1
|
Solari P, Sollai G, Palmas F, Sabatini A, Crnjar R. A method for selective stimulation of leg chemoreceptors in whole crustaceans. J Exp Biol 2021; 224:273419. [PMID: 34761803 DOI: 10.1242/jeb.243636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/05/2021] [Indexed: 11/20/2022]
Abstract
The integration of sensory information with adequate motor outputs is critical for animal survival. Here, we present an innovative technique based on a non-invasive closed-circuit device consisting of a perfusion/stimulation chamber chronically applied on a single leg of the crayfish Procambarus clarkii. Using this technique, we focally stimulated the leg inside the chamber and studied the leg-dependent sensory-motor integration involving other sensory appendages, such as antennules and maxillipeds, which remain unstimulated outside the chamber. Results show that the stimulation of a single leg with chemicals, such as disaccharides, is sufficient to trigger a complex search behaviour involving locomotion coupled with the reflex activation of antennules and maxillipeds. This technique can be easily adapted to other decapods and/or other sensory appendages. Thus, it has opened possibilities for studying sensory-motor integration evoked by leg stimulation in whole aquatic animals under natural conditions to complement, with a direct approach, current ablation or silencing techniques.
Collapse
Affiliation(s)
- Paolo Solari
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, University Campus, S.P. 8, 09042 Monserrato, CA, Italy
| | - Giorgia Sollai
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, University Campus, S.P. 8, 09042 Monserrato, CA, Italy
| | - Francesco Palmas
- Department of Life and Environmental Sciences, University of Cagliari, Via Fiorelli 1, 09126 Cagliari, CA, Italy
| | - Andrea Sabatini
- Department of Life and Environmental Sciences, University of Cagliari, Via Fiorelli 1, 09126 Cagliari, CA, Italy
| | - Roberto Crnjar
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, University Campus, S.P. 8, 09042 Monserrato, CA, Italy
| |
Collapse
|
2
|
Lord JP, Moser RM, Buonocore EM, Sylvester EE, Morales MJ, Granitz AP, Disipio A, Blakely E, O'Sullivan-Evangelista SL, Mateo TF, Chlebove GJ, Carey CM, Lucas O. Dominance Hierarchies in Marine Invertebrates. THE BIOLOGICAL BULLETIN 2021; 240:2-15. [PMID: 33730537 DOI: 10.1086/712973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
AbstractDominance hierarchies have been well studied in myriad terrestrial animals, but surprisingly little is known about hierarchies in marine invertebrates; examples are limited to a few species of decapod crustaceans and cephalopods. Is the marine environment less conducive to the establishment of dominance hierarchy structures, or does this just underline the lack of detailed behavioral information about most marine invertebrates? In this review, we highlight the published information about marine invertebrate dominance hierarchies, which involve ranks established through fights or displays. We focus on the method of hierarchy formation, examine the ecological implications of this population structure, and compare the habitat and behavioral characteristics of species that exhibit this behavior. Because dominance hierarchies can influence habitat use, population distributions, energetics, mating, resource exploitation, and population genetic structure, it is crucial to understand how this trait evolves and which species are likely to exhibit it. A better understanding of marine invertebrate hierarchies could change the way we think about population dynamics of some species and could have important implications for fisheries, conservation, or even modeling of social and economic inequality.
Collapse
|
3
|
Chung M, Wang M, Huang Z, Okuyama T. Diverse sensory cues for individual recognition. Dev Growth Differ 2020; 62:507-515. [DOI: 10.1111/dgd.12697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 12/01/2022]
Affiliation(s)
- Myung Chung
- Laboratory of Behavioral Neuroscience Institute for Quantitative Biosciences (IQB) The University of Tokyo Tokyo Japan
| | - Mu‐Yun Wang
- Laboratory of Behavioral Neuroscience Institute for Quantitative Biosciences (IQB) The University of Tokyo Tokyo Japan
| | - Ziyan Huang
- Laboratory of Behavioral Neuroscience Institute for Quantitative Biosciences (IQB) The University of Tokyo Tokyo Japan
| | - Teruhiro Okuyama
- Laboratory of Behavioral Neuroscience Institute for Quantitative Biosciences (IQB) The University of Tokyo Tokyo Japan
- JST, PRESTO Tokyo Japan
| |
Collapse
|
4
|
Eap D, Correa S, Ngo-Vu H, Derby CD. Chemosensory Basis of Feeding Behavior in Pacific White Shrimp, Litopenaeus vannamei. THE BIOLOGICAL BULLETIN 2020; 239:115-131. [PMID: 33151752 DOI: 10.1086/710337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
AbstractThe Pacific white shrimp, Litopenaeus vannamei, is important as the principal species in the worldwide aquaculture of shrimp. It has also become a model in the study of crustacean biology, especially because it is one of the first decapod crustaceans to have its genome sequenced. This study examined an aspect of the sensory biology of this shrimp that is important in its aquaculture, by describing its peripheral chemical sensors and how they are used in acquiring and consuming food pellets. We used scanning electron microscopy to describe the diversity of sensilla on the shrimp's major chemosensory organs: antennules, antennae, mouthparts, and legs. Using behavioral studies on animals with selective sensory ablations, we then explored the roles that these chemosensory organs play in the shrimp's search for, and acquisition and ingestion of, food pellets. We found that the antennules mediate odor-activated searching for pellets, with both the lateral and medial antennular flagella contributing to this behavior and thus demonstrating that both aesthetasc (olfactory) and distributed chemosensors on the antennules can mediate this behavior. Once the shrimp finds and grasps the food pellet, the antennular chemoreceptors no longer play a role, and then the chemoreceptors on the mouthparts and legs control ingestion of the pellets. This sequence of chemosensory control of feeding in L. vannamei, a dendrobranchiate crustacean with small antennules and an ability to live and feed in both benthic and pelagic environments, is generally similar to that of the better-studied, large-antennuled, benthic reptantian crustaceans, including spiny lobsters (Achelata), clawed lobsters and crayfish (Astacidea), and crabs (Meirua).
Collapse
|
5
|
Gentes N, Scholtz G. Comparative analysis of the antennae of three amphipod species with different lifestyles. ARTHROPOD STRUCTURE & DEVELOPMENT 2019; 53:100886. [PMID: 31675652 DOI: 10.1016/j.asd.2019.100886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
Crustaceans detect chemical stimuli in the environment with aesthetasc sensilla, which are located on their 1st antennae. With the transition to other environments, chemoreception faces physical challenges. To provide a deeper understanding of the relation between the morphology of olfactory organs and different lifestyles, we studied the peripheral olfactory system of three amphipod species, the marine Gammarus salinus, the blind subterranean freshwater species Niphargus puteanus, and the terrestrial Cryptorchestia garbinii. We compared the 1st and 2nd antennae of these species with respect to length and presence of aesthetascs and other sensilla. The females of N. puteanus reveal the longest 1st antennae in relation to body size. G. salinus shows the largest aesthetascs and the same relative length of the 1st antennae as male N. puteanus. C. garbinii has very short 1st antennae and reduced (putative) aesthetascs. Our findings show that the compensation of vision loss by olfaction cannot be generally assumed in animals from dark environments. Furthermore, the behaviour of C. garbinii indicates a chemosensory ability, despite the reduction of the 1st antennae. A comparison with other terrestrial crustaceans suggests that the loss of the olfactory sense on the 1st antennae in C. garbinii might be compensated with chemoreception by the 2nd antennae.
Collapse
Affiliation(s)
- Naomi Gentes
- Humboldt-Universität zu Berlin, Institut für Biologie/Vergleichende Zoologie, Philippstr. 13, 10115 Berlin, Germany
| | - Gerhard Scholtz
- Humboldt-Universität zu Berlin, Institut für Biologie/Vergleichende Zoologie, Philippstr. 13, 10115 Berlin, Germany.
| |
Collapse
|
6
|
Who is the boss? Individual recognition memory and social hierarchy formation in crayfish. Neurobiol Learn Mem 2018; 147:79-89. [DOI: 10.1016/j.nlm.2017.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/24/2017] [Accepted: 11/30/2017] [Indexed: 11/24/2022]
|
7
|
Solari P, Sollai G, Masala C, Loy F, Palmas F, Sabatini A, Crnjar R. Antennular Morphology and Contribution of Aesthetascs in the Detection of Food-related Compounds in the Shrimp Palaemon adspersus Rathke, 1837 (Decapoda: Palaemonidae). THE BIOLOGICAL BULLETIN 2017; 232:110-122. [PMID: 28654334 DOI: 10.1086/692696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Shrimp are an essential ecological component of marine ecosystems, and have commercial importance for human consumption and aquaculture. Like other decapod crustaceans, shrimp rely on chemical senses to detect and localize food resources by means of chemosensilla that are located mainly on the cephalothoracic appendages. Using the shrimp Palaemon adspersus, a model organism with omnivorous feeding behavior, we aimed to provide comparative information on the role of aesthetascs, antennular sensilla, and flicking behavior in food detection. To this end, we examined i) the morphology of antennular sensilla by field emission scanning electron microscopy, ii) the shrimp's sensitivity to a number of food-related compounds (amino acids and sugars) by means of whole-animal bioassays, and iii) the contribution of the aesthetasc sensilla to food detection. Our results showed that, aside from the aesthetascs, only three other main morphotypes of setae with chemoreceptive features were present in the antennules, thus accounting for relatively simple sensillar equipment. Nevertheless, we found broad-spectrum sensitivity of the shrimp to a number of amino acids (i.e., isoleucine, leucine, methionine, phenylalanine, glycine, tryptophan, cysteine, and tyrosine) and carbohydrates (trehalose, maltose, cellobiose, and fructose) that was consistent with the omnivorous or scavenging habits of the animal. Although aesthetasc ablation attenuated flicking behavior in a chemical stimulus-independent manner, success in detection and short-range localization of food did not rely on the presence of aesthetasc sensilla. This finding confirms the existence of a non-aesthetasc alternative pathway for feeding, with functional redundancy in simple generalist feeder models such as shrimp.
Collapse
|
8
|
Wofford S, LaPlante P, Moore P. Information depends on context: behavioural response to chemical signals depends on sex and size in crayfish contests. BEHAVIOUR 2017. [DOI: 10.1163/1568539x-00003422] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Securing information about oneself or an opponent can be crucial to update the likelihood of winning a contest and the relative costs of continuing or escalating. This information can subsequently reduce costly errors. However, information encoded in signals exchanged by opponents can differ based on context. We sought to unravel these differences by pairing male and female crayfish (Orconectes rusticus) under varying sex and size conditions. A pre-optimized technique was used to visualize a well-studied contest signal in crayfish (i.e., urine). Behavioural responses were quantified prior to and after the release of that signal. There was a characteristic de-escalation of behavioural intensity after an opponent released urine. However, behavioural changes after the release event were dependent on the sex and the relative size of the opponents. Urine also significantly altered both sender and receiver behaviour, but lack of behavioural differences suggests urine plays a role in both opponent and auto-communication.
Collapse
Affiliation(s)
- Sarah J. Wofford
- Laboratory for Sensory Ecology, Bowling Green State University, 217 Life Sciences Building, Bowling Green, OH 43402, USA
| | - Phillip M. LaPlante
- Laboratory for Sensory Ecology, Bowling Green State University, 217 Life Sciences Building, Bowling Green, OH 43402, USA
| | - Paul A. Moore
- Laboratory for Sensory Ecology, Bowling Green State University, 217 Life Sciences Building, Bowling Green, OH 43402, USA
| |
Collapse
|
9
|
Kamio M, Derby CD. Finding food: how marine invertebrates use chemical cues to track and select food. Nat Prod Rep 2017; 34:514-528. [DOI: 10.1039/c6np00121a] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review covers recent research on how marine invertebrates use chemical cues to find and select food.
Collapse
Affiliation(s)
- Michiya Kamio
- Tokyo University of Marine Science and Technology
- Tokyo 108-8477
- Japan
| | | |
Collapse
|
10
|
Franklin AM, Marshall NJ, Lewis SM. Multimodal signals: ultraviolet reflectance and chemical cues in stomatopod agonistic encounters. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160329. [PMID: 27853613 PMCID: PMC5108963 DOI: 10.1098/rsos.160329] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/29/2016] [Indexed: 06/06/2023]
Abstract
Complex signals are commonly used during intraspecific contests over resources to assess an opponent's fighting ability and/or aggressive state. Stomatopod crustaceans may use complex signals when competing aggressively for refuges. Before physical attacks, stomatopods assess their opponents using chemical cues and perform threat displays showing a coloured patch, the meral spot. In some species, this spot reflects UV. However, despite their complex visual system with up to 20 photoreceptor classes, we do not know if stomatopods use chromatic or achromatic signals in contests. In a field study, we found that Neogonodactylus oerstedii meral spot luminance varies with sex, habitat and, more weakly, body length. Next, we conducted an experimental manipulation which demonstrated that both chemical cues and chromatic signals are used during contests. In the absence of chemical cues, stomatopods approached an occupied refuge more quickly and performed offensive behaviours at a lower rate. When UV reflectance was absent, stomatopods performed offensive behaviours more frequently and contest duration trended towards shorter fights. These results provide new evidence that UV reflectance and/or visible spectrum luminance is used to amplify threat displays. Our results are the first to demonstrate that chemical and chromatic cues comprise a multimodal signal in stomatopod contests.
Collapse
Affiliation(s)
| | - N. Justin Marshall
- Sensory Neurobiology Group, Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sara M. Lewis
- Department of Biology, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
11
|
Katoh E, Sbragaglia V, Aguzzi J, Breithaupt T. Sensory biology and behaviour of Nephrops norvegicus. ADVANCES IN MARINE BIOLOGY 2013; 64:65-106. [PMID: 23668588 DOI: 10.1016/b978-0-12-410466-2.00003-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The Norway lobster is one of the most important commercial crustaceans in Europe. A detailed knowledge of the behaviour of this species is crucial in order to optimize fishery yields, improve sustainability of fisheries, and identify man-made environmental threats. Due to the cryptic life-style in burrows, the great depth and low-light condition of their habitat, studies of the behaviour of this species in its natural environment are challenging. Here, we first provide an overview of the sensory modalities (vision, chemoreception, and mechanoreception) of Nephrops norvegicus. We focus particularly on the role of the chemical and mechanical senses in eliciting and steering spatial orientation behaviours. We then concentrate on recent research in social behaviour and biological rhythms of Nephrops. A combination of laboratory approaches and newly developed tracking technologies has led to a better understanding of aggressive interactions, reproductive behaviours, activity cycles, and burrow-related behaviours. Gaps in our knowledge are identified and suggestions for future research are provided.
Collapse
Affiliation(s)
- Emi Katoh
- School of Biological, Biomedical and Environmental Sciences, University of Hull, Hull, UK
| | | | | | | |
Collapse
|
12
|
Weissburg M, Atkins L, Berkenkamp K, Mankin D. Dine or dash? Turbulence inhibits blue crab navigation in attractive–aversive odor plumes by altering signal structure encoded by the olfactory pathway. J Exp Biol 2012; 215:4175-82. [DOI: 10.1242/jeb.077255] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Blue crabs can distinguish and navigate to attractive (food) odors even when aversive odors (injured crab metabolites) are released nearby. Blue crabs in these conditions detect the aversive odor and avoid it, but find the attractive source with nearly the same success rate as when the attractive source is presented alone. Spatially and temporally distinct odor filaments appear to signal to foragers that the two odor sources are not co-located, and hence navigating to the attractive odor entails an acceptable risk of predation. However, environmentally produced turbulence suppresses tracking by homogenizing the two odors; blue crabs fail to track to the attractive source when the aversive source is present, even though turbulence does not substantially inhibit tracking to the attractive source alone. Removal of sensory input from aesthetascs on the antennules, but not chemosensors on the legs, rescues navigation to attractive–aversive dual plumes in turbulent conditions. These results suggest that mixing in the natural environment may amplify the effects of predators by suppressing tracking to food odors when aversive cues are present, and that the olfactory pathway mediates the response.
Collapse
Affiliation(s)
- Marc Weissburg
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| | - Lorin Atkins
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| | - Kimberly Berkenkamp
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| | - Danielle Mankin
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| |
Collapse
|
13
|
Reinhart VL, Cromarty SI, Sipala MW, Kass-Simon G. Exposure to the steroid hormone 20-hydroxyecdysone modulates agonistic interactions in male Homarus americanus. Horm Behav 2012; 62:605-11. [PMID: 22940528 DOI: 10.1016/j.yhbeh.2012.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/20/2012] [Accepted: 07/22/2012] [Indexed: 10/28/2022]
Abstract
In this study we present evidence that 20-hydroxyecdysone (20E) affects agonistic behavior in male American lobsters and that male and female animals differ in their response to the hormone. Thirty-minute staged fights were conducted between large males exposed either to artificial seawater (ASW) or 20E and small, anosmic opponents. The nephropores of both combatants were blocked. Fights were videotaped and quantitatively analyzed for aggressive, defensive and avoidance behaviors using an ethogram in which behaviors are ranked according to aggressiveness. Unlike female lobsters, exposing male lobsters to 20E did not increase their aggressive behavior; however, there was a marginally significant trend toward an increase in defensive behaviors with a lower aggressive content than in their ASW-exposed counterparts. The opponents of 20E-exposed animals performed significantly more aggressive behaviors than their counterparts. In fights with 20E-exposed animals, the overall aggressive intensity of the fight was increased and the animals performed a greater number of avoidance behaviors. Unlike the effects of 20E on females, where exposure to 20E caused an increase in overall agonistic arousal, males only exhibited a change in frequency of their behaviors. These findings suggest that while 20E affects both males and females in agonistic encounters, the nature of the effect is different for the two sexes.
Collapse
Affiliation(s)
- V L Reinhart
- Department of Biological Sciences, University of Rhode Island, Kingston, USA
| | | | | | | |
Collapse
|
14
|
Pravin S, Mellon D, Reidenbach MA. Micro-scale fluid and odorant transport to antennules of the crayfish, Procambarus clarkii. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2012; 198:669-81. [PMID: 22669432 DOI: 10.1007/s00359-012-0738-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 05/13/2012] [Accepted: 05/16/2012] [Indexed: 12/20/2022]
Abstract
A numerical model was developed to determine advective-diffusive transport of odorant molecules to olfactory appendages of the crayfish, Procambarus clarkii. We tested the extent of molecule transport to the surfaces of aesthetasc sensilla during an antennule flick and the degree of odorant exchange during subsequent flicks. During the rapid downstroke of a flick, odorant molecules are advected between adjacent aesthetascs, while during the slower return stroke, these odorants are trapped between the sensilla and molecular diffusion occurs over a sufficient time period to transport odorants to aesthetasc surfaces. During subsequent flicks, up to 97.6% of these odorants are replaced with new odorant molecules. The concentration of molecules captured along aesthetasc surfaces was found to increase with increased gap spacing between aesthetascs, flick speed, and distance from the proximal end of the aesthetasc, but these changes in morphology and flicking kinematics reduce the animal's ability to take discrete samples of the odorant-laden fluid environment with each flick. Results suggest that antennule flicking allows discrete sampling of the time- and space-varying odorant signal, and high concentration odorant filaments can be distinguished from more diffuse, low concentration filaments through changes in both the timing and the encounter rate of odorant molecules to aesthetasc surfaces.
Collapse
Affiliation(s)
- Swapnil Pravin
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, USA.
| | | | | |
Collapse
|
15
|
Aggio JF, Tieu R, Wei A, Derby CD. Oesophageal chemoreceptors of blue crabs, Callinectes sapidus, sense chemical deterrents and can block ingestion of food. J Exp Biol 2012; 215:1700-10. [DOI: 10.1242/jeb.065854] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
SUMMARY
Decapod crustaceans such as blue crabs possess a variety of chemoreceptors that control different stages of the feeding process. All these chemoreceptors are putative targets for feeding deterrents that cause animals to avoid or reject otherwise palatable food. As a first step towards characterizing the chemoreceptors that mediate the effect of deterrents, we used a behavioral approach to investigate their precise location. Data presented here demonstrate that chemoreceptors located on the antennules, pereiopods and mouthparts do not mediate the food-rejection effects of a variety of deterrents, both natural and artificial to crabs. Crabs always searched for deterrent-laced food and took it to their oral region. The deterrent effect was manifested as either rejection or extensive manipulation, but in both cases crabs bit the food. The biting behavior is relevant because the introduction of food into the oral cavity ensured that the deterrents gained access to the oesophageal taste receptors, and so we conclude that they are the ones mediating rejection. Additional support comes from the fact that a variety of deterrent compounds evoked oesophageal dilatation, which is mediated by oesophageal receptors and has been linked to food rejection. Further, there is a positive correlation between a compound’s ability to elicit rejection and its ability to evoke oesophageal dilatation. The fact that deterrents do not act at a distance is in accordance with the limited solubility of most known feeding deterrents, and likely influences predator–prey interactions and their outcome: prey organisms will be attacked and bitten before deterrents become relevant.
Collapse
Affiliation(s)
- Juan F. Aggio
- Neuroscience Institute and Department of Biology, Georgia State University, 850 Petit Science Center, 100 Piedmont Avenue, Atlanta, GA 30303, USA
| | - Ryan Tieu
- Neuroscience Institute and Department of Biology, Georgia State University, 850 Petit Science Center, 100 Piedmont Avenue, Atlanta, GA 30303, USA
| | - Amy Wei
- Neuroscience Institute and Department of Biology, Georgia State University, 850 Petit Science Center, 100 Piedmont Avenue, Atlanta, GA 30303, USA
| | - Charles D. Derby
- Neuroscience Institute and Department of Biology, Georgia State University, 850 Petit Science Center, 100 Piedmont Avenue, Atlanta, GA 30303, USA
| |
Collapse
|
16
|
Tomina Y, Takahata M. Discrimination learning with light stimuli in restrained American lobster. Behav Brain Res 2012; 229:91-105. [DOI: 10.1016/j.bbr.2011.12.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 12/29/2011] [Accepted: 12/31/2011] [Indexed: 11/29/2022]
|
17
|
Mann O, Lieberman V, Köhler A, Korine C, Hedworth HE, Voigt-Heucke SL. Finding Your Friends at Densely Populated Roosting Places: Male Egyptian Fruit Bats (Rousettus aegyptiacus) Distinguish between Familiar and Unfamiliar Conspecifics. ACTA CHIROPTEROLOGICA 2011. [DOI: 10.3161/150811011x624893] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Wyatt TD. Pheromones and signature mixtures: defining species-wide signals and variable cues for identity in both invertebrates and vertebrates. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 196:685-700. [PMID: 20680632 DOI: 10.1007/s00359-010-0564-y] [Citation(s) in RCA: 220] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 07/10/2010] [Accepted: 07/20/2010] [Indexed: 02/07/2023]
Abstract
Pheromones have been found in species in almost every part of the animal kingdom, including mammals. Pheromones (a molecule or defined combination of molecules) are species-wide signals which elicit innate responses (though responses can be conditional on development as well as context, experience, and internal state). In contrast, signature mixtures, in invertebrates and vertebrates, are variable subsets of molecules of an animal's chemical profile which are learnt by other animals, allowing them to distinguish individuals or colonies. All signature mixtures, and almost all pheromones, whatever the size of molecules, are detected by olfaction (as defined by receptor families and glomerular processing), in mammals by the main olfactory system or vomeronasal system or both. There is convergence on a glomerular organization of olfaction. The processing of all signature mixtures, and most pheromones, is combinatorial across a number of glomeruli, even for some sex pheromones which appear to have 'labeled lines'. Narrowly specific pheromone receptors are found, but are not a prerequisite for a molecule to be a pheromone. A small minority of pheromones act directly on target tissues (allohormone pheromones) or are detected by non-glomerular chemoreceptors, such as taste. The proposed definitions for pheromone and signature mixture are based on the heuristic value of separating these kinds of chemical information. In contrast to a species-wide pheromone, there is no single signature mixture to find, as signature mixtures are a 'receiver-side' phenomenon and it is the differences in signature mixtures which allow animals to distinguish each other.
Collapse
|
19
|
Effects of habitat complexity on the aggressive behaviour of the American lobster (Homarus americanus) in captivity. Appl Anim Behav Sci 2010. [DOI: 10.1016/j.applanim.2009.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Shabani S, Kamio M, Derby CD. Spiny lobsters use urine-borne olfactory signaling and physical aggressive behaviors to influence social status of conspecifics. ACTA ACUST UNITED AC 2009; 212:2464-74. [PMID: 19617440 DOI: 10.1242/jeb.026492] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Decapod crustaceans, like many other animals, engage in agonistic behaviors that enhance their ability to compete for resources with conspecifics. These agonistic behaviors include the release of chemical signals as well as physical aggressive and submissive behaviors. In this study, we report that Caribbean spiny lobsters, Panulirus argus, use both urine-borne chemical signaling and physical aggressive behaviors during interactions with conspecifics, and that these agonistic behaviors can influence the behavior and eventual social status of the interactants. Spiny lobsters that engaged primarily in physical aggressive behaviors became dominant, whereas spiny lobsters that received these physical aggressive behaviors responded with avoidance behaviors and became subordinates. Dominant animals frequently released urine during social interactions, more than when they were not in contact with subordinates and more than when they were not paired with another animal. Subordinates released urine significantly less often than dominants, and no more than when not paired. Preventing release of urine by catheterizing the animals resulted in an increase in the number and duration of physical interactions, and this increase was primarily driven by dominants initiating interactions through physical aggressive behaviors. Introducing urine from one of the catheterized animals into an aquarium reduced physical aggressive behavior by dominant animals to normal levels. Urine-borne signals alone were capable of inducing avoidance behaviors from solitary spiny lobsters in both laboratory and field conditions. We conclude that urine serves as a chemical signal that communicates social status to the interactants. Ablation experiments showed that that these urine signals are detected primarily by aesthetasc sensilla of the olfactory pathway.
Collapse
Affiliation(s)
- Shkelzen Shabani
- Neuroscience Institute and Department of Biology, Georgia State University, Atlanta, GA 30303, USA.
| | | | | |
Collapse
|
21
|
Magel CR, Shields JD, Brill RW. Idiopathic lesions and visual deficits in the american lobster (Homarus americanus) from Long Island Sound, NY. THE BIOLOGICAL BULLETIN 2009; 217:95-101. [PMID: 19679726 DOI: 10.1086/bblv217n1p95] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In 1999, a mass mortality of the American lobster (Homarus americanus) occurred in western Long Island Sound (WLIS). Although the etiology of this event remains unknown, bottom water temperature, hypoxia, heavy metal poisoning, and pesticides are potential causal factors. Lobsters from WLIS continue to display signs of morbidity, including lethargy and cloudy grey eyes that contain idiopathic lesions. As the effect of these lesions on lobster vision is unknown, we used electroretinography (ERG) to document changes in visual function in lobsters from WLIS, while using histology to quantify the extent of physical damage. Seventy-three percent of lobsters from WLIS showed damage to photoreceptors and optic nerve fibers, including necrosis, cellular breakdown, and hemocyte infiltration in the optic nerves, rhabdoms, and ommatidia. Animals with more than 15% of their photoreceptors exhibiting damage also displayed markedly reduced responses to 10-ms flashes of a broad-spectrum white light. Specifically, maximum voltage (Vmax) responses were significantly lower and occurred at a lower light intensity compared to responses from lobsters lacking idiopathic lesions. Nearly a decade after the 1999 mortality event, lobsters from WLIS still appear to be subjected to a stressor of unknown etiology that causes significant functional damage to the eyes.
Collapse
|
22
|
Reidenbach MA, George N, Koehl MAR. Antennule morphology and flicking kinematics facilitate odor sampling by the spiny lobster, Panulirus argus. ACTA ACUST UNITED AC 2008; 211:2849-58. [PMID: 18723544 DOI: 10.1242/jeb.016394] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many arthropod olfactory appendages bear arrays of hair-like chemosensory sensillae. Odor molecules in the fluid around the animal must reach the surfaces of those hairs to be sensed. We used the lateral flagellum of the olfactory antennule of the spiny lobster, Panulirus argus, as a system to study how the morphology, orientation, and motion of sensilla-bearing appendages affects the small-scale water flow within the hair array. We tested whether antennule flicking enables lobsters to take discrete odor samples by measuring flow fields through an aesthetasc array on a dynamically scaled physical model of a P. argus antennule. Particle image velocimetry revealed that the magnitude and duration of velocity through the aesthetasc array during the rapid flick downstroke is just enough to allow complete replacement of the fluid entrained within the hair array. The complex zig-zag arrangement of aesthetascs hairs, combined with their offset orientation along the antennule, generates flow velocities that are uniform along the length of the hairs. This increases fluid exchange during the flick and reduces the boundary layer thickness surrounding the hairs. The return stroke occurs at about a quarter the speed of the flick, but the velocity of the fluid between the aesthetascs is approximately 25 times slower. The retained fluid during the return stroke remains virtually unstirred and sufficient time occurs for odor molecules to diffuse to aesthetasc surfaces.
Collapse
Affiliation(s)
- Matthew A Reidenbach
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA.
| | | | | |
Collapse
|
23
|
Shabani S, Kamio M, Derby CD. Spiny lobsters detect conspecific blood-borne alarm cues exclusively through olfactory sensilla. J Exp Biol 2008; 211:2600-8. [DOI: 10.1242/jeb.016667] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYWhen attacked by predators, diverse animals actively or passively release molecules that evoke alarm and related anti-predatory behavior by nearby conspecifics. The actively released molecules are alarm pheromones, whereas the passively released molecules are alarm cues. For example, many insects have alarm-signaling systems that involve active release of alarm pheromones from specialized glands and detection of these signals using specific sensors. Many crustaceans passively release alarm cues, but the nature of the cues,sensors and responses is poorly characterized. Here we show in laboratory and field experiments that injured Caribbean spiny lobsters, Panulirus argus, passively release alarm cues via blood (hemolymph) that induce alarm responses in the form of avoidance and suppression of feeding. These cues are detected exclusively through specific olfactory chemosensors,the aesthetasc sensilla. The alarm cues for Caribbean spiny lobsters are not unique to the species but do show some phylogenetic specificity: P. argus responds primarily with alarm behavior to conspecific blood, but with mixed alarm and appetitive behaviors to blood from the congener Panulirus interruptus, or with appetitive behaviors to blood from the blue crab Callinectes sapidus. This study lays the foundation for future neuroethological studies of alarm cue systems in this and other decapod crustaceans.
Collapse
Affiliation(s)
- Shkelzen Shabani
- Department of Biology, Brains & Behavior Program and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303,USA
| | - Michiya Kamio
- Department of Biology, Brains & Behavior Program and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303,USA
| | - Charles D. Derby
- Department of Biology, Brains & Behavior Program and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303,USA
| |
Collapse
|
24
|
Daniel PC, Fox M, Mehta S. Identification of chemosensory sensilla mediating antennular flicking behavior in Panulirus argus, the Caribbean spiny lobster. THE BIOLOGICAL BULLETIN 2008; 215:24-33. [PMID: 18723634 DOI: 10.2307/25470680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Crustaceans sample odorants by a rapid series of flicks of the two flagella composing the distal segments of each of the paired antennules. The lateral flagella contain aesthetasc sensilla that house unimodal chemosensory neurons. Nine types of nonaesthetasc setae with putative chemosensory and mechanosensory functions are distributed on the lateral and medial flagella. Sensory neurons in aesthetascs and nonaesthetasc sensilla terminate in separate regions of the brain, the olfactory lobe, and the lateral antennular neuropil, resulting in two odorant-processing pathways. Distilled water ablation of flagella and excision of specific setae were used to identify chemosensory sensilla mediating antennular flick behavior in Panulirus argus. The flick rates of sham-ablated and ablated or excised lobsters toward squid extract were compared. Complete attenuation of flick response to squid extract occurred as a result of (1) distilled water ablation of lateral flagella, (2) excision of aesthetascs and asymmetric sensilla, and (3) excision of aesthetascs. Distilled water ablation of medial flagella resulted in a mean flick rate 52% of that observed for sham-ablated lobsters toward squid extract. Flicking was unaffected by excision of asymmetric, guard, or companion sensilla. We propose that odorant mediation of flicking behavior requires both the aesthetasc and nonaesthetasc pathways.
Collapse
Affiliation(s)
- Peter C Daniel
- Department of Biology, Hofstra University, Hempstead, New York 11549, USA.
| | | | | |
Collapse
|
25
|
Derby CD, Sorensen PW. Neural processing, perception, and behavioral responses to natural chemical stimuli by fish and crustaceans. J Chem Ecol 2008; 34:898-914. [PMID: 18521679 DOI: 10.1007/s10886-008-9489-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 04/22/2008] [Accepted: 04/28/2008] [Indexed: 12/19/2022]
Abstract
This manuscript reviews the chemical ecology of two of the major aquatic animal models, fish and crustaceans, in the study of chemoreception. By necessity, it is restricted in scope, with most emphasis placed on teleost fish and decapod crustaceans. First, we describe the nature of the chemical world perceived by fish and crustaceans, giving examples of the abilities of these animals to analyze complex natural odors. Fish and crustaceans share the same environments and have evolved some similar chemosensory features: the ability to detect and discern mixtures of small metabolites in highly variable backgrounds and to use this information to identify food, mates, predators, and habitat. Next, we give examples of the molecular nature of some of these natural products, including a description of methodologies used to identify them. Both fish and crustaceans use their olfactory and gustatory systems to detect amino acids, amines, and nucleotides, among many other compounds, while fish olfactory systems also detect mixtures of sex steroids and prostaglandins with high specificity and sensitivity. Third, we discuss the importance of plasticity in chemical sensing by fish and crustaceans. Finally, we conclude with a description of how natural chemical stimuli are processed by chemosensory systems. In both fishes and crustaceans, the olfactory system is especially adept at mixture discrimination, while gustation is well suited to facilitate precise localization and ingestion of food. The behaviors of both fish and crustaceans can be defined by the chemical worlds in which they live and the abilities of their nervous systems to detect and identify specific features in their domains. An understanding of these worlds and the sensory systems that provide the animals with information about them provides insight into the chemical ecology of these species.
Collapse
Affiliation(s)
- Charles D Derby
- Center for Behavioral Neuroscience, Department of Biology, Georgia State University, Atlanta, GA, USA.
| | | |
Collapse
|
26
|
Perception of the steroid hormone 20-hydroxyecdysone modulates agonistic interactions in Homarus americanus. Anim Behav 2008. [DOI: 10.1016/j.anbehav.2007.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Song CK, Johnstone LM, Schmidt M, Derby CD, Edwards DH. Social domination increases neuronal survival in the brain of juvenile crayfish Procambarus clarkii. ACTA ACUST UNITED AC 2007; 210:1311-24. [PMID: 17401115 DOI: 10.1242/jeb.02758] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Olfactory cues are among the sensory inputs that crayfish use in establishing dominance hierarchies. Throughout their lives, new neurons are continuously added into brain cell clusters 9 and 10, which contain somata of olfactory local and projection interneurons, respectively. Using markers for DNA synthesis (bromodeoxyuridine) and mitosis (phospho-histone-3), we tested juvenile crayfish (Procambarus clarkii) to examine effects of pairwise social experience on proliferation and survival of cells in these brain regions. Proliferating and mitotic cells appeared within restricted neurogenic areas in both clusters and in ;tails' extending from them. These tails, embedded in tubulin-positive strands, are linked by a patch of cells. Neither cell proliferation nor mitotic activity was affected by social dominance. Cell survival of neuronal precursors was affected by dominance: compared to dominants, subordinates had fewer newborn cells surviving in cluster 9 after 14 days of social experience. Social experience also affected body growth rate, but the effect of social experience on neurogenesis remained when differences in body growth rate were statistically controlled. We conclude that social domination enhances survival of new olfactory interneuronal precursors compared to social subordination but not compared to social isolation.
Collapse
Affiliation(s)
- Cha-Kyong Song
- Department of Biology, Program in Brains and Behavior, and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302-4010, USA.
| | | | | | | | | |
Collapse
|
28
|
Horner AJ, Weissburg MJ, Derby CD. The olfactory pathway mediates sheltering behavior of Caribbean spiny lobsters, Panulirus argus, to conspecific urine signals. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2007; 194:243-53. [PMID: 18057940 DOI: 10.1007/s00359-007-0302-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 11/20/2007] [Accepted: 11/22/2007] [Indexed: 12/19/2022]
Abstract
The "noses" of diverse taxa are organized into different subsystems whose functions are often not well understood. The "nose" of decapod crustaceans is organized into two parallel pathways that originate in different populations of antennular sensilla and project to specific neuropils in the brain-the aesthetasc/olfactory lobe pathway and the non-aesthetasc/lateral antennular neuropil pathway. In this study, we investigated the role of these pathways in mediating shelter selection of Caribbean spiny lobsters, Panulirus argus, in response to conspecific urine signals. We compared the behavior of ablated animals and intact controls. Our results show that control and non-aesthetasc ablated lobsters have a significant overall preference for shelters emanating urine over control shelters. Thus the non-aesthetasc pathway does not play a critical role in shelter selection. In contrast, spiny lobsters with aesthetascs ablated did not show a preference for either shelter, suggesting that the aesthetasc/olfactory pathway is important for processing social odors. Our results show a difference in the function of these dual chemosensory pathways in responding to social cues, with the aesthetasc/olfactory lobe pathway playing a major role. We discuss our results in the context of why the noses of many animals contain multiple parallel chemosensory systems.
Collapse
Affiliation(s)
- Amy J Horner
- Department of Biology, Brains & Behavior Program, and Center for Behavioral Neuroscience, Georgia State University, P. O. Box 4010, Atlanta, GA, 30302-4010, USA
| | | | | |
Collapse
|
29
|
Horner AJ, Schmidt M, Edwards DH, Derby CD. Role of the olfactory pathway in agonistic behavior of crayfish, Procambarus clarkii. INVERTEBRATE NEUROSCIENCE 2007; 8:11-8. [PMID: 18030509 DOI: 10.1007/s10158-007-0063-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 11/06/2007] [Indexed: 12/19/2022]
Abstract
Crayfish establish social dominance hierarchies through agonistic interactions, and these hierarchies are maintained through assessment of social status. Chemical signals influence several aspects of fighting behavior, but the specific chemosensory sensilla involved in detecting these signals in crayfish are unknown. The goal of our study was to examine the importance of aesthetasc sensilla--olfactory sensors on the antennules of decapod crustaceans--in regulating changes in fighting behavior in crayfish, Procambarus clarkii, over the course of repeated pairings. We selectively ablated aesthetascs from pairs of crayfish after the first day of trials and compared the behavior of these ablated animals to that of pairs of intact controls. Results show that unablated crayfish significantly decreased the number and duration of fights over repeated pairings, whereas crayfish lacking aesthetascs continued to engage in similar amounts of fighting across all three trial days. This difference shows that aesthetascs regulate fighting behavior in P. clarkii.
Collapse
Affiliation(s)
- Amy J Horner
- Department of Biology, Brains and Behavior Program, Center for Behavioral Neuroscience, Georgia State University, P.O. Box 4010, Atlanta, GA 30302-4010, USA
| | | | | | | |
Collapse
|
30
|
Hemsworth R, Villareal W, Patullo BW, MacMillan DL. Crustacean social behavioral changes in response to isolation. THE BIOLOGICAL BULLETIN 2007; 213:187-195. [PMID: 17928525 DOI: 10.2307/25066634] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Periods of isolation during which animals have no social contact are common in the design of behavioral experiments. They are used, for example, to test memory and recognition responses, or to ensure a baseline condition before experimental manipulations commence. We investigated the effect of isolation periods on the aggressive behavior of matched pairs of the crayfish Cherax destructor in two contexts. The first experiment tested the effects of a period of isolation between two encounters. The second experiment tested the effects of isolation before an encounter by pairing one crayfish from a communal living environment with another crayfish from an isolated one. Fight outcome and aggression levels were analyzed, resulting in three conclusions about the social biology of C. destructor. First, encounters between familiar opponents are influenced by the outcome of the familiarization fight for about 2 weeks. Second, the level of aggression and the outcome of an encounter are affected over different time frames. Third, individuals that are isolated before an encounter can be disadvantaged. These data suggest that isolation, or events that occur during periods of isolation, affect multiple elements of social behavior in C. destructor. This suggestion has implications for the interpretation of previous results and future studies in crustaceans and other taxa.
Collapse
Affiliation(s)
- Robert Hemsworth
- Department of Zoology, University of Melbourne, Victoria 3010, Australia
| | | | | | | |
Collapse
|
31
|
Mellon D, Humphrey JAC. Directional asymmetry in responses of local interneurons in the crayfish deutocerebrum to hydrodynamic stimulation of the lateral antennular flagellum. J Exp Biol 2007; 210:2961-8. [PMID: 17704071 DOI: 10.1242/jeb.003624] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYWe have recorded spiking responses from single, bimodally sensitive local interneurons (Type I) in the crayfish deutocerebrum to hydrodynamic and odorant stimuli flowing in two directions past the lateral antennular flagellum. Changing the direction of seamless introductions (meaning, with minimal variations of fluid velocity magnitude) of odorant flow past the flagellum, from proximal→distal to distal→proximal, did not consistently affect the dose-dependent responses of Type I neurons. By contrast, changing the direction of an abruptly initiated flow of water (or odorant) past the flagellum resulted in consistently larger numbers of spikes in response to this hydrodynamic stimulation when the flow direction was proximal→distal. This response asymmetry is discussed in relation to its possible relevance regarding antennular flicking behavior. The putative involvement of flagellar hydrodynamic receptors, the beaked hairs, and the hydrodynamic flow asymmetries they are exposed to, are examined theoretically in the accompanying paper.
Collapse
Affiliation(s)
- DeForest Mellon
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA.
| | | |
Collapse
|
32
|
Schmidt M. The olfactory pathway of decapod crustaceans--an invertebrate model for life-long neurogenesis. Chem Senses 2007; 32:365-84. [PMID: 17404151 DOI: 10.1093/chemse/bjm008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The first part of this review includes a short description of the cellular and morphological organization of the olfactory pathway of decapod crustaceans, followed by an overview of adult neurogenesis in this pathway focusing on the olfactory lobe (OL), the first synaptic relay in the brain. Adult neurogenesis in the central olfactory pathway has the following characteristics. 1) It is present in all the diverse species of decapod crustaceans so far studied. 2) In all these species, projection neurons (PNs), which have multiglomerular dendritic arborizations, are generated. 3) Neurons are generated by one round of symmetrical cell divisions of a small population of immediate precursor cells that are located in small proliferation zones at the inner margin of the respective soma clusters. 4) The immediate precursor cells in each soma cluster appear to be generated by repeated cell divisions of one or few neuronal stem cells that are located outside of the proliferation zone. 5) These neuronal stem cells are enclosed in a highly structured clump of small glial-like cells, which likely establishes a specific microenvironment and thus can be regarded as a stem cell niche. 6) Diverse internal and external factors, such as presence of olfactory afferents, age, season of the year, and living under constant and deprived conditions modulate the generation and/or survival of new neurons. In the second part of this review, I address the question why in decapod crustaceans adult neurogenesis persists in the visual and olfactory pathways of the brain but is lacking in all other mechanosensory-chemosensory pathways. Due to the indeterminate growth of most adult decapod crustaceans, new sensory neurons of all modalities (olfaction and chemo-, mechano-, and photoreception) are continuously added during adulthood and provide an ever-increasing sensory input to all primary sensory neuropils of the central nervous system. From these facts, I conclude that adult neurogenesis in the brain cannot simply be a mechanism to accommodate increasing sensory input and propose instead that it is causally linked to the specific "topographic logic" of information processing implemented in the sensory neuropils serving different modalities. For the presumptive odotopic type of information processing in the OL, new multiglomerular PNs allow interconnection of novel combinations of spatially unrelated input channels (glomeruli), whose simultaneous activation by specific odorants is the basis of odor coding. Thus, adult neurogenesis could provide a unique way to increase the resolution of odorant quality coding and allow adaptation of the olfactory system of these long-lived animals to ever-changing odor environments.
Collapse
Affiliation(s)
- Manfred Schmidt
- Department of Biology, Georgia State University, PO Box 4010, Atlanta, GA 30303, USA.
| |
Collapse
|
33
|
Aggio JF, de Freitas JC. Physiological and behavioral effects of chemoreceptors located in different body parts of the swimming crab Callinectes danae. Comp Biochem Physiol A Mol Integr Physiol 2006; 146:653-60. [PMID: 16762574 DOI: 10.1016/j.cbpa.2006.04.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 04/21/2006] [Accepted: 04/23/2006] [Indexed: 10/24/2022]
Abstract
By perfusing their branchial chambers with filtered seawater, we have developed a preparation that allows us to maintain the swimming crab Callinectes danae outside water without any major effects on its cardiac activity. This in turn allowed us to selectively stimulate chemoreceptors located in different body parts, and specifically to discriminate between the receptors located in the branchial chambers and those located in the oral region (mainly in the mouthparts, antennules and antennae). We show that a taurine solution can evoke bradycardia when applied to the oral region or to a combination of the oral region and the branchial chambers. Although the precise localization of the oral region receptors involved remains to be determined, ablation experiments show that the olfactory organs (i.e., the antennules) are not involved. Finally, we show that although stimulating the pereiopods has no effect on the animals' cardiac activity it causes the animals to move, putatively to try to grasp a piece of food, a reaction not evoked by stimulating the gills or the oral regions. Our results lend support to the idea that chemoreceptors located in different parts of the body play different functional roles in decapod crustaceans.
Collapse
Affiliation(s)
- Juan F Aggio
- Instituto de Biociências, Universidade de São Paulo, Brazil.
| | | |
Collapse
|
34
|
van Bergen Y. LOBSTERS SNIFF OUT THE COMPETITION. J Exp Biol 2005. [DOI: 10.1242/jeb.01782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|