1
|
Lima JT, Ferreira JG. Mechanobiology of the nucleus during the G2-M transition. Nucleus 2024; 15:2330947. [PMID: 38533923 DOI: 10.1080/19491034.2024.2330947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/09/2024] [Indexed: 03/28/2024] Open
Abstract
Cellular behavior is continuously influenced by mechanical forces. These forces span the cytoskeleton and reach the nucleus, where they trigger mechanotransduction pathways that regulate downstream biochemical events. Therefore, the nucleus has emerged as a regulator of cellular response to mechanical stimuli. Cell cycle progression is regulated by cyclin-CDK complexes. Recent studies demonstrated these biochemical pathways are influenced by mechanical signals, highlighting the interdependence of cellular mechanics and cell cycle regulation. In particular, the transition from G2 to mitosis (G2-M) shows significant changes in nuclear structure and organization, ranging from nuclear pore complex (NPC) and nuclear lamina disassembly to chromosome condensation. The remodeling of these mechanically active nuclear components indicates that mitotic entry is particularly sensitive to forces. Here, we address how mechanical forces crosstalk with the nucleus to determine the timing and efficiency of the G2-M transition. Finally, we discuss how the deregulation of nuclear mechanics has consequences for mitosis.
Collapse
Affiliation(s)
- Joana T Lima
- Epithelial Polarity and Cell Division Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
- Departamento de Biomedicina, Unidade de Biologia Experimental, Faculdade de Medicina do Porto, Porto, Portugal
- Programa Doutoral em Biomedicina, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Jorge G Ferreira
- Epithelial Polarity and Cell Division Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
- Departamento de Biomedicina, Unidade de Biologia Experimental, Faculdade de Medicina do Porto, Porto, Portugal
| |
Collapse
|
2
|
Gonçalves M, Lopes C, Alégot H, Osswald M, Bosveld F, Ramos C, Richard G, Bellaiche Y, Mirouse V, Morais-de-Sá E. The Dystrophin-Dystroglycan complex ensures cytokinesis efficiency in Drosophila epithelia. EMBO Rep 2024:10.1038/s44319-024-00319-y. [PMID: 39548266 DOI: 10.1038/s44319-024-00319-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/17/2024] Open
Abstract
Cytokinesis physically separates daughter cells at the end of cell division. This step is particularly challenging for epithelial cells, which are connected to their neighbors and to the extracellular matrix by transmembrane protein complexes. To systematically evaluate the impact of the cell adhesion machinery on epithelial cytokinesis efficiency, we performed an RNAi-based modifier screen in the Drosophila follicular epithelium. Strikingly, this unveiled adhesion molecules and transmembrane receptors that facilitate cytokinesis completion. Among these is Dystroglycan, which connects the extracellular matrix to the cytoskeleton via Dystrophin. Live imaging revealed that Dystrophin and Dystroglycan become enriched in the ingressing membrane, below the cytokinetic ring, during and after ring constriction. Using multiple alleles, including Dystrophin isoform-specific mutants, we show that Dystrophin/Dystroglycan localization is linked with unanticipated roles in regulating cytokinetic ring contraction and in preventing membrane regression during the abscission period. Altogether, we provide evidence that, rather than opposing cytokinesis completion, the machinery involved in cell-cell and cell-matrix interactions has also evolved functions to ensure cytokinesis efficiency in epithelial tissues.
Collapse
Affiliation(s)
- Margarida Gonçalves
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135, Porto, Portugal
- Programa Doutoral em Biologia Molecular e Celular (MCBiology), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Catarina Lopes
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135, Porto, Portugal
| | - Hervé Alégot
- Université Clermont Auvergne - iGReD (Institute of Genetics, Reproduction and Development), UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Mariana Osswald
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135, Porto, Portugal
| | - Floris Bosveld
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005, Paris, France
| | - Carolina Ramos
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135, Porto, Portugal
| | - Graziella Richard
- Université Clermont Auvergne - iGReD (Institute of Genetics, Reproduction and Development), UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Yohanns Bellaiche
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005, Paris, France
| | - Vincent Mirouse
- Université Clermont Auvergne - iGReD (Institute of Genetics, Reproduction and Development), UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Eurico Morais-de-Sá
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal.
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135, Porto, Portugal.
| |
Collapse
|
3
|
Janssen V, Huveneers S. Cell-cell junctions in focus - imaging junctional architectures and dynamics at high resolution. J Cell Sci 2024; 137:jcs262041. [PMID: 39480660 DOI: 10.1242/jcs.262041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
Studies utilizing electron microscopy and live fluorescence microscopy have significantly enhanced our understanding of the molecular mechanisms that regulate junctional dynamics during homeostasis, development and disease. To fully grasp the enormous complexity of cell-cell adhesions, it is crucial to study the nanoscale architectures of tight junctions, adherens junctions and desmosomes. It is important to integrate these junctional architectures with the membrane morphology and cellular topography in which the junctions are embedded. In this Review, we explore new insights from studies using super-resolution and volume electron microscopy into the nanoscale organization of these junctional complexes as well as the roles of the junction-associated cytoskeleton, neighboring organelles and the plasma membrane. Furthermore, we provide an overview of junction- and cytoskeletal-related biosensors and optogenetic probes that have contributed to these advances and discuss how these microscopy tools enhance our understanding of junctional dynamics across cellular environments.
Collapse
Affiliation(s)
- Vera Janssen
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105 AZ, Amsterdam, The Netherlands
| | - Stephan Huveneers
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Jipp M, Wagner BD, Egbringhoff L, Teichmann A, Rübeling A, Nieschwitz P, Honigmann A, Chizhik A, Oswald TA, Janshoff A. Cell-substrate distance fluctuations of confluent cells enable fast and coherent collective migration. Cell Rep 2024; 43:114553. [PMID: 39150846 DOI: 10.1016/j.celrep.2024.114553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/18/2024] [Accepted: 07/12/2024] [Indexed: 08/18/2024] Open
Abstract
Collective cell migration is an emergent phenomenon, with long-range cell-cell communication influenced by various factors, including transmission of forces, viscoelasticity of individual cells, substrate interactions, and mechanotransduction. We investigate how alterations in cell-substrate distance fluctuations, cell-substrate adhesion, and traction forces impact the average velocity and temporal-spatial correlation of confluent monolayers formed by either wild-type (WT) MDCKII cells or zonula occludens (ZO)-1/2-depleted MDCKII cells (double knockdown [dKD]) representing highly contractile cells. The data indicate that confluent dKD monolayers exhibit decreased average velocity compared to less contractile WT cells concomitant with increased substrate adhesion, reduced traction forces, a more compact shape, diminished cell-cell interactions, and reduced cell-substrate distance fluctuations. Depletion of basal actin and myosin further supports the notion that short-range cell-substrate interactions, particularly fluctuations driven by basal actomyosin, significantly influence the migration speed of the monolayer on a larger length scale.
Collapse
Affiliation(s)
- Marcel Jipp
- University of Göttingen, Institute of Physical Chemistry, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Bente D Wagner
- University of Göttingen, Institute of Physical Chemistry, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Lisa Egbringhoff
- University of Göttingen, Institute of Physical Chemistry, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Andreas Teichmann
- University of Göttingen, Institute of Physical Chemistry, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Angela Rübeling
- University of Göttingen, Institute of Organic and Biomolecular Chemistry, Tammannstrasse 2, 37077 Göttingen, Germany
| | - Paul Nieschwitz
- University of Göttingen, Institute of Physical Chemistry, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Alf Honigmann
- Biotechnology Center, Technische Universität Dresden, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Alexey Chizhik
- University of Göttingen, Third Institute of Physics, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Tabea A Oswald
- University of Göttingen, Institute of Organic and Biomolecular Chemistry, Tammannstrasse 2, 37077 Göttingen, Germany.
| | - Andreas Janshoff
- University of Göttingen, Institute of Physical Chemistry, Tammannstrasse 6, 37077 Göttingen, Germany.
| |
Collapse
|
5
|
Burcklé C, Raitière J, Michaux G, Kodjabachian L, Le Bivic A. Crb3 is required to organize the apical domain of multiciliated cells. J Cell Sci 2024; 137:jcs261046. [PMID: 37840525 DOI: 10.1242/jcs.261046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023] Open
Abstract
Cell shape changes mainly rely on the remodeling of the actin cytoskeleton. Multiciliated cells (MCCs) of the mucociliary epidermis of Xenopus laevis embryos, as they mature, dramatically reshape their apical domain to grow cilia, in coordination with the underlying actin cytoskeleton. Crumbs (Crb) proteins are multifaceted transmembrane apical polarity proteins known to recruit actin linkers and promote apical membrane growth. Here, we identify the homeolog Crb3.L as an important player for the migration of centrioles or basal bodies (collectively centrioles/BBs) and apical domain morphogenesis in MCCs. Crb3.L is present in cytoplasmic vesicles close to the ascending centrioles/BBs, where it partially colocalizes with Rab11a. Crb3.L morpholino-mediated depletion in MCCs caused abnormal migration of centrioles/BBs, a reduction of their apical surface, disorganization of their apical actin meshwork and defective ciliogenesis. Rab11a morpholino-mediated depletion phenocopied Crb3.L loss-of-function in MCCs. Thus, the control of centrioles/BBs migration by Crb3.L might be mediated by Rab11a-dependent apical trafficking. Furthermore, we show that both phospho-activated ERM (pERM; Ezrin-Radixin-Moesin) and Crb3.L are recruited to the growing apical domain of MCCs, where Crb3.L likely anchors pERM, allowing actin-dependent expansion of the apical membrane.
Collapse
Affiliation(s)
- Céline Burcklé
- Aix-Marseille University, CNRS, UMR 7288, Developmental Biology Institute of Marseille (IBDM), Marseille, F-13288 France
| | - Juliette Raitière
- Aix-Marseille University, CNRS, UMR 7288, Developmental Biology Institute of Marseille (IBDM), Marseille, F-13288 France
| | - Grégoire Michaux
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, F-35000 Rennes, France
| | - Laurent Kodjabachian
- Aix Marseille University, CNRS, UMR 7288, Developmental Biology Institute of Marseille (IBDM), Turing Centre for Living Systems, Marseille, F-13288 France
| | - André Le Bivic
- Aix-Marseille University, CNRS, UMR 7288, Developmental Biology Institute of Marseille (IBDM), Marseille, F-13288 France
| |
Collapse
|
6
|
Wibbe N, Ebnet K. Cell Adhesion at the Tight Junctions: New Aspects and New Functions. Cells 2023; 12:2701. [PMID: 38067129 PMCID: PMC10706136 DOI: 10.3390/cells12232701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Tight junctions (TJ) are cell-cell adhesive structures that define the permeability of barrier-forming epithelia and endothelia. In contrast to this seemingly static function, TJs display a surprisingly high molecular complexity and unexpected dynamic regulation, which allows the TJs to maintain a barrier in the presence of physiological forces and in response to perturbations. Cell-cell adhesion receptors play key roles during the dynamic regulation of TJs. They connect individual cells within cellular sheets and link sites of cell-cell contacts to the underlying actin cytoskeleton. Recent findings support the roles of adhesion receptors in transmitting mechanical forces and promoting phase separation. In this review, we discuss the newly discovered functions of cell adhesion receptors localized at the TJs and their role in the regulation of the barrier function.
Collapse
Affiliation(s)
- Nicolina Wibbe
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, D-48149 Münster, Germany
| | - Klaus Ebnet
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, D-48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, D-48419 Münster, Germany
| |
Collapse
|
7
|
Wang Y, Yemelyanov A, Go CD, Kim S, Quinn JM, Flozak AS, Le PM, Liang S, Claude-Gingras A, Ikura M, Ishiyama N, Gottardi CJ. α-catenin mechanosensitivity as a route to cytokinesis failure through sequestration of LZTS2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554884. [PMID: 37662204 PMCID: PMC10473746 DOI: 10.1101/2023.08.25.554884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Epithelial cells can become polyploid upon tissue injury, but mechanosensitive cues that trigger this state are poorly understood. Using α-catenin (α-cat) knock-out Madin Darby Canine Kidney (MDCK) cells reconstituted with wild-type and mutant forms of α-cat as a model system, we find that an established α-cat actin-binding domain unfolding mutant designed to reduce force-sensitive binding to F-actin (α-cat-H0-FABD+) can promote cytokinesis failure, particularly along epithelial wound-fronts. Enhanced α-cat coupling to cortical actin is neither sufficient nor mitotic cell-autonomous for cytokinesis failure, but critically requires the mechanosensitive Middle-domain (M1-M2-M3) and neighboring cells. Disease relevant α-cat M-domain missense mutations known to cause a form of retinal pattern dystrophy (α-cat E307K or L436P) are associated with elevated binucleation rates via cytokinesis failure. Similar binucleation rates are seen in cells expressing an α-cat salt-bridge destabilizing mutant (R551A) designed to promote M2-M3 domain unfurling at lower force thresholds. Since binucleation is strongly enhanced by removal of the M1 as opposed to M2-M3 domains, cytokinetic fidelity is most sensitive to α-cat M2-M3 domain opening. To identify α-cat conformation-dependent proximity partners that contribute to cytokinesis, we used a biotin-ligase approach to distinguished proximity partners that show enhanced recruitment upon α-cat M-domain unfurling (R551A). We identified Leucine Zipper Tumor Suppressor 2 (LZTS2), an abscission factor previously implicated in cytokinesis. We confirm that LZTS2 enriches at the midbody, but discover it also localizes to tight and tricellular junctions. LZTS2 knock-down promotes binucleation in both MDCK and Retinal Pigmented Epithelial (RPE) cells. α-cat mutants with persistent M2-M3 domain opening showed elevated junctional enrichment of LZTS2 from the cytosol compared α-cat wild-type cells. These data implicate LZTS2 as a mechanosensitive effector of α-cat that is critical for cytokinetic fidelity. This model rationalizes how persistent mechano-activation of α-cat may drive tension-induced polyploidization of epithelia post-injury and suggests an underlying mechanism for how pathogenic α-cat mutations drive macular dystrophy.
Collapse
Affiliation(s)
- Yuou Wang
- Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Alex Yemelyanov
- Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Christopher D. Go
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, Ontario, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Sun Kim
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, Ontario, M5G 1X5, Canada
| | - Jeanne M. Quinn
- Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Annette S. Flozak
- Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Phuong M. Le
- Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Shannon Liang
- Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Anne Claude-Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, Ontario, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Mitsu Ikura
- Department of Medical Biophysics, University Health Network, Princess Margaret Cancer Center, University of Toronto, Toronto, Ontario, Canada
| | - Noboru Ishiyama
- Department of Medical Biophysics, University Health Network, Princess Margaret Cancer Center, University of Toronto, Toronto, Ontario, Canada
| | - Cara J. Gottardi
- Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Cell & Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
8
|
Higashi T, Stephenson RE, Schwayer C, Huljev K, Higashi AY, Heisenberg CP, Chiba H, Miller AL. ZnUMBA - a live imaging method to detect local barrier breaches. J Cell Sci 2023; 136:jcs260668. [PMID: 37461809 PMCID: PMC10445723 DOI: 10.1242/jcs.260668] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 07/06/2023] [Indexed: 08/09/2023] Open
Abstract
Epithelial barrier function is commonly analyzed using transepithelial electrical resistance, which measures ion flux across a monolayer, or by adding traceable macromolecules and monitoring their passage across the monolayer. Although these methods measure changes in global barrier function, they lack the sensitivity needed to detect local or transient barrier breaches, and they do not reveal the location of barrier leaks. Therefore, we previously developed a method that we named the zinc-based ultrasensitive microscopic barrier assay (ZnUMBA), which overcomes these limitations, allowing for detection of local tight junction leaks with high spatiotemporal resolution. Here, we present expanded applications for ZnUMBA. ZnUMBA can be used in Xenopus embryos to measure the dynamics of barrier restoration and actin accumulation following laser injury. ZnUMBA can also be effectively utilized in developing zebrafish embryos as well as cultured monolayers of Madin-Darby canine kidney (MDCK) II epithelial cells. ZnUMBA is a powerful and flexible method that, with minimal optimization, can be applied to multiple systems to measure dynamic changes in barrier function with spatiotemporal precision.
Collapse
Affiliation(s)
- Tomohito Higashi
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Rachel E. Stephenson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Cornelia Schwayer
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Karla Huljev
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Atsuko Y. Higashi
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan
- Department of Nephrology and Hypertension, Fukushima Medical University, Fukushima 960-1295, Japan
| | | | - Hideki Chiba
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Ann L. Miller
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Knox EG, Aburto MR, Tessier C, Nagpal J, Clarke G, O’Driscoll CM, Cryan JF. Microbial-derived metabolites induce actin cytoskeletal rearrangement and protect blood-brain barrier function. iScience 2022; 25:105648. [PMID: 36505934 PMCID: PMC9732410 DOI: 10.1016/j.isci.2022.105648] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/18/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
The gut microbiota influences host brain function, but the underlying gut-brain axis connections and molecular processes remain unclear. One pathway along this bidirectional communication system involves circulating microbially derived metabolites, such as short-chain fatty acids (SCFAs), which include butyrate and propionate. Brain endothelium is the main interface of communication between circulating signals and the brain, and it constitutes the main component of the blood-brain barrier (BBB). Here, we used a well-established in vitro BBB model treated with physiologically relevant concentrations of butyrate and propionate with and without lipopolysaccharide (LPS) to examine the effects of SCFAs on the actin cytoskeleton and tight junction protein structure. Both SCFAs induced distinct alterations to filamentous actin directionality. SCFAs also increased tight junction protein spikes and protected from LPS-induced tight-junction mis-localization, improved BBB integrity, and modulated mitochondrial network dynamics. These findings identify the actin cytoskeletal dynamics as another target further illuminating how SCFAs can influence BBB physiology.
Collapse
Affiliation(s)
- Emily G. Knox
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Maria R. Aburto
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland,Corresponding author
| | - Carmen Tessier
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jatin Nagpal
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | | | - John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland,Corresponding author
| |
Collapse
|
10
|
Gaston C, De Beco S, Doss B, Pan M, Gauquelin E, D'Alessandro J, Lim CT, Ladoux B, Delacour D. EpCAM promotes endosomal modulation of the cortical RhoA zone for epithelial organization. Nat Commun 2021; 12:2226. [PMID: 33850145 PMCID: PMC8044225 DOI: 10.1038/s41467-021-22482-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 03/11/2021] [Indexed: 01/13/2023] Open
Abstract
At the basis of cell shape and behavior, the organization of actomyosin and its ability to generate forces are widely studied. However, the precise regulation of this contractile network in space and time is unclear. Here, we study the role of the epithelial-specific protein EpCAM, a contractility modulator, in cell shape and motility. We show that EpCAM is required for stress fiber generation and front-rear polarity acquisition at the single cell level. In fact, EpCAM participates in the remodeling of a transient zone of active RhoA at the cortex of spreading epithelial cells. EpCAM and RhoA route together through the Rab35/EHD1 fast recycling pathway. This endosomal pathway spatially organizes GTP-RhoA to fine tune the activity of actomyosin resulting in polarized cell shape and development of intracellular stiffness and traction forces. Impairment of GTP-RhoA endosomal trafficking either by silencing EpCAM or by expressing Rab35/EHD1 mutants prevents proper myosin-II activity, stress fiber formation and ultimately cell polarization. Collectively, this work shows that the coupling between co-trafficking of EpCAM and RhoA, and actomyosin rearrangement is pivotal for cell spreading, and advances our understanding of how biochemical and mechanical properties promote cell plasticity.
Collapse
Affiliation(s)
- Cécile Gaston
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR7592, Paris Diderot University, Paris, France
| | - Simon De Beco
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR7592, Paris Diderot University, Paris, France
| | - Bryant Doss
- Mechanobiology Institute, T-lab, Singapore, Singapore
| | - Meng Pan
- Mechanobiology Institute, T-lab, Singapore, Singapore
| | - Estelle Gauquelin
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR7592, Paris Diderot University, Paris, France
| | - Joseph D'Alessandro
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR7592, Paris Diderot University, Paris, France
| | | | - Benoit Ladoux
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR7592, Paris Diderot University, Paris, France
| | - Delphine Delacour
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR7592, Paris Diderot University, Paris, France.
| |
Collapse
|
11
|
Hatte G, Prigent C, Tassan JP. Adherens junctions are involved in polarized contractile ring formation in dividing epithelial cells of Xenopus laevis embryos. Exp Cell Res 2021; 402:112525. [PMID: 33662366 DOI: 10.1016/j.yexcr.2021.112525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 01/02/2023]
Abstract
Cells dividing in the plane of epithelial tissues proceed by polarized constriction of the actomyosin contractile ring, leading to asymmetric ingression of the plasma mem brane. Asymmetric cytokinesis results in the apical positioning of the actomyosin contractile ring and ultimately of the midbody. Studies have indicated that the contractile ring is associated with adherens junctions, whose role is to maintain epithelial tissue cohesion. However, it is yet unknown when the contractile ring becomes associated with adherens junctions in epithelial cells. Here, we examined contractile ring formation and activation in the epithelium of Xenopus embryos and explored the implication of adherens junctions in the contractile ring formation. We show that accumulation of proteins involved in contractile ring formation and activation is polarized, starting at apical cell-cell contacts at the presumptive division site and spreading within seconds towards the cell basal side. We also show that adherens junctions are involved in the kinetics of contractile ring formation. Our study reveals that the link between the adherens junctions and the contractile ring is established from the onset of cytokinesis.
Collapse
Affiliation(s)
- Guillaume Hatte
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, 2 Avenue Du Professeur Leon Bernard, 35000, Rennes, France
| | - Claude Prigent
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, 2 Avenue Du Professeur Leon Bernard, 35000, Rennes, France; Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), University of Montpellier, CNRS, 34293, Montpellier, France
| | - Jean-Pierre Tassan
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, 2 Avenue Du Professeur Leon Bernard, 35000, Rennes, France.
| |
Collapse
|
12
|
Zhang HY, Tian JX, Lian FM, Li M, Liu WK, Zhen Z, Liao JQ, Tong XL. Therapeutic mechanisms of traditional Chinese medicine to improve metabolic diseases via the gut microbiota. Biomed Pharmacother 2020; 133:110857. [PMID: 33197760 DOI: 10.1016/j.biopha.2020.110857] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/01/2020] [Accepted: 09/10/2020] [Indexed: 12/18/2022] Open
Abstract
Metabolic diseases such as obesity, type 2 diabetes mellitus, and hyperlipidemia are associated with the dysfunction of gut microbiota. Traditional Chinese medicines (TCMs) have shown considerable effects in the treatment of metabolic disorders by regulating the gut microbiota. However, the underlying mechanisms are unclear. Studies have shown that TCMs significantly affect glucose and lipid metabolism by modulating the gut microbiota, particularly mucin-degrading bacteria, bacteria with anti-inflammatory properties, lipopolysaccharide- and short-chain fatty acid (SCFA)-producing bacteria, and bacteria with bile-salt hydrolase activity. In this review, we explored potential mechanisms by which TCM improved metabolic disorders via regulating gut microbiota composition and functional structure. In particular, we focused on the protection of the intestinal barrier function, modulation of metabolic endotoxemia and inflammatory responses, regulation of the effects of SCFAs, modulation of the gut-brain axis, and regulation of bile acid metabolism and tryptophan metabolism as therapeutic mechanisms of TCMs in metabolic diseases.
Collapse
Affiliation(s)
- Hai-Yu Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China; Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, 100029, China
| | - Jia-Xing Tian
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Feng-Mei Lian
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Min Li
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Wen-Ke Liu
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Zhong Zhen
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jiang-Quan Liao
- Department of National Integrated Traditional and Western Medicine Center for Cardiovascular Disease, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Xiao-Lin Tong
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
13
|
Rouaud F, Sluysmans S, Flinois A, Shah J, Vasileva E, Citi S. Scaffolding proteins of vertebrate apical junctions: structure, functions and biophysics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183399. [DOI: 10.1016/j.bbamem.2020.183399] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
|
14
|
Tang VW. Collagen, stiffness, and adhesion: the evolutionary basis of vertebrate mechanobiology. Mol Biol Cell 2020; 31:1823-1834. [PMID: 32730166 PMCID: PMC7525820 DOI: 10.1091/mbc.e19-12-0709] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/11/2020] [Accepted: 05/28/2020] [Indexed: 01/09/2023] Open
Abstract
The emergence of collagen I in vertebrates resulted in a dramatic increase in the stiffness of the extracellular environment, supporting long-range force propagation and the development of low-compliant tissues necessary for the development of vertebrate traits including pressurized circulation and renal filtration. Vertebrates have also evolved integrins that can bind to collagens, resulting in the generation of higher tension and more efficient force transmission in the extracellular matrix. The stiffer environment provides an opportunity for the vertebrates to create new structures such as the stress fibers, new cell types such as endothelial cells, new developmental processes such as neural crest delamination, and new tissue organizations such as the blood-brain barrier. Molecular players found only in vertebrates allow the modification of conserved mechanisms as well as the design of novel strategies that can better serve the physiological needs of the vertebrates. These innovations collectively contribute to novel morphogenetic behaviors and unprecedented increases in the complexities of tissue mechanics and functions.
Collapse
Affiliation(s)
- Vivian W. Tang
- Department of Cell and Developmental Biology, University of Illinois, Urbana–Champaign, Urbana, IL 61801
| |
Collapse
|
15
|
Haas AJ, Zihni C, Ruppel A, Hartmann C, Ebnet K, Tada M, Balda MS, Matter K. Interplay between Extracellular Matrix Stiffness and JAM-A Regulates Mechanical Load on ZO-1 and Tight Junction Assembly. Cell Rep 2020; 32:107924. [PMID: 32697990 PMCID: PMC7383227 DOI: 10.1016/j.celrep.2020.107924] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/08/2020] [Accepted: 06/26/2020] [Indexed: 12/22/2022] Open
Abstract
Tight-junction-regulated actomyosin activity determines epithelial and endothelial tension on adherens junctions and drives morphogenetic processes; however, whether or not tight junctions themselves are under tensile stress is not clear. Here, we use a tension sensor based on ZO-1, a scaffolding protein that links the junctional membrane to the cytoskeleton, to determine if tight junctions carry a mechanical load. Our data indicate that ZO-1 is under mechanical tension and that forces acting on ZO-1 are regulated by extracellular matrix (ECM) stiffness and the junctional adhesion molecule JAM-A. JAM-A depletion stimulates junctional recruitment of p114RhoGEF/ARHGEF18, mechanical tension on ZO-1, and traction forces at focal adhesions. p114RhoGEF is required for activation of junctional actomyosin activity and tight junction integrity on stiff but not soft ECM. Thus, junctional ZO-1 bears a mechanical load, and junction assembly is regulated by interplay between the physical properties of the ECM and adhesion-regulated signaling at tight junctions.
Collapse
Affiliation(s)
- Alexis J Haas
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Ceniz Zihni
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Artur Ruppel
- LiPhy, CNRS, Université Grenoble Alpes, Grenoble 38000, France
| | - Christian Hartmann
- Institute-associated Research Group "Cell adhesion and cell polarity," Institute of Medical Biochemistry, ZMBE, University of Münster, Münster 48149, Germany
| | - Klaus Ebnet
- Institute-associated Research Group "Cell adhesion and cell polarity," Institute of Medical Biochemistry, ZMBE, University of Münster, Münster 48149, Germany
| | - Masazumi Tada
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Maria S Balda
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK.
| | - Karl Matter
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK.
| |
Collapse
|
16
|
Schwayer C, Shamipour S, Pranjic-Ferscha K, Schauer A, Balda M, Tada M, Matter K, Heisenberg CP. Mechanosensation of Tight Junctions Depends on ZO-1 Phase Separation and Flow. Cell 2020; 179:937-952.e18. [PMID: 31675500 DOI: 10.1016/j.cell.2019.10.006] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/19/2019] [Accepted: 10/07/2019] [Indexed: 10/25/2022]
Abstract
Cell-cell junctions respond to mechanical forces by changing their organization and function. To gain insight into the mechanochemical basis underlying junction mechanosensitivity, we analyzed tight junction (TJ) formation between the enveloping cell layer (EVL) and the yolk syncytial layer (YSL) in the gastrulating zebrafish embryo. We found that the accumulation of Zonula Occludens-1 (ZO-1) at TJs closely scales with tension of the adjacent actomyosin network, revealing that these junctions are mechanosensitive. Actomyosin tension triggers ZO-1 junctional accumulation by driving retrograde actomyosin flow within the YSL, which transports non-junctional ZO-1 clusters toward the TJ. Non-junctional ZO-1 clusters form by phase separation, and direct actin binding of ZO-1 is required for stable incorporation of retrogradely flowing ZO-1 clusters into TJs. If the formation and/or junctional incorporation of ZO-1 clusters is impaired, then TJs lose their mechanosensitivity, and consequently, EVL-YSL movement is delayed. Thus, phase separation and flow of non-junctional ZO-1 confer mechanosensitivity to TJs.
Collapse
Affiliation(s)
- Cornelia Schwayer
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Shayan Shamipour
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | - Alexandra Schauer
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Maria Balda
- Institute of Ophthalmology, University College London, London, UK
| | - Masazumi Tada
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Karl Matter
- Institute of Ophthalmology, University College London, London, UK
| | | |
Collapse
|
17
|
Angulo-Urarte A, van der Wal T, Huveneers S. Cell-cell junctions as sensors and transducers of mechanical forces. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183316. [PMID: 32360073 DOI: 10.1016/j.bbamem.2020.183316] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/02/2020] [Accepted: 04/15/2020] [Indexed: 12/16/2022]
Abstract
Epithelial and endothelial monolayers are multicellular sheets that form barriers between the 'outside' and 'inside' of tissues. Cell-cell junctions, made by adherens junctions, tight junctions and desmosomes, hold together these monolayers. They form intercellular contacts by binding their receptor counterparts on neighboring cells and anchoring these structures intracellularly to the cytoskeleton. During tissue development, maintenance and pathogenesis, monolayers encounter a range of mechanical forces from the cells themselves and from external systemic forces, such as blood pressure or tissue stiffness. The molecular landscape of cell-cell junctions is diverse, containing transmembrane proteins that form intercellular bonds and a variety of cytoplasmic proteins that remodel the junctional connection to the cytoskeleton. Many junction-associated proteins participate in mechanotransduction cascades to confer mechanical cues into cellular responses that allow monolayers to maintain their structural integrity. We will discuss force-dependent junctional molecular events and their role in cell-cell contact organization and remodeling.
Collapse
Affiliation(s)
- Ana Angulo-Urarte
- Amsterdam UMC, University of Amsterdam, Location AMC, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Tanne van der Wal
- Amsterdam UMC, University of Amsterdam, Location AMC, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Stephan Huveneers
- Amsterdam UMC, University of Amsterdam, Location AMC, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands.
| |
Collapse
|
18
|
Abstract
Epithelial cells form highly organized polarized sheets with characteristic cell morphologies and tissue architecture. Cell–cell adhesion and intercellular communication are prerequisites of such cohesive sheets of cells, and cell connectivity is mediated through several junctional assemblies, namely desmosomes, adherens, tight and gap junctions. These cell–cell junctions form signalling hubs that not only mediate cell–cell adhesion but impact on multiple aspects of cell behaviour, helping to coordinate epithelial cell shape, polarity and function. This review will focus on the tight and adherens junctions, constituents of the apical junctional complex, and aims to provide a comprehensive overview of the complex signalling that underlies junction assembly, integrity and plasticity.
Collapse
Affiliation(s)
- Alexandra D Rusu
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Marios Georgiou
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
19
|
Wilson KM, Rodrigues DR, Briggs WN, Duff AF, Chasser KM, Bottje WG, Bielke LR. Impact of in ovo administered pioneer colonizers on intestinal proteome on day of hatch. Poult Sci 2020; 99:1254-1266. [PMID: 32111303 PMCID: PMC7587751 DOI: 10.1016/j.psj.2019.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/02/2019] [Accepted: 10/02/2019] [Indexed: 02/07/2023] Open
Abstract
Pioneer colonization of the gastrointestinal tract (GIT) by bacteria is thought to have major influence on neonatal tissue development. Previous studies have shown in ovo inoculation of embryos with saline (S), species of Citrobacter (C, C2), or lactic acid bacteria (L) resulted in an altered microbiome on day of the hatch (DOH). The present study investigated GIT proteomic changes at DOH in relation to different inoculations. Embryos were inoculated in ovo with S or ∼102 cfu of C, C2, or L at 18 embryonic days. On DOH, the GIT was collected, and tissue proteins were extracted for analysis via tandem mass spectrometry. A total of 493 proteins were identified for differential comparison with S at P ≤ 0.10. Different levels were noted in 107, 39, and 78 proteins in C, C2, and L groups, respectively, which were uploaded to Ingenuity Pathway Analysis to determine canonical pathways and biological functions related to these changes. Three members of the cytokine family (interleukin [IL]-1β, IL6, and Oncostatin M) were predicted to be activated in C2, indicated with Z-score ≥ 1.50, which suggested an overall proinflammatory GIT condition. This was consistent with the activation of the acute-phase response signaling pathway seen exclusively in C2 (Z-score = 2.00, P < 0.01). However, activation (Z-score = 2.00) of IL-13, upregulation of peroxiredoxin-1 and superoxide dismutase 1, in addition to activation of nitric oxide signaling in the cardiovascular system of the L treatment may predict a state of increased antioxidant capacity and decreased inflammatory status. The nuclear factor erythroid 2-related factor 2 (NRF2)-mediated oxidative stress response (Z-score = 2.00, P < 0.01) was predicted to be upregulated in C which suggested that chicks were in an inflammatory state and associated oxidative stress, but the impact of these pathways differed from that of C2. These changes in the proteome suggest that pioneer colonizing microbiota may have a strong impact on pathways associated with GIT immune and cellular development.
Collapse
Affiliation(s)
- K M Wilson
- Department of Animal Science, The Ohio State University, Columbus, OH
| | - D R Rodrigues
- Department of Animal Science, The Ohio State University, Columbus, OH
| | - W N Briggs
- Department of Animal Science, The Ohio State University, Columbus, OH
| | - A F Duff
- Department of Animal Science, The Ohio State University, Columbus, OH
| | - K M Chasser
- Department of Animal Science, The Ohio State University, Columbus, OH
| | - W G Bottje
- Department of Poultry Science, University of Arkansas, Fayetteville, AR
| | - L R Bielke
- Department of Animal Science, The Ohio State University, Columbus, OH.
| |
Collapse
|
20
|
Abstract
Tight junctions (TJ) play a central role in the homeostasis of epithelial and endothelial tissues, by providing a semipermeable barrier to ions and solutes, by contributing to the maintenance of cell polarity, and by functioning as signaling platforms. TJ are associated with the actomyosin and microtubule cytoskeletons, and the crosstalk with the cytoskeleton is fundamental for junction biogenesis and physiology. TJ are spatially and functionally connected to adherens junctions (AJ), which are essential for the maintenance of tissue integrity. Mechano-sensing and mechano-transduction properties of several AJ proteins have been characterized during the last decade. However, little is known about how mechanical forces act on TJ and their proteins, how TJ control the mechanical properties of cells and tissues, and what are the underlying molecular mechanisms. Here I review recent studies that have advanced our understanding of the relationships between mechanical force and TJ biology.
Collapse
|
21
|
Dealing with apical–basal polarity and intercellular junctions: a multidimensional challenge for epithelial cell division. Curr Opin Cell Biol 2019; 60:75-83. [DOI: 10.1016/j.ceb.2019.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 02/01/2023]
|
22
|
Leiphart RJ, Chen D, Peredo AP, Loneker AE, Janmey PA. Mechanosensing at Cellular Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7509-7519. [PMID: 30346180 DOI: 10.1021/acs.langmuir.8b02841] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
At the plasma membrane interface, cells use various adhesions to sense their extracellular environment. These adhesions facilitate the transmission of mechanical signals that dictate cell behavior. This review discusses the mechanisms by which these mechanical signals are transduced through cell-matrix and cell-cell adhesions and how this mechanotransduction influences cell processes. Cell-matrix adhesions require the activation of and communication between various transmembrane protein complexes such as integrins. These links at the plasma membrane affect how a cell senses and responds to its matrix environment. Cells also communicate with each other through cell-cell adhesions, which further regulate cell behavior on a single- and multicellular scale. Coordination and competition between cell-cell and cell-matrix adhesions in multicellular aggregates can, to a significant extent, be modeled by differential adhesion analyses between the different interfaces even without knowing the details of cellular signaling. In addition, cell-matrix and cell-cell adhesions are connected by an intracellular cytoskeletal network that allows for direct communication between these distinct adhesions and activation of specific signaling pathways. Other membrane-embedded protein complexes, such as growth factor receptors and ion channels, play additional roles in mechanotransduction. Overall, these mechanoactive elements show the dynamic interplay between the cell, its matrix, and neighboring cells and how these relationships affect cellular function.
Collapse
Affiliation(s)
- Ryan J Leiphart
- Department of Bioengineering , University of Pennsylvania , 210 S 33rd St , Philadelphia , Pennsylvania 19104 , United States
- McKay Orthopedic Research Laboratory , University of Pennsylvania , Philadelphia , Pennsylvania , United States
| | - Dongning Chen
- Department of Bioengineering , University of Pennsylvania , 210 S 33rd St , Philadelphia , Pennsylvania 19104 , United States
- Center for Engineering Mechanobiology , University of Pennsylvania , Philadelphia , Pennsylvania , United States
| | - Ana P Peredo
- Department of Bioengineering , University of Pennsylvania , 210 S 33rd St , Philadelphia , Pennsylvania 19104 , United States
- McKay Orthopedic Research Laboratory , University of Pennsylvania , Philadelphia , Pennsylvania , United States
| | - Abigail E Loneker
- Department of Bioengineering , University of Pennsylvania , 210 S 33rd St , Philadelphia , Pennsylvania 19104 , United States
- Center for Engineering Mechanobiology , University of Pennsylvania , Philadelphia , Pennsylvania , United States
| | - Paul A Janmey
- Department of Bioengineering , University of Pennsylvania , 210 S 33rd St , Philadelphia , Pennsylvania 19104 , United States
- Institute for Medicine and Engineering, Department of Physiology , University of Pennsylvania , 3340 Smith Walk , Philadelphia , Pennsylvania 19104 , United States
- Center for Engineering Mechanobiology , University of Pennsylvania , Philadelphia , Pennsylvania , United States
| |
Collapse
|
23
|
Rho Flares Repair Local Tight Junction Leaks. Dev Cell 2019; 48:445-459.e5. [PMID: 30773490 DOI: 10.1016/j.devcel.2019.01.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 11/12/2018] [Accepted: 01/17/2019] [Indexed: 12/29/2022]
Abstract
Tight junctions contribute to epithelial barrier function by selectively regulating the quantity and type of molecules that cross the paracellular barrier. Experimental approaches to evaluate the effectiveness of tight junctions are typically global, tissue-scale measures. Here, we introduce Zinc-based Ultrasensitive Microscopic Barrier Assay (ZnUMBA), which we used in Xenopus laevis embryos to visualize short-lived, local breaches in epithelial barrier function. These breaches, or leaks, occur as cell boundaries elongate, correspond to visible breaks in the tight junction, and are followed by transient localized Rho activation, or Rho flares. We discovered that Rho flares restore barrier function by driving concentration of tight junction proteins through actin polymerization and ROCK-mediated localized contraction of the cell boundary. We conclude that Rho flares constitute a damage control mechanism that reinstates barrier function when tight junctions become locally compromised because of normally occurring changes in cell shape and tissue tension.
Collapse
|
24
|
Dubey P, Kapoor T, Gupta S, Shirolikar S, Ray K. Atypical septate junctions maintain the somatic enclosure around maturing spermatids and prevent premature sperm release in Drosophila testis. Biol Open 2019; 8:bio.036939. [PMID: 30635267 PMCID: PMC6398457 DOI: 10.1242/bio.036939] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Tight junctions prevent paracellular flow and maintain cell polarity in an epithelium. These junctions are also required for maintaining the blood-testis barrier, which is essential for sperm differentiation. Septate junctions in insects are orthologous to the tight junctions. In Drosophila testis, major septate junction components co-localize at the interface of germline and somatic cells initially, and then condense between the two somatic cells in a cyst after germline meiosis. Their localization is extensively remodeled in subsequent stages. We find that characteristic septate junctions are formed between the somatic cyst cells at the elongated spermatid stage. Consistent with previous reports, knockdown of essential junctional components – Discs-large-1 and Neurexin-IV – during the early stages disrupted sperm differentiation beyond the spermatocyte stage. Knockdown of these proteins during the final stages of spermatid maturation caused premature release of spermatids inside the testes, resulting in partial loss of male fertility. These results indicate the importance of maintaining the integrity of the somatic enclosure during spermatid coiling and release in Drosophila testis. It also highlights the functional similarity with the tight junction proteins during mammalian spermatogenesis. This article has an associated First Person interview with the first author of the paper. Summary: Septate junctions seal the somatic enclosure around maturing spermatids in Drosophila testis. The junction integrity, maintained by Dlg1 and NrxIV, is essential for keeping the somatic enclosure intact until the mature spermatids are released.
Collapse
Affiliation(s)
- Pankaj Dubey
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Tushna Kapoor
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Samir Gupta
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Seema Shirolikar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Krishanu Ray
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| |
Collapse
|
25
|
Schwager SC, Taufalele PV, Reinhart-King CA. Cell-Cell Mechanical Communication in Cancer. Cell Mol Bioeng 2019; 12:1-14. [PMID: 31565083 PMCID: PMC6764766 DOI: 10.1007/s12195-018-00564-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 11/29/2018] [Indexed: 12/21/2022] Open
Abstract
Communication between cancer cells enables cancer progression and metastasis. While cell-cell communication in cancer has primarily been examined through chemical mechanisms, recent evidence suggests that mechanical communication through cell-cell junctions and cell-ECM linkages is also an important mediator of cancer progression. Cancer and stromal cells remodel the ECM through a variety of mechanisms, including matrix degradation, cross-linking, deposition, and physical remodeling. Cancer cells sense these mechanical environmental changes through cell-matrix adhesion complexes and subsequently alter their tension between both neighboring cells and the surrounding matrix, thereby altering the force landscape within the microenvironment. This communication not only allows cancer cells to communicate with each other, but allows stromal cells to communicate with cancer cells through matrix remodeling. Here, we review the mechanisms of intercellular force transmission, the subsequent matrix remodeling, and the implications of this mechanical communication on cancer progression.
Collapse
Affiliation(s)
- Samantha C. Schwager
- Department of Biomedical Engineering, Vanderbilt University, PMB 351631, Nashville, TN 37235 USA
| | - Paul V. Taufalele
- Department of Biomedical Engineering, Vanderbilt University, PMB 351631, Nashville, TN 37235 USA
| | - Cynthia A. Reinhart-King
- Department of Biomedical Engineering, Vanderbilt University, PMB 351631, Nashville, TN 37235 USA
| |
Collapse
|
26
|
Importance of integrity of cell-cell junctions for the mechanics of confluent MDCK II cells. Sci Rep 2018; 8:14117. [PMID: 30237412 PMCID: PMC6148251 DOI: 10.1038/s41598-018-32421-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/29/2018] [Indexed: 12/14/2022] Open
Abstract
Intercellular junctions are important mechanical couplers between cells in epithelial layers providing adhesion and intercellular communication. Regulation of the junctions occurs in cellular processes such as layer formation, epithelial-to-mesenchymal transition, embryogenesis, and cancer progression. Many studies addressed the role of force generation in cells for establishing lateral cell-cell junctions and the role of cellular force transmission in tissue formation and maintenance. Our atomic force microscopy- (AFM) based study shed light on the role of both, tight junctions and adherens junctions for the mechanical properties of individual epithelial cells that are part of a confluent monolayer. We found that tight junctions are important for the establishment of a functional barrier-forming layer but impairing them does not reduce the mechanical integrity of cells. Depletion of ZO-1 results in a weak increase in cortical tension. An opposite effect was observed for disruption of E-cadherin-mediated adherens junctions using DTT. Opening of adherens junctions leads to substantial alterations of cellular mechanics such as reduced overall stiffness, but these changes turned out to be reversible after re-establishing disulfide bridges in E-cadherin by removal of DTT. We found that regulatory mechanisms exist that preserve mechanical integrity during recovery of disrupted adherens junctions.
Collapse
|
27
|
Carvalho L, Patricio P, Ponte S, Heisenberg CP, Almeida L, Nunes AS, Araújo NAM, Jacinto A. Occluding junctions as novel regulators of tissue mechanics during wound repair. J Cell Biol 2018; 217:4267-4283. [PMID: 30228162 PMCID: PMC6279375 DOI: 10.1083/jcb.201804048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/15/2018] [Accepted: 09/05/2018] [Indexed: 01/02/2023] Open
Abstract
Simple epithelial repair is mediated by the contraction of an actomyosin cable and cellular rearrangements at the wound edge. Carvalho et al. show that occluding junctions are required for epithelial repair by regulating these cellular rearrangements and tissue mechanical properties. In epithelial tissues, cells tightly connect to each other through cell–cell junctions, but they also present the remarkable capacity of reorganizing themselves without compromising tissue integrity. Upon injury, simple epithelia efficiently resolve small lesions through the action of actin cytoskeleton contractile structures at the wound edge and cellular rearrangements. However, the underlying mechanisms and how they cooperate are still poorly understood. In this study, we combine live imaging and theoretical modeling to reveal a novel and indispensable role for occluding junctions (OJs) in this process. We demonstrate that OJ loss of function leads to defects in wound-closure dynamics: instead of contracting, wounds dramatically increase their area. OJ mutants exhibit phenotypes in cell shape, cellular rearrangements, and mechanical properties as well as in actin cytoskeleton dynamics at the wound edge. We propose that OJs are essential for wound closure by impacting on epithelial mechanics at the tissue level, which in turn is crucial for correct regulation of the cellular events occurring at the wound edge.
Collapse
Affiliation(s)
- Lara Carvalho
- Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Pedro Patricio
- Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.,Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal.,Centro de Física Teórica e Computacional, Universidade de Lisboa, Campo Grande, Lisbon, Portugal
| | - Susana Ponte
- Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | | | - Luis Almeida
- Centre National de la Recherche Scientifique/Sorbonne Université/Team Mamba, French Institute for Research in Computer Science and Automation Paris, Laboratoire Jacques-Louis Lions, BC187, Paris, France
| | - André S Nunes
- Centro de Física Teórica e Computacional, Universidade de Lisboa, Campo Grande, Lisbon, Portugal.,Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisbon, Portugal
| | - Nuno A M Araújo
- Centro de Física Teórica e Computacional, Universidade de Lisboa, Campo Grande, Lisbon, Portugal.,Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisbon, Portugal
| | - Antonio Jacinto
- Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal .,The Discoveries Centre for Regenerative and Precision Medicine, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
28
|
Malivert A, Hamant O, Ingram G. The contribution of mechanosensing to epidermal cell fate specification. Curr Opin Genet Dev 2018; 51:52-58. [PMID: 30006098 DOI: 10.1016/j.gde.2018.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/11/2018] [Accepted: 06/21/2018] [Indexed: 01/18/2023]
Abstract
In land plants, the aerial epidermis is essential for growth control, protection and environmental interactions. Epidermal cell fate is specified early during embryogenesis and maintained throughout plant life. Molecular actors of epidermal specification have been characterized, but how epidermal fate is maintained during growth remains unclear. DEFECTIVE KERNEL 1 (DEK1) is required for epidermal cell fate maintenance during both embryonic and post-embryonic plant development. The activation of a mechanosensitive Ca2+ channel was recently shown to depend on DEK1, suggesting that the interpretation of mechanical cues could be critical for maintaining epidermal cell fate. Here, we integrate these findings into the epidermal specification network and propose a model explaining why epidermal specification may depend upon the sensing of epidermal tension.
Collapse
Affiliation(s)
- Alice Malivert
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon Cedex 07, France; Master de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Université de Lyon, F-69342 Lyon Cedex 07, France
| | - Olivier Hamant
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon Cedex 07, France
| | - Gwyneth Ingram
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon Cedex 07, France.
| |
Collapse
|
29
|
First person – Guillaume Hatte. J Cell Sci 2018. [DOI: 10.1242/jcs.215608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Guillaume Hatte is the first author on ‘Tight junctions negatively regulate mechanical forces applied to adherens junctions in vertebrate epithelial tissue’, published in Journal of Cell Science. Guillaume completed his PhD in the lab of Claude Prigent at CNRS UMR 6290 and Université de Rennes 1, Rennes, France, where he investigated the involvement of tight junctions during epithelial cell cytokinesis in a vertebrate model.
Collapse
|