1
|
Mueller JW, Thomas P, Dalgaard LT, da Silva Xavier G. Sulfation pathways in the maintenance of functional beta-cell mass and implications for diabetes. Essays Biochem 2024:EBC20240034. [PMID: 39290144 DOI: 10.1042/ebc20240034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/21/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Diabetes Type 1 and Type 2 are widely occurring diseases. In spite of a vast amount of biomedical literature about diabetic processes in general, links to certain biological processes are only becoming evident these days. One such area of biology is the sulfation of small molecules, such as steroid hormones or metabolites from the gastrointestinal tract, as well as larger biomolecules, such as proteins and proteoglycans. Thus, modulating the physicochemical propensities of the different sulfate acceptors, resulting in enhanced solubility, expedited circulatory transit, or enhanced macromolecular interaction. This review lists evidence for the involvement of sulfation pathways in the maintenance of functional pancreatic beta-cell mass and the implications for diabetes, grouped into various classes of sulfated biomolecule. Complex heparan sulfates might play a role in the development and maintenance of beta-cells. The sulfolipids sulfatide and sulfo-cholesterol might contribute to beta-cell health. In beta-cells, there are only very few proteins with confirmed sulfation on some tyrosine residues, with the IRS4 molecule being one of them. Sulfated steroid hormones, such as estradiol-sulfate and vitamin-D-sulfate, may facilitate downstream steroid signaling in beta-cells, following de-sulfation. Indoxyl sulfate is a metabolite from the intestine, that causes kidney damage, contributing to diabetic kidney disease. Finally, from a technological perspective, there is heparan sulfate, heparin, and chondroitin sulfate, that all might be involved in next-generation beta-cell transplantation. Sulfation pathways may play a role in pancreatic beta-cells through multiple mechanisms. A more coherent understanding of sulfation pathways in diabetes will facilitate discussion and guide future research.
Collapse
Affiliation(s)
- Jonathan Wolf Mueller
- Department of Metabolism and Systems Science, University of Birmingham, Birmingham, U.K
| | - Patricia Thomas
- Department of Metabolism and Systems Science, University of Birmingham, Birmingham, U.K
| | | | | |
Collapse
|
2
|
Huber RJ, Kim WD. Trafficking of adhesion and aggregation-modulating proteins during the early stages of Dictyostelium development. Cell Signal 2024; 121:111292. [PMID: 38986731 DOI: 10.1016/j.cellsig.2024.111292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
The social amoeba Dictyostelium discoideum has been studied for close to a century to better understand conserved cellular and developmental processes. The life cycle of this model eukaryote is composed of a unicellular growth phase and a multicellular developmental phase that is induced by starvation. When starved, individual cells undergo chemotactic aggregation to form multicellular mounds that develop into slugs. Terminal differentiation of cells within slugs forms fruiting bodies, each composed of a stalk that supports a mass of viable spores that germinate and restart the life cycle when nutrients become available. Calcium-dependent cell adhesion protein A (CadA) and countin (CtnA) are two proteins that regulate adhesion and aggregation, respectively, during the early stages of D. discoideum development. While the functions of these proteins have been well-studied, the mechanisms regulating their trafficking are not fully understood. In this study, we reveal pathways and cellular components that regulate the intracellular and extracellular amounts of CadA and CtnA during aggregation. During growth and starvation, CtnA localizes to cytoplasmic vesicles and punctae. We show that CtnA is glycosylated and this post-translational modification is required for its secretion. Upon autophagy induction, a signal peptide for secretion facilitates the release of CtnA from cells via a pathway involving the μ subunit of the AP3 complex (Apm3) and the WASP and SCAR homolog, WshA. Additionally, CtnA secretion is negatively regulated by the D. discoideum orthologs of the human non-selective cation channel mucolipin-1 (Mcln) and sorting receptor sortilin (Sort1). As for CadA, it localizes to the cell periphery in growth-phase and starved cells. The intracellular and extracellular amounts of CadA are modulated by autophagy genes (atg1, atg9), Apm3, WshA, and Mcln. We integrate these data with previously published findings to generate a comprehensive model summarizing the trafficking of CadA and CtnA in D. discoideum. Overall, this study enhances our understanding of protein trafficking during D. discoideum aggregation, and more broadly, provides insight into the multiple pathways that regulate protein trafficking and secretion in all eukaryotes.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario, Canada.
| | - William D Kim
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
3
|
Eun SH, Noh SH, Lee MG. Specific kinesin and dynein molecules participate in the unconventional protein secretion of transmembrane proteins. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:435-447. [PMID: 39198224 PMCID: PMC11362002 DOI: 10.4196/kjpp.2024.28.5.435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/19/2024] [Accepted: 06/05/2024] [Indexed: 09/01/2024]
Abstract
Secretory proteins, including plasma membrane proteins, are generally known to be transported to the plasma membrane through the endoplasmic reticulum- to-Golgi pathway. However, recent studies have revealed that several plasma membrane proteins and cytosolic proteins lacking a signal peptide are released via an unconventional protein secretion (UcPS) route, bypassing the Golgi during their journey to the cell surface. For instance, transmembrane proteins such as the misfolded cystic fibrosis transmembrane conductance regulator (CFTR) protein and the Spike protein of coronaviruses have been observed to reach the cell surface through a UcPS pathway under cell stress conditions. Nevertheless, the precise mechanisms of the UcPS pathway, particularly the molecular machineries involving cytosolic motor proteins, remain largely unknown. In this study, we identified specific kinesins, namely KIF1A and KIF5A, along with cytoplasmic dynein, as critical players in the unconventional trafficking of CFTR and the SARS-CoV-2 Spike protein. Gene silencing results demonstrated that knockdown of KIF1A, KIF5A, and the KIF-associated adaptor protein SKIP, FYCO1 significantly reduced the UcPS of △F508-CFTR. Moreover, gene silencing of these motor proteins impeded the UcPS of the SARS-CoV-2 Spike protein. However, the same gene silencing did not affect the conventional Golgimediated cell surface trafficking of wild-type CFTR and Spike protein. These findings suggest that specific motor proteins, distinct from those involved in conventional trafficking, are implicated in the stress-induced UcPS of transmembrane proteins.
Collapse
Affiliation(s)
- Sung Ho Eun
- Department of Pharmacology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Shin Hye Noh
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Min Goo Lee
- Department of Pharmacology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
4
|
Bensel BM, Previs SB, Bookwalter C, Trybus KM, Walcott S, Warshaw DM. Kinesin-1-transported liposomes prefer to go straight in 3D microtubule intersections by a mechanism shared by other molecular motors. Proc Natl Acad Sci U S A 2024; 121:e2407330121. [PMID: 38980901 PMCID: PMC11260143 DOI: 10.1073/pnas.2407330121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/24/2024] [Indexed: 07/11/2024] Open
Abstract
Kinesin-1 ensembles maneuver vesicular cargoes through the three-dimensional (3D) intracellular microtubule (MT) network. To define how such cargoes navigate MT intersections, we first determined how many kinesins from an ensemble on a lipid-based cargo simultaneously engage a MT, and then determined the directional outcomes (straight, turn, terminate) for liposome cargoes at perpendicular MT intersections. Run lengths of 350-nm diameter liposomes decorated with up to 20, constitutively active, truncated kinesin-1 KIF5B (K543) were longer than single motor transported cargo, suggesting multiple motor engagement. However, detachment forces of lipid-coated beads with ~20 kinesins, measured using an optical trap, showed no more than three simultaneously engaged motors, with a single engaged kinesin predominating, indicating anticooperative MT binding. At two-dimensional (2D) and 3D in vitro MT intersections, liposomes frequently paused (~2 s), suggesting kinesins simultaneously bind both MTs and engage in a tug-of-war. Liposomes showed no directional outcome bias in 2D (1.1 straight:turn ratio) but preferentially went straight (1.8 straight:turn ratio) in 3D intersections. To explain these data, we developed a mathematical model of liposome transport incorporating the known mechanochemistry of kinesins, which diffuse on the liposome surface, and have stiff tails in both compression and extension that impact how motors engage the intersecting MTs. Our model predicts the ~3 engaged motor limit observed in the optical trap and the bias toward going straight in 3D intersections. The striking similarity of these results to our previous study of liposome transport by myosin Va suggests a "universal" mechanism by which cargoes navigate 3D intersections.
Collapse
Affiliation(s)
- Brandon M. Bensel
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT05405
| | - Samantha Beck Previs
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT05405
| | - Carol Bookwalter
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT05405
| | - Kathleen M. Trybus
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT05405
| | - Sam Walcott
- Department of Mathematical Sciences, and Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA01609
| | - David M. Warshaw
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT05405
| |
Collapse
|
5
|
Sun Y, Tao X, Han Y, Lin X, Tian R, Wang H, Chang P, Sun Q, Ge L, Zhang M. A dual role of ERGIC-localized Rabs in TMED10-mediated unconventional protein secretion. Nat Cell Biol 2024; 26:1077-1092. [PMID: 38926505 DOI: 10.1038/s41556-024-01445-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
Cargo translocation across membranes is a crucial aspect of secretion. In conventional secretion signal peptide-equipped proteins enter the endoplasmic reticulum (ER), whereas a subset of cargo lacking signal peptides translocate into the ER-Golgi intermediate compartment (ERGIC) in a process called unconventional protein secretion (UcPS). The regulatory events at the ERGIC in UcPS are unclear. Here we reveal the involvement of ERGIC-localized small GTPases, Rab1 (Rab1A and Rab1B) and Rab2A, in regulating UcPS cargo transport via TMED10 on the ERGIC. Rab1 enhances TMED10 translocator activity, promoting cargo translocation into the ERGIC, whereas Rab2A, in collaboration with KIF5B, regulates ERGIC compartmentalization, establishing a UcPS-specific compartment. This study highlights the pivotal role of ERGIC-localized Rabs in governing cargo translocation and specifying the ERGIC's function in UcPS.
Collapse
Affiliation(s)
- Yuxin Sun
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xuan Tao
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yaping Han
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xubo Lin
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
| | - Rui Tian
- Department of Biochemistry and Department of Cardiology of Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haodong Wang
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Pei Chang
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Qiming Sun
- Department of Biochemistry and Department of Cardiology of Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liang Ge
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Min Zhang
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
6
|
Christalin B, Besati M, Christelle Nadia NA, Yaghoobi M, Cédric Y, Ciancia C, Abdel Azizi M, Guy-Armand GN, Khan Payne V, Hu H. In Vitro Anthelmintic Activities of Khaya anthotheca and Faidherbia albida Extracts Used in Chad by Traditional Healers for the Treatment of Helminthiasis and In Silico Study of Phytoconstituents. J Trop Med 2024; 2024:8564163. [PMID: 38974476 PMCID: PMC11226339 DOI: 10.1155/2024/8564163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 07/09/2024] Open
Abstract
Background Helminthiasis is endemic in Chad and constitutes a public health problem, particularly among school-age children. The aim of this study was to evaluate the anthelmintic activity of extracts of Khaya anthotheca and Faidherbia albida used in Chad by traditional healers for the treatment of helminthiasis. Methods The anthelmintic activity was assessed against Heligmosomoides polygyrus and Caenorhabditis elegans larvae using the Worm Microtracker. Embryonated eggs, L1, L2, and L3 larvae of H. polygyrus were obtained after 24 h, 48 h, and 7 days of coproculture and L4 larvae of C. elegans culture using standard procedures. One hundred microliters of extracts at various concentrations, with albendazole and distilled water were, put in contact with 100 µL of H. polygyrus suspension (containing 50 parasites at various developmental stages) in a microplate and incubated for 20 h at 25°C in the Worm Microtracker. The same procedure was adopted for C. elegans, but with 180 µL of OP50. 19 µL of C. elegans suspension (containing 50 larvae) was put in contact with 1 µL of extract at various concentrations and incubated in the Worm Microtracker. Docking studies were carried out using the Schrodinger Maestro software's Glide module. The score function in the software was used to rank and group distinct possible adduct structures generated by molecular docking. Results The aqueous and ethanolic extracts of F. albida at a concentration of 2.5 mg/mL showed the same activity as albendazole (100 ± 0.00) on hatching. The IC50s of the aqueous extracts of the two plants (IC50: 0.6212 mg/mL and 0.71 mg/mL, respectively) were comparable on egg hatching of H. polygyrus with no significant difference (p ≥ 0.05) with respect to the ethanol extracts (IC50: 0.70 mg/mL and 0.81 mg/mL, respectively). There was no significant difference between the percentage inhibition of extracts and albendazole on the L1 larvae of H. polygyrus (p ≥ 0.05). The aqueous extracts acted more effectively than the ethanol extracts on the L1 larvae of H. polygyrus with an IC50 of 0.5588 and ∼9.858e - 005 mg/ml, respectively, for K. anthotheca and F. albida. The aqueous extracts of K. anthotheca and F. albida on L3 larvae of H. polygyrus had inhibitory percentages of 92.6 ± 0.62 and 91.37 ± 0.8 at 2.5 mg/mL which were lower than albendazole (100 ± 0.00). The aqueous extracts of K. anthotheca and F. albida on C. elegance showed IC50 of 0.2775 µg/mL and 0.5115 µg/mL, respectively, and were more effective than the ethanol extracts. Examining K. anthotheca and F. albida through the interaction with the protein receptor and its results also confirmed our assumption that the compound used has hydroxyl and carbonyl groups as well as aromatic rings and is exposed to phenolic and flavonoid groups in a more specific way, and it shows a better inhibitory effect. Conclusions This study scientifically validates the use of extracts of the two plants in the traditional treatment of helminthiasis. However, it will be necessary to evaluate the in vivo anthelmintic activity and toxicity. Examining the ADME properties of these compounds also supports the potential of these ligands to be transformed into pharmaceutical forms.
Collapse
Affiliation(s)
- Baigomen Christalin
- Department of Animal BiologyFaculty of ScienceUniversity of Dschang, P.O. Box 067, Dschang, Cameroon
- Laboratory of Tropical and Emerging Infectious Diseases, Dschang, Cameroon
| | - Masoud Besati
- Institute for Integrative Systems Biology (I2SysBio)CSIC-University of Valencia, Paterna 46980, Spain
| | - Noumedem Anangmo Christelle Nadia
- Laboratory of Tropical and Emerging Infectious Diseases, Dschang, Cameroon
- Department of MicrobiologyHaematology and Immunology Faculty of Medicine and Pharmaceutical SciencesUniversity of Dschang, P.O. Box 96, Dschang, Cameroon
| | - Mahdi Yaghoobi
- Molecular Design and SynthesisDepartment of ChemistryKU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Yamssi Cédric
- Laboratory of Tropical and Emerging Infectious Diseases, Dschang, Cameroon
- Department of Biomedical SciencesFaculty of Health SciencesUniversity of Bamenda, P.O. Box 39, Bambili, Cameroon
| | - Claire Ciancia
- Wellcome Centre for Molecular ParasitologySchool for Infection and ImmunityUniversity of Glasgow, Glasgow, UK
| | - Mounvera Abdel Azizi
- Department of Animal BiologyFaculty of ScienceUniversity of Dschang, P.O. Box 067, Dschang, Cameroon
- Laboratory of Tropical and Emerging Infectious Diseases, Dschang, Cameroon
| | - Gamago Nkadeu Guy-Armand
- Department of Animal BiologyFaculty of ScienceUniversity of Dschang, P.O. Box 067, Dschang, Cameroon
- Laboratory of Tropical and Emerging Infectious Diseases, Dschang, Cameroon
| | - Vincent Khan Payne
- Department of Animal BiologyFaculty of ScienceUniversity of Dschang, P.O. Box 067, Dschang, Cameroon
- Laboratory of Tropical and Emerging Infectious Diseases, Dschang, Cameroon
| | - Haibo Hu
- National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources BranchSchool of PharmacyGannan Medical University, Ganzhou, China
| |
Collapse
|
7
|
Wang L, Bu T, Wu X, Li L, Sun F, Cheng CY. Motor proteins, spermatogenesis and testis function. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:381-445. [PMID: 38960481 DOI: 10.1016/bs.apcsb.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The role of motor proteins in supporting intracellular transports of vesicles and organelles in mammalian cells has been known for decades. On the other hand, the function of motor proteins that support spermatogenesis is also well established since the deletion of motor protein genes leads to subfertility and/or infertility. Furthermore, mutations and genetic variations of motor protein genes affect fertility in men, but also a wide range of developmental defects in humans including multiple organs besides the testis. In this review, we seek to provide a summary of microtubule and actin-dependent motor proteins based on earlier and recent findings in the field. Since these two cytoskeletons are polarized structures, different motor proteins are being used to transport cargoes to different ends of these cytoskeletons. However, their involvement in germ cell transport across the blood-testis barrier (BTB) and the epithelium of the seminiferous tubules remains relatively unknown. It is based on recent findings in the field, we have provided a hypothetical model by which motor proteins are being used to support germ cell transport across the BTB and the seminiferous epithelium during the epithelial cycle of spermatogenesis. In our discussion, we have highlighted the areas of research that deserve attention to bridge the gap of research in relating the function of motor proteins to spermatogenesis.
Collapse
Affiliation(s)
- Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Tiao Bu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Xiaolong Wu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Fei Sun
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China.
| |
Collapse
|
8
|
Markou A, Kitchen P, Aldabbagh A, Repici M, Salman MM, Bill RM, Balklava Z. Mechanisms of aquaporin-4 vesicular trafficking in mammalian cells. J Neurochem 2024; 168:100-114. [PMID: 38102893 PMCID: PMC10953025 DOI: 10.1111/jnc.16029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/24/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
The aquaporin-4 (AQP4) water channel is abundantly expressed in the glial cells of the central nervous system and facilitates brain swelling following diverse insults, such as traumatic injury or stroke. Lack of specific and therapeutic AQP4 inhibitors highlights the need to explore alternative routes to control the water permeability of glial cell membranes. The cell surface abundance of AQP4 in mammalian cells fluctuates rapidly in response to changes in oxygen levels and tonicity, suggesting a role for vesicular trafficking in its translocation to and from the cell surface. However, the molecular mechanisms of AQP4 trafficking are not fully elucidated. In this work, early and recycling endosomes were investigated as likely candidates of rapid AQP4 translocation together with changes in cytoskeletal dynamics. In transiently transfected HEK293 cells a significant amount of AQP-eGFP colocalised with mCherry-Rab5-positive early endosomes and mCherry-Rab11-positive recycling endosomes. When exposed to hypotonic conditions, AQP4-eGFP rapidly translocated from intracellular vesicles to the cell surface. Co-expression of dominant negative forms of the mCherry-Rab5 and -Rab11 with AQP4-eGFP prevented hypotonicity-induced AQP4-eGFP trafficking and led to concentration at the cell surface or intracellular vesicles respectively. Use of endocytosis inhibiting drugs indicated that AQP4 internalisation was dynamin-dependent. Cytoskeleton dynamics-modifying drugs also affected AQP4 translocation to and from the cell surface. AQP4 trafficking mechanisms were validated in primary human astrocytes, which express high levels of endogenous AQP4. The results highlight the role of early and recycling endosomes and cytoskeletal dynamics in AQP4 translocation in response to hypotonic and hypoxic stress and suggest continuous cycling of AQP4 between intracellular vesicles and the cell surface under physiological conditions.
Collapse
Affiliation(s)
- Andrea Markou
- College of Health and Life SciencesAston UniversityBirminghamUK
- School of Biosciences, Faculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
| | - Philip Kitchen
- College of Health and Life SciencesAston UniversityBirminghamUK
| | - Ahmed Aldabbagh
- College of Health and Life SciencesAston UniversityBirminghamUK
| | | | - Mootaz M. Salman
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
- Kavli Institute for NanoScience DiscoveryUniversity of OxfordOxfordUK
| | - Roslyn M. Bill
- College of Health and Life SciencesAston UniversityBirminghamUK
| | - Zita Balklava
- College of Health and Life SciencesAston UniversityBirminghamUK
| |
Collapse
|
9
|
Brault JB, Thouvenot C, Cannata Serio M, Paisant S, Fernandes J, Gény D, Danglot L, Mallet A, Naffakh N. A polarized cell system amenable to subcellular resolution imaging of influenza virus infection. PLoS One 2024; 19:e0292977. [PMID: 38271396 PMCID: PMC10810476 DOI: 10.1371/journal.pone.0292977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024] Open
Abstract
The life cycle of influenza A viruses (IAV), and notably intracellular trafficking of the viral genome, depends on multiple interactions with the cellular cytoskeleton and endomembrane system. A limitation of the conventional cellular models used for mechanistic study and subcellular imaging of IAV infection is that they are cultured in two dimensions (2D) under non-polarizing conditions, and therefore they do not recapitulate the intracellular organization of the polarized respiratory epithelial cells naturally targeted by IAVs. To overcome this limitation, we developed an IAV-infection assay in a 3D cell culture system which allows imaging along the baso-lateral axis of polarized cells, with subcellular resolution. Here we describe a protocol to grow polarized monolayers of Caco2-TC7 cells on static Cytodex-3 microcarrier beads, infect them with IAV, and subsequently perform immunostaining and confocal imaging, or electron microscopy, on polarized IAV-infected cells. This method can be extended to other pathogens that infect human polarized epithelial cells.
Collapse
Affiliation(s)
- Jean-Baptiste Brault
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, RNA Biology of Influenza Viruses, Paris, France
| | - Catherine Thouvenot
- Institut Pasteur, Université Paris Cité, C2RT, Ultrastructural BioImaging Unit, Paris, France
| | - Magda Cannata Serio
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, RNA Biology of Influenza Viruses, Paris, France
| | - Sylvain Paisant
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, RNA Biology of Influenza Viruses, Paris, France
| | - Julien Fernandes
- Institut Pasteur, Université Paris Cité, C2RT, Unit of Technology and Services Photonic BioImaging, Paris, France
| | - David Gény
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, NeurImag Facility, Université Paris Cité, Paris, France
| | - Lydia Danglot
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, NeurImag Facility, Université Paris Cité, Paris, France
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy and Diseased Brain team, Paris, France
| | - Adeline Mallet
- Institut Pasteur, Université Paris Cité, C2RT, Ultrastructural BioImaging Unit, Paris, France
| | - Nadia Naffakh
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, RNA Biology of Influenza Viruses, Paris, France
| |
Collapse
|
10
|
Huber RJ, Kim WD, Wilson-Smillie MLDM. Mechanisms regulating the intracellular trafficking and release of CLN5 and CTSD. Traffic 2024; 25:e12925. [PMID: 38272448 DOI: 10.1111/tra.12925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/27/2024]
Abstract
Ceroid lipofuscinosis neuronal 5 (CLN5) and cathepsin D (CTSD) are soluble lysosomal enzymes that also localize extracellularly. In humans, homozygous mutations in CLN5 and CTSD cause CLN5 disease and CLN10 disease, respectively, which are two subtypes of neuronal ceroid lipofuscinosis (commonly known as Batten disease). The mechanisms regulating the intracellular trafficking of CLN5 and CTSD and their release from cells are not well understood. Here, we used the social amoeba Dictyostelium discoideum as a model system to examine the pathways and cellular components that regulate the intracellular trafficking and release of the D. discoideum homologs of human CLN5 (Cln5) and CTSD (CtsD). We show that both Cln5 and CtsD contain signal peptides for secretion that facilitate their release from cells. Like Cln5, extracellular CtsD is glycosylated. In addition, Cln5 release is regulated by the amount of extracellular CtsD. Autophagy induction promotes the release of Cln5, and to a lesser extent CtsD. Release of Cln5 requires the autophagy proteins Atg1, Atg5, and Atg9, as well as autophagosomal-lysosomal fusion. Atg1 and Atg5 are required for the release of CtsD. Together, these data support a model where Cln5 and CtsD are actively released from cells via their signal peptides for secretion and pathways linked to autophagy. The release of Cln5 and CtsD from cells also requires microfilaments and the D. discoideum homologs of human AP-3 complex mu subunit, the lysosomal-trafficking regulator LYST, mucopilin-1, and the Wiskott-Aldrich syndrome-associated protein WASH, which all regulate lysosomal exocytosis in this model organism. These findings suggest that lysosomal exocytosis also facilitates the release of Cln5 and CtsD from cells. In addition, we report the roles of ABC transporters, microtubules, osmotic stress, and the putative D. discoideum homologs of human sortilin and cation-independent mannose-6-phosphate receptor in regulating the intracellular/extracellular distribution of Cln5 and CtsD. In total, this study identifies the cellular mechanisms regulating the release of Cln5 and CtsD from D. discoideum cells and provides insight into how altered trafficking of CLN5 and CTSD causes disease in humans.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario, Canada
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| | - William D Kim
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| | | |
Collapse
|
11
|
Ng'etich AI, Amoah ID, Bux F, Kumari S. Anthelmintic resistance in soil-transmitted helminths: One-Health considerations. Parasitol Res 2023; 123:62. [PMID: 38114766 PMCID: PMC10730643 DOI: 10.1007/s00436-023-08088-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
The One-Health approach recognizes the intricate connection between human, animal, and environmental health, and that cooperative effort from various professionals provides comprehensive awareness and potential solutions for issues relating to the health of people, animals, and the environment. This approach has increasingly gained appeal as the standard strategy for tackling emerging infectious diseases, most of which are zoonoses. Treatment with anthelmintics (AHs) without a doubt minimizes the severe consequences of soil-transmitted helminths (STHs); however, evidence of anthelmintic resistance (AR) development to different helminths of practically every animal species and the distinct groups of AHs is overwhelming globally. In this regard, the correlation between the application of anthelmintic drugs in both human and animal populations and the consequent development of anthelmintic resistance in STHs within the context of a One-Health framework is explored. This review provides an overview of the major human and animal STHs, treatment of the STHs, AR development and drug-related factors contributing towards AR, One-Health and STHs, and an outline of some One-Health strategies that may be used in combating AR.
Collapse
Affiliation(s)
- Annette Imali Ng'etich
- Institute for Water and Wastewater Technology, Durban University of Technology (DUT), Durban, South Africa
| | - Isaac Dennis Amoah
- Institute for Water and Wastewater Technology, Durban University of Technology (DUT), Durban, South Africa
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology (DUT), Durban, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology (DUT), Durban, South Africa.
| |
Collapse
|
12
|
Chen M, Xu L, Wu Y, Soba P, Hu C. The organization and function of the Golgi apparatus in dendrite development and neurological disorders. Genes Dis 2023; 10:2425-2442. [PMID: 37554209 PMCID: PMC10404969 DOI: 10.1016/j.gendis.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/13/2022] [Accepted: 11/05/2022] [Indexed: 12/24/2022] Open
Abstract
Dendrites are specialized neuronal compartments that sense, integrate and transfer information in the neural network. Their development is tightly controlled and abnormal dendrite morphogenesis is strongly linked to neurological disorders. While dendritic morphology ranges from relatively simple to extremely complex for a specified neuron, either requires a functional secretory pathway to continually replenish proteins and lipids to meet dendritic growth demands. The Golgi apparatus occupies the center of the secretory pathway and is regulating posttranslational modifications, sorting, transport, and signal transduction, as well as acting as a non-centrosomal microtubule organization center. The neuronal Golgi apparatus shares common features with Golgi in other eukaryotic cell types but also forms distinct structures known as Golgi outposts that specifically localize in dendrites. However, the organization and function of Golgi in dendrite development and its impact on neurological disorders is just emerging and so far lacks a systematic summary. We describe the organization of the Golgi apparatus in neurons, review the current understanding of Golgi function in dendritic morphogenesis, and discuss the current challenges and future directions.
Collapse
Affiliation(s)
- Meilan Chen
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education Institute for Brain, Science and Rehabilitation, South China Normal University, Guangzhou, Guangdong 510631, China
- Department of Ophthalmology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510320, China
| | - Lu Xu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education Institute for Brain, Science and Rehabilitation, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Yi Wu
- Department of Ophthalmology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510320, China
| | - Peter Soba
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Bonn 53115, Germany
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Chun Hu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education Institute for Brain, Science and Rehabilitation, South China Normal University, Guangzhou, Guangdong 510631, China
| |
Collapse
|
13
|
Lee J, Chen S, Monfared RV, Derdeyn P, Leong K, Chang T, Beier K, Baldi P, Alachkar A. Reanalysis of primate brain circadian transcriptomics reveals connectivity-related oscillations. iScience 2023; 26:107810. [PMID: 37752952 PMCID: PMC10518731 DOI: 10.1016/j.isci.2023.107810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/22/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
Research shows that brain circuits controlling vital physiological processes are closely linked with endogenous time-keeping systems. In this study, we aimed to examine oscillatory gene expression patterns of well-characterized neuronal circuits by reanalyzing publicly available transcriptomic data from a spatiotemporal gene expression atlas of a non-human primate. Unexpectedly, brain structures known for regulating circadian processes (e.g., hypothalamic nuclei) did not exhibit robust cycling expression. In contrast, basal ganglia nuclei, not typically associated with circadian physiology, displayed the most dynamic cycling behavior of its genes marked by sharp temporally defined expression peaks. Intriguingly, the mammillary bodies, considered hypothalamic nuclei, exhibited gene expression patterns resembling the basal ganglia, prompting reevaluation of their classification. Our results emphasize the potential for high throughput circadian gene expression analysis to deepen our understanding of the functional synchronization across brain structures that influence physiological processes and resulting complex behaviors.
Collapse
Affiliation(s)
- Justine Lee
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Siwei Chen
- Department of Computer Science, School of Information and Computer Sciences, University of California, Irvine, Irvine, CA, USA
| | - Roudabeh Vakil Monfared
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Pieter Derdeyn
- Mathematical, Computational, and Systems Biology Program, University of California, Irvine, Irvine, CA, USA
| | - Kenneth Leong
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Tiffany Chang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Kevin Beier
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
- Department of Physiology and Biophysics, School of medicine, University of California, Irvine, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697-4560, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697-4560, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA 92697, USA
| | - Pierre Baldi
- Department of Computer Science, School of Information and Computer Sciences, University of California, Irvine, Irvine, CA, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA 92697, USA
- Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, CA, USA
| | - Amal Alachkar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA 92697, USA
- Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
14
|
Adrian M, Weber M, Tsai MC, Glock C, Kahn OI, Phu L, Cheung TK, Meilandt WJ, Rose CM, Hoogenraad CC. Polarized microtubule remodeling transforms the morphology of reactive microglia and drives cytokine release. Nat Commun 2023; 14:6322. [PMID: 37813836 PMCID: PMC10562429 DOI: 10.1038/s41467-023-41891-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 09/19/2023] [Indexed: 10/11/2023] Open
Abstract
Microglial reactivity is a pathological hallmark in many neurodegenerative diseases. During stimulation, microglia undergo complex morphological changes, including loss of their characteristic ramified morphology, which is routinely used to detect and quantify inflammation in the brain. However, the underlying molecular mechanisms and the relation between microglial morphology and their pathophysiological function are unknown. Here, proteomic profiling of lipopolysaccharide (LPS)-reactive microglia identifies microtubule remodeling pathways as an early factor that drives the morphological change and subsequently controls cytokine responses. We find that LPS-reactive microglia reorganize their microtubules to form a stable and centrosomally-anchored array to facilitate efficient cytokine trafficking and release. We identify cyclin-dependent kinase 1 (Cdk-1) as a critical upstream regulator of microtubule remodeling and morphological change in-vitro and in-situ. Cdk-1 inhibition also rescues tau and amyloid fibril-induced morphology changes. These results demonstrate a critical role for microtubule dynamics and reorganization in microglial reactivity and modulating cytokine-mediated inflammatory responses.
Collapse
Affiliation(s)
- Max Adrian
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
- Department of Pathology, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Martin Weber
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Ming-Chi Tsai
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Caspar Glock
- Department of OMNI Bioinformatics, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Olga I Kahn
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Lilian Phu
- Department of Microchemistry, Proteomics and Lipidomics, South San Francisco, CA, 94080, USA
| | - Tommy K Cheung
- Department of Microchemistry, Proteomics and Lipidomics, South San Francisco, CA, 94080, USA
| | - William J Meilandt
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Christopher M Rose
- Department of Microchemistry, Proteomics and Lipidomics, South San Francisco, CA, 94080, USA
| | - Casper C Hoogenraad
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA.
| |
Collapse
|
15
|
Suber Y, Alam MNA, Nakos K, Bhakt P, Spiliotis ET. Microtubule-associated septin complexes modulate kinesin and dynein motility with differential specificities. J Biol Chem 2023; 299:105084. [PMID: 37495111 PMCID: PMC10463263 DOI: 10.1016/j.jbc.2023.105084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/27/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023] Open
Abstract
Long-range membrane traffic is guided by microtubule-associated proteins and posttranslational modifications, which collectively comprise a traffic code. The regulatory principles of this code and how it orchestrates the motility of kinesin and dynein motors are largely unknown. Septins are a large family of GTP-binding proteins, which assemble into complexes that associate with microtubules. Using single-molecule in vitro motility assays, we tested how the microtubule-associated SEPT2/6/7, SEPT2/6/7/9, and SEPT5/7/11 complexes affect the motilities of the constitutively active kinesins KIF5C and KIF1A and the dynein-dynactin-bicaudal D (DDB) motor complex. We found that microtubule-associated SEPT2/6/7 is a potent inhibitor of DDB and KIF5C, preventing mainly their association with microtubules. SEPT2/6/7 also inhibits KIF1A by obstructing stepping along microtubules. On SEPT2/6/7/9-coated microtubules, KIF1A inhibition is dampened by SEPT9, which alone enhances KIF1A, showing that individual septin subunits determine the regulatory properties of septin complexes. Strikingly, SEPT5/7/11 differs from SEPT2/6/7, in permitting the motility of KIF1A and immobilizing DDB to the microtubule lattice. In hippocampal neurons, filamentous SEPT5 colocalizes with somatodendritic microtubules that underlie Golgi membranes and lack SEPT6. Depletion of SEPT5 disrupts Golgi morphology and polarization of Golgi ribbons into the shaft of somato-proximal dendrites, which is consistent with the tethering of DDB to microtubules by SEPT5/7/11. Collectively, these results suggest that microtubule-associated complexes have differential specificities in the regulation of the motility and positioning of microtubule motors. We posit that septins are an integral part of the microtubule-based code that spatially controls membrane traffic.
Collapse
Affiliation(s)
- Yani Suber
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Md Noor A Alam
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Konstantinos Nakos
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Priyanka Bhakt
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Elias T Spiliotis
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
16
|
Karki U, Perez Sanchez P, Chakraborty S, Dickey B, Vargas Ulloa J, Zhang N, Xu J. Intracellular trafficking and glycosylation of hydroxyproline-O-glycosylation module in tobacco BY-2 cells is dependent on medium composition and transcriptome analysis. Sci Rep 2023; 13:13506. [PMID: 37598266 PMCID: PMC10439957 DOI: 10.1038/s41598-023-40723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023] Open
Abstract
Expression of recombinant proteins in plant cells with a "designer" hydroxyproline (Hyp)-O-glycosylated peptide (HypGP), such as tandem repeats of a "Ser-Pro" motif, has been shown to boost the secreted protein yields. However, dramatic secretion and Hyp-O-glycosylation of HypGP-tagged proteins can only be achieved when the plant cells were grown in nitrogen-deficient SH medium. Only trace amounts of secreted fusion protein were detected in MS medium. This study aims to gain a deeper understanding of the possible mechanism underlying these results by examining the intracellular trafficking and Hyp-O-glycosylation of enhanced green fluorescent protein (EGFP) fused with a (SP)32 tag, consisting of 32 repeats of a "Ser-Pro" motif, in tobacco BY-2 cells. When cells were grown in MS medium, the (SP)32-EGFP formed protein body-like aggregate and was retained in the ER, without undergoing Hyp-O-glycosylation. In contrast, the fusion protein becomes fully Hyp-O-glycosylated, and then secreted in SH medium. Transcriptome analysis of the BY-2 cells grown in SH medium vs. MS medium revealed over 16,000 DEGs, with many upregulated DEGs associated with the microtubule-based movement, movement of subcellular component, and microtubule binding. These DEGs are presumably responsible for the enhanced ER-Golgi transport of HypGP-tagged proteins, enabling their glycosylation and secretion in SH medium.
Collapse
Affiliation(s)
- Uddhab Karki
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, 72401, USA
- Molecular BioSciences Program, Arkansas State University, Jonesboro, AR, 72401, USA
| | - Paula Perez Sanchez
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, 72401, USA
| | - Sankalpa Chakraborty
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, 72401, USA
- Molecular BioSciences Program, Arkansas State University, Jonesboro, AR, 72401, USA
| | - Berry Dickey
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, 72401, USA
| | | | - Ningning Zhang
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, 72401, USA
- Molecular BioSciences Program, Arkansas State University, Jonesboro, AR, 72401, USA
| | - Jianfeng Xu
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, 72401, USA.
- Molecular BioSciences Program, Arkansas State University, Jonesboro, AR, 72401, USA.
- College of Agriculture, Arkansas State University, Jonesboro, AR, 72401, USA.
| |
Collapse
|
17
|
Zong YJ, Liu XZ, Tu L, Sun Y. Cytomembrane Trafficking Pathways of Connexin 26, 30, and 43. Int J Mol Sci 2023; 24:10349. [PMID: 37373495 DOI: 10.3390/ijms241210349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The connexin gene family is the most prevalent gene that contributes to hearing loss. Connexins 26 and 30, encoded by GJB2 and GJB6, respectively, are the most abundantly expressed connexins in the inner ear. Connexin 43, which is encoded by GJA1, appears to be widely expressed in various organs, including the heart, skin, the brain, and the inner ear. The mutations that arise in GJB2, GJB6, and GJA1 can all result in comprehensive or non-comprehensive genetic deafness in newborns. As it is predicted that connexins include at least 20 isoforms in humans, the biosynthesis, structural composition, and degradation of connexins must be precisely regulated so that the gap junctions can properly operate. Certain mutations result in connexins possessing a faulty subcellular localization, failing to transport to the cell membrane and preventing gap junction formation, ultimately leading to connexin dysfunction and hearing loss. In this review, we provide a discussion of the transport models for connexin 43, connexins 30 and 26, mutations affecting trafficking pathways of these connexins, the existing controversies in the trafficking pathways of connexins, and the molecules involved in connexin trafficking and their functions. This review can contribute to a new way of understanding the etiological principles of connexin mutations and finding therapeutic strategies for hereditary deafness.
Collapse
Affiliation(s)
- Yan-Jun Zong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiao-Zhou Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lei Tu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
18
|
Duan X, Wei Y, Zhang M, Zhang W, Huang Y, Zhang YH. PI4P-Containing Vesicles from Golgi Contribute to Mitochondrial Division by Coordinating with Polymerized Actin. Int J Mol Sci 2023; 24:ijms24076593. [PMID: 37047566 PMCID: PMC10095118 DOI: 10.3390/ijms24076593] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Golgi-derived PI4P-containing vesicles play important roles in mitochondrial division, which is essential for maintaining cellular homeostasis. However, the mechanism of the PI4P-containing vesicle effect on mitochondrial division is unclear. Here, we found that actin appeared to polymerize at the contact site between PI4P-containing vesicles and mitochondria, causing mitochondrial division. Increasing the content of PI4P derived from the Golgi apparatus increased actin polymerization and reduced the length of the mitochondria, suggesting that actin polymerization through PI4P-containing vesicles is involved in PI4P vesicle-related mitochondrial division. Collectively, our results support a model in which PI4P-containing vesicles derived from the Golgi apparatus cooperate with actin filaments to participate in mitochondrial division by contributing to actin polymerization, which regulates mitochondrial dynamics. This study enriches the understanding of the pathways that regulate mitochondrial division and provides new insight into mitochondrial dynamics.
Collapse
Affiliation(s)
- Xinxin Duan
- Britton Chance Center for Biomedical Photonics—MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility—Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yunfei Wei
- Britton Chance Center for Biomedical Photonics—MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility—Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Meng Zhang
- Britton Chance Center for Biomedical Photonics—MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility—Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenting Zhang
- Britton Chance Center for Biomedical Photonics—MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility—Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yue Huang
- Britton Chance Center for Biomedical Photonics—MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility—Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yu-Hui Zhang
- Britton Chance Center for Biomedical Photonics—MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility—Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
19
|
Garcia-Fossa F, Cruz MC, Haghighi M, de Jesus MB, Singh S, Carpenter AE, Cimini BA. Interpreting Image-based Profiles using Similarity Clustering and Single-Cell Visualization. Curr Protoc 2023; 3:e713. [PMID: 36921124 PMCID: PMC10027367 DOI: 10.1002/cpz1.713] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Image-based profiling quantitatively assesses the effects of perturbations on cells by capturing a breadth of changes via microscopy. Here, we provide two complementary protocols to help explore and interpret data from image-based profiling experiments. In the first protocol, we examine the similarity among perturbed cell samples using data from compounds that cluster by their mechanisms of action. The protocol includes steps to examine feature-driving differences between samples and to visualize correlations between features and treatments to create interpretable heatmaps using the open-source web tool Morpheus. In the second protocol, we show how to interactively explore images together with the numerical data, and we provide scripts to create visualizations of representative single cells and image sites to understand how changes in features are reflected in the images. Together, these two tutorials help researchers interpret image-based data to speed up research. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Exploratory analysis of profile similarities and driving features Basic Protocol 2: Image and single-cell visualization following profile interpretation.
Collapse
Affiliation(s)
- Fernanda Garcia-Fossa
- Imaging Platform, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Mario Costa Cruz
- Imaging Platform, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Marzieh Haghighi
- Imaging Platform, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Marcelo Bispo de Jesus
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Shantanu Singh
- Imaging Platform, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Anne E. Carpenter
- Imaging Platform, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Beth A. Cimini
- Imaging Platform, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| |
Collapse
|
20
|
Poplawski P, Alseekh S, Jankowska U, Skupien-Rabian B, Iwanicka-Nowicka R, Kossowska H, Fogtman A, Rybicka B, Bogusławska J, Adamiok-Ostrowska A, Hanusek K, Hanusek J, Koblowska M, Fernie AR, Piekiełko-Witkowska A. Coordinated reprogramming of renal cancer transcriptome, metabolome and secretome associates with immune tumor infiltration. Cancer Cell Int 2023; 23:2. [PMID: 36604669 PMCID: PMC9814214 DOI: 10.1186/s12935-022-02845-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cancer. The molecules (proteins, metabolites) secreted by tumors affect their extracellular milieu to support cancer progression. If secreted in amounts detectable in plasma, these molecules can also serve as useful, minimal invasive biomarkers. The knowledge of ccRCC tumor microenvironment is fragmentary. In particular, the links between ccRCC transcriptome and the composition of extracellular milieu are weakly understood. In this study, we hypothesized that ccRCC transcriptome is reprogrammed to support alterations in tumor microenvironment. Therefore, we comprehensively analyzed ccRCC extracellular proteomes and metabolomes as well as transcriptomes of ccRCC cells to find molecules contributing to renal tumor microenvironment. METHODS Proteomic and metabolomics analysis of conditioned media isolated from normal kidney cells as well as five ccRCC cell lines was performed using mass spectrometry, with the following ELISA validation. Transcriptomic analysis was done using microarray analysis and validated using real-time PCR. Independent transcriptomic and proteomic datasets of ccRCC tumors were used for the analysis of gene and protein expression as well as the level of the immune infiltration. RESULTS Renal cancer secretome contained 85 proteins detectable in human plasma, consistently altered in all five tested ccRCC cell lines. The top upregulated extracellular proteins included SPARC, STC2, SERPINE1, TGFBI, while downregulated included transferrin and DPP7. The most affected extracellular metabolites were increased 4-hydroxy-proline, succinic acid, cysteine, lactic acid and downregulated glutamine. These changes were associated with altered expression of genes encoding the secreted proteins (SPARC, SERPINE1, STC2, DPP7), membrane transporters (SLC16A4, SLC6A20, ABCA12), and genes involved in protein trafficking and secretion (KIF20A, ANXA3, MIA2, PCSK5, SLC9A3R1, SYTL3, and WNTA7). Analogous expression changes were found in ccRCC tumors. The expression of SPARC predicted the infiltration of ccRCC tumors with endothelial cells. Analysis of the expression of the 85 secretome genes in > 12,000 tumors revealed that SPARC is a PanCancer indicator of cancer-associated fibroblasts' infiltration. CONCLUSIONS Transcriptomic reprogramming of ccRCC supports the changes in an extracellular milieu which are associated with immune infiltration. The proteins identified in our study represent valuable cancer biomarkers detectable in plasma.
Collapse
Affiliation(s)
- Piotr Poplawski
- grid.414852.e0000 0001 2205 7719Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Saleh Alseekh
- grid.418390.70000 0004 0491 976XMax-Planck Institute of Molecular Plant Physiology, Golm, 14476 Potsdam, Germany ,grid.510916.a0000 0004 9334 5103Center for Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Urszula Jankowska
- grid.5522.00000 0001 2162 9631Proteomics and Mass Spectrometry Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Bozena Skupien-Rabian
- grid.5522.00000 0001 2162 9631Proteomics and Mass Spectrometry Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Roksana Iwanicka-Nowicka
- grid.12847.380000 0004 1937 1290Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland ,grid.413454.30000 0001 1958 0162Laboratory for Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Helena Kossowska
- grid.12847.380000 0004 1937 1290Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Anna Fogtman
- grid.413454.30000 0001 1958 0162Laboratory for Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Beata Rybicka
- grid.414852.e0000 0001 2205 7719Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Joanna Bogusławska
- grid.414852.e0000 0001 2205 7719Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Anna Adamiok-Ostrowska
- grid.414852.e0000 0001 2205 7719Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Karolina Hanusek
- grid.414852.e0000 0001 2205 7719Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Jan Hanusek
- grid.414852.e0000 0001 2205 7719Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Marta Koblowska
- grid.12847.380000 0004 1937 1290Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland ,grid.413454.30000 0001 1958 0162Laboratory for Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Alisdair R. Fernie
- grid.418390.70000 0004 0491 976XMax-Planck Institute of Molecular Plant Physiology, Golm, 14476 Potsdam, Germany ,grid.510916.a0000 0004 9334 5103Center for Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Agnieszka Piekiełko-Witkowska
- grid.414852.e0000 0001 2205 7719Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland
| |
Collapse
|
21
|
Sun Y, Wang M, Chen H, Wang H, Zhong Z, Zhou L, Fu L, Li C, Sun S. Insights into symbiotic interactions from metatranscriptome analysis of deep-sea mussel Gigantidas platifrons under long-term laboratory maintenance. Mol Ecol 2023; 32:444-459. [PMID: 36326559 DOI: 10.1111/mec.16765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/23/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Symbioses between invertebrates and chemosynthetic bacteria are of fundamental importance in deep-sea ecosystems, but the mechanisms that enable their symbiont associations are still largely undescribed, owing to the culturable difficulties of deep-sea lives. Bathymodiolinae mussels are remarkable in their ability to overcome decompression and can be maintained successfully for an extended period under atmospheric pressure, thus providing a model for investigating the molecular basis of symbiotic interactions. Herein, we conducted metatranscriptome sequencing and gene co-expression network analysis of Gigantidas platifrons under laboratory maintenance with gradual loss of symbionts. The results revealed that one-day short-term maintenance triggered global transcriptional perturbation in symbionts, but little gene expression changes in mussel hosts, which were mainly involved in responses to environmental changes. Long-term maintenance with depleted symbionts induced a metabolic shift in the mussel host. The most notable changes were the suppression of sterol biosynthesis and the complementary activation of terpenoid backbone synthesis in response to the reduction of bacteria-derived terpenoid sources. In addition, we detected the upregulation of host proteasomes responsible for amino acid deprivation caused by symbiont depletion. Additionally, a significant correlation between host microtubule motor activity and symbiont abundance was revealed, suggesting the possible function of microtubule-based intracellular trafficking in the nutritional interaction of symbiosis. Overall, by analyzing the dynamic transcriptomic changes during the loss of symbionts, our study highlights the nutritional importance of symbionts in supplementing terpenoid compounds and essential amino acids and provides insight into the molecular mechanisms and strategies underlying the symbiotic interactions in deep-sea ecosystems.
Collapse
Affiliation(s)
- Yan Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Minxiao Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Hao Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Hao Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Zhaoshan Zhong
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Li Zhou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Lulu Fu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Chaolun Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Song Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Weier AK, Homrich M, Ebbinghaus S, Juda P, Miková E, Hauschild R, Zhang L, Quast T, Mass E, Schlitzer A, Kolanus W, Burgdorf S, Gruß OJ, Hons M, Wieser S, Kiermaier E. Multiple centrosomes enhance migration and immune cell effector functions of mature dendritic cells. J Cell Biol 2022; 221:e202107134. [PMID: 36214847 PMCID: PMC9555069 DOI: 10.1083/jcb.202107134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 03/01/2022] [Accepted: 09/12/2022] [Indexed: 12/13/2022] Open
Abstract
Centrosomes play a crucial role during immune cell interactions and initiation of the immune response. In proliferating cells, centrosome numbers are tightly controlled and generally limited to one in G1 and two prior to mitosis. Defects in regulating centrosome numbers have been associated with cell transformation and tumorigenesis. Here, we report the emergence of extra centrosomes in leukocytes during immune activation. Upon antigen encounter, dendritic cells pass through incomplete mitosis and arrest in the subsequent G1 phase leading to tetraploid cells with accumulated centrosomes. In addition, cell stimulation increases expression of polo-like kinase 2, resulting in diploid cells with two centrosomes in G1-arrested cells. During cell migration, centrosomes tightly cluster and act as functional microtubule-organizing centers allowing for increased persistent locomotion along gradients of chemotactic cues. Moreover, dendritic cells with extra centrosomes display enhanced secretion of inflammatory cytokines and optimized T cell responses. Together, these results demonstrate a previously unappreciated role of extra centrosomes for regular cell and tissue homeostasis.
Collapse
Affiliation(s)
- Ann-Kathrin Weier
- Life and Medical Sciences Institute, Immune and Tumor Biology, University of Bonn, Bonn, Germany
| | - Mirka Homrich
- Life and Medical Sciences Institute, Immune and Tumor Biology, University of Bonn, Bonn, Germany
| | - Stephanie Ebbinghaus
- Life and Medical Sciences Institute, Immune and Tumor Biology, University of Bonn, Bonn, Germany
| | - Pavel Juda
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Eliška Miková
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Robert Hauschild
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Lili Zhang
- Life and Medical Sciences Institute, Quantitative Systems Biology, University of Bonn, Bonn, Germany
| | - Thomas Quast
- Life and Medical Sciences Institute, Molecular Immunology and Cell Biology, University of Bonn, Bonn, Germany
| | - Elvira Mass
- Life and Medical Sciences Institute, Developmental Biology of the Immune System, University of Bonn, Bonn, Germany
| | - Andreas Schlitzer
- Life and Medical Sciences Institute, Quantitative Systems Biology, University of Bonn, Bonn, Germany
| | - Waldemar Kolanus
- Life and Medical Sciences Institute, Molecular Immunology and Cell Biology, University of Bonn, Bonn, Germany
| | - Sven Burgdorf
- Life and Medical Sciences Institute, Cellular Immunology, University of Bonn, Bonn, Germany
| | - Oliver J. Gruß
- Institute of Genetics, University of Bonn, Bonn, Germany
| | - Miroslav Hons
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Stefan Wieser
- Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
| | - Eva Kiermaier
- Life and Medical Sciences Institute, Immune and Tumor Biology, University of Bonn, Bonn, Germany
| |
Collapse
|
23
|
Zhou J, Corvaisier M, Malycheva D, Alvarado-Kristensson M. Hubbing the Cancer Cell. Cancers (Basel) 2022; 14:5924. [PMID: 36497405 PMCID: PMC9738523 DOI: 10.3390/cancers14235924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Oncogenic transformation drives adaptive changes in a growing tumor that affect the cellular organization of cancerous cells, resulting in the loss of specialized cellular functions in the polarized compartmentalization of cells. The resulting altered metabolic and morphological patterns are used clinically as diagnostic markers. This review recapitulates the known functions of actin, microtubules and the γ-tubulin meshwork in orchestrating cell metabolism and functional cellular asymmetry.
Collapse
Affiliation(s)
| | | | | | - Maria Alvarado-Kristensson
- Molecular Pathology, Department of Translational Medicine, Skåne University Hospital Malmö 1, Lund University, 20502 Malmö, Sweden
| |
Collapse
|
24
|
Loss of α4A- and β1-tubulins leads to severe platelet spherocytosis and strongly impairs hemostasis in mice. Blood 2022; 140:2290-2299. [PMID: 36026602 DOI: 10.1182/blood.2022016729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/16/2022] [Indexed: 11/20/2022] Open
Abstract
Native circulating blood platelets present with a discoid flat morphology maintained by a submembranous peripheral ring of microtubules, named marginal band. The functional importance of this particular shape is still debated, but it was initially hypothesized to facilitate platelet interaction with the injured vessel wall and to contribute to hemostasis. The importance of the platelet discoid morphology has since been questioned on the absence of clear bleeding tendency in mice lacking the platelet-specific β1-tubulin isotype, which exhibits platelets with a thinner marginal band and an ovoid shape. Here, we generated a mouse model inactivated for β1-tubulin and α4A-tubulin, an α-tubulin isotype strongly enriched in platelets. These mice present with fully spherical platelets completely devoid of a marginal band. In contrast to the single knockouts, the double deletion resulted in a severe bleeding defect in a tail-clipping assay, which was not corrected by increasing the platelet count to normal values by the thrombopoietin-analog romiplostim. In vivo, thrombus formation was almost abolished in a ferric chloride-injury model, with only a thin layer of loosely packed platelets, and mice were protected against death in a model of thromboembolism. In vitro, platelets adhered less efficiently and formed smaller-sized and loosely assembled aggregates when perfused over von Willebrand factor and collagen matrices. In conclusion, this study shows that blood platelets require 2 unique α- and β-tubulin isotypes to acquire their characteristic discoid morphology. Lack of these 2 isotypes has a deleterious effect on flow-dependent aggregate formation and stability, leading to a severe bleeding disorder.
Collapse
|
25
|
Newtic1 Is a Component of Globular Structures That Accumulate along the Marginal Band of Erythrocytes in the Limb Blastema of Adult Newt, Cynops pyrrhogaster. Biomedicines 2022; 10:biomedicines10112772. [DOI: 10.3390/biomedicines10112772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
In adult newts, when a limb is amputated, a mesenchymal cell mass called the blastema is formed on the stump, where blood vessels filled with premature erythrocytes, named polychromatic normoblasts (PcNobs), elongate. We previously demonstrated that PcNobs in the blastema express an orphan gene, Newtic1, and that they secrete growth factors such as BMP2 and TGFβ1 into the surrounding tissues. However, the relationship between Newtic1 expression and growth factor secretion was not clear since Newtic1 was thought to encode a membrane protein. In this study, we addressed this issue using morphological techniques and found that the Newtic1 protein is a component of globular structures that accumulate at the marginal band in the cytoplasm along the equator of PcNobs. Newtic1-positive (Newtic1(+)) globular structures along the equator were found only in PcNobs with a well-developed marginal band in the blastema. Newtic1(+) globular structures were associated with microtubules and potentially incorporated TGFβ1. Based on these observations, we propose a hypothesis that the Newtic1 protein localizes to the membrane of secretory vesicles that primarily carry TGFβ1 and binds to microtubules, thereby tethering secretory vesicles to microtubules and transporting them to the cell periphery as the marginal band develops.
Collapse
|
26
|
Gonzalez-Molina J, Moyano-Galceran L, Single A, Gultekin O, Alsalhi S, Lehti K. Chemotherapy as a regulator of extracellular matrix-cell communication: Implications in therapy resistance. Semin Cancer Biol 2022; 86:224-236. [PMID: 35331851 DOI: 10.1016/j.semcancer.2022.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/08/2023]
Abstract
The development of most solid cancers, including pancreatic, breast, lung, liver, and ovarian cancer, involves a desmoplastic reaction: a process of major remodeling of the extracellular matrix (ECM) affecting the ECM composition, mechanics, and microarchitecture. These properties of the ECM influence key cancer cell functions, including treatment resistance. Furthermore, emerging data show that various chemotherapeutic treatments lead to alterations in ECM features and ECM-cell communication. Here, we summarize the current knowledge around the effects of chemotherapy on both the ECM remodeling and ECM-cell signaling and discuss the implications of these alterations on distinct mechanisms of chemoresistance. Additionally, we provide an overview of current therapeutic strategies and ongoing clinical trials utilizing anti-cancer drugs to target the ECM-cell communication and explore the future challenges of these strategies.
Collapse
Affiliation(s)
- Jordi Gonzalez-Molina
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Lidia Moyano-Galceran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Andrew Single
- Department of Biomedical Laboratory Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Okan Gultekin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Shno Alsalhi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kaisa Lehti
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Biomedical Laboratory Science, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
27
|
Jung J, Khan MM, Landry J, Halavatyi A, Machado P, Reiss M, Pepperkok R. Regulation of the COPII secretory machinery via focal adhesions and extracellular matrix signaling. J Cell Biol 2022; 221:213351. [PMID: 35829701 PMCID: PMC9284426 DOI: 10.1083/jcb.202110081] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 05/10/2022] [Accepted: 06/24/2022] [Indexed: 12/19/2022] Open
Abstract
Proteins that enter the secretory pathway are transported from their place of synthesis in the endoplasmic reticulum to the Golgi complex by COPII-coated carriers. The networks of proteins that regulate these components in response to extracellular cues have remained largely elusive. Using high-throughput microscopy, we comprehensively screened 378 cytoskeleton-associated and related proteins for their functional interaction with the coat protein complex II (COPII) components SEC23A and SEC23B. Among these, we identified a group of proteins associated with focal adhesions (FERMT2, MACF1, MAPK8IP2, NGEF, PIK3CA, and ROCK1) that led to the downregulation of SEC23A when depleted by siRNA. Changes in focal adhesions induced by plating cells on ECM also led to the downregulation of SEC23A and decreases in VSVG transport from ER to Golgi. Both the expression of SEC23A and the transport defect could be rescued by treatment with a focal adhesion kinase inhibitor. Altogether, our results identify a network of cytoskeleton-associated proteins connecting focal adhesions and ECM-related signaling with the gene expression of the COPII secretory machinery and trafficking.
Collapse
Affiliation(s)
- Juan Jung
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Muzamil Majid Khan
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| | - Jonathan Landry
- Core Facilities Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Aliaksandr Halavatyi
- Core Facilities Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Pedro Machado
- Core Facilities Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Miriam Reiss
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Rainer Pepperkok
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Core Facilities Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| |
Collapse
|
28
|
Zhao Y, Bai L, Zhang Y, Yao R, Sun Y, Hang R, Chen X, Wang H, Yao X, Xiao Y, Hang R. Type I collagen decorated nanoporous network on titanium implant surface promotes osseointegration through mediating immunomodulation, angiogenesis, and osteogenesis. Biomaterials 2022; 288:121684. [DOI: 10.1016/j.biomaterials.2022.121684] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/10/2022] [Accepted: 07/14/2022] [Indexed: 12/29/2022]
|
29
|
Nahas KL, Connor V, Scherer KM, Kaminski CF, Harkiolaki M, Crump CM, Graham SC. Near-native state imaging by cryo-soft-X-ray tomography reveals remodelling of multiple cellular organelles during HSV-1 infection. PLoS Pathog 2022; 18:e1010629. [PMID: 35797345 PMCID: PMC9262197 DOI: 10.1371/journal.ppat.1010629] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/31/2022] [Indexed: 12/15/2022] Open
Abstract
Herpes simplex virus-1 (HSV-1) is a large, enveloped DNA virus and its assembly in the cell is a complex multi-step process during which viral particles interact with numerous cellular compartments such as the nucleus and organelles of the secretory pathway. Transmission electron microscopy and fluorescence microscopy are commonly used to study HSV-1 infection. However, 2D imaging limits our understanding of the 3D geometric changes to cellular compartments that accompany infection and sample processing can introduce morphological artefacts that complicate interpretation. In this study, we used soft X-ray tomography to observe differences in whole-cell architecture between HSV-1 infected and uninfected cells. To protect the near-native structure of cellular compartments we used a non-disruptive sample preparation technique involving rapid cryopreservation, and a fluorescent reporter virus was used to facilitate correlation of structural changes with the stage of infection in individual cells. We observed viral capsids and assembly intermediates interacting with nuclear and cytoplasmic membranes. Additionally, we observed differences in the morphology of specific organelles between uninfected and infected cells. The local concentration of cytoplasmic vesicles at the juxtanuclear compartment increased and their mean width decreased as infection proceeded, and lipid droplets transiently increased in size. Furthermore, mitochondria in infected cells were elongated and highly branched, suggesting that HSV-1 infection alters the dynamics of mitochondrial fission/fusion. Our results demonstrate that high-resolution 3D images of cellular compartments can be captured in a near-native state using soft X-ray tomography and have revealed that infection causes striking changes to the morphology of intracellular organelles.
Collapse
Affiliation(s)
- Kamal L. Nahas
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Beamline B24, Diamond Light Source, Didcot, United Kingdom
| | - Viv Connor
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Katharina M. Scherer
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Clemens F. Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | | | - Colin M. Crump
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Stephen C. Graham
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
30
|
Pudelko K, Wieland A, Hennecke M, Räschle M, Bastians H. Increased Microtubule Growth Triggered by Microvesicle-mediated Paracrine Signaling is Required for Melanoma Cancer Cell Invasion. CANCER RESEARCH COMMUNICATIONS 2022; 2:366-379. [PMID: 36875714 PMCID: PMC9981201 DOI: 10.1158/2767-9764.crc-22-0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/25/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022]
Abstract
The acquisition of cell invasiveness is the key transition from benign melanocyte hyperplasia to aggressive melanoma. Recent work has provided an intriguing new link between the presence of supernumerary centrosomes and increased cell invasion. Moreover, supernumerary centrosomes were shown to drive non-cell-autonomous invasion of cancer cells. Although centrosomes are the principal microtubule organizing centers, the role of dynamic microtubules for non-cell-autonomous invasion remains unexplored, in particular, in melanoma. We investigated the role of supernumerary centrosomes and dynamic microtubules in melanoma cell invasion and found that highly invasive melanoma cells are characterized by the presence of supernumerary centrosomes and by increased microtubule growth rates, both of which are functionally interlinked. We demonstrate that enhanced microtubule growth is required for increased three-dimensional melanoma cell invasion. Moreover, we show that the activity to enhance microtubule growth can be transferred onto adjacent noninvasive cells through microvesicles involving HER2. Hence, our study suggests that suppressing microtubule growth, either directly using anti-microtubule drugs or through HER2 inhibitors might be therapeutically beneficial to inhibit cell invasiveness and thus, metastasis of malignant melanoma. Significance This study shows that increased microtubule growth is required for melanoma cell invasion and can be transferred onto adjacent cells in a non-cell-autonomous manner through microvesicles involving HER2.
Collapse
Affiliation(s)
- Karoline Pudelko
- Institute of Molecular Oncology, Section for Cellular Oncology, Georg-August University Göttingen, University Medical Center Göttingen (UMG) and Göttingen Center for Molecular Biosciences (GZMB), Göttingen, Germany
| | - Angela Wieland
- Department of Molecular Genetics, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Magdalena Hennecke
- Institute of Molecular Oncology, Section for Cellular Oncology, Georg-August University Göttingen, University Medical Center Göttingen (UMG) and Göttingen Center for Molecular Biosciences (GZMB), Göttingen, Germany
| | - Markus Räschle
- Department of Molecular Genetics, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Holger Bastians
- Institute of Molecular Oncology, Section for Cellular Oncology, Georg-August University Göttingen, University Medical Center Göttingen (UMG) and Göttingen Center for Molecular Biosciences (GZMB), Göttingen, Germany
| |
Collapse
|
31
|
Benderradji H, Kraiem S, Courty E, Eddarkaoui S, Bourouh C, Faivre E, Rolland L, Caron E, Besegher M, Oger F, Boschetti T, Carvalho K, Thiroux B, Gauvrit T, Nicolas E, Gomez-Murcia V, Bogdanova A, Bongiovanni A, Muhr-Tailleux A, Lancel S, Bantubungi K, Sergeant N, Annicotte JS, Buée L, Vieau D, Blum D, Buée-Scherrer V. Impaired Glucose Homeostasis in a Tau Knock-In Mouse Model. Front Mol Neurosci 2022; 15:841892. [PMID: 35250480 PMCID: PMC8889017 DOI: 10.3389/fnmol.2022.841892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is the leading cause of dementia. While impaired glucose homeostasis has been shown to increase AD risk and pathological loss of tau function, the latter has been suggested to contribute to the emergence of the glucose homeostasis alterations observed in AD patients. However, the links between tau impairments and glucose homeostasis, remain unclear. In this context, the present study aimed at investigating the metabolic phenotype of a new tau knock-in (KI) mouse model, expressing, at a physiological level, a human tau protein bearing the P301L mutation under the control of the endogenous mouse Mapt promoter. Metabolic investigations revealed that, while under chow diet tau KI mice do not exhibit significant metabolic impairments, male but not female tau KI animals under High-Fat Diet (HFD) exhibited higher insulinemia as well as glucose intolerance as compared to control littermates. Using immunofluorescence, tau protein was found colocalized with insulin in the β cells of pancreatic islets in both mouse (WT, KI) and human pancreas. Isolated islets from tau KI and tau knock-out mice exhibited impaired glucose-stimulated insulin secretion (GSIS), an effect recapitulated in the mouse pancreatic β-cell line (MIN6) following tau knock-down. Altogether, our data indicate that loss of tau function in tau KI mice and, particularly, dysfunction of pancreatic β cells might promote glucose homeostasis impairments and contribute to metabolic changes observed in AD.
Collapse
Affiliation(s)
- Hamza Benderradji
- Univ. Lille, Inserm, CHU Lille, U1172 LilNCog—Lille Neuroscience & Cognition, Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, Lille, France
| | - Sarra Kraiem
- Univ. Lille, Inserm, CHU Lille, U1172 LilNCog—Lille Neuroscience & Cognition, Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, Lille, France
| | - Emilie Courty
- Univ. Lille, INSERM, CNRS, CHU Lille, Institut Pasteur de Lille, Inserm U1283-UMR8199—EGID, Lille, France
| | - Sabiha Eddarkaoui
- Univ. Lille, Inserm, CHU Lille, U1172 LilNCog—Lille Neuroscience & Cognition, Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, Lille, France
| | - Cyril Bourouh
- Univ. Lille, INSERM, CNRS, CHU Lille, Institut Pasteur de Lille, Inserm U1283-UMR8199—EGID, Lille, France
| | - Emilie Faivre
- Univ. Lille, Inserm, CHU Lille, U1172 LilNCog—Lille Neuroscience & Cognition, Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, Lille, France
| | - Laure Rolland
- Univ. Lille, INSERM, CNRS, CHU Lille, Institut Pasteur de Lille, Inserm U1283-UMR8199—EGID, Lille, France
| | - Emilie Caron
- Univ. Lille, Inserm, CHU Lille, U1172 LilNCog—Lille Neuroscience & Cognition, Lille, France
- Development and Plasticity of the Neuroendocrine Brain, Lille, France
| | - Mélanie Besegher
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41—UMS 2014—PLBS, Animal Facility, Lille, France
| | - Frederik Oger
- Univ. Lille, INSERM, CNRS, CHU Lille, Institut Pasteur de Lille, Inserm U1283-UMR8199—EGID, Lille, France
| | - Theo Boschetti
- Univ. Lille, Inserm, CHU Lille, U1172 LilNCog—Lille Neuroscience & Cognition, Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, Lille, France
| | - Kévin Carvalho
- Univ. Lille, Inserm, CHU Lille, U1172 LilNCog—Lille Neuroscience & Cognition, Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, Lille, France
| | - Bryan Thiroux
- Univ. Lille, Inserm, CHU Lille, U1172 LilNCog—Lille Neuroscience & Cognition, Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, Lille, France
| | - Thibaut Gauvrit
- Univ. Lille, Inserm, CHU Lille, U1172 LilNCog—Lille Neuroscience & Cognition, Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, Lille, France
| | - Emilie Nicolas
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Victoria Gomez-Murcia
- Univ. Lille, Inserm, CHU Lille, U1172 LilNCog—Lille Neuroscience & Cognition, Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, Lille, France
| | - Anna Bogdanova
- Univ. Lille, Inserm, CHU Lille, U1172 LilNCog—Lille Neuroscience & Cognition, Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, Lille, France
| | - Antonino Bongiovanni
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41—UMS 2014—PLBS, BioImaging Center Lille, Lille, France
| | - Anne Muhr-Tailleux
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Steve Lancel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167—RID-AGE—Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Kadiombo Bantubungi
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Nicolas Sergeant
- Univ. Lille, Inserm, CHU Lille, U1172 LilNCog—Lille Neuroscience & Cognition, Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, Lille, France
| | - Jean-Sebastien Annicotte
- Univ. Lille, INSERM, CNRS, CHU Lille, Institut Pasteur de Lille, Inserm U1283-UMR8199—EGID, Lille, France
| | - Luc Buée
- Univ. Lille, Inserm, CHU Lille, U1172 LilNCog—Lille Neuroscience & Cognition, Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, Lille, France
| | - Didier Vieau
- Univ. Lille, Inserm, CHU Lille, U1172 LilNCog—Lille Neuroscience & Cognition, Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, Lille, France
| | - David Blum
- Univ. Lille, Inserm, CHU Lille, U1172 LilNCog—Lille Neuroscience & Cognition, Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, Lille, France
- *Correspondence: David Blum
| | - Valérie Buée-Scherrer
- Univ. Lille, Inserm, CHU Lille, U1172 LilNCog—Lille Neuroscience & Cognition, Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, Lille, France
| |
Collapse
|
32
|
Nanoconfinement of microvilli alters gene expression and boosts T cell activation. Proc Natl Acad Sci U S A 2021; 118:2107535118. [PMID: 34599101 DOI: 10.1073/pnas.2107535118] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 12/11/2022] Open
Abstract
T cells sense and respond to their local environment at the nanoscale by forming small actin-rich protrusions, called microvilli, which play critical roles in signaling and antigen recognition, particularly at the interface with the antigen presenting cells. However, the mechanism by which microvilli contribute to cell signaling and activation is largely unknown. Here, we present a tunable engineered system that promotes microvilli formation and T cell signaling via physical stimuli. We discovered that nanoporous surfaces favored microvilli formation and markedly altered gene expression in T cells and promoted their activation. Mechanistically, confinement of microvilli inside of nanopores leads to size-dependent sorting of membrane-anchored proteins, specifically segregating CD45 phosphatases and T cell receptors (TCR) from the tip of the protrusions when microvilli are confined in 200-nm pores but not in 400-nm pores. Consequently, formation of TCR nanoclustered hotspots within 200-nm pores allows sustained and augmented signaling that prompts T cell activation even in the absence of TCR agonists. The synergistic combination of mechanical and biochemical signals on porous surfaces presents a straightforward strategy to investigate the role of microvilli in T cell signaling as well as to boost T cell activation and expansion for application in the growing field of adoptive immunotherapy.
Collapse
|
33
|
Degrandmaison J, Grisé O, Parent JL, Gendron L. Differential barcoding of opioid receptors trafficking. J Neurosci Res 2021; 100:99-128. [PMID: 34559903 DOI: 10.1002/jnr.24949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 07/25/2021] [Accepted: 08/05/2021] [Indexed: 11/09/2022]
Abstract
Over the past several years, studies have highlighted the δ-opioid receptor (DOPr) as a promising therapeutic target for chronic pain management. While exhibiting milder undesired effects than most currently prescribed opioids, its specific agonists elicit effective analgesic responses in numerous animal models of chronic pain, including inflammatory, neuropathic, diabetic, and cancer-related pain. However, as compared with the extensively studied μ-opioid receptor, the molecular mechanisms governing its trafficking remain elusive. Recent advances have denoted several significant particularities in the regulation of DOPr intracellular routing, setting it apart from the other members of the opioid receptor family. Although they share high homology, each opioid receptor subtype displays specific amino acid patterns potentially involved in the regulation of its trafficking. These precise motifs or "barcodes" are selectively recognized by regulatory proteins and therefore dictate several aspects of the itinerary of a receptor, including its anterograde transport, internalization, recycling, and degradation. With a specific focus on the regulation of DOPr trafficking, this review will discuss previously reported, as well as potential novel trafficking barcodes within the opioid and nociceptin/orphanin FQ opioid peptide receptors, and their impact in determining distinct interactomes and physiological responses.
Collapse
Affiliation(s)
- Jade Degrandmaison
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Quebec Network of Junior Pain Investigators, QC, Canada
| | - Olivier Grisé
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Luc Parent
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Louis Gendron
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Quebec Pain Research Network, QC, Canada
| |
Collapse
|
34
|
Jayalath IM, Gerken MM, Mantel G, Hartley CS. Substituent Effects on Transient, Carbodiimide-Induced Geometry Changes in Diphenic Acids. J Org Chem 2021; 86:12024-12033. [PMID: 34409831 DOI: 10.1021/acs.joc.1c01385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Nucleotide-induced conformational changes in motor proteins are key to many important cell functions. Inspired by this biological behavior, we report a simple chemically fueled system that exhibits carbodiimide-induced geometry changes. Bridging via transient anhydride formation leads to a significant reduction of the twist about the biaryl bond of substituted diphenic acids, giving a simple molecular clamp. The kinetics are well-described by a simple mechanism, allowing structure-property effects to be determined. The kinetic parameters can be used to derive important characteristics of the system such as the efficiencies (anhydride yields), maximum anhydride concentrations, and overall lifetimes. Transient diphenic anhydrides tolerate steric hindrance ortho to the biaryl bond but are significantly affected by electronic effects, with electron-deficient substituents giving lower yields, peak conversions, and lifetimes. The results provide useful guidelines for the design of functional systems incorporating diphenic acid units.
Collapse
Affiliation(s)
- Isuru M Jayalath
- Department of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Madelyn M Gerken
- Department of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Georgia Mantel
- Department of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - C Scott Hartley
- Department of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
35
|
Abstract
The Golgi complex plays a central role in protein secretion by regulating cargo sorting and trafficking. As these processes are of functional importance to cell polarity, motility, growth, and division, there is considerable interest in achieving a comprehensive understanding of Golgi complex biology. However, the unique stack structure of this organelle has been a major hurdle to our understanding of how proteins are secreted through the Golgi apparatus. Herein, we summarize available relevant research to gain an understanding of protein secretion via the Golgi complex. This includes the molecular mechanisms of intra-Golgi trafficking and cargo export in the trans-Golgi network. Moreover, we review recent insights on signaling pathways regulated by the Golgi complex and their physiological significance.
Collapse
Affiliation(s)
- Kunyou Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Sungeun Ju
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Nari Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Seung-Yeol Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
36
|
Wu S, Lv L, Li L, Wang L, Mao B, Li J, Shen X, Ge R, Wong CKC, Sun F, Cheng CY. KIF15 supports spermatogenesis via its effects on Sertoli cell microtubule, actin, vimentin, and septin cytoskeletons. Endocrinology 2021; 162:6102572. [PMID: 33453102 PMCID: PMC7883770 DOI: 10.1210/endocr/bqab010] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Indexed: 01/09/2023]
Abstract
Throughout spermatogenesis, cellular cargoes including haploid spermatids are required to be transported across the seminiferous epithelium, either toward the microtubule (MT) plus (+) end near the basement membrane at stage V, or to the MT minus (-) end near the tubule lumen at stages VI to VIII of the epithelial cycle. Furthermore, preleptotene spermatocytes, differentiated from type B spermatogonia, are transported across the Sertoli cell blood-testis barrier (BTB) to enter the adluminal compartment. Few studies, however, have been conducted to explore the function of MT-dependent motor proteins to support spermatid transport during spermiogenesis. Herein, we examined the role of MT-dependent and microtubule plus (+) end-directed motor protein kinesin 15 (KIF15) in the testis. KIF15 displayed a stage-specific expression across the seminiferous epithelium, associated with MTs, and appeared as aggregates on the MT tracks that aligned perpendicular to the basement membrane and laid across the entire epithelium. KIF15 also tightly associated with apical ectoplasmic specialization, displaying strict stage-specific distribution, apparently to support spermatid transport across the epithelium. We used a loss-of-function approach by RNAi to examine the role of KIF15 in Sertoli cell epithelium in vitro to examine its role in cytoskeletal-dependent Sertoli cell function. It was noted that KIF15 knockdown by RNAi that reduced KIF15 expression by ~70% in Sertoli cells with an established functional tight junction barrier impeded the barrier function. This effect was mediated through remarkable changes in the cytoskeletal organization of MTs, but also actin-, vimentin-, and septin-based cytoskeletons, illustrating that KIF15 exerts its regulatory effects well beyond microtubules.
Collapse
Affiliation(s)
- Siwen Wu
- The Second Affiliated Hospital and Yuying Children’s Hospital, Department of Anesthesiology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Lixiu Lv
- The Second Affiliated Hospital and Yuying Children’s Hospital, Department of Anesthesiology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children’s Hospital, Department of Anesthesiology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lingling Wang
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - Baiping Mao
- The Second Affiliated Hospital and Yuying Children’s Hospital, Department of Anesthesiology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jun Li
- The Second Affiliated Hospital and Yuying Children’s Hospital, Department of Anesthesiology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xian Shen
- The Second Affiliated Hospital and Yuying Children’s Hospital, Department of Anesthesiology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Renshan Ge
- The Second Affiliated Hospital and Yuying Children’s Hospital, Department of Anesthesiology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chris K C Wong
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Fei Sun
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children’s Hospital, Department of Anesthesiology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
- Correspondence: C. Yan Cheng, Ph.D., Senior Scientist, The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, USA.
| |
Collapse
|
37
|
Zahavi EE, Hummel JJA, Han Y, Bar C, Stucchi R, Altelaar M, Hoogenraad CC. Combined kinesin-1 and kinesin-3 activity drives axonal trafficking of TrkB receptors in Rab6 carriers. Dev Cell 2021; 56:494-508.e7. [PMID: 33571451 PMCID: PMC7907685 DOI: 10.1016/j.devcel.2021.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 10/18/2020] [Accepted: 01/19/2021] [Indexed: 12/24/2022]
Abstract
Neurons depend on proper localization of neurotrophic receptors in their distal processes for their function. The Trk family of neurotrophin receptors controls neuronal survival, differentiation, and remodeling and are well known to function as retrograde signal carriers transported from the distal axon toward the cell body. However, the mechanism driving anterograde trafficking of Trk receptors into the axon is not well established. We used microfluidic compartmental devices and inducible secretion assay to systematically investigate the retrograde and anterograde trafficking routes of TrkB receptor along the axon in rat hippocampal neurons. We show that newly synthesized TrkB receptors traffic through the secretory pathway and are directly delivered into axon. We found that these TrkB carriers associate and are regulated by Rab6. Furthermore, the combined activity of kinesin-1 and kinesin-3 is needed for the formation of axon-bound TrkB secretory carriers and their effective entry and processive anterograde transport beyond the proximal axon.
Collapse
Affiliation(s)
- Eitan Erez Zahavi
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Jessica J A Hummel
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Yuhao Han
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Citlali Bar
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Riccardo Stucchi
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Casper C Hoogenraad
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands; Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
38
|
Moreno Y, Geary TG, Tritten L. When Secretomes Meet Anthelmintics: Lessons for Therapeutic Interventions. Trends Parasitol 2021; 37:468-475. [PMID: 33563557 DOI: 10.1016/j.pt.2021.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/17/2022]
Abstract
Helminth secretomes comprise many potential immunomodulators. The molecular and functional diversity of these entities and their importance at the host-parasite interface have been increasingly recognized. It is now common to hypothesize that parasite-derived molecules (PDMs) are essential mediators used by parasites to establish and remain in their hosts. Suppression of PDM release has been reported for two anthelmintic drug classes, the benzimidazoles and macrocyclic lactones, the mechanisms of action of which remain incompletely resolved. We propose that bringing together recent insights from different streams of parasitology research, for example, immunoparasitology and pharmacology, will stimulate the development of new ways to alter the host-parasite interface in the search for novel anthelmintic strategies.
Collapse
Affiliation(s)
- Yovany Moreno
- Boehringer-Ingelheim Animal Health, Duluth, GA, USA.
| | - Timothy G Geary
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, QC, Canada; School of Biological Sciences, Queen's University - Belfast, Belfast, UK
| | - Lucienne Tritten
- Institute of Parasitology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
39
|
Müller A, Schmidt D, Xu CS, Pang S, D’Costa JV, Kretschmar S, Münster C, Kurth T, Jug F, Weigert M, Hess HF, Solimena M. 3D FIB-SEM reconstruction of microtubule-organelle interaction in whole primary mouse β cells. J Cell Biol 2021; 220:e202010039. [PMID: 33326005 PMCID: PMC7748794 DOI: 10.1083/jcb.202010039] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/14/2020] [Accepted: 11/18/2020] [Indexed: 11/22/2022] Open
Abstract
Microtubules play a major role in intracellular trafficking of vesicles in endocrine cells. Detailed knowledge of microtubule organization and their relation to other cell constituents is crucial for understanding cell function. However, their role in insulin transport and secretion is under debate. Here, we use FIB-SEM to image islet β cells in their entirety with unprecedented resolution. We reconstruct mitochondria, Golgi apparati, centrioles, insulin secretory granules, and microtubules of seven β cells, and generate a comprehensive spatial map of microtubule-organelle interactions. We find that microtubules form nonradial networks that are predominantly not connected to either centrioles or endomembranes. Microtubule number and length, but not microtubule polymer density, vary with glucose stimulation. Furthermore, insulin secretory granules are enriched near the plasma membrane, where they associate with microtubules. In summary, we provide the first 3D reconstructions of complete microtubule networks in primary mammalian cells together with evidence regarding their importance for insulin secretory granule positioning and thus their supportive role in insulin secretion.
Collapse
Affiliation(s)
- Andreas Müller
- Molecular Diabetology, University Hospital and Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Deborah Schmidt
- Center for Systems Biology Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - C. Shan Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - Song Pang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - Joyson Verner D’Costa
- Molecular Diabetology, University Hospital and Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Susanne Kretschmar
- Center for Molecular and Cellular Bioengineering, Technology Platform, Technische Universität Dresden, Dresden, Germany
| | - Carla Münster
- Molecular Diabetology, University Hospital and Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Thomas Kurth
- Center for Molecular and Cellular Bioengineering, Technology Platform, Technische Universität Dresden, Dresden, Germany
| | - Florian Jug
- Center for Systems Biology Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Fondazione Human Technopole, Milano, Italy
| | - Martin Weigert
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Harald F. Hess
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - Michele Solimena
- Molecular Diabetology, University Hospital and Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
40
|
Collective Polarization of Cancer Cells at the Monolayer Boundary. MICROMACHINES 2021; 12:mi12020112. [PMID: 33499191 PMCID: PMC7912252 DOI: 10.3390/mi12020112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 02/08/2023]
Abstract
Cell polarization, a process depending on both intracellular and intercellular interactions, is crucial for collective cell migration that commonly emerges in embryonic development, tissue morphogenesis, wound healing and cancer metastasis. Although invasive cancer cells display weak cell-cell interactions, they can invade host tissues through a collective mode. Yet, how cancer cells without stable cell-cell junctions polarize collectively to migrate and invade is not fully understood. Here, using a wound-healing assay, we elucidate the polarization of carcinoma cells at the population level. We show that with loose intercellular connections, the highly polarized leader cells can induce the polarization of following cancer cells and subsequent transmission of polarity information by membrane protrusions, leading to gradient polarization at the monolayer boundary. Unlike the polarization of epithelial monolayer where Rac1/Cdc42 pathway functions primarily, our data show that collective polarization of carcinoma cells is predominantly controlled by Golgi apparatus, a disruption of which results in the destruction of collective polarization over a large scale. We reveal that the Golgi apparatus can sustain membrane protrusion formation, polarized secretion, intracellular trafficking, and F-actin polarization, which contribute to collective cancer cell polarization and its transmission between cells. These findings could advance our understanding of collective cancer invasion in tumors.
Collapse
|
41
|
Mutations in GDAP1 Influence Structure and Function of the Trans-Golgi Network. Int J Mol Sci 2021; 22:ijms22020914. [PMID: 33477664 PMCID: PMC7831947 DOI: 10.3390/ijms22020914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/04/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is a heritable neurodegenerative disease that displays great genetic heterogeneity. The genes and mutations that underlie this heterogeneity have been extensively characterized by molecular genetics. However, the molecular pathogenesis of the vast majority of CMT subtypes remains terra incognita. Any attempts to perform experimental therapy for CMT disease are limited by a lack of understanding of the pathogenesis at a molecular level. In this study, we aim to identify the molecular pathways that are disturbed by mutations in the gene encoding GDAP1 using both yeast and human cell, based models of CMT-GDAP1 disease. We found that some mutations in GDAP1 led to a reduced expression of the GDAP1 protein and resulted in a selective disruption of the Golgi apparatus. These structural alterations are accompanied by functional disturbances within the Golgi. We screened over 1500 drugs that are available on the market using our yeast-based CMT-GDAP1 model. Drugs were identified that had both positive and negative effects on cell phenotypes. To the best of our knowledge, this study is the first report of the Golgi apparatus playing a role in the pathology of CMT disorders. The drugs we identified, using our yeast-based CMT-GDAP1 model, may be further used in translational research.
Collapse
|
42
|
Wu S, Li H, Wang L, Mak N, Wu X, Ge R, Sun F, Cheng CY. Motor Proteins and Spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1288:131-159. [PMID: 34453735 DOI: 10.1007/978-3-030-77779-1_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Unlike the intermediate filament- and septin-based cytoskeletons which are apolar structures, the microtubule (MT) and actin cytoskeletons are polarized structures in mammalian cells and tissues including the testis, most notable in Sertoli cells. In the testis, these cytoskeletons that stretch across the epithelium of seminiferous tubules and lay perpendicular to the basement membrane of tunica propria serve as tracks for corresponding motor proteins to support cellular cargo transport. These cargoes include residual bodies, phagosomes, endocytic vesicles and most notably developing spermatocytes and haploid spermatids which lack the ultrastructures of motile cells (e.g., lamellipodia, filopodia). As such, these developing germ cells require the corresponding motor proteins to facilitate their transport across the seminiferous epithelium during the epithelial cycle of spermatogenesis. Due to the polarized natures of these cytoskeletons with distinctive plus (+) and minus (-) end, directional cargo transport can take place based on the use of corresponding actin- or MT-based motor proteins. These include the MT-based minus (-) end directed motor proteins: dyneins, and the plus (+) end directed motor proteins: kinesins, as well as the actin-based motor proteins: myosins, many of which are plus (+) end directed but a few are also minus (-) end directed motor proteins. Recent studies have shown that these motor proteins are essential to support spermatogenesis. In this review, we briefly summarize and evaluate these recent findings so that this information will serve as a helpful guide for future studies and for planning functional experiments to better understand their role mechanistically in supporting spermatogenesis.
Collapse
Affiliation(s)
- Siwen Wu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Huitao Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA.,Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - Nathan Mak
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Xiaolong Wu
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - Renshan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Zhejiang, China
| | - Fei Sun
- Sir Run Run Shaw Hospital (SRRSH), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - C Yan Cheng
- Sir Run Run Shaw Hospital (SRRSH), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
43
|
Wang H, Zhang H, Zhong Z, Sun Y, Wang M, Chen H, Zhou L, Cao L, Lian C, Li C. Molecular analyses of the gill symbiosis of the bathymodiolin mussel Gigantidas platifrons. iScience 2020; 24:101894. [PMID: 33364583 PMCID: PMC7750550 DOI: 10.1016/j.isci.2020.101894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/07/2020] [Accepted: 12/02/2020] [Indexed: 11/29/2022] Open
Abstract
Although the deep-sea bathymodiolin mussels have been intensively studied as a model of animal-bacteria symbiosis, it remains challenging to assess the host-symbiont interactions due to the complexity of the symbiotic tissue-the gill. Using cold-seep mussel Gigantidas platifrons as a model, we isolated the symbiont harboring bacteriocytes and profiled the transcriptomes of the three major parts of the symbiosis-the gill, the bacteriocyte, and the symbiont. This breakdown of the complex symbiotic tissue allowed us to characterize the host-symbiont interactions further. Our data showed that the gill's non-symbiotic parts play crucial roles in maintaining and protecting the symbiosis; the bacteriocytes supply the symbiont with metabolites, control symbiont population, and shelter the symbiont from phage infection; the symbiont dedicates to the methane oxidation and energy production. This study demonstrates that the bathymodiolin symbiosis interacts at the tissue, cellular, and molecular level, maintaining high efficiency and harmonic chemosynthetic micro niche.
Collapse
Affiliation(s)
- Hao Wang
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, P. R. China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, P. R. China
| | - Huan Zhang
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, P. R. China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, P. R. China
| | - Zhaoshan Zhong
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, P. R. China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, P. R. China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yan Sun
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, P. R. China.,Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P. R. China
| | - Minxiao Wang
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, P. R. China.,Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P. R. China
| | - Hao Chen
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, P. R. China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, P. R. China
| | - Li Zhou
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, P. R. China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, P. R. China
| | - Lei Cao
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, P. R. China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, P. R. China
| | - Chao Lian
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, P. R. China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, P. R. China
| | - Chaolun Li
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, P. R. China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, P. R. China.,Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P. R. China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
44
|
Phuyal S, Baschieri F. Endomembranes: Unsung Heroes of Mechanobiology? Front Bioeng Biotechnol 2020; 8:597721. [PMID: 33195167 PMCID: PMC7642594 DOI: 10.3389/fbioe.2020.597721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/05/2020] [Indexed: 12/18/2022] Open
Abstract
Mechanical stimuli have profound effects on the cellular architecture and functions. Over the past two decades, considerable progress has been made in unraveling the molecular machineries that confer cells the ability to sense and transduce mechanical input into biochemical signals. This has resulted in the identification of several force-sensing proteins or mechanically activated ion channels distributed throughout most cell types, whereby the plasma membrane, cytoskeleton, and the nucleus have garnered much attention. Although organelles from the endomembrane system make up significant portion of cell volume and play pivotal roles in the spatiotemporal distribution of signaling molecules, they have received surprisingly little attention in mechanobiology. In this mini-review, we summarize results that document participation of the endomembrane system in sensing and responding to mechanical cues.
Collapse
Affiliation(s)
- Santosh Phuyal
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Francesco Baschieri
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
45
|
Mendoza-Ferreira N, Karakaya M, Cengiz N, Beijer D, Brigatti KW, Gonzaga-Jauregui C, Fuhrmann N, Hölker I, Thelen MP, Zetzsche S, Rombo R, Puffenberger EG, De Jonghe P, Deconinck T, Zuchner S, Strauss KA, Carson V, Schrank B, Wunderlich G, Baets J, Wirth B. De Novo and Inherited Variants in GBF1 are Associated with Axonal Neuropathy Caused by Golgi Fragmentation. Am J Hum Genet 2020; 107:763-777. [PMID: 32937143 PMCID: PMC7491385 DOI: 10.1016/j.ajhg.2020.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/19/2020] [Indexed: 01/18/2023] Open
Abstract
Distal hereditary motor neuropathies (HMNs) and axonal Charcot-Marie-Tooth neuropathy (CMT2) are clinically and genetically heterogeneous diseases characterized primarily by motor neuron degeneration and distal weakness. The genetic cause for about half of the individuals affected by HMN/CMT2 remains unknown. Here, we report the identification of pathogenic variants in GBF1 (Golgi brefeldin A-resistant guanine nucleotide exchange factor 1) in four unrelated families with individuals affected by sporadic or dominant HMN/CMT2. Genomic sequencing analyses in seven affected individuals uncovered four distinct heterozygous GBF1 variants, two of which occurred de novo. Other known HMN/CMT2-implicated genes were excluded. Affected individuals show HMN/CMT2 with slowly progressive distal muscle weakness and musculoskeletal deformities. Electrophysiological studies confirmed axonal damage with chronic neurogenic changes. Three individuals had additional distal sensory loss. GBF1 encodes a guanine-nucleotide exchange factor that facilitates the activation of members of the ARF (ADP-ribosylation factor) family of small GTPases. GBF1 is mainly involved in the formation of coatomer protein complex (COPI) vesicles, maintenance and function of the Golgi apparatus, and mitochondria migration and positioning. We demonstrate that GBF1 is present in mouse spinal cord and muscle tissues and is particularly abundant in neuropathologically relevant sites, such as the motor neuron and the growth cone. Consistent with the described role of GBF1 in Golgi function and maintenance, we observed marked increase in Golgi fragmentation in primary fibroblasts derived from all affected individuals in this study. Our results not only reinforce the existing link between Golgi fragmentation and neurodegeneration but also demonstrate that pathogenic variants in GBF1 are associated with HMN/CMT2.
Collapse
|
46
|
Microtubule Organization in Striated Muscle Cells. Cells 2020; 9:cells9061395. [PMID: 32503326 PMCID: PMC7349303 DOI: 10.3390/cells9061395] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
Distinctly organized microtubule networks contribute to the function of differentiated cell types such as neurons, epithelial cells, skeletal myotubes, and cardiomyocytes. In striated (i.e., skeletal and cardiac) muscle cells, the nuclear envelope acts as the dominant microtubule-organizing center (MTOC) and the function of the centrosome—the canonical MTOC of mammalian cells—is attenuated, a common feature of differentiated cell types. We summarize the mechanisms known to underlie MTOC formation at the nuclear envelope, discuss the significance of the nuclear envelope MTOC for muscle function and cell cycle progression, and outline potential mechanisms of centrosome attenuation.
Collapse
|