1
|
Hu Y, Hu Q, Ansari M, Riemondy K, Pineda R, Sembrat J, Leme AS, Ngo K, Morgenthaler O, Ha K, Gao B, Janssen WJ, Basil MC, Kliment CR, Morrisey E, Lehmann M, Evans CM, Schiller HB, Königshoff M. Airway-derived emphysema-specific alveolar type II cells exhibit impaired regenerative potential in COPD. Eur Respir J 2024; 64:2302071. [PMID: 39147413 PMCID: PMC11618816 DOI: 10.1183/13993003.02071-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 07/25/2024] [Indexed: 08/17/2024]
Abstract
Emphysema, the progressive destruction of gas exchange surfaces in the lungs, is a hallmark of COPD that is presently incurable. This therapeutic gap is largely due to a poor understanding of potential drivers of impaired tissue regeneration, such as abnormal lung epithelial progenitor cells, including alveolar type II (ATII) and airway club cells. We discovered an emphysema-specific subpopulation of ATII cells located in enlarged distal alveolar sacs, termed asATII cells. Single-cell RNA sequencing and in situ localisation revealed that asATII cells co-express the alveolar marker surfactant protein C and the club cell marker secretaglobin-3A2 (SCGB3A2). A similar ATII subpopulation derived from club cells was also identified in mouse COPD models using lineage labelling. Human and mouse ATII subpopulations formed 80-90% fewer alveolar organoids than healthy controls, indicating reduced progenitor function. Targeting asATII cells or their progenitor club cells could reveal novel COPD treatment strategies.
Collapse
Affiliation(s)
- Yan Hu
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Qianjiang Hu
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Meshal Ansari
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Kent Riemondy
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ricardo Pineda
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - John Sembrat
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adriana S Leme
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kenny Ngo
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Olivia Morgenthaler
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kellie Ha
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Bifeng Gao
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Maria C Basil
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Corrine R Kliment
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Edward Morrisey
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mareike Lehmann
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- Institute for Lung Research, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Christopher M Evans
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- Co-senior authors
| | - Herbert B Schiller
- Research Unit Precision Regenerative Medicine (PRM), Helmholtz Munich, Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research (DZL), Munich, Germany
- Co-senior authors
| | - Melanie Königshoff
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research Education and Clinical Center (GRECC) at the VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
- Co-senior authors
| |
Collapse
|
2
|
An Z, Liu G, Shen L, Qi Y, Hu Q, Song J, Li J, Du J, Bai Y, Wu W. Mitochondrial dysfunction induced by ambient fine particulate matter and potential mechanisms. ENVIRONMENTAL RESEARCH 2024; 262:119930. [PMID: 39237017 DOI: 10.1016/j.envres.2024.119930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/07/2024]
Abstract
Air pollution is one of the major environmental threats contributing to the global burden of disease. Among diverse air pollutants, fine particulate matter (PM2.5) poses a significant adverse health impact and causes multi-system damage. As a highly dynamic organelle, mitochondria are essential for cellular energy metabolism and vital for cellular homeostasis and body fitness. Moreover, mitochondria are vulnerable to external insults and common targets for PM2.5-induced cellular damage. The resultant impairment of mitochondrial structure and function initiates the pathogenesis of diverse human diseases. This review mainly summarizes the in vivo and in vitro findings of PM2.5-induced mitochondrial dysfunction and its implication in PM2.5-induced health effects. Furthermore, recent advances toward the underlying mechanisms of PM2.5 and its components-induced mitochondrial dysfunction are also discussed, with an attempt to provide insights into the toxicity of PM2.5 and basic information for devising appropriate intervention strategies.
Collapse
Affiliation(s)
- Zhen An
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Guangyong Liu
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Lingling Shen
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yongmei Qi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Qinan Hu
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Jie Song
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Juan Li
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jinge Du
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yichun Bai
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Weidong Wu
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
3
|
Sui J, Xiao H, Mbaekwe U, Ting NC, Murday K, Hu Q, Gregory AD, Kapellos TS, Yildirim AÖ, Königshoff M, Zhang Y, Sciurba F, Das J, Kliment CR. Interpretable machine learning uncovers epithelial transcriptional rewiring and a role for Gelsolin in COPD. JCI Insight 2024; 9:e180239. [PMID: 39352744 PMCID: PMC11601586 DOI: 10.1172/jci.insight.180239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 09/23/2024] [Indexed: 11/09/2024] Open
Abstract
Transcriptomic analyses have advanced the understanding of complex disease pathophysiology including chronic obstructive pulmonary disease (COPD). However, identifying relevant biologic causative factors has been limited by the integration of high dimensionality data. COPD is characterized by lung destruction and inflammation, with smoke exposure being a major risk factor. To define previously unknown biological mechanisms in COPD, we utilized unsupervised and supervised interpretable machine learning analyses of single-cell RNA-Seq data from the mouse smoke-exposure model to identify significant latent factors (context-specific coexpression modules) impacting pathophysiology. The machine learning transcriptomic signatures coupled to protein networks uncovered a reduction in network complexity and new biological alterations in actin-associated gelsolin (GSN), which was transcriptionally linked to disease state. GSN was altered in airway epithelial cells in the mouse model and in human COPD. GSN was increased in plasma from patients with COPD, and smoke exposure resulted in enhanced GSN release from airway cells from patients with COPD. This method provides insights into rewiring of transcriptional networks that are associated with COPD pathogenesis and provides a translational analytical platform for other diseases.
Collapse
Affiliation(s)
- Justin Sui
- Division of Pulmonary, Allergy and Critical Care Medicine
- Department of Cellular and Molecular Pathology, and
| | - Hanxi Xiao
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ugonna Mbaekwe
- Division of Pulmonary, Allergy and Critical Care Medicine
- Department of Cellular and Molecular Pathology, and
| | - Nai-Chun Ting
- Division of Pulmonary, Allergy and Critical Care Medicine
| | - Kaley Murday
- Division of Pulmonary, Allergy and Critical Care Medicine
| | - Qianjiang Hu
- Division of Pulmonary, Allergy and Critical Care Medicine
| | | | - Theodore S. Kapellos
- Institute of Lung Health and Immunity, Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Institute of Experimental Pneumology, University Hospital, Ludwig Maximilians University (LMU) of Munich, Munich, Germany
| | - Ali Öender Yildirim
- Institute of Lung Health and Immunity, Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Institute of Experimental Pneumology, University Hospital, Ludwig Maximilians University (LMU) of Munich, Munich, Germany
| | - Melanie Königshoff
- Division of Pulmonary, Allergy and Critical Care Medicine
- Geriatric Research Education and Clinical Center (GRECC) at the VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine
| | - Frank Sciurba
- Division of Pulmonary, Allergy and Critical Care Medicine
| | - Jishnu Das
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Corrine R. Kliment
- Division of Pulmonary, Allergy and Critical Care Medicine
- Department of Cellular and Molecular Pathology, and
| |
Collapse
|
4
|
Pan T, Yang B, Yao S, Wang R, Zhu Y. Exploring the multifaceted role of adenosine nucleotide translocase 2 in cellular and disease processes: A comprehensive review. Life Sci 2024; 351:122802. [PMID: 38857656 DOI: 10.1016/j.lfs.2024.122802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/04/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Adenosine nucleotide translocases (ANTs) are a family of proteins abundant in the inner mitochondrial membrane, primarily responsible for shuttling ADP and ATP across the mitochondrial membrane. Additionally, ANTs are key players in balancing mitochondrial energy metabolism and regulating cell death. ANT2 isoform, highly expressed in undifferentiated and proliferating cells, is implicated in the development and drug resistance of various tumors. We conduct a detailed analysis of the potential mechanisms by which ANT2 may influence tumorigenesis and drug resistance. Notably, the significance of ANT2 extends beyond oncology, with roles in non-tumor cell processes including blood cell development, gastrointestinal motility, airway hydration, nonalcoholic fatty liver disease, obesity, chronic kidney disease, and myocardial development, making it a promising therapeutic target for multiple pathologies. To better understand the molecular mechanisms of ANT2, this review summarizes the structural properties, expression patterns, and basic functions of the ANT2 protein. In particular, we review and analyze the controversy surrounding ANT2, focusing on its role in transporting ADP/ATP across the inner mitochondrial membrane, its involvement in the composition of the mitochondrial permeability transition pore, and its participation in apoptosis.
Collapse
Affiliation(s)
- Tianhui Pan
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
| | - Bin Yang
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
| | - Sheng Yao
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
| | - Rui Wang
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
| | - Yongliang Zhu
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China.
| |
Collapse
|
5
|
Lagowala DA, Wally A, Wilmsen K, Kim B, Yeung-Luk B, Choi JS, Swaby C, Luk M, Feller L, Ghosh B, Niederkofler A, Tieng E, Sherman E, Chen D, Upadya N, Zhang R, Kim DH, Sidhaye V. Microphysiological Models of Lung Epithelium-Alveolar Macrophage Co-Cultures to Study Chronic Lung Disease. Adv Biol (Weinh) 2024; 8:e2300165. [PMID: 37840439 DOI: 10.1002/adbi.202300165] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/06/2023] [Indexed: 10/17/2023]
Abstract
The interactions between immune cells and epithelial cells influence the progression of many respiratory diseases, such as chronic obstructive pulmonary disease (COPD). In vitro models allow for the examination of cells in controlled environments. However, these models lack the complex 3D architecture and vast multicellular interactions between the lung resident cells and infiltrating immune cells that can mediate cellular response to insults. In this study, three complementary microphysiological systems are presented to delineate the effects of cigarette smoke and respiratory disease on the lung epithelium. First, the Transwell system allows the co-culture of pulmonary immune and epithelial cells to evaluate cellular and monolayer phenotypic changes in response to cigarette smoke exposure. Next, the human and mouse precision-cut lung slices system provides a physiologically relevant model to study the effects of chronic insults like cigarette smoke with the dissection of specific interaction of immune cell subtypes within the structurally complex tissue environment. Finally, the lung-on-a-chip model provides an adaptable system for live imaging of polarized epithelial tissues that mimic the in vivo environment of the airways. Using a combination of these models, a complementary approach is provided to better address the intricate mechanisms of lung disease.
Collapse
Affiliation(s)
- Dave A Lagowala
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Arabelis Wally
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kai Wilmsen
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Byunggik Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Bonnie Yeung-Luk
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Jong Seob Choi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Carter Swaby
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Matthew Luk
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Laine Feller
- Department of Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Baishakhi Ghosh
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Austin Niederkofler
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ethan Tieng
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ethan Sherman
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Daniel Chen
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Nisha Upadya
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Rachel Zhang
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Deok-Ho Kim
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Venkataramana Sidhaye
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
6
|
Chen Y, Huang J, Li Y, Chen Y, Gong Z, Xu M, Ma Y, Hu D, Peng X, Xu G, Cai S, Liu L, Zhao W, Zhao H. Bongkrekic acid alleviates airway inflammation via breaking the mPTP/mtDAMPs/RAGE feedback loop in a steroid-insensitive asthma model. Biomed Pharmacother 2024; 177:117111. [PMID: 39013220 DOI: 10.1016/j.biopha.2024.117111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/18/2024] Open
Abstract
Mitochondrial dysfunction is critical in the pathogenesis of asthma. Mitochondrial permeability transition pore (mPTP) regulates the release of mitochondrial damage-associated molecular patterns (mtDAMPs) to maintain mitochondrial homeostasis. Bongkrekic acid (BKA) is a highly selective inhibitor of mPTP opening, participates the progression of various diseases. This research investigated the exact roles of BKA and mPTP in the pathogenesis of asthma and elucidated its underlying mechanisms. In the present study, cytochrome c, one of the mtDAMPs, levels were elevated in asthmatic patients, and associated to airway inflammation and airway obstruction. BKA, the inhibitor of mPTP markedly reversed TDI-induced airway hyperresponsiveness, airway inflammation, and mitochondrial dysfunction. Pretreatment with mitochondrial precipitation, to simulate the release of mtDAMPs, further increased TDI-induced airway inflammation and the expression of RAGE in mice. Administration of the inhibitor of RAGE, FPS-ZM1, alleviated the airway inflammation, the abnormal open of mPTP and mitochondrial dysfunction induced by mtDAMPs and TDI. Furthermore, stimulation with different mtDAMPs activated RAGE signaling in human bronchial epithelial cells. Accordingly, our study indicated that mPTP was important and BKA was efficient in alleviating inflammation in TDI-induced asthma. A positive feedback loop involving mPTP, mtDAMPs and RAGE was present in TDI-induced asthma, indicating that mPTP might serve as a potential therapeutic target for asthma.
Collapse
Affiliation(s)
- Ying Chen
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Junwen Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuemao Li
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yaoxin Chen
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhaoqian Gong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Maosheng Xu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanyan Ma
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dapeng Hu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xianru Peng
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Guilin Xu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Laiyu Liu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wenqu Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Haijin Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
7
|
Permyakova A, Hamad S, Hinden L, Baraghithy S, Kogot-Levin A, Yosef O, Shalev O, Tripathi MK, Amal H, Basu A, Arif M, Cinar R, Kunos G, Berger M, Leibowitz G, Tam J. Renal Mitochondrial ATP Transporter Ablation Ameliorates Obesity-Induced CKD. J Am Soc Nephrol 2024; 35:281-298. [PMID: 38200648 PMCID: PMC10914206 DOI: 10.1681/asn.0000000000000294] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
SIGNIFICANCE STATEMENT This study sheds light on the central role of adenine nucleotide translocase 2 (ANT2) in the pathogenesis of obesity-induced CKD. Our data demonstrate that ANT2 depletion in renal proximal tubule cells (RPTCs) leads to a shift in their primary metabolic program from fatty acid oxidation to aerobic glycolysis, resulting in mitochondrial protection, cellular survival, and preservation of renal function. These findings provide new insights into the underlying mechanisms of obesity-induced CKD and have the potential to be translated toward the development of targeted therapeutic strategies for this debilitating condition. BACKGROUND The impairment in ATP production and transport in RPTCs has been linked to the pathogenesis of obesity-induced CKD. This condition is characterized by kidney dysfunction, inflammation, lipotoxicity, and fibrosis. In this study, we investigated the role of ANT2, which serves as the primary regulator of cellular ATP content in RPTCs, in the development of obesity-induced CKD. METHODS We generated RPTC-specific ANT2 knockout ( RPTC-ANT2-/- ) mice, which were then subjected to a 24-week high-fat diet-feeding regimen. We conducted comprehensive assessment of renal morphology, function, and metabolic alterations of these mice. In addition, we used large-scale transcriptomics, proteomics, and metabolomics analyses to gain insights into the role of ANT2 in regulating mitochondrial function, RPTC physiology, and overall renal health. RESULTS Our findings revealed that obese RPTC-ANT2-/- mice displayed preserved renal morphology and function, along with a notable absence of kidney lipotoxicity and fibrosis. The depletion of Ant2 in RPTCs led to a fundamental rewiring of their primary metabolic program. Specifically, these cells shifted from oxidizing fatty acids as their primary energy source to favoring aerobic glycolysis, a phenomenon mediated by the testis-selective Ant4. CONCLUSIONS We propose a significant role for RPTC-Ant2 in the development of obesity-induced CKD. The nullification of RPTC-Ant2 triggers a cascade of cellular mechanisms, including mitochondrial protection, enhanced RPTC survival, and ultimately the preservation of kidney function. These findings shed new light on the complex metabolic pathways contributing to CKD development and suggest potential therapeutic targets for this condition.
Collapse
Affiliation(s)
- Anna Permyakova
- Obesity and Metabolism Laboratory, Faculty of Medicine, School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sharleen Hamad
- Obesity and Metabolism Laboratory, Faculty of Medicine, School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Liad Hinden
- Obesity and Metabolism Laboratory, Faculty of Medicine, School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Saja Baraghithy
- Obesity and Metabolism Laboratory, Faculty of Medicine, School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aviram Kogot-Levin
- Diabetes Unit and Endocrine Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Omri Yosef
- The Lautenberg Center for Immunology and Cancer Research, Faculty of Medicine, Israel-Canada Medical Research Institute, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ori Shalev
- Metabolomics Center, Core Research Facility, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Manish Kumar Tripathi
- The Laboratory of Neuromics, Cell Signaling and Translational Medicine, Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Haitham Amal
- The Laboratory of Neuromics, Cell Signaling and Translational Medicine, Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Abhishek Basu
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Muhammad Arif
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Resat Cinar
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Michael Berger
- The Lautenberg Center for Immunology and Cancer Research, Faculty of Medicine, Israel-Canada Medical Research Institute, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gil Leibowitz
- Diabetes Unit and Endocrine Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Joseph Tam
- Obesity and Metabolism Laboratory, Faculty of Medicine, School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
8
|
Castaneda DC, Jangra S, Yurieva M, Martinek J, Callender M, Coxe M, Choi A, García-Bernalt Diego J, Wu TC, Marches F, Chaussabel D, García-Sastre A, Schotsaert M, Williams A, Palucka K. Protocol for establishing primary human lung organoid-derived air-liquid interface cultures from cryopreserved human lung tissue. STAR Protoc 2023; 4:102735. [PMID: 37991921 PMCID: PMC10696416 DOI: 10.1016/j.xpro.2023.102735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/12/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023] Open
Abstract
Primary human lung organoid-derived air-liquid interface (ALI) cultures serve as a physiologically relevant model to study human airway epithelium in vitro. Here, we present a protocol for establishing these cultures from cryopreserved human lung tissue. We describe steps for lung tissue cryostorage, tissue dissociation, lung epithelial organoid generation, and ALI culture differentiation. We also include quality control steps and technical readouts for monitoring virus response. This protocol demonstrates severe acute respiratory syndrome coronavirus 2 infection in these cultures as an example of their utility. For complete details on the use and execution of this protocol, please refer to Diana Cadena Castaneda et al. (2023).1.
Collapse
Affiliation(s)
| | - Sonia Jangra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marina Yurieva
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Jan Martinek
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Megan Callender
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Matthew Coxe
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Angela Choi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Juan García-Bernalt Diego
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Te-Chia Wu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | | | - Damien Chaussabel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adam Williams
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.
| | - Karolina Palucka
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.
| |
Collapse
|
9
|
Mishra G, Coyne LP, Chen XJ. Adenine nucleotide carrier protein dysfunction in human disease. IUBMB Life 2023; 75:911-925. [PMID: 37449547 PMCID: PMC10592433 DOI: 10.1002/iub.2767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023]
Abstract
Adenine nucleotide translocase (ANT) is the prototypical member of the mitochondrial carrier protein family, primarily involved in ADP/ATP exchange across the inner mitochondrial membrane. Several carrier proteins evolutionarily related to ANT, including SLC25A24 and SLC25A25, are believed to promote the exchange of cytosolic ATP-Mg2+ with phosphate in the mitochondrial matrix. They allow a net accumulation of adenine nucleotides inside mitochondria, which is essential for mitochondrial biogenesis and cell growth. In the last two decades, mutations in the heart/muscle isoform 1 of ANT (ANT1) and the ATP-Mg2+ transporters have been found to cause a wide spectrum of human diseases by a recessive or dominant mechanism. Although loss-of-function recessive mutations cause a defect in oxidative phosphorylation and an increase in oxidative stress which drives the pathology, it is unclear how the dominant missense mutations in these proteins cause human diseases. In this review, we focus on how yeast was productively used as a model system for the understanding of these dominant diseases. We also describe the relationship between the structure and function of ANT and how this may relate to various pathologies. Particularly, mutations in Aac2, the yeast homolog of ANT, were recently found to clog the mitochondrial protein import pathway. This leads to mitochondrial precursor overaccumulation stress (mPOS), characterized by the toxic accumulation of unimported mitochondrial proteins in the cytosol. We anticipate that in coming years, yeast will continue to serve as a useful model system for the mechanistic understanding of mitochondrial protein import clogging and related pathologies in humans.
Collapse
Affiliation(s)
- Gargi Mishra
- Department of Biochemistry and Molecular Biology, Norton College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Liam P Coyne
- Department of Biochemistry and Molecular Biology, Norton College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Xin Jie Chen
- Department of Biochemistry and Molecular Biology, Norton College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
10
|
Sui J, Boatz JC, Shi J, Hu Q, Li X, Zhang Y, Königshoff M, Kliment CR. Loss of ANT1 Increases Fibrosis and Epithelial Cell Senescence in Idiopathic Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2023; 69:556-569. [PMID: 37487137 PMCID: PMC10633847 DOI: 10.1165/rcmb.2022-0315oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 07/24/2023] [Indexed: 07/26/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by progressive lung scarring and remodeling. Although treatments exist that slow disease progression, IPF is irreversible, and there is no cure. Cellular senescence, a major hallmark of aging, has been implicated in IPF pathogenesis, and mitochondrial dysfunction is increasingly recognized as a driver of senescence. Adenine nucleotide translocases (ANTs) are abundant mitochondrial ATP-ADP transporters critical for regulating cell fate and maintaining mitochondrial function. We sought to determine how alterations in ANTs influence cellular senescence in pulmonary fibrosis. We found that SLC25A4 (solute carrier family 25 member 4) (ANT1) and SLC25A5 (ANT2) expression is reduced in the lungs of patients with IPF, particularly within alveolar type II (AT2) cells, by single-cell RNA sequencing and tissue staining. Loss of ANT1 by siRNA in lung epithelial cells resulted in increased senescence markers such as β-galactosidase and p21, with a reduction in the ratio of nicotinamide adenine dinucleotide to reduced nicotinamide adenine dinucleotide. Bleomycin-treated ANT1 knockdown cells also had increased senescence markers compared with bleomycin-treated control cells. Loss of ANT1 in AT2 cells resulted in a reduction in alveolar organoid growth, with an increase in p21 by staining. Global loss of ANT1 resulted in worse lung fibrosis and increased senescence in the bleomycin- and asbestos-induced mouse models of pulmonary fibrosis. In summary, loss of ANT1 contributes to IPF pathogenesis through mitochondrial dysfunction, increased senescence, and decreased regenerative capacity of AT2 cells, resulting in enhanced lung fibrosis. Modulation of ANTs presents a new therapeutic avenue that may alter cellular senescence pathways and limit pulmonary fibrosis.
Collapse
Affiliation(s)
- Justin Sui
- Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jennifer C Boatz
- Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jian Shi
- Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Qianjiang Hu
- Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xiaoyun Li
- Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yingze Zhang
- Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Melanie Königshoff
- Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Corrine R Kliment
- Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
11
|
Ghosh B, Chengala PP, Shah S, Chen D, Karnam V, Wilmsen K, Yeung-Luk B, Sidhaye VK. Cigarette smoke-induced injury induces distinct sex-specific transcriptional signatures in mice tracheal epithelial cells. Am J Physiol Lung Cell Mol Physiol 2023; 325:L467-L476. [PMID: 37605829 PMCID: PMC10639008 DOI: 10.1152/ajplung.00104.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023] Open
Abstract
The airway epithelial barrier is crucial for defending against respiratory insults and diseases. Disruption of epithelial integrity contributes to respiratory diseases, and sex-specific differences in susceptibility and severity have been observed. However, sex-specific differences in the context of respiratory diseases are often overlooked, especially in murine models. In this study, we investigated the in vitro transcriptomics of male and female murine tracheal epithelial cells (mTECs) in response to chronic cigarette smoke (CS) exposure using an International Organization for Standardization (ISO) puff regimen. Our findings reveal sex-specific differences in the baseline characteristics of airway epithelial cells. Female mTECs demonstrated stronger barrier function and higher ciliary function compared with males. The barrier function was disrupted in both males and females following chronic CS, but the difference was more significant in females due to their higher baseline. Female mice exhibited transcriptional signatures suggesting dedifferentiation with increased basal cells and markers of cellular senescence. Pathway analysis indicated potential protective roles of planar cell polarity (PCP) in preventing dedifferentiation in male mice exposed to CS. We also observed sex-specific differences in the DNA damage response and antioxidant levels, suggesting distinct mechanisms underlying cellular stress. Understanding these sex-specific mechanisms could facilitate the development of targeted therapeutic strategies for lung diseases associated with environmental insults. Recognizing sex-based differences in disease susceptibility and treatment response can lead to personalized care and improved outcomes. Clinical trials should consider sex as a biological variable to develop effective interventions that address the unique differences between men and women in respiratory diseases.NEW & NOTEWORTHY The study underscores the importance of considering sex-specific differences in the airway epithelium in respiratory diseases such as COPD. Differences in gene expression between males and females at baseline and in response to chronic injury in the airway epithelium could have implications on disease susceptibility, both in COPD and other respiratory diseases. Therefore, understanding these differences is crucial for developing targeted therapies to treat respiratory diseases based on a sex-specific manner.
Collapse
Affiliation(s)
- Baishakhi Ghosh
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Pratulya Pragadaraju Chengala
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Sonya Shah
- Zanvyl Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland, United States
| | - Daniel Chen
- Zanvyl Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland, United States
| | - Vaishnavi Karnam
- Zanvyl Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland, United States
| | - Kai Wilmsen
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Bonnie Yeung-Luk
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Venkataramana K Sidhaye
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
12
|
Yeung-Luk BH, Narayanan GA, Ghosh B, Wally A, Lee E, Mokaya M, Wankhade E, Zhang R, Lee B, Park B, Resnick J, Jedlicka A, Dziedzic A, Ramanathan M, Biswal S, Pekosz A, Sidhaye VK. SARS-CoV-2 infection alters mitochondrial and cytoskeletal function in human respiratory epithelial cells mediated by expression of spike protein. mBio 2023; 14:e0082023. [PMID: 37504520 PMCID: PMC10470579 DOI: 10.1128/mbio.00820-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/10/2023] [Indexed: 07/29/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, SCV2), which has resulted in higher morbidity and mortality rate than other respiratory viral infections, such as Influenza A virus (IAV) infection. Investigating the molecular mechanisms of SCV2-host infection vs IAV is vital in exploring antiviral drug targets against SCV2. We assessed differential gene expression in human nasal cells upon SCV2 or IAV infection using RNA sequencing. Compared to IAV, we observed alterations in both metabolic and cytoskeletal pathways suggestive of epithelial remodeling in the SCV2-infected cells, reminiscent of pathways activated as a response to chronic injury. We found that spike protein interaction with the epithelium was sufficient to instigate these epithelial responses using a SCV2 spike pseudovirus. Specifically, we found downregulation of the mitochondrial markers SIRT3 and TOMM22. Moreover, SCV2 spike infection increased extracellular acidification and decreased oxygen consumption rate in the epithelium. In addition, we observed cytoskeletal rearrangements with a reduction in the actin-severing protein cofilin-1 and an increase in polymerized actin, indicating epithelial cytoskeletal rearrangements. This study revealed distinct epithelial responses to SCV2 infection, with early mitochondrial dysfunction in the host cells and evidence of cytoskeletal remodeling that could contribute to the worsened outcome in COVID-19 patients compared to IAV patients. These changes in cell structure and energetics could contribute to cellular resilience early during infection, allowing for prolonged cell survival and potentially paving the way for more chronic symptoms. IMPORTANCE COVID-19 has caused a global pandemic affecting millions of people worldwide, resulting in a higher mortality rate and concerns of more persistent symptoms compared to influenza A. To study this, we compare lung epithelial responses to both viruses. Interestingly, we found that in response to SARS-CoV-2 infection, the cellular energetics changed and there were cell structural rearrangements. These changes in cell structure could lead to prolonged epithelial cell survival, even in the face of not working well, potentially contributing to the development of chronic symptoms. In summary, these findings represent strategies utilized by the cell to survive the infection but result in a fundamental shift in the epithelial phenotype, with potential long-term consequences, which could set the stage for the development of chronic lung disease or long COVID-19.
Collapse
Affiliation(s)
- Bonnie H. Yeung-Luk
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | - Baishakhi Ghosh
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Ara Wally
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Esther Lee
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Michelle Mokaya
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Esha Wankhade
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Rachel Zhang
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Brianna Lee
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Bongsoo Park
- Epigenetics and Stem Cell Aging, National Institute of Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Jessica Resnick
- W. Harry Feinstone Department of Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Anne Jedlicka
- W. Harry Feinstone Department of Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Amanda Dziedzic
- W. Harry Feinstone Department of Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Murugappan Ramanathan
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Outpatient Center, Baltimore, Maryland, USA
| | - Shyam Biswal
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Venkataramana K. Sidhaye
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Chang YW, Tony Yang T, Chen MC, Liaw YG, Yin CF, Lin-Yan XQ, Huang TY, Hou JT, Hung YH, Hsu CL, Huang HC, Juan HF. Spatial and temporal dynamics of ATP synthase from mitochondria toward the cell surface. Commun Biol 2023; 6:427. [PMID: 37072500 PMCID: PMC10113393 DOI: 10.1038/s42003-023-04785-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/30/2023] [Indexed: 04/20/2023] Open
Abstract
Ectopic ATP synthase complex (eATP synthase), located on cancer cell surface, has been reported to possess catalytic activity that facilitates the generation of ATP in the extracellular environment to establish a suitable microenvironment and to be a potential target for cancer therapy. However, the mechanism of intracellular ATP synthase complex transport remains unclear. Using a combination of spatial proteomics, interaction proteomics, and transcriptomics analyses, we find ATP synthase complex is first assembled in the mitochondria and subsequently delivered to the cell surface along the microtubule via the interplay of dynamin-related protein 1 (DRP1) and kinesin family member 5B (KIF5B). We further demonstrate that the mitochondrial membrane fuses to the plasma membrane in turn to anchor ATP syntheses on the cell surface using super-resolution imaging and real-time fusion assay in live cells. Our results provide a blueprint of eATP synthase trafficking and contribute to the understanding of the dynamics of tumor progression.
Collapse
Grants
- 109-2221-E-010-012-MY3 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- MOST 109-2221-E-010-011-MY3 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- MOST 109-2327-B-006-004 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- MOST 109-2320-B-002-017-MY3 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- MOST 109-2221-E-002-161-MY3 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- NTU-110L8808 Ministry of Education (Ministry of Education, Republic of China (Taiwan))
- NTU-CC-109L104702-2 Ministry of Education (Ministry of Education, Republic of China (Taiwan))
- NTU-110L7103 Ministry of Education (Ministry of Education, Republic of China (Taiwan))
- NTU-111L7107 Ministry of Education (Ministry of Education, Republic of China (Taiwan))
- NTU-CC-112L892102 Ministry of Education (Ministry of Education, Republic of China (Taiwan))
Collapse
Affiliation(s)
- Yi-Wen Chang
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106, Taiwan
| | - T Tony Yang
- Department of Electrical Engineering, National Taiwan University, Taipei, 106, Taiwan
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 106, Taiwan
| | - Min-Chun Chen
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Y-Geh Liaw
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Chieh-Fan Yin
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Xiu-Qi Lin-Yan
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Ting-Yu Huang
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Jen-Tzu Hou
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Yi-Hsuan Hung
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Chia-Lang Hsu
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| | - Hsueh-Fen Juan
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106, Taiwan.
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 106, Taiwan.
- Center for Computational and Systems Biology, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
14
|
Ghosh B, Loube J, Thapa S, Ryan H, Capodanno E, Chen D, Swaby C, Chen S, Mahmud S, Girgis M, Nishida K, Ying L, Chengala PP, Tieng E, Burnim M, Wally A, Bhowmik D, Zaykaner M, Yeung-Luk B, Mitzner W, Biswal S, Sidhaye VK. Loss of E-cadherin is causal to pathologic changes in chronic lung disease. Commun Biol 2022; 5:1149. [PMID: 36309587 PMCID: PMC9617938 DOI: 10.1038/s42003-022-04150-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 10/21/2022] [Indexed: 11/10/2022] Open
Abstract
Epithelial cells line the lung mucosal surface and are the first line of defense against toxic exposures to environmental insults, and their integrity is critical to lung health. An early finding in the lung epithelium of patients with chronic obstructive pulmonary disease (COPD) is the loss of a key component of the adherens junction protein called E-cadherin. The cause of this decrease is not known and could be due to luminal insults or structural changes in the small airways. Irrespective, it is unknown whether the loss of E-cadherin is a marker or a driver of disease. Here we report that loss of E-cadherin is causal to the development of chronic lung disease. Using cell-type-specific promoters, we find that knockout of E-cadherin in alveolar epithelial type II but not type 1 cells in adult mouse models results in airspace enlargement. Furthermore, the knockout of E-cadherin in airway ciliated cells, but not club cells, increase airway hyperreactivity. We demonstrate that strategies to upregulate E-cadherin rescue monolayer integrity and serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Baishakhi Ghosh
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jeffrey Loube
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Shreeti Thapa
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Hurley Ryan
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Daniel Chen
- Johns Hopkins University, Baltimore, MD, USA
| | | | - Si Chen
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Saborny Mahmud
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Kristine Nishida
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Linyan Ying
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Respiration, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Pratulya Pragadaraju Chengala
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ethan Tieng
- Johns Hopkins University, Baltimore, MD, USA
| | - Michael Burnim
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ara Wally
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Debarshi Bhowmik
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Michael Zaykaner
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Bonnie Yeung-Luk
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Wayne Mitzner
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Shyam Biswal
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Venkataramana K Sidhaye
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
15
|
Horndahl J, Svärd R, Berntsson P, Wingren C, Li J, Abdillahi SM, Ghosh B, Capodanno E, Chan J, Ripa L, Åstrand A, Sidhaye VK, Collins M. HDAC6 inhibitor ACY-1083 shows lung epithelial protective features in COPD. PLoS One 2022; 17:e0266310. [PMID: 36223404 PMCID: PMC9555642 DOI: 10.1371/journal.pone.0266310] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
Airway epithelial damage is a common feature in respiratory diseases such as COPD and has been suggested to drive inflammation and progression of disease. These features manifest as remodeling and destruction of lung epithelial characteristics including loss of small airways which contributes to chronic airway inflammation. Histone deacetylase 6 (HDAC6) has been shown to play a role in epithelial function and dysregulation, such as in cilia disassembly, epithelial to mesenchymal transition (EMT) and oxidative stress responses, and has been implicated in several diseases. We thus used ACY-1083, an inhibitor with high selectivity for HDAC6, and characterized its effects on epithelial function including epithelial disruption, cytokine production, remodeling, mucociliary clearance and cell characteristics. Primary lung epithelial air-liquid interface cultures from COPD patients were used and the impacts of TNF, TGF-β, cigarette smoke and bacterial challenges on epithelial function in the presence and absence of ACY-1083 were tested. Each challenge increased the permeability of the epithelial barrier whilst ACY-1083 blocked this effect and even decreased permeability in the absence of challenge. TNF was also shown to increase production of cytokines and mucins, with ACY-1083 reducing the effect. We observed that COPD-relevant stimulations created damage to the epithelium as seen on immunohistochemistry sections and that treatment with ACY-1083 maintained an intact cell layer and preserved mucociliary function. Interestingly, there was no direct effect on ciliary beat frequency or tight junction proteins indicating other mechanisms for the protected epithelium. In summary, ACY-1083 shows protection of the respiratory epithelium during COPD-relevant challenges which indicates a future potential to restore epithelial structure and function to halt disease progression in clinical practice.
Collapse
Affiliation(s)
- Jenny Horndahl
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Rebecka Svärd
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Pia Berntsson
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Cecilia Wingren
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jingjing Li
- Bioscience Asthma, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Suado M. Abdillahi
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Baishakhi Ghosh
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Erin Capodanno
- Department of Biology, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Justin Chan
- Department of Public Health Studies, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Lena Ripa
- Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Annika Åstrand
- Project Leader Department, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Venkataramana K. Sidhaye
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Mia Collins
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
16
|
Florentin J, O'Neil SP, Ohayon LL, Uddin A, Vasamsetti SB, Arunkumar A, Ghosh S, Boatz JC, Sui J, Kliment CR, Chan SY, Dutta P. VEGF Receptor 1 Promotes Hypoxia-Induced Hematopoietic Progenitor Proliferation and Differentiation. Front Immunol 2022; 13:882484. [PMID: 35634304 PMCID: PMC9133347 DOI: 10.3389/fimmu.2022.882484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Although it is well known that hypoxia incites unleashed cellular inflammation, the mechanisms of exaggerated cellular inflammation in hypoxic conditions are not known. We observed augmented proliferation of hematopoietic stem and progenitor cells (HSPC), precursors of inflammatory leukocytes, in mice under hypoxia. Consistently, a transcriptomic analysis of human HSPC exposed to hypoxic conditions revealed elevated expression of genes involved in progenitor proliferation and differentiation. Additionally, bone marrow cells in mice expressed high amount of vascular endothelial growth factor (VEGF), and HSPC elevated VEGF receptor 1 (VEGFr1) and its target genes in hypoxic conditions. In line with this, VEGFr1 blockade in vivo and in vitro decreased HSPC proliferation and attenuated inflammation. In silico and ChIP experiments demonstrated that HIF-1α binds to the promoter region of VEGFR1. Correspondingly, HIF1a silencing decreased VEGFr1 expression in HSPC and diminished their proliferation. These results indicate that VEGF signaling in HSPC is an important mediator of their proliferation and differentiation in hypoxia-induced inflammation and represents a potential therapeutic target to prevent aberrant inflammation in hypoxia-associated diseases.
Collapse
Affiliation(s)
- Jonathan Florentin
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Scott P O'Neil
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Lee L Ohayon
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Afaz Uddin
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Sathish Babu Vasamsetti
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Anagha Arunkumar
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Samit Ghosh
- Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jennifer C Boatz
- Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA, United States
| | - Justin Sui
- Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA, United States
| | - Corrine R Kliment
- Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA, United States
| | - Stephen Y Chan
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Partha Dutta
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
17
|
Ghosh B, Nishida K, Chandrala L, Mahmud S, Thapa S, Swaby C, Chen S, Khosla AA, Katz J, Sidhaye VK. Epithelial plasticity in COPD results in cellular unjamming due to an increase in polymerized actin. J Cell Sci 2022; 135:jcs258513. [PMID: 35118497 PMCID: PMC8919336 DOI: 10.1242/jcs.258513] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 01/04/2022] [Indexed: 11/20/2022] Open
Abstract
The airway epithelium is subjected to insults such as cigarette smoke (CS), a primary cause of chronic obstructive pulmonary disease (COPD) and serves as an excellent model to study cell plasticity. Here, we show that both CS-exposed and COPD-patient derived epithelia (CHBE) display quantitative evidence of cellular plasticity, with loss of specialized apical features and a transcriptional profile suggestive of partial epithelial-to-mesenchymal transition (pEMT), albeit with distinct cell motion indicative of cellular unjamming. These injured/diseased cells have an increased fraction of polymerized actin, due to loss of the actin-severing protein cofilin-1. We observed that decreasing polymerized actin restores the jammed state in both CHBE and CS-exposed epithelia, indicating that the fraction of polymerized actin is critical in unjamming the epithelia. Our kinetic energy spectral analysis suggests that loss of cofilin-1 results in unjamming, similar to that seen with both CS exposure and in CHBE cells. The findings suggest that in response to chronic injury, although epithelial cells display evidence of pEMT, their movement is more consistent with cellular unjamming. Inhibitors of actin polymerization rectify the unjamming features of the monolayer. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Baishakhi Ghosh
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Baltimore, Maryland, 21205, USA
| | - Kristine Nishida
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21224, USA
| | - Lakshmana Chandrala
- Department of Mechanical Engineering, Johns Hopkins Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Saborny Mahmud
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21224, USA
| | - Shreeti Thapa
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21224, USA
| | - Carter Swaby
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Si Chen
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21224, USA
| | - Atulya Aman Khosla
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21224, USA
| | - Joseph Katz
- Department of Mechanical Engineering, Johns Hopkins Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Venkataramana K. Sidhaye
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Baltimore, Maryland, 21205, USA
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21224, USA
| |
Collapse
|
18
|
A Walk in the Memory, from the First Functional Approach up to Its Regulatory Role of Mitochondrial Bioenergetic Flow in Health and Disease: Focus on the Adenine Nucleotide Translocator. Int J Mol Sci 2021; 22:ijms22084164. [PMID: 33920595 PMCID: PMC8073645 DOI: 10.3390/ijms22084164] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/11/2021] [Accepted: 04/16/2021] [Indexed: 12/19/2022] Open
Abstract
The mitochondrial adenine nucleotide translocator (ANT) plays the fundamental role of gatekeeper of cellular energy flow, carrying out the reversible exchange of ADP for ATP across the inner mitochondrial membrane. ADP enters the mitochondria where, through the oxidative phosphorylation process, it is the substrate of Fo-F1 ATP synthase, producing ATP that is dispatched from the mitochondrion to the cytoplasm of the host cell, where it can be used as energy currency for the metabolic needs of the cell that require energy. Long ago, we performed a method that allowed us to monitor the activity of ANT by continuously detecting the ATP gradually produced inside the mitochondria and exported in the extramitochondrial phase in exchange with externally added ADP, under conditions quite close to a physiological state, i.e., when oxidative phosphorylation takes place. More than 30 years after the development of the method, here we aim to put the spotlight on it and to emphasize its versatile applicability in the most varied pathophysiological conditions, reviewing all the studies, in which we were able to observe what really happened in the cell thanks to the use of the "ATP detecting system" allowing the functional activity of the ANT-mediated ADP/ATP exchange to be measured.
Collapse
|
19
|
First person – Corrine Kliment. J Cell Sci 2021. [DOI: 10.1242/jcs.258477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Corrine Kliment is first author on ‘Adenine nucleotide translocase regulates airway epithelial metabolism, surface hydration and ciliary function’, published in JCS. Corrine conducted the research described in this article while a post-doctoral Fellow in Pulmonary and Critical Care Medicine in Doug Robinson, PhD's lab at Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. She is now an Assistant Professor in her own lab at University of Pittsburgh School of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Pittsburgh, PA, USA, investigating the role of mitochondrial proteins in epithelial cell homeostasis in lung diseases such as chronic obstructive pulmonary disease and pulmonary fibrosis.
Collapse
|