582651 DOI: 10.3389/fphar.2022.962652] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor shrinkage as a result of antitumor therapy is not the only and sufficient indicator of treatment success. Cancer progression leads to dissemination of tumor cells and formation of metastases - secondary tumor lesions in distant organs. Metastasis is associated with acquisition of mobile phenotype by tumor cells as a result of epithelial-to-mesenchymal transition and further cell migration based on cytoskeleton reorganization. The main mechanisms of individual cell migration are either mesenchymal, which depends on the activity of small GTPase Rac, actin polymerization, formation of adhesions with extracellular matrix and activity of proteolytic enzymes or amoeboid, which is based on the increase in intracellular pressure caused by the enhancement of actin cortex contractility regulated by Rho-ROCK-MLCKII pathway, and does not depend on the formation of adhesive structures with the matrix, nor on the activity of proteases. The ability of tumor cells to switch from one motility mode to another depending on cell context and environmental conditions, termed migratory plasticity, contributes to the efficiency of dissemination and often allows the cells to avoid the applied treatment. The search for new therapeutic targets among cytoskeletal proteins offers an opportunity to directly influence cell migration. For successful treatment it is important to assess the likelihood of migratory plasticity in a particular tumor. Therefore, the search for specific markers that can indicate a high probability of migratory plasticity is very important.
Collapse
|
24
|
Li C, Ma YQ. Prognostic significance of sex determining region Y-box 2, E-cadherin, and vimentin in esophageal squamous cell carcinoma. World J Clin Cases 2022; 10:9657-9669. [PMID: 36186174 PMCID: PMC9516931 DOI: 10.12998/wjcc.v10.i27.9657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/30/2022] [Accepted: 08/21/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Sex determining region Y-box 2 (SOX2) can promote squamous cell carcinoma (SSC) because it regulates the migration and invasion of several different types of squamous carcinoma cells. However, few studies have examined the prognostic value of SOX2 and its effect on the epithelial-mesenchymal transition (EMT) in esophageal SSC (ESCC), a cancer characterized by high invasion and rapid metastasis.
AIM To verify the relationship of SOX2 and the EMT in ESCC and determine the prognostic value and significance of SOX2 and protein markers of the EMT in ESCC.
METHODS One hundred and eighty-five postsurgical ESCC patients were retrospectively examined. Immunohistochemistry was used to detect SOX2, E-cadherin, and vimentin in ESCC tissues. The chi-square test was used to determine the relationships of the expression of these proteins with clinical data. Kaplan-Meier survival curves were used to evaluate factors associated with overall survival (OS).
RESULTS SOX2 and vimentin had high expression in ESCC tissues and correlated with the depth of local carcinoma invasion. SOX2 expression had positive correlations with tumor size, vimentin expression, and the EMT, and a negative correlation with E-cadherin expression. Expression of SOX2 and vimentin had negative correlations with OS. SOX2 expression was an independent prognostic risk factor for poor OS in patients with ESCC.
CONCLUSION SOX2 expression was an independent risk factor for OS in patients with ESCC and its expression had a positive correlation with the expression of vimentin, a classic marker of the EMT. SOX2 promoted the migration and invasion of ESCC, and this may related to its effect on vimentin in promoting the EMT.
Collapse
Affiliation(s)
- Chao Li
- Department of RICU, The First Affiliated Hospital, Xinjiang Medical University, Urumqi 830054, Xinjiang Uygur Autonomous Region, China
| | - Yu-Qing Ma
- Department of Pathology, The First Affiliated Hospital, Xinjiang Medical University, Urumqi 830054, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
25
|
Sivagurunathan S, Vahabikashi A, Yang H, Zhang J, Vazquez K, Rajasundaram D, Politanska Y, Abdala-Valencia H, Notbohm J, Guo M, Adam SA, Goldman RD. Expression of vimentin alters cell mechanics, cell-cell adhesion, and gene expression profiles suggesting the induction of a hybrid EMT in human mammary epithelial cells. Front Cell Dev Biol 2022; 10:929495. [PMID: 36200046 PMCID: PMC9527304 DOI: 10.3389/fcell.2022.929495] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Vimentin is a Type III intermediate filament (VIF) cytoskeletal protein that regulates the mechanical and migratory behavior of cells. Its expression is considered to be a marker for the epithelial to mesenchymal transition (EMT) that takes place in tumor metastasis. However, the molecular mechanisms regulated by the expression of vimentin in the EMT remain largely unexplored. We created MCF7 epithelial cell lines expressing vimentin from a cumate-inducible promoter to address this question. When vimentin expression was induced in these cells, extensive cytoplasmic VIF networks were assembled accompanied by changes in the organization of the endogenous keratin intermediate filament networks and disruption of desmosomes. Significant reductions in intercellular forces by the cells expressing VIFs were measured by quantitative monolayer traction force and stress microscopy. In contrast, laser trapping micro-rheology revealed that the cytoplasm of MCF7 cells expressing VIFs was stiffer than the uninduced cells. Vimentin expression activated transcription of genes involved in pathways responsible for cell migration and locomotion. Importantly, the EMT related transcription factor TWIST1 was upregulated only in wild type vimentin expressing cells and not in cells expressing a mutant non-polymerized form of vimentin, which only formed unit length filaments (ULF). Taken together, our results suggest that vimentin expression induces a hybrid EMT correlated with the upregulation of genes involved in cell migration.
Collapse
Affiliation(s)
- Suganya Sivagurunathan
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Amir Vahabikashi
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Haiqian Yang
- Department of Mechanical Engineering , Massachusetts Institute of Technology , Cambridge , MA, United States
| | - Jun Zhang
- Biophysics Program, University of Wisconsin-Madison, Madison, WI, United States
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Kelly Vazquez
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI, United States
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Yuliya Politanska
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hiam Abdala-Valencia
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jacob Notbohm
- Biophysics Program, University of Wisconsin-Madison, Madison, WI, United States
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI, United States
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Ming Guo
- Department of Mechanical Engineering , Massachusetts Institute of Technology , Cambridge , MA, United States
| | - Stephen A Adam
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Robert D Goldman
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
26
|
Infante E, Etienne-Manneville S. Intermediate filaments: Integration of cell mechanical properties during migration. Front Cell Dev Biol 2022; 10:951816. [PMID: 35990612 PMCID: PMC9389290 DOI: 10.3389/fcell.2022.951816] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/07/2022] [Indexed: 11/22/2022] Open
Abstract
Cell migration is a vital and dynamic process required for the development of multicellular organisms and for immune system responses, tissue renewal and wound healing in adults. It also contributes to a variety of human diseases such as cancers, autoimmune diseases, chronic inflammation and fibrosis. The cytoskeleton, which includes actin microfilaments, microtubules, and intermediate filaments (IFs), is responsible for the maintenance of animal cell shape and structural integrity. Each cytoskeletal network contributes its unique properties to dynamic cell behaviour, such as cell polarization, membrane protrusion, cell adhesion and contraction. Hence, cell migration requires the dynamic orchestration of all cytoskeleton components. Among these, IFs have emerged as a molecular scaffold with unique mechanical features and a key player in the cell resilience to mechanical stresses during migration through complex 3D environment. Moreover, accumulating evidence illustrates the participation of IFs in signalling cascades and cytoskeletal crosstalk. Teaming up with actin and microtubules, IFs contribute to the active generation of forces required for cell adhesion and mesenchymal migration and invasion. Here we summarize and discuss how IFs integrate mechanical properties and signalling functions to control cell migration in a wide spectrum of physiological and pathological situations.
Collapse
Affiliation(s)
- Elvira Infante
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Université Paris-Cité, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Université Paris-Cité, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| |
Collapse
|
27
|
Taiyab A, West-Mays J. Lens Fibrosis: Understanding the Dynamics of Cell Adhesion Signaling in Lens Epithelial-Mesenchymal Transition. Front Cell Dev Biol 2022; 10:886053. [PMID: 35656546 PMCID: PMC9152183 DOI: 10.3389/fcell.2022.886053] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022] Open
Abstract
Injury to the ocular lens perturbs cell-cell and cell-capsule/basement membrane interactions leading to a myriad of interconnected signaling events. These events include cell-adhesion and growth factor-mediated signaling pathways that can ultimately result in the induction and progression of epithelial-mesenchymal transition (EMT) of lens epithelial cells and fibrosis. Since the lens is avascular, consisting of a single layer of epithelial cells on its anterior surface and encased in a matrix rich capsule, it is one of the most simple and desired systems to investigate injury-induced signaling pathways that contribute to EMT and fibrosis. In this review, we will discuss the role of key cell-adhesion and mechanotransduction related signaling pathways that regulate EMT and fibrosis in the lens.
Collapse
|
28
|
Ceramella J, Mariconda A, Sirignano M, Iacopetta D, Rosano C, Catalano A, Saturnino C, Sinicropi MS, Longo P. Novel Au Carbene Complexes as Promising Multi-Target Agents in Breast Cancer Treatment. Pharmaceuticals (Basel) 2022; 15:507. [PMID: 35631334 PMCID: PMC9146163 DOI: 10.3390/ph15050507] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/09/2022] [Accepted: 04/19/2022] [Indexed: 01/27/2023] Open
Abstract
Over the past decade, metal complexes based on N-heterocyclic carbenes (NHCs) have attracted great attention due to their wide and exciting applications in material sciences and medicinal chemistry. In particular, the gold-based complexes are the focus of research efforts for the development of new anticancer compounds. Literature data and recent results, obtained by our research group, reported the design, the synthesis and the good anticancer activity of some silver and gold complexes with NHC ligands. In particular, some of these complexes were active towards some breast cancer cell lines. Considering this evidence, here we report some new Au-NHC complexes prepared in order to improve solubility and biological activity. Among them, the compounds 1 and 6 showed an interesting anticancer activity towards the breast cancer MDA-MB-231 and MCF-7 cell lines, respectively. In addition, in vitro and in silico studies demonstrated that they were able to inhibit the activity of the human topoisomerases I and II and the actin polymerization reaction. Moreover, a downregulation of vimentin expression and a reduced translocation of NF-kB into the nucleus was observed. The interference with these vital cell structures induced breast cancer cells' death by triggering the extrinsic apoptotic pathway.
Collapse
Affiliation(s)
- Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy; (J.C.); (M.S.S.)
| | - Annaluisa Mariconda
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (A.M.); (C.S.)
| | - Marco Sirignano
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.S.); (P.L.)
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy; (J.C.); (M.S.S.)
| | - Camillo Rosano
- U.O. Proteomica e Spettrometria di Massa, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 1632 Genova, Italy
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy;
| | - Carmela Saturnino
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (A.M.); (C.S.)
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy; (J.C.); (M.S.S.)
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.S.); (P.L.)
| |
Collapse
|
29
|
Ndiaye AB, Koenderink GH, Shemesh M. Intermediate Filaments in Cellular Mechanoresponsiveness: Mediating Cytoskeletal Crosstalk From Membrane to Nucleus and Back. Front Cell Dev Biol 2022; 10:882037. [PMID: 35478961 PMCID: PMC9035595 DOI: 10.3389/fcell.2022.882037] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/24/2022] [Indexed: 11/25/2022] Open
Abstract
The mammalian cytoskeleton forms a mechanical continuum that spans across the cell, connecting the cell surface to the nucleus via transmembrane protein complexes in the plasma and nuclear membranes. It transmits extracellular forces to the cell interior, providing mechanical cues that influence cellular decisions, but also actively generates intracellular forces, enabling the cell to probe and remodel its tissue microenvironment. Cells adapt their gene expression profile and morphology to external cues provided by the matrix and adjacent cells as well as to cell-intrinsic changes in cytoplasmic and nuclear volume. The cytoskeleton is a complex filamentous network of three interpenetrating structural proteins: actin, microtubules, and intermediate filaments. Traditionally the actin cytoskeleton is considered the main contributor to mechanosensitivity. This view is now shifting owing to the mounting evidence that the three cytoskeletal filaments have interdependent functions due to cytoskeletal crosstalk, with intermediate filaments taking a central role. In this Mini Review we discuss how cytoskeletal crosstalk confers mechanosensitivity to cells and tissues, with a particular focus on the role of intermediate filaments. We propose a view of the cytoskeleton as a composite structure, in which cytoskeletal crosstalk regulates the local stability and organization of all three filament families at the sub-cellular scale, cytoskeletal mechanics at the cellular scale, and cell adaptation to external cues at the tissue scale.
Collapse
Affiliation(s)
| | | | - Michal Shemesh
- *Correspondence: Michal Shemesh, ; Gijsje H. Koenderink,
| |
Collapse
|
30
|
Fan C, Shi X, Zhao K, Wang L, Shi K, Liu YJ, Li H, Ji B, Jiu Y. Cell migration orchestrates migrasome formation by shaping retraction fibers. J Cell Biol 2022; 221:213015. [PMID: 35179563 PMCID: PMC9195050 DOI: 10.1083/jcb.202109168] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/05/2022] [Accepted: 01/23/2022] [Indexed: 02/07/2023] Open
Abstract
Migrasomes are recently discovered vesicle-like structures on retraction fibers of migrating cells that have been linked with transfer of cellular contents, shedding of unwanted materials, and information integration. However, whether and how the cell migration paradigm regulates migrasome formation is not clear. Here, we report that there are significantly fewer migrasomes in turning cells compared with straight persistently migrating cells. The major insight underlying this observation is that as the cells elongate, their rear ends become narrower, subsequently resulting in fewer retraction fibers during impersistent migration. In addition to migration persistence, we reveal that migration speed positively corelates with migrasome formation, owing to the derived length of retraction fibers. Substantiating our hypothesis, genetically removing vimentin compromises cell migration speed and persistence and leads to fewer migrasomes. Together, our data explicate the critical roles of two cell migration patterns, persistence and speed, in the control of migrasome formation by regulating retraction fibers.
Collapse
Affiliation(s)
- Changyuan Fan
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xuemeng Shi
- The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,The Joint Program in Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Kaikai Zhao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.,Biomechanics and Mechanomedicine Laboratory, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Linbo Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Kun Shi
- The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,The Joint Program in Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Yan-Jun Liu
- Shanghai Institute of Cardiovascular Diseases, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Department of Systems Biology for Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hui Li
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Baohua Ji
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.,Biomechanics and Mechanomedicine Laboratory, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Yaming Jiu
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,The Joint Program in Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
31
|
Abstract
More than 27 yr ago, the vimentin knockout (Vim-/- ) mouse was reported to develop and reproduce without an obvious phenotype, implying that this major cytoskeletal protein was nonessential. Subsequently, comprehensive and careful analyses have revealed numerous phenotypes in Vim-/- mice and their organs, tissues, and cells, frequently reflecting altered responses in the recovery of tissues following various insults or injuries. These findings have been supported by cell-based experiments demonstrating that vimentin intermediate filaments (IFs) play a critical role in regulating cell mechanics and are required to coordinate mechanosensing, transduction, signaling pathways, motility, and inflammatory responses. This review highlights the essential functions of vimentin IFs revealed from studies of Vim-/- mice and cells derived from them.
Collapse
Affiliation(s)
- Karen M Ridge
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611, USA
- Department of Cell and Developmental Biology, Northwestern University, Chicago, Illinois 60611, USA
| | - John E Eriksson
- Cell Biology, Faculty of Science and Technology, Åbo Akademi University, FIN-20521 Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FIN-20521 Turku, Finland
- Euro-Bioimaging European Research Infrastructure Consortium (ERIC), FIN-20521 Turku, Finland
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 413 90 Gothenburg, Sweden
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia
- University of Newcastle, Newcastle, New South Wales 2300, Australia
| | - Robert D Goldman
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611, USA
- Department of Cell and Developmental Biology, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
32
|
Ostrowska-Podhorodecka Z, Ding I, Norouzi M, McCulloch CA. Impact of Vimentin on Regulation of Cell Signaling and Matrix Remodeling. Front Cell Dev Biol 2022; 10:869069. [PMID: 35359446 PMCID: PMC8961691 DOI: 10.3389/fcell.2022.869069] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
Vimentin expression contributes to cellular mechanoprotection and is a widely recognized marker of fibroblasts and of epithelial-mesenchymal transition. But it is not understood how vimentin affects signaling that controls cell migration and extracellular matrix (ECM) remodeling. Recent data indicate that vimentin controls collagen deposition and ECM structure by regulating contractile force application to the ECM and through post-transcriptional regulation of ECM related genes. Binding of cells to the ECM promotes the association of vimentin with cytoplasmic domains of adhesion receptors such as integrins. After initial adhesion, cell-generated, myosin-dependent forces and signals that impact vimentin structure can affect cell migration. Post-translational modifications of vimentin determine its adaptor functions, including binding to cell adhesion proteins like paxillin and talin. Accordingly, vimentin regulates the growth, maturation and adhesive strength of integrin-dependent adhesions, which enables cells to tune their attachment to collagen, regulate the formation of cell extensions and control cell migration through connective tissues. Thus, vimentin tunes signaling cascades that regulate cell migration and ECM remodeling. Here we consider how specific properties of vimentin serve to control cell attachment to the underlying ECM and to regulate mesenchymal cell migration and remodeling of the ECM by resident fibroblasts.
Collapse
|
33
|
Seetharaman S, Vianay B, Roca V, Farrugia AJ, De Pascalis C, Boëda B, Dingli F, Loew D, Vassilopoulos S, Bershadsky A, Théry M, Etienne-Manneville S. Microtubules tune mechanosensitive cell responses. NATURE MATERIALS 2022; 21:366-377. [PMID: 34663953 DOI: 10.1101/2020.07.22.205203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 08/20/2021] [Indexed: 05/24/2023]
Abstract
Mechanotransduction is a process by which cells sense the mechanical properties of their surrounding environment and adapt accordingly to perform cellular functions such as adhesion, migration and differentiation. Integrin-mediated focal adhesions are major sites of mechanotransduction and their connection with the actomyosin network is crucial for mechanosensing as well as for the generation and transmission of forces onto the substrate. Despite having emerged as major regulators of cell adhesion and migration, the contribution of microtubules to mechanotransduction still remains elusive. Here, we show that talin- and actomyosin-dependent mechanosensing of substrate rigidity controls microtubule acetylation (a tubulin post-translational modification) by promoting the recruitment of α-tubulin acetyltransferase 1 (αTAT1) to focal adhesions. Microtubule acetylation tunes the mechanosensitivity of focal adhesions and Yes-associated protein (YAP) translocation. Microtubule acetylation, in turn, promotes the release of the guanine nucleotide exchange factor GEF-H1 from microtubules to activate RhoA, actomyosin contractility and traction forces. Our results reveal a fundamental crosstalk between microtubules and actin in mechanotransduction that contributes to mechanosensitive cell adhesion and migration.
Collapse
Affiliation(s)
- Shailaja Seetharaman
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, Paris, France
- Université Paris Descartes, Paris, France
| | - Benoit Vianay
- Paris University, INSERM, CEA, Hôpital Saint Louis, Institut Universitaire d'Hematologie, Paris, France
| | - Vanessa Roca
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Aaron J Farrugia
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Chiara De Pascalis
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Batiste Boëda
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Florent Dingli
- PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, Paris, France
| | - Damarys Loew
- PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, Paris, France
| | | | - Alexander Bershadsky
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Manuel Théry
- Paris University, INSERM, CEA, Hôpital Saint Louis, Institut Universitaire d'Hematologie, Paris, France
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, Paris, France.
| |
Collapse
|
34
|
Swoger M, Gupta S, Charrier EE, Bates M, Hehnly H, Patteson AE. Vimentin Intermediate Filaments Mediate Cell Morphology on Viscoelastic Substrates. ACS APPLIED BIO MATERIALS 2022; 5:552-561. [PMID: 34995457 PMCID: PMC8864613 DOI: 10.1021/acsabm.1c01046] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022]
Abstract
The ability of cells to take and change shape is a fundamental feature underlying development, wound repair, and tissue maintenance. Central to this process is physical and signaling interactions between the three cytoskeletal polymeric networks: F-actin, microtubules, and intermediate filaments (IFs). Vimentin is an IF protein that is essential to the mechanical resilience of cells and regulates cross-talk among the cytoskeleton, but its role in how cells sense and respond to the surrounding extracellular matrix is largely unclear. To investigate vimentin's role in substrate sensing, we designed polyacrylamide hydrogels that mimic the elastic and viscoelastic nature of in vivo tissues. Using wild-type and vimentin-null mouse embryonic fibroblasts, we show that vimentin enhances cell spreading on viscoelastic substrates, even though it has little effect in the limit of purely elastic substrates. Our results provide compelling evidence that vimentin modulates how cells sense and respond to their environment and thus plays a key role in cell mechanosensing.
Collapse
Affiliation(s)
- Maxx Swoger
- Physics
Department, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Institute, Syracuse University, Syracuse, New York 13244, United States
| | - Sarthak Gupta
- Physics
Department, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Institute, Syracuse University, Syracuse, New York 13244, United States
| | - Elisabeth E. Charrier
- Institute
of Medicine and Engineering, University
of Pennsylvania, Philadelphia, Pennsylvania 13210, United States
| | - Michael Bates
- Biology
Department, Syracuse University, Syracuse, New York 13244, United States
| | - Heidi Hehnly
- Biology
Department, Syracuse University, Syracuse, New York 13244, United States
| | - Alison E. Patteson
- Physics
Department, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Institute, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
35
|
Barravecchia I, De Cesari C, Forcato M, Scebba F, Pyankova OV, Bridger JM, Foster HA, Signore G, Borghini A, Andreassi M, Andreazzoli M, Bicciato S, Pè ME, Angeloni D. Microgravity and space radiation inhibit autophagy in human capillary endothelial cells, through either opposite or synergistic effects on specific molecular pathways. Cell Mol Life Sci 2021; 79:28. [PMID: 34936031 PMCID: PMC11072227 DOI: 10.1007/s00018-021-04025-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/12/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022]
Abstract
Microgravity and space radiation (SR) are two highly influential factors affecting humans in space flight (SF). Many health problems reported by astronauts derive from endothelial dysfunction and impaired homeostasis. Here, we describe the adaptive response of human, capillary endothelial cells to SF. Reference samples on the ground and at 1g onboard permitted discrimination between the contribution of microgravity and SR within the combined responses to SF. Cell softening and reduced motility occurred in SF cells, with a loss of actin stress fibers and a broader distribution of microtubules and intermediate filaments within the cytoplasm than in control cells. Furthermore, in space the number of primary cilia per cell increased and DNA repair mechanisms were found to be activated. Transcriptomics revealed the opposing effects of microgravity from SR for specific molecular pathways: SR, unlike microgravity, stimulated pathways for endothelial activation, such as hypoxia and inflammation, DNA repair and apoptosis, inhibiting autophagic flux and promoting an aged-like phenotype. Conversely, microgravity, unlike SR, activated pathways for metabolism and a pro-proliferative phenotype. Therefore, we suggest microgravity and SR should be considered separately to tailor effective countermeasures to protect astronauts' health.
Collapse
Affiliation(s)
- Ivana Barravecchia
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Chiara De Cesari
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
- Department of Biology, University of Pisa, 56123, Pisa, Italy
| | - Mattia Forcato
- Center for Genome Research, Department of Life Science, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Francesca Scebba
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
| | - Olga V Pyankova
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
| | - Joanna M Bridger
- Laboratory of Nuclear and Genomic Health, Centre of Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Helen A Foster
- Department of Biological and Environmental Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | | | - Andrea Borghini
- Institute of Clinical Physiology, National Research Council, 56124, Pisa, Italy
| | | | | | - Silvio Bicciato
- Center for Genome Research, Department of Life Science, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Mario Enrico Pè
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
| | - Debora Angeloni
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy.
| |
Collapse
|
36
|
Wu Z, Zhang C. Role of the cytoskeleton in steroidogenesis. Endocr Metab Immune Disord Drug Targets 2021; 22:549-557. [PMID: 34802411 DOI: 10.2174/1871530321666211119143653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/25/2021] [Accepted: 10/20/2021] [Indexed: 11/22/2022]
Abstract
Steroidogenesis in the adrenal cortex or gonads is a complicated process, modulated by various elements either at the tissue or molecular level. The substrate-cholesterol is first delivered to the outer membrane of mitochondria, undergoing a series of enzymatic reactions along with the material exchange between the mitochondria and the ER (endoplasmic reticulum) and ultimately yield various steroids: aldosterone, cortisol, testosterone and estrone. Several valves are set to adjust the amount of production to the needs. e.g. StAR(steroidogenic acute regulator) is in charge of the rate-limiting step-traffic of cholesterol from outer membrane to inner membrane of mitochondria. And the "needs" is partly reflected by trophic signals like ACTH、LH and downstream pathways-- intracellular cAMP pathway, which represents the endocrinal regulation of steroid synthesis, too. The coordinated activities of these related factors are all associated with another crucial cellular constituent-the cytoskeleton, which plays a crucial role in the cellular architecture and substrate trafficking. Though considerable studies have been performed regarding steroid synthesis, details about the upstream signaling pathways and mechanisms of the regulation by cytoskeleton network still remain unclear. The metabolism and interplays of the pivotal cellular organelles with cytoskeleton are worth exploring as well. In this review, we summarize research of different time span, describing the roles of specific cytoskeleton elements in steroidogenesis and related signaling pathways involved in the steroid synthesis. In addition, we discussed the inner cytoskeletal network involved in steroidogenic processes such as mitochondrial movement, organelle interactions and cholesterol trafficking.
Collapse
Affiliation(s)
- Zaichao Wu
- Joint Program of Nanchang University and Queen Mary University of London, School of Medicine, Nanchang University, Nanchang, Jiangxi. China
| | - Chunping Zhang
- Department of Cell Biology, School of Medicine, Nanchang University, Nanchang, Jiangxi. China
| |
Collapse
|
37
|
Vimentin Regulates Chemokine Expression and NOD2 Activation in Brain Endothelium during Group B Streptococcal Infection. Infect Immun 2021; 89:e0034021. [PMID: 34491787 DOI: 10.1128/iai.00340-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Streptococcus agalactiae (group B Streptococcus, or GBS) is an opportunistic pathogen capable of causing invasive disease in susceptible individuals, including the newborn. Currently, GBS is the leading cause of meningitis in the neonatal period. We have recently shown that GBS interacts directly with host type III intermediate filament vimentin to gain access to the central nervous system. This results in characteristic meningeal inflammation and disease progression; however, the specific role of vimentin in the inflammatory process is unknown. Here, we investigate the contribution of vimentin to the pathogenesis of GBS meningitis. We show that a CRISPR-targeted deletion of vimentin in human cerebral microvascular endothelial cells (hCMEC) reduced GBS induction of neutrophil attractants interleukin-8 (IL-8) and CXCL-1 as well as NF-κB activation. We further show that inhibition of vimentin localization also prevented similar chemokine activation by GBS. One known chemokine regulator is the nucleotide-binding oligomerization domain containing protein 2 (NOD2), which is known to interact directly with vimentin. Thus, we hypothesized that NOD2 would also promote GBS chemokine induction. We show that GBS infection induced NOD2 transcription in hCMEC comparably to the muramyl dipeptide (MDP) NOD2 agonist, and the chemokine induction was reduced in the presence of a NOD2 inhibitor. Using a mouse model of GBS meningitis, we also observed increased NOD2 transcript and NOD2 activation in brain tissue of infected mice. Lastly, we show that NOD2-mediated IL-8 and CXCL1 induction required vimentin, further indicating the importance of vimentin in mediating inflammatory responses in brain endothelium.
Collapse
|
38
|
Dysregulation of Cytoskeleton Remodeling Drives Invasive Leading Cells Detachment. Cancers (Basel) 2021; 13:cancers13225648. [PMID: 34830801 PMCID: PMC8616115 DOI: 10.3390/cancers13225648] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Detachment of cancer cells is the first step in tumor metastasis and malignancy. Our results showed that the TGF-β1/vimentin/focal adhesion protein assembly axis was involved in the control of the dynamics of initial tumor detachment under adequate nutrition, based on the Boyden chamber and 3D in-gel spheroid analysis. Abstract Detachment of cancer cells is the first step in tumor metastasis and malignancy. However, studies on the balance of initial tumor anchoring and detachment are limited. Herein, we revealed that the regulation of cytoskeleton proteins potentiates tumor detachment. The blockage of TGF-β1 using neutralizing antibodies induced cancer cell detachment in the Boyden chamber and 3D in-gel spheroid models. Moreover, treatment with latrunculin B, an actin polymerization inhibitor, enhanced cell dissociation by abolishing actin fibers, indicating that TGF-β1 mediates the formation of actin stress fibers, and is likely responsible for the dynamics of anchoring and detachment. Indeed, latrunculin B disrupted the formation of external TGF-β1-induced actin fibers and translocation of intracellular vinculin, a focal adhesion protein, resulting in the suppression of cell adhesion. Moreover, the silencing of vimentin substantially reduced cell adhesion and enhanced cell detachment, revealing that cell adhesion and focal adhesion protein translocation stimulated by TGF-β1 require vimentin. Using the 3D in-gel spheroid model, we found that latrunculin B suppressed the cell adhesion promoted by external TGF-β1, increasing the number of cells that penetrated the Matrigel and detached from the tumor spheres. Thus, cytoskeleton remodeling maintained the balance of cell anchoring and detachment, and the TGF-β1/vimentin/focal adhesion protein assembly axis was involved in the control dynamics of initial tumor detachment.
Collapse
|
39
|
Shen Y, Wu H, Lu PJ, Wang D, Shayegan M, Li H, Shi W, Wang Z, Cai LH, Xia J, Zhang M, Ding R, Herrmann H, Goldman R, MacKintosh FC, Moncho-Jordá A, Weitz DA. Effects of Vimentin Intermediate Filaments on the Structure and Dynamics of In Vitro Multicomponent Interpenetrating Cytoskeletal Networks. PHYSICAL REVIEW LETTERS 2021; 127:108101. [PMID: 34533352 PMCID: PMC10725302 DOI: 10.1103/physrevlett.127.108101] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 06/01/2021] [Accepted: 07/30/2021] [Indexed: 05/28/2023]
Abstract
We investigate the rheological properties of interpenetrating networks reconstituted from the main cytoskeletal components: filamentous actin, microtubules, and vimentin intermediate filaments. The elastic modulus is determined largely by actin, with little contribution from either microtubules or vimentin. However, vimentin dramatically impacts the relaxation, with even small amounts significantly increasing the relaxation time of the interpenetrating network. This highly unusual decoupling between dissipation and elasticity may reflect weak attractive interactions between vimentin and actin networks.
Collapse
Affiliation(s)
- Yinan Shen
- Department of Physics & John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Huayin Wu
- Department of Physics & John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Peter J Lu
- Department of Physics & John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Dianzhuo Wang
- Department of Physics & John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Marjan Shayegan
- Department of Physics & John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Hui Li
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Weichao Shi
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zizhao Wang
- Department of Physics & John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Li-Heng Cai
- Materials Science and Engineering & Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Jing Xia
- Department of Physics & John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Meng Zhang
- Department of Physics & John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ruihua Ding
- Department of Physics & John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana and Champaign, Illinois 61801, USA
| | - Harald Herrmann
- Division of Cell Biology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Robert Goldman
- Department of Cell and Developmental Biology, Northwestern University, Chicago, Illinois 60611, USA
| | - Fred C MacKintosh
- Department of Chemical and Biomolecular Engineering & Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| | - Arturo Moncho-Jordá
- Department of Applied Physics & Institute Carlos I for Theoretical and Computational Physics, University of Granada, Granada 18071, Spain
| | - David A Weitz
- Department of Physics & John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
40
|
Holzner S, Bromberger S, Wenzina J, Neumüller K, Holper TM, Petzelbauer P, Bauer W, Weber B, Schossleitner K. Phosphorylated cingulin localises GEF-H1 at tight junctions to protect vascular barriers in blood endothelial cells. J Cell Sci 2021; 134:jcs258557. [PMID: 34345888 PMCID: PMC8445606 DOI: 10.1242/jcs.258557] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/20/2021] [Indexed: 11/20/2022] Open
Abstract
Dysfunction of vascular barriers is a critical step in inflammatory diseases. Endothelial tight junctions (TJs) control barrier function, and the cytoplasmic adaptor protein cingulin connects TJs to signalling pathways. However, local events at TJs during inflammation are largely unknown. In this study, we investigate the local response of TJ adaptor protein cingulin and its interaction with Rho guanine nucleotide exchange factor H1 (GEF-H1, also known as ARHGEF2) upon vascular barrier disruption to find a new approach to counteract vascular leak. Based on transendothelial-electrical-resistance (TEER) measurements, cingulin strengthened barrier integrity upon stimulation with histamine, thrombin and VEGF. Cingulin also attenuated myosin light chain 2 (MLC2; also known as MYL2) phosphorylation by localising GEF-H1 to cell junctions. By using cingulin phosphomutants, we verified that the phosphorylation of the cingulin head domain is required for its protective effect. Increased colocalisation of GEF-H1 and cingulin was observed in the vessels of vasculitis patients compared to those in healthy skin. Our findings demonstrate that cingulin can counteract vascular leak at TJs, suggesting the existence of a novel mechanism in blood endothelial cells that protects barrier function during disease.
Collapse
Affiliation(s)
- Silvio Holzner
- Department of Dermatology, Skin and Endothelium Research Division, Medical University of Vienna, 1090, Vienna, Austria
| | - Sophie Bromberger
- Department of Dermatology, Skin and Endothelium Research Division, Medical University of Vienna, 1090, Vienna, Austria
| | - Judith Wenzina
- Department of Dermatology, Skin and Endothelium Research Division, Medical University of Vienna, 1090, Vienna, Austria
| | - Karin Neumüller
- Department of Dermatology, Skin and Endothelium Research Division, Medical University of Vienna, 1090, Vienna, Austria
| | - Tina-Maria Holper
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| | - Peter Petzelbauer
- Department of Dermatology, Skin and Endothelium Research Division, Medical University of Vienna, 1090, Vienna, Austria
| | - Wolfgang Bauer
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| | - Benedikt Weber
- Department of Dermatology, Skin and Endothelium Research Division, Medical University of Vienna, 1090, Vienna, Austria
| | - Klaudia Schossleitner
- Department of Dermatology, Skin and Endothelium Research Division, Medical University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
41
|
Weißenbruch K, Grewe J, Hippler M, Fladung M, Tremmel M, Stricker K, Schwarz US, Bastmeyer M. Distinct roles of nonmuscle myosin II isoforms for establishing tension and elasticity during cell morphodynamics. eLife 2021; 10:71888. [PMID: 34374341 PMCID: PMC8391736 DOI: 10.7554/elife.71888] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/09/2021] [Indexed: 12/29/2022] Open
Abstract
Nonmuscle myosin II (NM II) is an integral part of essential cellular processes, including adhesion and migration. Mammalian cells express up to three isoforms termed NM IIA, B, and C. We used U2OS cells to create CRISPR/Cas9-based knockouts of all three isoforms and analyzed the phenotypes on homogenously coated surfaces, in collagen gels, and on micropatterned substrates. In contrast to homogenously coated surfaces, a structured environment supports a cellular phenotype with invaginated actin arcs even in the absence of NM IIA-induced contractility. A quantitative shape analysis of cells on micropatterns combined with a scale-bridging mathematical model reveals that NM IIA is essential to build up cellular tension during initial stages of force generation, while NM IIB is necessary to elastically stabilize NM IIA-generated tension. A dynamic cell stretch/release experiment in a three-dimensional scaffold confirms these conclusions and in addition reveals a novel role for NM IIC, namely the ability to establish tensional homeostasis.
Collapse
Affiliation(s)
- Kai Weißenbruch
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Justin Grewe
- Institute for Theoretical Physics, University of Heidelberg, Heidelberg, Germany.,BioQuant-Center for Quantitative Biology, University of Heidelberg, Heidelberg, Germany
| | - Marc Hippler
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Magdalena Fladung
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Moritz Tremmel
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Kathrin Stricker
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Ulrich Sebastian Schwarz
- Institute for Theoretical Physics, University of Heidelberg, Heidelberg, Germany.,BioQuant-Center for Quantitative Biology, University of Heidelberg, Heidelberg, Germany
| | - Martin Bastmeyer
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
42
|
KRAP tethers IP 3 receptors to actin and licenses them to evoke cytosolic Ca 2+ signals. Nat Commun 2021; 12:4514. [PMID: 34301929 PMCID: PMC8302619 DOI: 10.1038/s41467-021-24739-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
Regulation of IP3 receptors (IP3Rs) by IP3 and Ca2+ allows regenerative Ca2+ signals, the smallest being Ca2+ puffs, which arise from coordinated openings of a few clustered IP3Rs. Cells express thousands of mostly mobile IP3Rs, yet Ca2+ puffs occur at a few immobile IP3R clusters. By imaging cells with endogenous IP3Rs tagged with EGFP, we show that KRas-induced actin-interacting protein (KRAP) tethers IP3Rs to actin beneath the plasma membrane. Loss of KRAP abolishes Ca2+ puffs and the global increases in cytosolic Ca2+ concentration evoked by more intense stimulation. Over-expressing KRAP immobilizes additional IP3R clusters and results in more Ca2+ puffs and larger global Ca2+ signals. Endogenous KRAP determines which IP3Rs will respond: it tethers IP3R clusters to actin alongside sites where store-operated Ca2+ entry occurs, licenses IP3Rs to evoke Ca2+ puffs and global cytosolic Ca2+ signals, implicates the actin cytoskeleton in IP3R regulation and may allow local activation of Ca2+ entry.
Collapse
|
43
|
Mäkitie RE, Henning P, Jiu Y, Kämpe A, Kogan K, Costantini A, Välimäki V, Medina‐Gomez C, Pekkinen M, Salusky IB, Schalin‐Jäntti C, Haanpää MK, Rivadeneira F, Bassett JHD, Williams GR, Lerner UH, Pereira RC, Lappalainen P, Mäkitie O. An ARHGAP25 variant links aberrant Rac1 function to early-onset skeletal fragility. JBMR Plus 2021; 5:e10509. [PMID: 34258505 PMCID: PMC8260816 DOI: 10.1002/jbm4.10509] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/10/2021] [Accepted: 04/21/2021] [Indexed: 11/10/2022] Open
Abstract
Ras homologous guanosine triphosphatases (RhoGTPases) control several cellular functions, including cytoskeletal actin remodeling and cell migration. Their activities are downregulated by GTPase-activating proteins (GAPs). Although RhoGTPases are implicated in bone remodeling and osteoclast and osteoblast function, their significance in human bone health and disease remains elusive. Here, we report defective RhoGTPase regulation as a cause of severe, early-onset, autosomal-dominant skeletal fragility in a three-generation Finnish family. Affected individuals (n = 13) presented with multiple low-energy peripheral and vertebral fractures despite normal bone mineral density (BMD). Bone histomorphometry suggested reduced bone volume, low surface area covered by osteoblasts and osteoclasts, and low bone turnover. Exome sequencing identified a novel heterozygous missense variant c.652G>A (p.G218R) in ARHGAP25, encoding a GAP for Rho-family GTPase Rac1. Variants in the ARHGAP25 5' untranslated region (UTR) also associated with BMD and fracture risk in the general population, across multiple genomewide association study (GWAS) meta-analyses (lead variant rs10048745). ARHGAP25 messenger RNA (mRNA) was expressed in macrophage colony-stimulating factor (M-CSF)-stimulated human monocytes and mouse osteoblasts, indicating a possible role for ARHGAP25 in osteoclast and osteoblast differentiation and activity. Studies on subject-derived osteoclasts from peripheral blood mononuclear cells did not reveal robust defects in mature osteoclast formation or resorptive activity. However, analysis of osteosarcoma cells overexpressing the ARHGAP25 G218R-mutant, combined with structural modeling, confirmed that the mutant protein had decreased GAP-activity against Rac1, resulting in elevated Rac1 activity, increased cell spreading, and membrane ruffling. Our findings indicate that mutated ARHGAP25 causes aberrant Rac1 function and consequently abnormal bone metabolism, highlighting the importance of RhoGAP signaling in bone metabolism in familial forms of skeletal fragility and in the general population, and expanding our understanding of the molecular pathways underlying skeletal fragility. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Riikka E. Mäkitie
- Folkhälsan Institute of GeneticsHelsinkiFinland
- Research Program for Clinical and Molecular Metabolism, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Petra Henning
- Department of Internal Medicine and Clinical NutritionCentre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Yaming Jiu
- HiLIFE Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of ShanghaiChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Anders Kämpe
- Department of Molecular Medicine and Surgery and Center for Molecular MedicineKarolinska InstitutetStockholmSweden
| | - Konstantin Kogan
- HiLIFE Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
| | - Alice Costantini
- Department of Molecular Medicine and Surgery and Center for Molecular MedicineKarolinska InstitutetStockholmSweden
| | - Ville‐Valtteri Välimäki
- Department of Orthopaedics and TraumatologyHelsinki University Central Hospital and Helsinki University, Jorvi HospitalEspooFinland
| | - Carolina Medina‐Gomez
- Department of Internal MedicineErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands
| | - Minna Pekkinen
- Folkhälsan Institute of GeneticsHelsinkiFinland
- Research Program for Clinical and Molecular Metabolism, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Isidro B. Salusky
- Department of PediatricsDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Camilla Schalin‐Jäntti
- Endocrinology, Abdominal CenterUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Maria K. Haanpää
- Department of Genomics and Clinical GeneticsTurku University HospitalTurkuFinland
| | - Fernando Rivadeneira
- Department of Internal MedicineErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands
| | - John H. Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Graham R. Williams
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Ulf H. Lerner
- Department of Internal Medicine and Clinical NutritionCentre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Renata C. Pereira
- Department of PediatricsDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Pekka Lappalainen
- HiLIFE Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
| | - Outi Mäkitie
- Folkhälsan Institute of GeneticsHelsinkiFinland
- Research Program for Clinical and Molecular Metabolism, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Molecular Medicine and Surgery and Center for Molecular MedicineKarolinska InstitutetStockholmSweden
- Children's HospitalUniversity and Helsinki University HospitalHelsinkiFinland
| |
Collapse
|
44
|
Gentile A, Bensimon-Brito A, Priya R, Maischein HM, Piesker J, Guenther S, Gunawan F, Stainier DYR. The EMT transcription factor Snai1 maintains myocardial wall integrity by repressing intermediate filament gene expression. eLife 2021; 10:e66143. [PMID: 34152269 PMCID: PMC8216718 DOI: 10.7554/elife.66143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 06/07/2021] [Indexed: 12/29/2022] Open
Abstract
The transcription factor Snai1, a well-known regulator of epithelial-to-mesenchymal transition, has been implicated in early cardiac morphogenesis as well as in cardiac valve formation. However, a role for Snai1 in regulating other aspects of cardiac morphogenesis has not been reported. Using genetic, transcriptomic, and chimeric analyses in zebrafish, we find that Snai1b is required in cardiomyocytes for myocardial wall integrity. Loss of snai1b increases the frequency of cardiomyocyte extrusion away from the cardiac lumen. Extruding cardiomyocytes exhibit increased actomyosin contractility basally as revealed by enrichment of p-myosin and α-catenin epitope α-18, as well as disrupted intercellular junctions. Transcriptomic analysis of wild-type and snai1b mutant hearts revealed the dysregulation of intermediate filament genes, including desmin b (desmb) upregulation. Cardiomyocyte-specific desmb overexpression caused increased cardiomyocyte extrusion, recapitulating the snai1b mutant phenotype. Altogether, these results indicate that Snai1 maintains the integrity of the myocardial epithelium, at least in part by repressing desmb expression.
Collapse
Affiliation(s)
- Alessandra Gentile
- Max Planck Institute for Heart and Lung Research, Department of Developmental GeneticsBad NauheimGermany
| | - Anabela Bensimon-Brito
- Max Planck Institute for Heart and Lung Research, Department of Developmental GeneticsBad NauheimGermany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-MainBad NauheimGermany
| | - Rashmi Priya
- Max Planck Institute for Heart and Lung Research, Department of Developmental GeneticsBad NauheimGermany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-MainBad NauheimGermany
| | - Hans-Martin Maischein
- Max Planck Institute for Heart and Lung Research, Department of Developmental GeneticsBad NauheimGermany
| | - Janett Piesker
- Max Planck Institute for Heart and Lung Research, Microscopy Service GroupBad NauheimGermany
| | - Stefan Guenther
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-MainBad NauheimGermany
- Max Planck Institute for Heart and Lung Research, Bioinformatics and Deep Sequencing PlatformBad NauheimGermany
| | - Felix Gunawan
- Max Planck Institute for Heart and Lung Research, Department of Developmental GeneticsBad NauheimGermany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-MainBad NauheimGermany
| | - Didier YR Stainier
- Max Planck Institute for Heart and Lung Research, Department of Developmental GeneticsBad NauheimGermany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-MainBad NauheimGermany
| |
Collapse
|
45
|
Vimentin Promotes the Aggressiveness of Triple Negative Breast Cancer Cells Surviving Chemotherapeutic Treatment. Cells 2021; 10:cells10061504. [PMID: 34203746 PMCID: PMC8232646 DOI: 10.3390/cells10061504] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 11/24/2022] Open
Abstract
Tremendous data have been accumulated in the effort to understand chemoresistance of triple negative breast cancer (TNBC). However, modifications in cancer cells surviving combined and sequential treatment still remain poorly described. In order to mimic clinical neoadjuvant treatment, we first treated MDA-MB-231 and SUM159-PT TNBC cell lines with epirubicin and cyclophosphamide for 2 days, and then with paclitaxel for another 2 days. After 4 days of recovery, persistent cells surviving the treatment were characterized at both cellular and molecular level. Persistent cells exhibited increased growth and were more invasive in vitro and in zebrafish model. Persistent cells were enriched for vimentinhigh sub-population, vimentin knockdown using siRNA approach decreased the invasive and sphere forming capacities as well as Akt phosphorylation in persistent cells, indicating that vimentin is involved in chemotherapeutic treatment-induced enhancement of TNBC aggressiveness. Interestingly, ectopic vimentin overexpression in native cells increased cell invasion and sphere formation as well as Akt phosphorylation. Furthermore, vimentin overexpression alone rendered the native cells resistant to the drugs, while vimentin knockdown rendered them more sensitive to the drugs. Together, our data suggest that vimentin could be considered as a new targetable player in the ever-elusive status of drug resistance and recurrence of TNBC.
Collapse
|
46
|
Bayir E, Sendemir A. Role of Intermediate Filaments in Blood-Brain Barrier in Health and Disease. Cells 2021; 10:cells10061400. [PMID: 34198868 PMCID: PMC8226756 DOI: 10.3390/cells10061400] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022] Open
Abstract
The blood–brain barrier (BBB) is a highly selective cellular monolayer unique to the microvasculature of the central nervous system (CNS), and it mediates the communication of the CNS with the rest of the body by regulating the passage of molecules into the CNS microenvironment. Limitation of passage of substances through the BBB is mainly due to tight junctions (TJ) and adherens junctions (AJ) between brain microvascular endothelial cells. The importance of actin filaments and microtubules in establishing and maintaining TJs and AJs has been indicated; however, recent studies have shown that intermediate filaments are also important in the formation and function of cell–cell junctions. The most common intermediate filament protein in endothelial cells is vimentin. Vimentin plays a role in blood–brain barrier permeability in both cell–cell and cell–matrix interactions by affecting the actin and microtubule reorganization and by binding directly to VE-cadherin or integrin proteins. The BBB permeability increases due to the formation of stress fibers and the disruption of VE–cadherin interactions between two neighboring cells in various diseases, disrupting the fiber network of intermediate filament vimentin in different ways. Intermediate filaments may be long ignored key targets in regulation of BBB permeability in health and disease.
Collapse
Affiliation(s)
- Ece Bayir
- Ege University Central Research Test and Analysis Laboratory Application and Research Center (EGE-MATAL), Ege University, 35100 Izmir, Turkey;
| | - Aylin Sendemir
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey
- Department of Biomedical Technologies, Graduate School of Natural and Applied Science, Ege University, 35100 Izmir, Turkey
- Correspondence: ; Tel.: +90-232-3114817
| |
Collapse
|
47
|
Ho Thanh MT, Grella A, Kole D, Ambady S, Wen Q. Vimentin intermediate filaments modulate cell traction force but not cell sensitivity to substrate stiffness. Cytoskeleton (Hoboken) 2021; 78:293-302. [PMID: 33993652 DOI: 10.1002/cm.21675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022]
Abstract
The ability of cells to sense and respond to the mechanical stiffness of the surrounding matrix is important to support normal cell function, wound healing, and development. Central to the process of durosensing is the cytoskeleton composed of three classes of filaments: F-actin, microtubules, and intermediate filaments (IFs). Vimentin is an IF protein that contributes significantly to cell mechanics and cell traction force, which is required to probe extracellular matrix. The role of vimentin in how cells sense and respond to the mechanical rigidity of extracellular matrix is largely unclear. To investigate the role of vimentin in durosensing, we knocked down the vimentin expression level in 3T3 fibroblasts using shRNA transfection and measured cellular responses as functions of substrate stiffness. We quantified durosensitivity by the rates at which cell area and traction force change with substrate stiffness. Our results show that that vimentin plays a role in durosensing by modulating traction force and knocking out vimentin did not significantly affect durosensitivity. These results indicate that vimentin may be a redundant component of the machinery that cells use to sense substrate stiffness.
Collapse
Affiliation(s)
- Minh-Tri Ho Thanh
- Physics Department, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Alexandra Grella
- Biology & Biotechnology Department, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Denis Kole
- Biology & Biotechnology Department, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Sakthikumar Ambady
- Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Qi Wen
- Physics Department, Worcester Polytechnic Institute, Worcester, Massachusetts, USA.,Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| |
Collapse
|
48
|
Deckwirth V, Rajakylä EK, Cattavarayane S, Acheva A, Schaible N, Krishnan R, Valle-Delgado JJ, Österberg M, Björkenheim P, Sukura A, Tojkander S. Cytokeratin 5 determines maturation of the mammary myoepithelium. iScience 2021; 24:102413. [PMID: 34007958 PMCID: PMC8111680 DOI: 10.1016/j.isci.2021.102413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 12/06/2020] [Accepted: 04/06/2021] [Indexed: 12/29/2022] Open
Abstract
At invasion, transformed mammary epithelial cells expand into the stroma through a disrupted myoepithelial (ME) cell layer and basement membrane (BM). The intact ME cell layer has thus been suggested to act as a barrier against invasion. Here, we investigate the mechanisms behind the disruption of ME cell layer. We show that the expression of basal/ME proteins CK5, CK14, and α-SMA altered along increasing grade of malignancy, and their loss affected the maintenance of organotypic 3D mammary architecture. Furthermore, our data suggests that loss of CK5 prior to invasive stage causes decreased levels of Zinc finger protein SNAI2 (SLUG), a key regulator of the mammary epithelial cell lineage determination. Consequently, a differentiation bias toward luminal epithelial cell type was detected with loss of mature, α-SMA-expressing ME cells and reduced deposition of basement membrane protein laminin-5. Therefore, our data discloses the central role of CK5 in mammary epithelial differentiation and maintenance of normal ME layer.
Collapse
Affiliation(s)
- Vivi Deckwirth
- Section of Pathology, Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöberginkatu 2, Helsinki 00014, Finland
| | - Eeva Kaisa Rajakylä
- Section of Pathology, Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöberginkatu 2, Helsinki 00014, Finland
| | - Sandhanakrishnan Cattavarayane
- Section of Pathology, Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöberginkatu 2, Helsinki 00014, Finland
| | - Anna Acheva
- Section of Pathology, Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöberginkatu 2, Helsinki 00014, Finland
| | - Niccole Schaible
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ramaswamy Krishnan
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Juan José Valle-Delgado
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 00076, Finland
| | - Monika Österberg
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 00076, Finland
| | - Pia Björkenheim
- Veterinary Teaching Hospital, University of Helsinki, Helsinki 00014, Finland
| | - Antti Sukura
- Section of Pathology, Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöberginkatu 2, Helsinki 00014, Finland
| | - Sari Tojkander
- Section of Pathology, Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöberginkatu 2, Helsinki 00014, Finland
| |
Collapse
|
49
|
Shi X, Wen Z, Wang Y, Liu YJ, Shi K, Jiu Y. Feedback-Driven Mechanisms Between Phosphorylated Caveolin-1 and Contractile Actin Assemblies Instruct Persistent Cell Migration. Front Cell Dev Biol 2021; 9:665919. [PMID: 33928090 PMCID: PMC8076160 DOI: 10.3389/fcell.2021.665919] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/22/2021] [Indexed: 12/23/2022] Open
Abstract
The actin cytoskeleton and membrane-associated caveolae contribute to active processes, such as cell morphogenesis and motility. How these two systems interact and control directional cell migration is an outstanding question but remains understudied. Here we identified a negative feedback between contractile actin assemblies and phosphorylated caveolin-1 (CAV-1) in migrating cells. Cytoplasmic CAV-1 vesicles display actin-associated motilities by sliding along actin filaments or/and coupling to do retrograde flow with actomyosin bundles. Inhibition of contractile stress fibers, but not Arp2/3-dependent branched actin filaments, diminished the phosphorylation of CAV-1 on site Tyr14, and resulted in substantially increased size and decreased motility of cytoplasmic CAV-1 vesicles. Reciprocally, both the CAV-1 phospho-deficient mutation on site Tyr14 and CAV-1 knockout resulted in dramatic AMPK phosphorylation, further causing reduced active level of RhoA-myosin II and increased active level of Rac1-PAK1-Cofilin, consequently led to disordered contractile stress fibers and prominent lamellipodia. As a result, cells displayed depolarized morphology and compromised directional migration. Collectively, we propose a model in which feedback-driven regulation between actin and CAV-1 instructs persistent cell migration.
Collapse
Affiliation(s)
- Xuemeng Shi
- The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,The Joint Program in Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Zeyu Wen
- Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yajun Wang
- Shanghai Institute of Cardiovascular Diseases, and Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan-Jun Liu
- Shanghai Institute of Cardiovascular Diseases, and Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kun Shi
- The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,The Joint Program in Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Yaming Jiu
- The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,The Joint Program in Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
50
|
Agnetti G, Herrmann H, Cohen S. New roles for desmin in the maintenance of muscle homeostasis. FEBS J 2021; 289:2755-2770. [PMID: 33825342 DOI: 10.1111/febs.15864] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/06/2021] [Accepted: 04/04/2021] [Indexed: 12/11/2022]
Abstract
Desmin is the primary intermediate filament (IF) of cardiac, skeletal, and smooth muscle. By linking the contractile myofibrils to the sarcolemma and cellular organelles, desmin IF contributes to muscle structural and cellular integrity, force transmission, and mitochondrial homeostasis. Mutations in desmin cause myofibril misalignment, mitochondrial dysfunction, and impaired mechanical integrity leading to cardiac and skeletal myopathies in humans, often characterized by the accumulation of protein aggregates. Recent evidence indicates that desmin filaments also regulate proteostasis and cell size. In skeletal muscle, changes in desmin filament dynamics can facilitate catabolic events as an adaptive response to a changing environment. In addition, post-translational modifications of desmin and its misfolding in the heart have emerged as key determinants of homeostasis and disease. In this review, we provide an overview of the structural and cellular roles of desmin and propose new models for its novel functions in preserving the homeostasis of striated muscles.
Collapse
Affiliation(s)
- Giulio Agnetti
- Johns Hopkins University School of Medicine, Baltimore, MD, USA.,DIBINEM, University of Bologna, Italy
| | - Harald Herrmann
- Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Shenhav Cohen
- Faculty of Biology, Technion Institute of Technology, Haifa, Israel
| |
Collapse
|