1
|
Ding Y, Li J, Gao Y, Wang X, Wang Y, Zhu C, Liu Q, Zheng L, Qi M, Zhang L, Ji H, Yang F, Fan X, Dong W. Analysis of morphology, histology characteristics, and circadian clock gene expression of Onychostoma macrolepis at the overwintering period and the breeding period. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1265-1279. [PMID: 38568383 DOI: 10.1007/s10695-024-01336-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/22/2024] [Indexed: 06/29/2024]
Abstract
Fish typically adapt to their environment through evolutionary traits, and this adaptive strategy plays a critical role in promoting species diversity. Onychostoma macrolepis is a rare and endangered wild species that exhibits a life history of overwintering in caves and breeding in mountain streams. We analyzed the morphological characteristics, histological structure, and expression of circadian clock genes in O. macrolepis to elucidate its adaptive strategies to environmental changes in this study. The results showed that the relative values of O. macrolepis eye diameter, body height, and caudal peduncle height enlarged significantly during the breeding period. The outer layer of the heart was dense; the ventricular myocardial wall was thickened; the fat was accumulated in the liver cells; the red and white pulp structures of the spleen, renal tubules, and glomeruli were increased; and the goblet cells of the intestine were decreased in the breeding period. In addition, the spermatogenic cyst contained mature sperm, and the ovaries were filled with eggs at various stages of development. Throughout the overwintering period, the melano-macrophage center is located between the spleen and kidney, and the melano-macrophage center in the cytoplasm has the ability to synthesize melanin, and is arranged in clusters to form cell clusters or white pulp scattered in it. Circadian clock genes were identified in all organs, exhibiting significant differences between the before/after overwintering period and the breeding period. These findings indicate that the environment plays an important role in shaping the behavior of O. macrolepis, helping the animals to build self-defense mechanisms during cyclical habitat changes. Studying the morphological, histological structure and circadian clock gene expression of O. macrolepis during the overwintering and breeding periods is beneficial for understanding its unique hibernation behavior in caves. Additionally, it provides an excellent biological sample for investigating the environmental adaptability of atypical cavefish species.
Collapse
Affiliation(s)
- Yibin Ding
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Jincan Li
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Yao Gao
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Xiaolin Wang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Yang Wang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
- Shaanxi Dayi Xunlong Biotechnology Co., Ltd, Yangling, 712100, Shaanxi, China
| | - Chao Zhu
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Qimin Liu
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Lijuan Zheng
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Meng Qi
- China Institute of Selenium Industry, Ankang, 725000, Shaanxi, China
| | - Lijun Zhang
- China Institute of Selenium Industry, Ankang, 725000, Shaanxi, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Fangxia Yang
- College of Forestry, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Xiaoteng Fan
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China.
- Shaanxi Dayi Xunlong Biotechnology Co., Ltd, Yangling, 712100, Shaanxi, China.
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China.
- Shaanxi Dayi Xunlong Biotechnology Co., Ltd, Yangling, 712100, Shaanxi, China.
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
2
|
Espírito-Santo C, Alburquerque C, Guardiola FA, Ozório ROA, Magnoni LJ. Induced swimming modified the antioxidant status of gilthead seabream (Sparus aurata). Comp Biochem Physiol B Biochem Mol Biol 2024; 269:110893. [PMID: 37604407 DOI: 10.1016/j.cbpb.2023.110893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
Swimming has relevant physiological changes in farmed fish, although the potential link between swimming and oxidative stress remains poorly studied. We investigated the effects of different medium-term moderate swimming conditions for 6 h on the antioxidant status of gilthead seabream (Sparus aurata), analyzing the activity of enzymes related to oxidative stress in the liver and skeletal red and white muscle. Forty fish were induced to swim individually with the following conditions: steady low (SL, 0.8 body length (BL)·s-1), steady high (SH, 2.3 BL·s-1), oscillating low (OL, 0.2-0.8 BL·s-1) and oscillating high (OH, 0.8-2.3 BL·s-1) velocities, and a non-exercised group with minimal water flow (MF, < 0.1 BL·s-1). All swimming conditions resulted in lower activities of superoxide dismutase (SOD), glutathione reductase (GR), and glutathione-S-transferase (GST) in the liver compared to the MF group, while steady swimming (SL and SH) led to higher reduced glutathione/oxidized glutathione ratio (GSH/GSSG) compared to the MF condition. Swimming also differently modulated the antioxidant enzyme activities in red and white muscles. The OH condition increased lipid peroxidation (LPO), catalase (CAT) and glutathione peroxidase (GPx) activities in the red muscle, decreasing the GSH/GSSG ratio, whereas the SL condition led to increased GSH. Oscillating swimming conditions (OL and OH) led to lower CAT activity in the white muscle, although GPx activity was increased. The GSH/GSSG ratio in white muscle was increased in all swimming conditions. Liver and skeletal muscle antioxidant status was modulated by exercise, highlighting the importance of adequate swimming conditions to minimize oxidative stress in gilthead seabream.
Collapse
Affiliation(s)
- Carlos Espírito-Santo
- Faculty of Sciences (FCUP), University of Porto, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Portugal.
| | - Carmen Alburquerque
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Spain
| | - Francisco A Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Spain
| | - Rodrigo O A Ozório
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Portugal
| | - Leonardo J Magnoni
- The New Zealand Institute for Plant and Food Research Limited, Nelson, New Zealand
| |
Collapse
|
3
|
Lang BJ, Donelson JM, Caballes CF, Doll PC, Pratchett MS. Metabolic Responses of Pacific Crown-of-Thorns Sea Stars ( Acanthaster sp.) to Acute Warming. THE BIOLOGICAL BULLETIN 2021; 241:347-358. [PMID: 35015619 DOI: 10.1086/717049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
AbstractClimate change and population irruptions of crown-of-thorns sea stars (Acanthaster sp.) are two of the most pervasive threats to coral reefs. Yet there has been little consideration regarding the synergies between ocean warming and the coral-feeding sub-adult and adult stages of this asteroid. Here we explored the thermosensitivity of the aforementioned life stages by assessing physiological responses to acute warming. Thermal sensitivity was assessed based on the maximal activity of enzymes involved in aerobic (citrate synthase) and anaerobic (lactate dehydrogenase) metabolic pathways, as well as the standard metabolic rate of sub-adult and adult sea stars. In both life stages, citrate synthase activity declined with increasing temperature from 15 °C to 40 °C, with negligible activity occurring >35 °C. On the other hand, lactate dehydrogenase activity increased with temperature from 20 °C to 45 °C, indicating a greater reliance on anaerobic metabolism in a warmer environment. The standard metabolic rate of sub-adult sea stars increased with temperature throughout the testing range (24 °C to 36 °C). Adult sea stars exhibited evidence of thermal stress, with metabolic depression occurring from 33 °C. Here, we demonstrate that crown-of-thorns sea stars are sensitive to warming but that adults, and especially sub-adults, may have some resilience to short-term marine heatwaves in the near future.
Collapse
|
4
|
Thermal reaction norms of key metabolic enzymes reflect divergent physiological and behavioral adaptations of closely related amphipod species. Sci Rep 2021; 11:4562. [PMID: 33633174 PMCID: PMC7907238 DOI: 10.1038/s41598-021-83748-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
Lake Baikal is inhabited by more than 300 endemic amphipod species, which are narrowly adapted to certain thermal niches due to the high interspecific competition. In contrast, the surrounding freshwater fauna is commonly represented by species with large-scale distribution and high phenotypic thermal plasticity. Here, we investigated the thermal plasticity of the energy metabolism in two closely-related endemic amphipod species from Lake Baikal (Eulimnogammarus verrucosus; stenothermal and Eulimnogammarus cyaneus; eurythermal) and the ubiquitous Holarctic amphipod Gammarus lacustris (eurythermal) by exposure to a summer warming scenario (6-23.6 °C; 0.8 °C d-1). In concert with routine metabolic rates, activities of key metabolic enzymes increased strongly with temperature up to 15 °C in E. verrucosus, whereupon they leveled off (except for lactate dehydrogenase). In contrast, exponential increases were seen in E. cyaneus and G. lacustris throughout the thermal trial (Q10-values: 1.6-3.7). Cytochrome-c-oxidase, lactate dehydrogenase, and 3-hydroxyacyl-CoA dehydrogenase activities were found to be higher in G. lacustris than in E. cyaneus, especially at the highest experimental temperature (23.6 °C). Decreasing gene expression levels revealed some thermal compensation in E. cyaneus but not in G. lacustris. In all species, shifts in enzyme activities favored glycolytic energy generation in the warmth. The congruent temperature-dependencies of enzyme activities and routine metabolism in E. verrucosus indicate a strong feedback-regulation of enzymatic activities by whole organism responses. The species-specific thermal reaction norms reflect the different ecological niches, including the spatial distribution, distinct thermal behavior such as temperature-dependent migration, movement activity, and mating season.
Collapse
|
5
|
Gomez Isaza DF, Cramp RL, Franklin CE. Thermal plasticity of the cardiorespiratory system provides cross-tolerance protection to fish exposed to elevated nitrate. Comp Biochem Physiol C Toxicol Pharmacol 2021; 240:108920. [PMID: 33141082 DOI: 10.1016/j.cbpc.2020.108920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/09/2020] [Accepted: 10/18/2020] [Indexed: 02/07/2023]
Abstract
Exposure to nitrate is toxic to aquatic animals due to the formation of methaemoglobin and a subsequent loss of blood-oxygen carrying capacity. Yet, nitrate toxicity can be modulated by other stressors in the environment, such as elevated temperatures. Acclimation to elevated temperatures has been shown to offset the negative effects of nitrate on whole animal performance in fish, but the mechanisms underlying this cross-tolerance interaction remain unclear. In this study, juvenile silver perch (Bidyanus bidyanus) were exposed to a factorial combination of temperature (28 °C or 32 °C) and nitrate concentrations (0, 50 or 100 mg NO3- L-1) treatments to test the hypothesis that thermal acclimation offsets the effects of nitrate via compensatory changes to the cardiorespiratory system (gills, ventricle and blood oxygen carrying capacity). Following 21 weeks of thermal acclimation, we found that fish acclimated to 32 °C experienced an expansion of gill surface area and an increase in ventricular thickness regardless of nitrate exposure concentration. Exposure to nitrate (both 50 and 100 mg NO3- L-1) reduced the blood oxygen carrying capacity of silver perch due to increases in methaemoglobin concentration and a right shift in oxygen-haemoglobin binding curves in fish from both thermal acclimation treatments. These results indicate that plasticity of the gills and ventricle of warm acclimated fish are potential mechanisms which may provide cross-tolerance protection to elevated nitrate concentrations despite nitrate induced reductions to oxygen transport.
Collapse
Affiliation(s)
- Daniel F Gomez Isaza
- School of Biological Science, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Rebecca L Cramp
- School of Biological Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Craig E Franklin
- School of Biological Science, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
6
|
Johansen JL, Nadler LE, Habary A, Bowden AJ, Rummer J. Thermal acclimation of tropical coral reef fishes to global heat waves. eLife 2021; 10:59162. [PMID: 33496262 PMCID: PMC7837695 DOI: 10.7554/elife.59162] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
As climate-driven heat waves become more frequent and intense, there is increasing urgency to understand how thermally sensitive species are responding. Acute heating events lasting days to months may elicit acclimation responses to improve performance and survival. However, the coordination of acclimation responses remains largely unknown for most stenothermal species. We documented the chronology of 18 metabolic and cardiorespiratory changes that occur in the gills, blood, spleen, and muscles when tropical coral reef fishes are thermally stressed (+3.0°C above ambient). Using representative coral reef fishes (Caesio cuning and Cheilodipterus quinquelineatus) separated by >100 million years of evolution and with stark differences in major life-history characteristics (i.e. lifespan, habitat use, mobility, etc.), we show that exposure duration illicited coordinated responses in 13 tissue and organ systems over 5 weeks. The onset and duration of biomarker responses differed between species, with C. cuning – an active, mobile species – initiating acclimation responses to unavoidable thermal stress within the first week of heat exposure; conversely, C. quinquelineatus – a sessile, territorial species – exhibited comparatively reduced acclimation responses that were delayed through time. Seven biomarkers, including red muscle citrate synthase and lactate dehydrogenase activities, blood glucose and hemoglobin concentrations, spleen somatic index, and gill lamellar perimeter and width, proved critical in evaluating acclimation progression and completion, as these provided consistent evaluation of thermal responses across species.
Collapse
Affiliation(s)
- Jacob L Johansen
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, United States.,ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
| | - Lauren E Nadler
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia.,Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, United States.,College of Science and Engineering, James Cook University, Townsville, Australia
| | - Adam Habary
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
| | - Alyssa J Bowden
- CSIRO, Hobart, Australia.,Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| | - Jodie Rummer
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia.,College of Science and Engineering, James Cook University, Townsville, Australia
| |
Collapse
|
7
|
Nadler LE, Bengston E, Eliason EJ, Hassibi C, Helland‐Riise SH, Johansen IB, Kwan GT, Tresguerres M, Turner AV, Weinersmith KL, Øverli Ø, Hechinger RF. A brain‐infecting parasite impacts host metabolism both during exposure and after infection is established. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13695] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Lauren E. Nadler
- Scripps Institution of Oceanography University of California San Diego San Diego CA USA
- Department of Paraclinical Sciences Norwegian University of Life Sciences Oslo Norway
- Department of Marine and Environmental Sciences Nova Southeastern University Dania Beach FL USA
| | - Erik Bengston
- Scripps Institution of Oceanography University of California San Diego San Diego CA USA
| | - Erika J. Eliason
- Department of Ecology, Evolution, and Marine Biology University of California Santa Barbara Santa Barbara CA USA
| | - Cameron Hassibi
- Scripps Institution of Oceanography University of California San Diego San Diego CA USA
| | - Siri H. Helland‐Riise
- Department of Paraclinical Sciences Norwegian University of Life Sciences Oslo Norway
| | - Ida B. Johansen
- Department of Paraclinical Sciences Norwegian University of Life Sciences Oslo Norway
| | - Garfield T. Kwan
- Scripps Institution of Oceanography University of California San Diego San Diego CA USA
| | - Martin Tresguerres
- Scripps Institution of Oceanography University of California San Diego San Diego CA USA
| | - Andrew V. Turner
- Scripps Institution of Oceanography University of California San Diego San Diego CA USA
| | | | - Øyvind Øverli
- Department of Paraclinical Sciences Norwegian University of Life Sciences Oslo Norway
| | - Ryan F. Hechinger
- Scripps Institution of Oceanography University of California San Diego San Diego CA USA
| |
Collapse
|
8
|
Rossi GS, Cochrane PV, Wright PA. Fluctuating environments during early development can limit adult phenotypic flexibility: insights from an amphibious fish. J Exp Biol 2020; 223:jeb228304. [PMID: 32616545 DOI: 10.1242/jeb.228304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022]
Abstract
The interaction between developmental plasticity and the capacity for reversible acclimation (phenotypic flexibility) is poorly understood, particularly in organisms exposed to fluctuating environments. We used an amphibious killifish (Kryptolebias marmoratus) to test the hypotheses that organisms reared in fluctuating environments (i) will make no developmental changes to suit any one environment because fixing traits to suit one environment could be maladaptive for another, and (ii) will be highly phenotypically flexible as adults because their early life experiences predict high environmental variability in the future. We reared fish under constant (water) or fluctuating (water-air) environments until adulthood and assessed a suite of traits along the oxygen cascade (e.g. neuroepithelial cell density and size, cutaneous capillarity, gill morphology, ventricle size, red muscle morphometrics, terrestrial locomotor performance). To evaluate the capacity for phenotypic flexibility, a subset of adult fish from each rearing condition was then air-exposed for 14 days before the same traits were measured. In support of the developmental plasticity hypothesis, traits involved with O2 sensing and uptake were largely unaffected by water-air fluctuations during early life, but we found marked developmental changes in traits related to O2 transport, utilization and locomotor performance. In contrast, we found no evidence supporting the phenotypic flexibility hypothesis. Adult fish from both rearing conditions exhibited the same degree of phenotypic flexibility in various O2 sensing- and uptake-related traits. In other cases, water-air fluctuations attenuated adult phenotypic flexibility despite the fact that phenotypic flexibility is hypothesized to be favoured when environments fluctuate. Overall, we conclude that exposure to environmental fluctuations during development in K. marmoratus can dramatically alter the constitutive adult phenotype, as well as diminish the scope for phenotypic flexibility in later life.
Collapse
Affiliation(s)
- Giulia S Rossi
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Paige V Cochrane
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| |
Collapse
|
9
|
Sowton AP, Padmanabhan N, Tunster SJ, McNally BD, Murgia A, Yusuf A, Griffin JL, Murray AJ, Watson ED. Mtrr hypomorphic mutation alters liver morphology, metabolism and fuel storage in mice. Mol Genet Metab Rep 2020; 23:100580. [PMID: 32257815 PMCID: PMC7109458 DOI: 10.1016/j.ymgmr.2020.100580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is associated with dietary folate deficiency and mutations in genes required for one‑carbon metabolism. However, the mechanism through which this occurs is unclear. To improve our understanding of this link, we investigated liver morphology, metabolism and fuel storage in adult mice with a hypomorphic mutation in the gene methionine synthase reductase (Mtrr gt ). MTRR enzyme is a key regulator of the methionine and folate cycles. The Mtrr gt mutation in mice was previously shown to disrupt one‑carbon metabolism and cause a wide-spectrum of developmental phenotypes and late adult-onset macrocytic anaemia. Here, we showed that livers of Mtrr gt/gt female mice were enlarged compared to control C57Bl/6J livers. Histological analysis of these livers revealed eosinophilic hepatocytes with decreased glycogen content, which was associated with down-regulation of genes involved in glycogen synthesis (e.g., Ugp2 and Gsk3a genes). While female Mtrr gt/gt livers showed evidence of reduced β-oxidation of fatty acids, there were no other associated changes in the lipidome in female or male Mtrr gt/gt livers compared with controls. Defects in glycogen storage and lipid metabolism often associate with disruption of mitochondrial electron transfer system activity. However, defects in mitochondrial function were not detected in Mtrr gt/gt livers as determined by high-resolution respirometry analysis. Overall, we demonstrated that adult Mtrr gt/gt female mice showed abnormal liver morphology that differed from the NAFLD phenotype and that was accompanied by subtle changes in their hepatic metabolism and fuel storage.
Collapse
Key Words
- 5-methyl-THF, 5-methyltetrahydofolate
- Agl, amylo-alpha-1,6-glucosidase,4-alpha-glucanotransferase gene
- BCA, bicinchoninic acid
- Bhmt, betaine-homocysteine S-methyltransferase gene
- CE, cholesteryl-ester
- Cebpa, CCAAT/enhancer binding protein (C/EBP), alpha gene
- Cer, ceramide
- DAG, diacylglycerol
- Ddit3, DNA damage inducible transcript 3 gene
- ETS, electron transport system
- FCCP, p-trifluoromethoxyphenyl hydrazine
- FFA, free fatty acid
- G6pc, glucose 6-phophastase gene
- Gbe1, glycogen branching enzyme 1 gene
- Glycogen
- Gsk3, glycogen synthase kinase gene
- Gyg, glycogenin gene
- Gys2, glycogen synthase 2 gene
- HOAD, 3-hydoxyacyl-CoA dehydrogenase
- Hepatic fuel storage
- Isca1, iron‑sulfur cluster assembly 1 gene
- JO2, oxygen flux
- LC-MS, liquid chromatography-mass spectrometry
- LPC, lysophosphatidylcholine
- Lipidomics
- Liver metabolism
- Mitochondrial function
- Mthfr, methylenetetrahydrofolate reductase gene
- Mtr, methionine synthase gene (also MS)
- Mtrr, methionine synthase reductase gene (also MSR)
- Myc, myelocytomatosis oncogene
- NAFLD, non-alcoholic fatty liver disease
- NASH, non-alcoholic steatohepatitis
- Ndufs, NADH:ubiquinone oxidoreductase core subunit (ETS complex I) gene
- OXPHOS, oxidative phosphorylation
- One‑carbon metabolism
- PA, phosphatidic acid
- PAS, periodic acid Schiff
- PC, phosphatidylcholine
- PE, phosphatidylethanolamine
- PG, phosphatidylglycerol
- PI, phosphatidylinositol
- PIP, phosphatidylinositol phosphate(s)
- PL, phospholipid
- PS, phosphatidylserine
- RIPA, Radioimmunoprecipitation assay
- SAH, S-adenosylhomocysteine
- SAM, S-adenosylmethionine
- SM, sphingomyelin
- TAG, triacylglycerol
- Ugp2, UDP-glucose pyrophophorylase 2 gene
- gt, gene-trap
Collapse
Affiliation(s)
- Alice P. Sowton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Nisha Padmanabhan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Simon J. Tunster
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Ben D. McNally
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Antonio Murgia
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Aisha Yusuf
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Julian L. Griffin
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, UK
| | - Andrew J. Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Erica D. Watson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| |
Collapse
|
10
|
Impact of the replacement of dietary fish oil by animal fats and environmental salinity on the metabolic response of European Seabass (Dicentrarchus labrax). Comp Biochem Physiol B Biochem Mol Biol 2019; 233:46-59. [PMID: 31004746 DOI: 10.1016/j.cbpb.2019.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/07/2019] [Accepted: 04/15/2019] [Indexed: 12/31/2022]
Abstract
The replacement of fish oil (FO) with other lipid sources (e.g. animal fats, AF) in aquafeeds improves the sustainability of aquaculture, even though alternatives have different fatty acid (FA) profiles. FO contains a higher proportion of long-chain polyunsaturated fatty acids (LC-PUFAs) than AF. LC-PUFAs have key physiological roles, despite limited biosynthetic capacity in marine fish. Therefore, replacing FO in feeds may limit physiological responses when fish face environmental challenges such as an acute change in salinity. To test this hypothesis, juvenile seabass (62.6 ± 1.6 g, 50 fish/ 500 L tank) were fed three different isoproteic and isolipidic diets in which the replacement levels of FO by AF varied (0%, 75% or 100% AF). Fish were fed the experimental diets at 2% their body weight (BW) daily for 85 days (20.0 ± 1.0 °C; 35‰). Thereafter, half of the fish were transferred to tanks at 15‰ or 35‰ salinity and sampled at 24 h and 72 h. Plasma osmolality, Na+, glucose, cholesterol and lactate levels were altered by the changing salinity, although cortisol remained unchanged. Standard metabolic rate was similar irrespective of the experimental factors. However, maximal metabolic rate decreased by 4-10% in fish subjected to a 15‰ salinity. Intestinal chymotrypsin activity was modified by the diet, with this digestive enzyme along with trypsin showing a two-fold increase in activity at 15‰ salinity. Hepatic lipid peroxidation (LPO) showed a ~1.4-fold increase at 15‰ salinity. Additionally, LPO and glutathione reductase activity were ~1.6-fold higher in fish fed the FO diet. Citrate synthase activity in gills was increased in fish fed the 100% AF diet. Therefore, both dietary replacement of FO by AF and environmental salinity have an impact on the metabolic response of seabass, although interactions between both factors (diet and salinity) are negligible in the metabolic parameters investigated. The results are relevant to the aquaculture industry considering the potential usage of AF to replace FO in aquafeeds and because of the variations in salinity experienced by fish cultured in transitional waters.
Collapse
|
11
|
Horscroft JA, O'Brien KA, Clark AD, Lindsay RT, Steel AS, Procter NEK, Devaux J, Frenneaux M, Harridge SDR, Murray AJ. Inorganic nitrate, hypoxia, and the regulation of cardiac mitochondrial respiration-probing the role of PPARα. FASEB J 2019; 33:7563-7577. [PMID: 30870003 PMCID: PMC6529343 DOI: 10.1096/fj.201900067r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dietary inorganic nitrate prevents aspects of cardiac mitochondrial dysfunction induced by hypoxia, although the mechanism is not completely understood. In both heart and skeletal muscle, nitrate increases fatty acid oxidation capacity, and in the latter case, this involves up-regulation of peroxisome proliferator-activated receptor (PPAR)α expression. Here, we investigated whether dietary nitrate modifies mitochondrial function in the hypoxic heart in a PPARα-dependent manner. Wild-type (WT) mice and mice without PPARα (Ppara−/−) were given water containing 0.7 mM NaCl (control) or 0.7 mM NaNO3 for 35 d. After 7 d, mice were exposed to normoxia or hypoxia (10% O2) for the remainder of the study. Mitochondrial respiratory function and metabolism were assessed in saponin-permeabilized cardiac muscle fibers. Environmental hypoxia suppressed mass-specific mitochondrial respiration and additionally lowered the proportion of respiration supported by fatty acid oxidation by 18% (P < 0.001). This switch away from fatty acid oxidation was reversed by nitrate treatment in hypoxic WT but not Ppara−/− mice, indicating a PPARα-dependent effect. Hypoxia increased hexokinase activity by 33% in all mice, whereas lactate dehydrogenase activity increased by 71% in hypoxic WT but not Ppara−/− mice. Our findings indicate that PPARα plays a key role in mediating cardiac metabolic remodeling in response to both hypoxia and dietary nitrate supplementation.—Horscroft, J. A., O’Brien, K. A., Clark, A. D., Lindsay, R. T., Steel, A. S., Procter, N. E. K., Devaux, J., Frenneaux, M., Harridge, S. D. R., Murray, A. J. Inorganic nitrate, hypoxia, and the regulation of cardiac mitochondrial respiration—probing the role of PPARα.
Collapse
Affiliation(s)
- James A Horscroft
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Katie A O'Brien
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,Centre for Human and Applied Physiological Sciences, King's College London, London, United Kingdom; and
| | - Anna D Clark
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Ross T Lindsay
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Alice Strang Steel
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Nathan E K Procter
- Bob Champion Research and Education Building, University of East Anglia, Norwich, United Kingdom
| | - Jules Devaux
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Michael Frenneaux
- Bob Champion Research and Education Building, University of East Anglia, Norwich, United Kingdom
| | - Stephen D R Harridge
- Centre for Human and Applied Physiological Sciences, King's College London, London, United Kingdom; and
| | - Andrew J Murray
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
12
|
Arge R, Dessen JE, Østbye TK, Ruyter B, Thomassen MS, Rørvik KA. Effects of tetradecylthioacetic acid (TTA) treatment on lipid metabolism in salmon hearts-in vitro and in vivo studies. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:703-716. [PMID: 29349633 DOI: 10.1007/s10695-018-0466-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 01/03/2018] [Indexed: 06/07/2023]
Abstract
In intensive farming of Atlantic salmon, a large proportion of observed mortality is related to cardiovascular diseases and circulatory failure, indicating insufficient robustness and inadequate cardiac performance. This paper reports on the use of tetradecylthioacetic acid (TTA) where the main objective was to enhance utilisation of fatty acids (FA), considered the main energy source of the heart. In this study, three experiments were conducted: (I) an in vivo study where salmon post-smolt were administrated dietary TTA in sea, (II) an in vitro study where isolated salmon heart cells were pre-stimulated with increasing doses of TTA and (III) an in vivo experiment where salmon post-smolt were subjected to injections with increasing doses of TTA. In study I, TTA-treated fish had a smaller decrease in heart weight relative to fish bodyweight (CSI) in a period after sea transfer compared to the control. This coincided with lowered condition factor and muscle fat in the TTA-treated fish, which may indicate a higher oxidation of lipids for energy. In study II, the isolated hearts treated with the highest dose of TTA had higher uptake of radiolabelled FA and formation of CO2 and acid-soluble products. In study III, expression of genes regulating peroxisomal FA oxidation, cell growth, elongation and desaturation were upregulated in the heart of TTA injected salmon. In contrast, genes involved in FA transport into the mitochondria were not influenced. In conclusion, these experiments indicate that TTA enhances energy production in salmon hearts by stimulation of FA oxidation.
Collapse
Affiliation(s)
- Regin Arge
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, 1432, Ås, Norway.
- Formerly associated with Fiskaaling, Aquacultural Research Station of the Faroes, FO-430, Hvalvík, Faroe Islands.
| | - Jens-Erik Dessen
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, 1432, Ås, Norway
- Nofima AS, 1431, Ås, Norway
| | | | - Bente Ruyter
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, 1432, Ås, Norway
- Nofima AS, 1431, Ås, Norway
| | - Magny S Thomassen
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Kjell-Arne Rørvik
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, 1432, Ås, Norway
- Nofima AS, 1431, Ås, Norway
| |
Collapse
|
13
|
Pasha R, Moon TW. Coenzyme Q10 protects against statin-induced myotoxicity in zebrafish larvae (Danio rerio). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 52:150-160. [PMID: 28414942 DOI: 10.1016/j.etap.2017.03.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 06/07/2023]
Abstract
3-Hydroxy-3-methylglutaryl-CoA reductase (HMGCR) is the rate-limiting enzyme of the mevalonic acid pathway and is required for cholesterol biosynthesis and the synthesis of Coenzyme Q10 (CoQ10). Statins inhibit HMGCR, thus inhibiting the downstream products of this pathway including the biosynthesis of decaprenyl-pyrophosphate that is critical for the synthesis of Coenzyme Q10 (CoQ10). We show that zebrafish (Danio rerio) larvae treated in tank water with Atorvastatin (ATV; Lipitor) exhibited movement alterations and reduced whole body tissue metabolism. The ATV-inhibition of HMGCR function altered transcript abundance of muscle atrophy markers (atrogen-1, murf) and the mitochondrial biogenesis marker (pgc-1α). Furthermore, ATV-induced reduction in larval response to tactile stimuli was reversed with treatment of CoQ10. Together, the implication of our results contributes to the understanding of the mechanisms of action of the statin-induced damage in this model fish species.
Collapse
Affiliation(s)
- Rand Pasha
- Department of Biology, Centre for Advanced Research in Environmental Genomics and the Collaborative Program in Chemical and Environmental Toxicology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N 6N5
| | - Thomas W Moon
- Department of Biology, Centre for Advanced Research in Environmental Genomics and the Collaborative Program in Chemical and Environmental Toxicology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N 6N5.
| |
Collapse
|
14
|
Powell MD, Yousaf MN. Cardiovascular Effects of Disease: Parasites and Pathogens. FISH PHYSIOLOGY 2017. [DOI: 10.1016/bs.fp.2017.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
|
16
|
Ashmore T, Roberts LD, Morash AJ, Kotwica AO, Finnerty J, West JA, Murfitt SA, Fernandez BO, Branco C, Cowburn AS, Clarke K, Johnson RS, Feelisch M, Griffin JL, Murray AJ. Nitrate enhances skeletal muscle fatty acid oxidation via a nitric oxide-cGMP-PPAR-mediated mechanism. BMC Biol 2015; 13:110. [PMID: 26694920 PMCID: PMC4688964 DOI: 10.1186/s12915-015-0221-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/10/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Insulin sensitivity in skeletal muscle is associated with metabolic flexibility, including a high capacity to increase fatty acid (FA) oxidation in response to increased lipid supply. Lipid overload, however, can result in incomplete FA oxidation and accumulation of potentially harmful intermediates where mitochondrial tricarboxylic acid cycle capacity cannot keep pace with rates of β-oxidation. Enhancement of muscle FA oxidation in combination with mitochondrial biogenesis is therefore emerging as a strategy to treat metabolic disease. Dietary inorganic nitrate was recently shown to reverse aspects of the metabolic syndrome in rodents by as yet incompletely defined mechanisms. RESULTS Herein, we report that nitrate enhances skeletal muscle FA oxidation in rodents in a dose-dependent manner. We show that nitrate induces FA oxidation through a soluble guanylate cyclase (sGC)/cGMP-mediated PPARβ/δ- and PPARα-dependent mechanism. Enhanced PPARβ/δ and PPARα expression and DNA binding induces expression of FA oxidation enzymes, increasing muscle carnitine and lowering tissue malonyl-CoA concentrations, thereby supporting intra-mitochondrial pathways of FA oxidation and enhancing mitochondrial respiration. At higher doses, nitrate induces mitochondrial biogenesis, further increasing FA oxidation and lowering long-chain FA concentrations. Meanwhile, nitrate did not affect mitochondrial FA oxidation in PPARα(-/-) mice. In C2C12 myotubes, nitrate increased expression of the PPARα targets Cpt1b, Acadl, Hadh and Ucp3, and enhanced oxidative phosphorylation rates with palmitoyl-carnitine; however, these changes in gene expression and respiration were prevented by inhibition of either sGC or protein kinase G. Elevation of cGMP, via the inhibition of phosphodiesterase 5 by sildenafil, also increased expression of Cpt1b, Acadl and Ucp3, as well as CPT1B protein levels, and further enhanced the effect of nitrate supplementation. CONCLUSIONS Nitrate may therefore be effective in the treatment of metabolic disease by inducing FA oxidation in muscle.
Collapse
Affiliation(s)
- Tom Ashmore
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Lee D Roberts
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- MRC-Human Nutrition Research, University of Cambridge, Cambridge, UK
| | - Andrea J Morash
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Aleksandra O Kotwica
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - John Finnerty
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - James A West
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Steven A Murfitt
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Bernadette O Fernandez
- Faculty of Medicine, Clinical & Experimental Sciences, University of Southampton, Southampton, UK
| | - Cristina Branco
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Andrew S Cowburn
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Kieran Clarke
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Randall S Johnson
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Martin Feelisch
- Faculty of Medicine, Clinical & Experimental Sciences, University of Southampton, Southampton, UK
| | - Julian L Griffin
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- MRC-Human Nutrition Research, University of Cambridge, Cambridge, UK
| | - Andrew J Murray
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.
| |
Collapse
|
17
|
Gold DK, Loirat T, Farrell AP. Cardiorespiratory responses to haemolytic anaemia in rainbow trout Oncorhynchus mykiss. JOURNAL OF FISH BIOLOGY 2015; 87:848-859. [PMID: 26282915 DOI: 10.1111/jfb.12742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 06/12/2015] [Indexed: 06/04/2023]
Abstract
To quantify cardiorespiratory response to experimental anaemia in rainbow trout Oncorhynchus mykiss, a 24 h phenylhydrazine treatment was used to reduce haematocrit to almost one third of its initial value over 4-5 days. In response, relative blood velocity in the ventral aorta (an index of cardiac output) progressively increased to more than double to its normocythaemic value and there was no significant change in routine oxygen uptake. Thus, the primary compensatory response to anaemia was an increase in cardiac output.
Collapse
Affiliation(s)
- D K Gold
- Department of Zoology and The Faculty of Land and Food Systems, University of British Columbia, 6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
| | - T Loirat
- Department of Zoology and The Faculty of Land and Food Systems, University of British Columbia, 6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
| | - A P Farrell
- Department of Zoology and The Faculty of Land and Food Systems, University of British Columbia, 6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
18
|
Horscroft JA, Burgess SL, Hu Y, Murray AJ. Altered Oxygen Utilisation in Rat Left Ventricle and Soleus after 14 Days, but Not 2 Days, of Environmental Hypoxia. PLoS One 2015; 10:e0138564. [PMID: 26390043 PMCID: PMC4577132 DOI: 10.1371/journal.pone.0138564] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/01/2015] [Indexed: 12/27/2022] Open
Abstract
The effects of environmental hypoxia on cardiac and skeletal muscle metabolism are dependent on the duration and severity of hypoxic exposure, though factors which dictate the nature of the metabolic response to hypoxia are poorly understood. We therefore set out to investigate the time-dependence of metabolic acclimatisation to hypoxia in rat cardiac and skeletal muscle. Rats were housed under normoxic conditions, or exposed to short-term (2 d) or sustained (14 d) hypoxia (10% O2), after which samples were obtained from the left ventricle of the heart and the soleus for assessment of metabolic regulation and mitochondrial function. Mass-corrected maximal oxidative phosphorylation was 20% lower in the left ventricle following sustained but not short-term hypoxia, though no change was observed in the soleus. After sustained hypoxia, the ratio of octanoyl carnitine- to pyruvate- supported respiration was 11% and 12% lower in the left ventricle and soleus, respectively, whilst hexokinase activity increased by 33% and 2.1-fold in these tissues. mRNA levels of PPARα targets fell after sustained hypoxia in both tissues, but those of PPARα remained unchanged. Despite decreased Ucp3 expression after short-term hypoxia, UCP3 protein levels and mitochondrial coupling remained unchanged. Protein carbonylation was 40% higher after short-term but not sustained hypoxic exposure in the left ventricle, but was unchanged in the soleus at both timepoints. Our findings therefore demonstrate that 14 days, but not 2 days, of hypoxia induces a loss of oxidative capacity in the left ventricle but not the soleus, and a substrate switch away from fatty acid oxidation in both tissues.
Collapse
Affiliation(s)
- James A. Horscroft
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom
| | - Sarah L. Burgess
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom
| | - Yaqi Hu
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom
| | - Andrew J. Murray
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom
- * E-mail:
| |
Collapse
|
19
|
Ollivier H, Marchant J, Le Bayon N, Servili A, Claireaux G. Calcium response of KCl-excited populations of ventricular myocytes from the European sea bass (Dicentrarchus labrax): a promising approach to integrate cell-to-cell heterogeneity in studying the cellular basis of fish cardiac performance. J Comp Physiol B 2015. [PMID: 26205950 DOI: 10.1007/s00360-015-0924-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Climate change challenges the capacity of fishes to thrive in their habitat. However, through phenotypic diversity, they demonstrate remarkable resilience to deteriorating conditions. In fish populations, inter-individual variation in a number of fitness-determining physiological traits, including cardiac performance, is classically observed. Information about the cellular bases of inter-individual variability in cardiac performance is scarce including the possible contribution of excitation-contraction (EC) coupling. This study aimed at providing insight into EC coupling-related Ca(2+) response and thermal plasticity in the European sea bass (Dicentrarchus labrax). A cell population approach was used to lay the methodological basis for identifying the cellular determinants of cardiac performance. Fish were acclimated at 12 and 22 °C and changes in intracellular calcium concentration ([Ca(2+)]i) following KCl stimulation were measured using Fura-2, at 12 or 22 °C-test. The increase in [Ca(2+)]i resulted primarily from extracellular Ca(2+) entry but sarcoplasmic reticulum stores were also shown to be involved. As previously reported in sea bass, a modest effect of adrenaline was observed. Moreover, although the response appeared relatively insensitive to an acute temperature change, a difference in Ca(2+) response was observed between 12- and 22 °C-acclimated fish. In particular, a greater increase in [Ca(2+)]i at a high level of adrenaline was observed in 22 °C-acclimated fish that may be related to an improved efficiency of adrenaline under these conditions. In conclusion, this method allows a rapid screening of cellular characteristics. It represents a promising tool to identify the cellular determinants of inter-individual variability in fishes' capacity for environmental adaptation.
Collapse
Affiliation(s)
| | - James Marchant
- Unité PFOM-ARN, LEMAR, Centre Ifremer de Brest, Plouzané, France
| | - Nicolas Le Bayon
- Unité PFOM-ARN, LEMAR, Centre Ifremer de Brest, Plouzané, France
| | - Arianna Servili
- Unité PFOM-ARN, LEMAR, Centre Ifremer de Brest, Plouzané, France
| | - Guy Claireaux
- Unité PFOM-ARN, LEMAR, Centre Ifremer de Brest, Plouzané, France
| |
Collapse
|
20
|
Morash AJ, Vanderveken M, McClelland GB. Muscle metabolic remodeling in response to endurance exercise in salmonids. Front Physiol 2014; 5:452. [PMID: 25484869 PMCID: PMC4240067 DOI: 10.3389/fphys.2014.00452] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/03/2014] [Indexed: 11/13/2022] Open
Abstract
Phenotypic plasticity of skeletal muscle is relevant to swimming performance and metabolism in fishes, especially those that undergo extreme locomotory feats, such as seasonal migration. However, the influence of endurance exercise and the molecular mechanisms coordinating this remodeling are not well understood. The present study examines muscle metabolic remodeling associated with endurance exercise in fed rainbow trout as compared to migrating salmon. Trout were swum for 4 weeks at 1.5 BL/s, a speed similar to that of migrating salmon and red and white muscles were sampled after each week. We quantified changes in key enzymes in aerobic and carbohydrate metabolism [citrate synthase (CS), β-hydroxyacyl-CoA dehydrogenase (HOAD), hexokinase (HK)] and changes in mRNA expression of major regulators of metabolic phenotype (AMPK, PPARs) and lipid (carnitine palmitoyltransferase, CPT I), protein (aspartate aminotransferase, AST) and carbohydrate (HK) oxidation pathways. After 1 week of swimming substantial increases were seen in AMPK and PPARα mRNA expression and of their downstream target genes, CPTI and HK in red muscle. However, significant changes in CS and HK activity occurred only after 4 weeks. In contrast, there were few changes in mRNA expression and enzyme activities in white muscle over the 4-weeks. Red muscle results mimic those found in migrating salmon suggesting a strong influence of exercise on red muscle phenotype. In white muscle, only changes in AMPK and PPAR expression were similar to that seen with migrating salmon. However, in contrast to exercise alone, in natural migration HK decreased while AST increased suggesting that white muscle plays a role in supplying fuel and intermediates possibly through tissue breakdown during prolonged fasting. Dissecting individual and potentially synergistic effects of multiple stressors will enable us to determine major drivers of the metabolic phenotype and their impacts on whole animal performance.
Collapse
Affiliation(s)
- Andrea J Morash
- Department of Biology, McMaster University Hamilton, ON, Canada ; Institute for Marine and Antarctic Studies, University of Tasmania Hobart, TAS, Australia
| | | | | |
Collapse
|
21
|
Heinrich DDU, Rummer JL, Morash AJ, Watson SA, Simpfendorfer CA, Heupel MR, Munday PL. A product of its environment: the epaulette shark (Hemiscyllium ocellatum) exhibits physiological tolerance to elevated environmental CO2. CONSERVATION PHYSIOLOGY 2014; 2:cou047. [PMID: 27293668 PMCID: PMC4806737 DOI: 10.1093/conphys/cou047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/14/2014] [Accepted: 09/14/2014] [Indexed: 05/27/2023]
Abstract
Ocean acidification, resulting from increasing anthropogenic CO2 emissions, is predicted to affect the physiological performance of many marine species. Recent studies have shown substantial reductions in aerobic performance in some teleost fish species, but no change or even enhanced performance in others. Notably lacking, however, are studies on the effects of near-future CO2 conditions on larger meso and apex predators, such as elasmobranchs. The epaulette shark (Hemiscyllium ocellatum) lives on shallow coral reef flats and in lagoons, where it may frequently encounter short-term periods of environmental hypoxia and elevated CO2, especially during nocturnal low tides. Indeed, H. ocellatum is remarkably tolerant to short periods (hours) of hypoxia, and possibly hypercapnia, but nothing is known about its response to prolonged exposure. We exposed H. ocellatum individuals to control (390 µatm) or one of two near-future CO2 treatments (600 or 880 µatm) for a minimum of 60 days and then measured key aspects of their respiratory physiology, namely the resting oxygen consumption rate, which is used to estimate resting metabolic rate, and critical oxygen tension, a proxy for hypoxia sensitivity. Neither of these respiratory attributes was affected by the long-term exposure to elevated CO2. Furthermore, there was no change in citrate synthase activity, a cellular indicator of aerobic energy production. Plasma bicarbonate concentrations were significantly elevated in sharks exposed to 600 and 880 µatm CO2 treatments, indicating that acidosis was probably prevented by regulatory changes in acid-base relevant ions. Epaulette sharks may therefore possess adaptations that confer tolerance to CO2 levels projected to occur in the ocean by the end of this century. It remains uncertain whether other elasmobranchs, especially pelagic species that do not experience such diurnal fluctuations in their environment, will be equally tolerant.
Collapse
Affiliation(s)
- Dennis D. U. Heinrich
- School of Marine and Tropical Biology, James Cook University, Townsville, Queensland 4811, Australia
| | - Jodie L. Rummer
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| | - Andrea J. Morash
- University of Tasmania, Institute for Marine and Antarctic Studies (IMAS), Sandy Bay, Tasmania 7001, Australia
| | - Sue-Ann Watson
- School of Marine and Tropical Biology, James Cook University, Townsville, Queensland 4811, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| | - Colin A. Simpfendorfer
- Centre for Sustainable Tropical Fisheries and Aquaculture, School of Earth and Environmental Science, James Cook University, Townsville, Queensland 4811, Australia
| | - Michelle R. Heupel
- Centre for Sustainable Tropical Fisheries and Aquaculture, School of Earth and Environmental Science, James Cook University, Townsville, Queensland 4811, Australia
- Australian Institute of Marine Science, Townsville, Queensland 4810, Australia
| | - Philip L. Munday
- School of Marine and Tropical Biology, James Cook University, Townsville, Queensland 4811, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
22
|
LeMoine CMR, Bucking C, Craig PM, Walsh PJ. Divergent Hypoxia Tolerance in Adult Males and Females of the Plainfin Midshipman (Porichthys notatus). Physiol Biochem Zool 2014; 87:325-33. [DOI: 10.1086/674565] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Morash AJ, Yu W, Le Moine CMR, Hills JA, Farrell AP, Patterson DA, McClelland GB. Genomic and Metabolic Preparation of Muscle in Sockeye Salmon Oncorhynchus nerka for Spawning Migration. Physiol Biochem Zool 2013; 86:750-60. [DOI: 10.1086/673376] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
24
|
Farrell A, Altimiras J, Franklin C, Axelsson M. Niche expansion of the shorthorn sculpin (Myoxocephalus scorpius) to Arctic waters is supported by a thermal independence of cardiac performance at low temperature. CAN J ZOOL 2013. [DOI: 10.1139/cjz-2013-0038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiovascular adaptations that permit successful exploitation of polar marine waters by fish requires a capacity to negate or compensate for the depressive effects of low temperatures on physiological processes. Here, we examined the effects of acute and chronic temperature change on the maximum cardiac performance of shorthorn sculpin (Myoxocephalus scorpius (L., 1758)) captured above the Arctic Circle. Our aim was to establish if the sculpin’s success at low temperatures was achieved through thermal independence of cardiac function or via thermal compensation as a result of acclimation. Maximum cardiac performance was assessed at both 1 and 6 °C with a working perfused heart preparation that was obtained after fish had been acclimated to either 1 or 6 °C. Thus, tests were performed at the fish’s acclimation temperature and with an acute temperature change. Maximum cardiac output, which was relatively large (>50 mL·min−1·kg−1 body mass) for a benthic fish at a frigid temperature, was found to be independent of both acclimation temperature and test temperature. While maximum β-adrenergic stimulation produced positive chronotropy at both acclimation temperatures, inotropic effects were weak or absent. We conclude that thermal independence of cardiac performance at low temperature likely facilitated the exploitation of polar waters by the shorthorn sculpin.
Collapse
Affiliation(s)
- A.P. Farrell
- Department of Zoology and Faculty of Land and Food Systems, 6270 University Boulevard, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - J. Altimiras
- IFM Biology, Division of Zoology, University of Linköping, SE-58183 Linköping, Sweden
| | - C.E. Franklin
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - M. Axelsson
- University of Gothenburg, Department of Biological and Environmental Sciences, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
25
|
Morash AJ, Kotwica AO, Murray AJ. Tissue-specific changes in fatty acid oxidation in hypoxic heart and skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2013; 305:R534-41. [PMID: 23785078 DOI: 10.1152/ajpregu.00510.2012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Exposure to hypobaric hypoxia is sufficient to decrease cardiac PCr/ATP and alters skeletal muscle energetics in humans. Cellular mechanisms underlying the different metabolic responses of these tissues and the time-dependent nature of these changes are currently unknown, but altered substrate utilization and mitochondrial function may be a contributory factor. We therefore sought to investigate the effects of acute (1 day) and more sustained (7 days) hypoxia (13% O₂) on the transcription factor peroxisome proliferator-activated receptor α (PPARα) and its targets in mouse cardiac and skeletal muscle. In the heart, PPARα expression was 40% higher than in normoxia after 1 and 7 days of hypoxia. Activities of carnitine palmitoyltransferase (CPT) I and β-hydroxyacyl-CoA dehydrogenase (HOAD) were 75% and 35% lower, respectively, after 1 day of hypoxia, returning to normoxic levels after 7 days. Oxidative phosphorylation respiration rates using palmitoyl-carnitine followed a similar pattern, while respiration using pyruvate decreased. In skeletal muscle, PPARα expression and CPT I activity were 20% and 65% lower, respectively, after 1 day of hypoxia, remaining at this level after 7 days with no change in HOAD activity. Oxidative phosphorylation respiration rates using palmitoyl-carnitine were lower in skeletal muscle throughout hypoxia, while respiration using pyruvate remained unchanged. The rate of CO₂ production from palmitate oxidation was significantly lower in both tissues throughout hypoxia. Thus cardiac muscle may remain reliant on fatty acids during sustained hypoxia, while skeletal muscle decreases fatty acid oxidation and maintains pyruvate oxidation.
Collapse
Affiliation(s)
- Andrea J Morash
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, United Kingdom.
| | | | | |
Collapse
|
26
|
Cardiac molecular-acclimation mechanisms in response to swimming-induced exercise in Atlantic salmon. PLoS One 2013; 8:e55056. [PMID: 23372811 PMCID: PMC3555865 DOI: 10.1371/journal.pone.0055056] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 12/19/2012] [Indexed: 12/05/2022] Open
Abstract
Cardiac muscle is a principal target organ for exercise-induced acclimation mechanisms in fish and mammals, given that sustained aerobic exercise training improves cardiac output. Yet, the molecular mechanisms underlying such cardiac acclimation have been scarcely investigated in teleosts. Consequently, we studied mechanisms related to cardiac growth, contractility, vascularization, energy metabolism and myokine production in Atlantic salmon pre-smolts resulting from 10 weeks exercise-training at three different swimming intensities: 0.32 (control), 0.65 (medium intensity) and 1.31 (high intensity) body lengths s−1. Cardiac responses were characterized using growth, immunofluorescence and qPCR analysis of a large number of target genes encoding proteins with significant and well-characterized function. The overall stimulatory effect of exercise on cardiac muscle was dependent on training intensity, with changes elicited by high intensity training being of greater magnitude than either medium intensity or control. Higher protein levels of PCNA were indicative of cardiac growth being driven by cardiomyocyte hyperplasia, while elevated cardiac mRNA levels of MEF2C, GATA4 and ACTA1 suggested cardiomyocyte hypertrophy. In addition, up-regulation of EC coupling-related genes suggested that exercised hearts may have improved contractile function, while higher mRNA levels of EPO and VEGF were suggestive of a more efficient oxygen supply network. Furthermore, higher mRNA levels of PPARα, PGC1α and CPT1 all suggested a higher capacity for lipid oxidation, which along with a significant enlargement of mitochondrial size in cardiac myocytes of the compact layer of fish exercised at high intensity, suggested an enhanced energetic support system. Training also elevated transcription of a set of myokines and other gene products related to the inflammatory process, such as TNFα, NFκB, COX2, IL1RA and TNF decoy receptor. This study provides the first characterization of the underlying molecular acclimation mechanisms in the heart of exercise-trained fish, which resemble those reported for mammalian physiological cardiac growth.
Collapse
|
27
|
Powell MD, Burke MS, Dahle D. Cardiac remodelling of Atlantic halibut Hippoglossus hippoglossus induced by experimental anaemia with phenylhydrazine. JOURNAL OF FISH BIOLOGY 2012; 81:335-344. [PMID: 22747824 DOI: 10.1111/j.1095-8649.2012.03327.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Phenylhydrazine injections (0.3 mg kg(-1) , followed by a second injection of 0.1 mg kg(-1) 7 days later) induced a reproducible and stable anaemia in Atlantic halibut Hippoglossus hippoglossus, reducing the haematocrit and haemoglobin by 70.0 and 75.5%, respectively, over 3 weeks. There were no changes in blood electrolyte or lactate concentrations, although anaemic fish showed a 37.5 and 33.0% increase in cardiac somatic index and ventricular somatic index, respectively, compared with dimethyl sulphur oxide (DMSO) and saline vehicle controls. Changes in cardiac somatic indices did not correlate with the ratio of ventricular length:height and length:width did correlate with haematocrit and haemoglobin indicating that changes in cardiac shape may occur as a function of anaemic hypoxemia.
Collapse
Affiliation(s)
- M D Powell
- Biosciences and Aquaculture, University of Nordland, Bodø 8049, Norway.
| | | | | |
Collapse
|
28
|
Dalziel AC, Ou M, Schulte PM. Mechanisms underlying parallel reductions in aerobic capacity in non-migratory threespine stickleback (Gasterosteus aculeatus) populations. J Exp Biol 2012; 215:746-59. [DOI: 10.1242/jeb.065425] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
SUMMARY
Non-migratory, stream-resident populations of threespine stickleback, Gasterosteus aculeatus, have a lower maximum oxygen consumption (ṀO2,max) than ancestral migratory marine populations. Here, we examined laboratory-bred stream-resident and marine crosses from two locations (West and Bonsall Creeks) to determine which steps in the oxygen transport and utilization cascade evolved in conjunction with, and thus have the potential to contribute to, these differences in ṀO2,max. We found that West Creek stream-resident fish have larger muscle fibres (not measured in Bonsall fish), Bonsall Creek stream-resident fish have smaller ventricles, and both stream-resident populations have evolved smaller pectoral adductor and abductor muscles. However, many steps of the oxygen cascade did not evolve in stream-resident populations (gill surface area, hematocrit, mean cellular hemoglobin content and the activities of mitochondrial enzymes per gram ventricle and pectoral muscle), arguing against symmorphosis. We also studied F1 hybrids to determine which traits in the oxygen cascade have a genetic architecture similar to that of ṀO2,max. In West Creek, ṀO2,max, abductor and adductor size all showed dominance of marine alleles, whereas in Bonsall Creek, ṀO2,max and ventricle mass showed dominance of stream-resident alleles. We also found genetically based differences among marine populations in hematocrit, ventricle mass, pectoral muscle mass and pectoral muscle pyruvate kinase activity. Overall, reductions in pectoral muscle mass evolved in conjunction with reductions in ṀO2,max in both stream-resident populations, but the specific steps in the oxygen cascade that have a genetic basis similar to that of ṀO2,max, and are thus predicted to have the largest impact on ṀO2,max, differ among populations.
Collapse
Affiliation(s)
- Anne C. Dalziel
- Biodiversity Research Center and Department of Zoology, 6270 University Blvd, University of British Columbia, Vancouver, BC, CanadaV6T 1Z4
| | - Michelle Ou
- Biodiversity Research Center and Department of Zoology, 6270 University Blvd, University of British Columbia, Vancouver, BC, CanadaV6T 1Z4
| | - Patricia M. Schulte
- Biodiversity Research Center and Department of Zoology, 6270 University Blvd, University of British Columbia, Vancouver, BC, CanadaV6T 1Z4
| |
Collapse
|
29
|
Levett DZ, Radford EJ, Menassa DA, Graber EF, Morash AJ, Hoppeler H, Clarke K, Martin DS, Ferguson-Smith AC, Montgomery HE, Grocott MPW, Murray AJ. Acclimatization of skeletal muscle mitochondria to high-altitude hypoxia during an ascent of Everest. FASEB J 2011; 26:1431-41. [PMID: 22186874 DOI: 10.1096/fj.11-197772] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ascent to high altitude is associated with a fall in the partial pressure of inspired oxygen (hypobaric hypoxia). For oxidative tissues such as skeletal muscle, resultant cellular hypoxia necessitates acclimatization to optimize energy metabolism and restrict oxidative stress, with changes in gene and protein expression that alter mitochondrial function. It is known that lowlanders returning from high altitude have decreased muscle mitochondrial densities, yet the underlying transcriptional mechanisms and time course are poorly understood. To explore these, we measured gene and protein expression plus ultrastructure in muscle biopsies of lowlanders at sea level and following exposure to hypobaric hypoxia. Subacute exposure (19 d after initiating ascent to Everest base camp, 5300 m) was not associated with mitochondrial loss. After 66 d at altitude and ascent beyond 6400 m, mitochondrial densities fell by 21%, with loss of 73% of subsarcolemmal mitochondria. Correspondingly, levels of the transcriptional coactivator PGC-1α fell by 35%, suggesting down-regulation of mitochondrial biogenesis. Sustained hypoxia also decreased expression of electron transport chain complexes I and IV and UCP3 levels. We suggest that during subacute hypoxia, mitochondria might be protected from oxidative stress. However, following sustained exposure, mitochondrial biogenesis is deactivated and uncoupling down-regulated, perhaps to improve the efficiency of ATP production.
Collapse
Affiliation(s)
- Denny Z Levett
- Centre for Altitude, Space, and Extreme Environment Medicine, University College London (UCL) Institute of Child Health, University College London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Windisch HS, Kathöver R, Pörtner HO, Frickenhaus S, Lucassen M. Thermal acclimation in Antarctic fish: transcriptomic profiling of metabolic pathways. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1453-66. [PMID: 21865546 DOI: 10.1152/ajpregu.00158.2011] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It is widely accepted that adaptation to the extreme cold has evolved at the expense of high thermal sensitivity. However, recent studies have demonstrated significant capacities for warm acclimation in Antarctic fishes. Here, we report on hepatic metabolic reorganization and its putative molecular background in the Antarctic eelpout (Pachycara brachycephalum) during warm acclimation to 5°C over 6 wk. Elevated capacities of cytochrome c oxidase suggest the use of warm acclimation pathways different from those in temperate fish. The capacity of this enzyme rose by 90%, while citrate synthase (CS) activity fell by 20% from the very beginning. The capacity of lipid oxidation by hydroxyacyl-CoA dehydrogenase remained constant, whereas phosphoenolpyruvate carboxykinase as a marker for gluconeogenesis displayed 40% higher activities. These capacities in relation to CS indicate a metabolic shift from lipid to carbohydrate metabolism. The finding was supported by large rearrangements of the related transcriptome, both functional genes and potential transcription factors. A multivariate analysis (canonical correspondence analyses) of various transcripts subdivided the incubated animals in three groups, one control group and two responding on short and long timescales, respectively. A strong dichotomy in the expression of peroxisome proliferator-activated receptors-1α and -β receptors was most striking and has not previously been reported. Altogether, we identified a molecular network, which responds sensitively to warming beyond the realized ecological niche. The shift from lipid to carbohydrate stores and usage may support warm hardiness, as the latter sustain anaerobic metabolism and may prepare for hypoxemic conditions that would develop upon warming beyond the present acclimation temperature.
Collapse
|
32
|
Le Moine CMR, Morash AJ, McClelland GB. Changes in HIF-1α protein, pyruvate dehydrogenase phosphorylation, and activity with exercise in acute and chronic hypoxia. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1098-104. [PMID: 21775648 DOI: 10.1152/ajpregu.00070.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Exercise under acute hypoxia elicits a large increase in blood lactate concentration ([La](b)) compared with normoxic exercise. However, several studies in humans show that with the transition to chronic hypoxia, exercise [La](b) returns to normoxic levels. Although extensively examined over the last decades, the muscle-specific mechanisms responsible for this phenomenon remain unknown. To assess the changes in skeletal muscle associated with a transition from acute to chronic hypoxia, CD-1 mice were exposed for 24 h (24H), 1 wk (1WH), or 4 wk (4WH) to hypobaric hypoxia (equivalent to 4,300 m), exercised under 12% O(2), and compared with normoxic mice (N) at 21% O(2). Since the enzyme pyruvate dehydrogenase (PDH) plays a major role in the metabolic fate of pyruvate (oxidation vs. lactate production), we assessed the changes in its activity and regulation. Here we report that when run under hypoxia, 24H mice exhibited the highest blood and intramuscular lactate of all groups, while the 1WH group approached N group values. Concomitantly, the 24H group exhibited the lowest PDH activity, associated with a higher phosphorylation (inactive) state of the Ser(232) residue of PDH, a site specific to PDH kinase-1 (PDK1). Furthermore, protein levels of PDK1 and its regulator, the hypoxia inducible factor-1α (HIF-1α), were both elevated in the 24H group compared with N and 1WH groups. Overall, our results point to a novel mechanism in muscle where the HIF-1α pathway is desensitized in the transition from acute to chronic hypoxia, leading to a reestablishment of PDH activity and a reduction in lactate production by the exercising muscles.
Collapse
|
33
|
Powell MD, Burke MS, Dahle D. Cardiac remodelling, blood chemistry, haematology and oxygen consumption of Atlantic cod, Gadus morhua L., induced by experimental haemolytic anaemia with phenylhydrazine. FISH PHYSIOLOGY AND BIOCHEMISTRY 2011; 37:31-41. [PMID: 20585853 DOI: 10.1007/s10695-010-9413-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Accepted: 06/14/2010] [Indexed: 05/29/2023]
Abstract
Anaemia is a common pathology associated with many infectious and non-infectious diseases. The effects of haemolytic anaemia induced by i.p. injection of phenylhydrazine (PHZ) were studied in Atlantic cod. Phenylhydrazine injection (0.3 mg kg(-1)) in a DMSO and saline vehicle induced a reproducible and stable anaemia reducing haematocrit, (Hct) by 62% over 3 weeks. Controls consisted of fish injected with saline and DMSO/saline vehicle with minimal effects on Hct or whole blood haemoglobin (Hb). Although anaemia resulted in reduced blood lactate and glucose in PHZ injected fish, there were no effects of anaemia on blood, sodium, chloride or potassium. Similarly, there were no changes in the relative proportions of leucocytes in the blood although an increase in the number of immature erythrocytes was observed in the anaemic fish. Anaemic fish showed a 29 and 22% increase in cardiac somatic index (CSI) relative to saline and vehicle controls, respectively, although there were no significant differences in the linear dimensions of the ventricle. Changes in cardiac somatic and ventricular somatic index correlated positively and significantly with Hct but not with whole blood Hb concentration. Anaemic fish had significantly reduced resting routine oxygen consumption compared with vehicle controls but were not able to increase oxygen consumption following a bout of exhaustive exercise. Plasma lactate concentrations increased significantly after exercise to a greater extent in anaemic fish compared with vehicle control fish. Phenylhydrazine is a useful model for studying haemolytic anaemia in Atlantic cod with minimal effects on blood biochemistry and haematology and clearly reduces the aerobic capacity in Atlantic cod.
Collapse
Affiliation(s)
- Mark D Powell
- Faculty of Biosciences and Aquaculture, Bodø University College, Bodø 8049, Norway.
| | | | | |
Collapse
|
34
|
Borley KA, Beers JM, Sidell BD. Phenylhydrazine-induced anemia causes nitric-oxide-mediated upregulation of the angiogenic pathway in Notothenia coriiceps. ACTA ACUST UNITED AC 2010; 213:2865-72. [PMID: 20675556 DOI: 10.1242/jeb.043281] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Antarctic icefishes possess several cardiovascular characteristics that enable them to deliver oxygen adequately in the absence of hemoglobin (Hb). To gain insight into mechanisms driving development of these cardiovascular characteristics of icefish, we chemically induced severe anemia in a red-blooded notothenioid, Notothenia coriiceps. After 10 days of treatment with phenylhydrazine HCl, the hematocrit and Hb concentration of N. coriiceps decreased by >90% and >70%, respectively. Anemic fish exhibited a significantly higher concentration of nitric oxide (NO) metabolites in their plasma compared with that of control animals, indicating that corporeal levels of NO are higher in anemic animals than in control fish. The activity of nitric oxide synthase (NOS) was measured in brain, retina, pectoral muscle and ventricle of control and anemic animals. With the exception of retina, no significant differences in NOS activities were observed, indicating that the increase in plasma NO metabolites is due to loss of Hb, which normally plays a major role in the degradation of NO, and not due to an overall increase in the capacity for NO production. To determine whether loss of Hb can stimulate remodeling of the cardiovascular system, we measured expression of HIF-1alpha, PHD2 and VEGF mRNA in retinae of control and anemic fish. Expression of all three genes was higher in anemic animals compared with control N. coriiceps, suggesting a causative relationship between loss of Hb and induction of angiogenesis that probably is mediated through nitric oxide signaling.
Collapse
Affiliation(s)
- Kimberly A Borley
- Department of Molecular and Biomedical Sciences, University of Maine Orono, ME 04469-5751, USA
| | | | | |
Collapse
|
35
|
Simonot DL, Farrell AP. Coronary vascular volume remodelling in rainbow trout Oncorhynchus mykiss. JOURNAL OF FISH BIOLOGY 2009; 75:1762-1772. [PMID: 20738647 DOI: 10.1111/j.1095-8649.2009.02427.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The 34% increase in relative ventricular mass (Mrv) resulting from chronic anaemia (induced by an intraperitoneal injection of phenylhydrazine hydrochloride) was accompanied by a 117% increase in coronary vascular volume of diploid rainbow trout Oncorhynchus mykiss. Coronary vascular volume of normocythemic triploid fish was similar to that of normocythemic diploid fish despite a larger Mrv. These observations, in combination with previous studies, suggest that the vascularity of compact myocardium in O. mykiss can vary independently of Mrv.
Collapse
Affiliation(s)
- D L Simonot
- Department of Biological Sciences, 8888 University Drive, Simon Fraser University, Burnaby, BC, V5A 1S6 Canada
| | | |
Collapse
|
36
|
Farrell AP, Eliason EJ, Sandblom E, Clark TD. Fish cardiorespiratory physiology in an era of climate changeThe present review is one of a series of occasional review articles that have been invited by the Editors and will feature the broad range of disciplines and expertise represented in our Editorial Advisory Board. CAN J ZOOL 2009. [DOI: 10.1139/z09-092] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review examines selected areas of cardiovascular physiology where there have been impressive gains of knowledge and indicates fertile areas for future research. Because arterial blood is usually fully saturated with oxygen, increasing cardiac output is the only means for transferring substantially more oxygen to tissues. Consequently, any behavioural or environmental change that alters oxygen uptake typically involves a change in cardiac output, which in fishes can amount to a threefold change. During exercise, not all fishes necessarily have the same ability as salmonids to increase cardiac output by increasing stroke volume; they rely more on increases in heart rate instead. The benefits associated with increasing cardiac output via stroke volume or heart rate are unclear. Regardless, all fishes examined so far show an exquisite cardiac sensitivity to filling pressure and the cellular basis for this heightened cardiac stretch sensitivity in fish is being unraveled. Even so, a fully integrated picture of cardiovascular functioning in fishes is hampered by a dearth of studies on venous circulatory control. Potent positive cardiac inotropy involves stimulation of sarcolemmal β-adrenoceptors, which increases the peak trans-sarcolemmal current for calcium and the intracellular calcium transient available for binding to troponin C. However, adrenergic sensitivity is temperature-dependent in part through effects on membrane currents and receptor density. The membrane currents contributing to the pacemaker action potential are also being studied but remain a prime area for further study. Why maximum heart rate is limited to a low rate in most fishes compared with similar-sized mammals, even when Q10 effects are considered, remains a mystery. Fish hearts have up to three oxygen supply routes. The degree of coronary capillarization circulation is of primary importance to the compact myocardium, unlike the spongy myocardium, where venous oxygen partial pressure appears to be the critical factor in terms of oxygen delivery. Air-breathing fishes can boost the venous oxygen content and oxygen partial pressure by taking an air breath, thereby providing a third myocardial oxygen supply route that perhaps compensates for the potentially precarious supply to the spongy myocardium during hypoxia and exercise. In addition to venous hypoxemia, acidemia and hyperkalemia can accompany exhaustive exercise and acute warming, perhaps impairing the heart were it not for a cardiac protection mechanism afforded by β-adrenergic stimulation. With warming, however, a mismatch between an animal’s demand for oxygen (a Q10 effect) and the capacity of the circulatory and ventilatory systems to delivery this oxygen develops beyond an optimum temperature. At temperature extremes in salmon, it is proposed that detrimental changes in venous blood composition, coupled with a breakdown of the cardiac protective mechanism, is a potential mechanism to explain the decline in maximum and cardiac arrhythmias that are observed. Furthermore, the fall off in scope for heart rate and cardiac output is used to explain the decrease in aerobic scope above the optimum temperature, which may then explain the field observation that adult sockeye salmon ( Oncorhynchus nerka (Walbaum in Artedi, 1792)) have difficulty migrating to their spawning area at temperatures above their optimum. Such mechanistic linkages to lifetime fitness, whether they are cardiovascular or not, should assist with predictions in this era of global climate change.
Collapse
Affiliation(s)
- A. P. Farrell
- Department of Zoology and Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - E. J. Eliason
- Department of Zoology and Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - E. Sandblom
- Department of Zoology and Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - T. D. Clark
- Department of Zoology and Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
37
|
Effects of dietary fatty acid composition on the regulation of carnitine palmitoyltransferase (CPT) I in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol B Biochem Mol Biol 2009; 152:85-93. [DOI: 10.1016/j.cbpb.2008.10.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 10/03/2008] [Accepted: 10/03/2008] [Indexed: 01/02/2023]
|
38
|
Intertissue regulation of carnitine palmitoyltransferase I (CPTI): mitochondrial membrane properties and gene expression in rainbow trout (Oncorhynchus mykiss). BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1382-9. [PMID: 18359285 DOI: 10.1016/j.bbamem.2008.02.013] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 02/19/2008] [Accepted: 02/20/2008] [Indexed: 11/22/2022]
Abstract
Carnitine palmitoyltransferase (CPT) I is regulated by several genetic and non-genetic factors including allosteric inhibition, mitochondrial membrane composition and/or fluidity and transcriptional regulation of enzyme content. To determine the intrinsic differences in these regulating factors that may result in differences between tissues in fatty acid oxidation ability, mitochondria were isolated from red, white and heart muscles and liver tissue from rainbow trout. Maximal activity (V(max)) for beta-oxidation enzymes and citrate synthase per mg tissue protein as well as CPT I in isolated mitochondria followed a pattern across tissues of red muscle>heart>white muscle>liver suggesting both quantitative and qualitative differences in mitochondria. CPT I inhibition showed a similar pattern with the highest malonyl-CoA concentration to inhibit activity by 50% (IC(50)) found in red muscle while liver had the lowest. Tissue malonyl-CoA content was highest in white muscle with no differences between the other tissues. Interestingly, the gene expression profiles did not follow the same pattern as the tissue enzyme activity. CPT I mRNA expression was greatest in heart>red muscle>white muscle>liver. In contrast, PPARalpha mRNA was greatest in the liver>red muscle>heart>white muscle. There were no significant differences in the mRNA expression of PPARbeta between tissues. As well, no significant differences were found in the mitochondrial membrane composition between tissues, however, there was a tendency for red muscle to exhibit higher proportions of PUFAs as well as a decreased PC:PE ratio, both of which would indicate increased membrane fluidity. In fact, there were significant correlations between IC(50) of CPT I for malonyl-CoA and indicators of membrane fluidity across tissues. This supports the notion that sensitivity of CPT I to its allosteric regulator could be modulated by changes in mitochondrial membrane composition and/or fluidity.
Collapse
|
39
|
Tkatcheva V, Franklin NM, McClelland GB, Smith RW, Holopainen IJ, Wood CM. Physiological and biochemical effects of lithium in rainbow trout. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2007; 53:632-8. [PMID: 17882473 DOI: 10.1007/s00244-006-0173-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 12/25/2006] [Indexed: 05/17/2023]
Abstract
The physiological responses of juvenile rainbow trout (Oncorhynchus mykiss) to lithium (as LiCl) in moderately hard freshwater (CaCO(3) = 120-140 ppm, Na(+) = approximately 0.6 mM) were studied. The study employed a 15-day step-up exposure regime; 66 microg/L Li for the first 9 days and 528 microg/L for the next 6 days. The concentrations of plasma ions, apolipoprotein AI, total cholesterol, and fatty acids, as well as metabolic enzyme citrate synthase (CS) and Na(+),K(+)-ATPase activities in the gill were measured. Li affected fish by exacerbated diffusive Na(+) losses at the gills in the beginning of exposure and a decrease of branchial CS activity. Detrimental effects were shown in fish exposed to 528 microg Li/L. These included a reduction of gill Na(+),K(+)-ATPase activity, possibly related to observed lower concentrations of free fatty acids and cholesterol in gill tissue.
Collapse
Affiliation(s)
- Victoria Tkatcheva
- Department of Biology, University of Joensuu, P.O. Box 111, FIN-80101 Joensuu, Finland.
| | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Simonot DL, Farrell AP. Cardiac remodelling in rainbow troutOncorhynchus mykissWalbaum in response to phenylhydrazine-induced anaemia. J Exp Biol 2007; 210:2574-84. [PMID: 17601961 DOI: 10.1242/jeb.004028] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
SUMMARYWe examined the nature, extent and timing of cardiac ventricular remodelling in response to chronic, chemically induced anaemia in warm- and cold-acclimated rainbow trout Oncorhynchus mykiss. Chronic anaemia was induced by bi-weekly injections of phenylhydrazine hydrochloride (PHZ) and resulted in transient but large decreases in haematocrit (Hct) and haemoglobin concentration. After 2 weeks of anaemia, relative ventricular mass(rMV) in warm-acclimated rainbow trout had already increased significantly and, by the eighth week of anaemia,rMV was 58% greater than in the sham-injected control fish. Temperature modulated the anaemia-induced ventricular remodelling and erythropoietic responses, as indicated by cold-acclimation reducing the extent of the cardiac remodelling and slowing erythropoietic recovery. For example,in cold-acclimated fish, PHZ reduced Hct to 8.8±1.9% (ranging from 4–16%) and increased rMV by 15% over a 4-week period, whereas the same treatment in warm-acclimated fish reduced Hct to only 17.4±2.1% (ranging from 6–29%) and yet increased rMV by 28%. Cold-acclimated fish also recovered more slowly from anaemia. In addition, warm-acclimated fish maintained compact myocardium between 32% and 37% during anaemia, while cold-acclimated fish responded with an increase in compact myocardium (from 29% to 37%). Routine cardiac output (Q̇) was continuously monitored following a single PHZ injection to examine the initial cardiac response to anaemia. Contrary to expectations, acute anaemia did not produce an immediate, proportionate increase in routine Q̇. In fact, Q̇ did not increase significantly until Hct had decreased to 10%, suggesting that rainbow trout may initially rely on venous oxygen stores to compensate for a reduced arterial oxygen-carrying capacity. Thus, we conclude that myocardial oxygenation, acclimation temperature and cardiac work load could all influence anaemia-induced cardiac remodelling in rainbow trout.
Collapse
Affiliation(s)
- Danielle L Simonot
- Department of Biological Sciences, 8888 University Drive, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | | |
Collapse
|
42
|
McClelland GB, Craig PM, Dhekney K, Dipardo S. Temperature- and exercise-induced gene expression and metabolic enzyme changes in skeletal muscle of adult zebrafish (Danio rerio). J Physiol 2006; 577:739-51. [PMID: 16990399 PMCID: PMC1890438 DOI: 10.1113/jphysiol.2006.119032] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Both exercise training and cold acclimatization induce muscle remodelling in vertebrates, producing a more aerobic phenotype. In ectothermic species exercise training and cold-acclimatization represent distinct stimuli. It is currently unclear if these stimuli act through a common mechanism or if different mechanisms lead to a common phenotype. The goal of this study was to survey responses that represent potential mechanisms responsible for contraction- and temperature-induced muscle remodelling, using an ectothermic vertebrate. Separate groups of adult zebrafish (Danio rerio) were either swim trained or cold acclimatized for 4 weeks. We found that the mitochondrial marker enzyme citrate synthase (CS) was increased by 1.5x in cold and by 1.3x with exercise (P<0.05). Cytochrome c oxidase (COx) was increased by 1.2x following exercise training (P<0.05) and 1.2x (P=0.07) with cold acclimatization. However, only cold acclimatization increased beta-hydroxyacyl-CoA dehydrogenase (HOAD) compared to exercise-trained (by 1.3x) and pyruvate kinase (PK) relative to control zebrafish. We assessed the whole-animal performance outcomes of these treatments. Maximum absolute sustained swimming speed (Ucrit) was increased in the exercise trained group but not in the cold acclimatized group. Real-time PCR analysis indicated that increases in CS are primarily transcriptionally regulated with exercise but not with cold treatments. Both treatments showed increases in nuclear respiratory factor (NRF)-1 mRNA which was increased by 2.3x in cold-acclimatized and 4x in exercise-trained zebrafish above controls. In contrast, peroxisome proliferator-activated receptor (PPAR)-alpha mRNA levels were decreased in both experimental groups while PPAR-beta1 declined in exercise training only. Moreover, PPAR-gamma coactivator (PGC)-1alpha mRNA was not changed by either treatment. In zebrafish, both temperature and exercise produce a more aerobic phenotype, but there are stimulus-dependent responses (i.e. HOAD and PK activities). While similar changes in NRF-1 mRNA suggest that common responses might underlie aerobic muscle remodelling there are distinct changes (i.e. CS and PPAR-beta1 mRNA) that contribute to specific temperature- and exercise-induced phenotypes.
Collapse
Affiliation(s)
- Grant B McClelland
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.
| | | | | | | |
Collapse
|