1
|
Krishnan S, Karpe SD, Kumar H, Nongbri LB, Venkateswaran V, Sowdhamini R, Grosse-Wilde E, Hansson BS, Borges RM. Sensing volatiles throughout the body: geographic- and tissue-specific olfactory receptor expression in the fig wasp. INSECT SCIENCE 2024. [PMID: 39183553 DOI: 10.1111/1744-7917.13441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024]
Abstract
An essential adaptive strategy in insects is the evolution of olfactory receptors (ORs) to recognize important volatile environmental chemical cues. Our model species, Ceratosolen fusciceps, a specialist wasp pollinator of Ficus racemosa, likely possesses an OR repertoire that allows it to distinguish fig-specific volatiles in highly variable environments. Using a newly assembled genome-guided transcriptome, we annotated 63 ORs in the species and reconstructed the phylogeny of Ceratosolen ORs in conjunction with other hymenopteran species. Expression analysis showed that though ORs were mainly expressed in the female antennae, 20% were also expressed in nonantennal tissues such as the head, thorax, abdomen, legs, wings, and ovipositor. Specific upregulated expression was observed in OR30C in the head and OR60C in the wings. We identified OR expression from all major body parts of female C. fusciceps, suggesting novel roles of ORs throughout the body. Further examination of the OR expression of C. fusciceps in widely separated geographical locations, that is, South (urban) and Northeast (rural) India, revealed distinct OR expression levels in different locations. This discrepancy likely parallels the observed variation in fig volatiles between these regions and provides new insights into the evolution of insect ORs and their expression across geographical locations and tissues.
Collapse
Affiliation(s)
- Sushma Krishnan
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | - Snehal Dilip Karpe
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, GKVK Campus, Bangalore, Karnataka, India
| | - Hithesh Kumar
- Genotypic Technology Pvt. Ltd., Bangalore, Karnataka, India
| | - Lucy B Nongbri
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | - Vignesh Venkateswaran
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, GKVK Campus, Bangalore, Karnataka, India
| | - Ewald Grosse-Wilde
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Praha, Suchdol, Czech Republic
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Renee M Borges
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
2
|
Ushimaru A, Seo N, Sakagami K, Funamoto D. Sexual dimorphism in a dioecious species with complex, specialist-pollinated flowers. AMERICAN JOURNAL OF BOTANY 2023; 110:e16148. [PMID: 36852530 DOI: 10.1002/ajb2.16148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 05/31/2023]
Abstract
PREMISE Pollinators with flower constancy and long nectar-feeding organs should favor less or no sexual dimorphism in the individual flowers of dioecious plants. This hypothesis is deduced because such pollinators can discriminate between intersexual flower size differences, and morphological differences between male and female flowers often diminish pollen transfer. METHODS We compared floral traits and pollinator behavior between male and female flowers in the hawkmoth-pollinated species, Trichosanthes cucumeroides. In field studies, we removed petal fringes on both sexes and observed pollinators to assess the role of elaborate petal fringes in pollinator attraction and pollination success for each flower sex. RESULTS Female flowers had a similar front flower size and fringe extension as male flowers, supporting our hypothesis. In contrast, females allocated fewer resources to floral biomass. Additionally, they had smaller and narrower petal lobes, lower fringe density, shorter tubes with inferior nectar rewards, and lower display size than males, which is inconsistent with the hypothesis. Nocturnal hawkmoths prefer flowers with long fringe extensions. Fringe removal significantly decreased hawkmoth visitations to both female and male flowers but reduced success only in females. A literature survey indicated that female flowers of specialist-pollinated species are similar in size or larger than the males and thus tend to attract more pollinators compared with female flowers of generalist-pollinated species. CONCLUSIONS Female flowers have evolved fringe extensions that are similar to those of male flowers, likely increasing pollinator attraction even slightly, and had less biomass in other floral parts and produced less nectar compared with male flowers. Our findings imply that female-biased resource limitation and flower-size sensitivity of pollinators together exert sex-specific selection of floral traits in T. cucumeroides.
Collapse
Affiliation(s)
- Atushi Ushimaru
- Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
- Faculty of Human Development, Kobe University, Kobe, Japan
| | - Natsumi Seo
- Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
- Faculty of Human Development, Kobe University, Kobe, Japan
| | - Kota Sakagami
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Daichi Funamoto
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- The Botanical Gardens, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Faculty of Agriculture, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
3
|
Kantsa A, Garcia JE, Raguso RA, Dyer AG, Steen R, Tscheulin T, Petanidou T. Intrafloral patterns of color and scent in Capparis spinosa L. and the ghosts of its selection past. AMERICAN JOURNAL OF BOTANY 2023; 110:e16098. [PMID: 36371789 PMCID: PMC10108209 DOI: 10.1002/ajb2.16098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
PREMISE Capparis spinosa is a widespread charismatic plant, in which the nocturnal floral habit contrasts with the high visitation by diurnal bees and the pronounced scarcity of hawkmoths. To resolve this discrepancy and elucidate floral evolution of C. spinosa, we analyzed the intrafloral patterns of visual and olfactory cues in relation to the known sensory biases of the different visitor guilds (bees, butterflies, and hawkmoths). METHODS We measured the intrafloral variation of scent, reflectance spectra, and colorimetric properties according to three guilds of known visitors of C. spinosa. Additionally, we sampled visitation rates using a motion-activated camera. RESULTS Carpenter bees visited the flowers eight times more frequently than nocturnal hawkmoths, at dusk and in the following morning. Yet, the floral headspace of C. spinosa contained a typical sphingophilous scent with high emission rates of certain monoterpenes and amino-acid derived compounds. Visual cues included a special case of multisensory nectar guide and color patterns conspicuous to the visual systems of both hawkmoths and bees. CONCLUSIONS The intrafloral patterns of sensory stimuli suggest that hawkmoths have exerted strong historical selection on C. spinosa. Our study revealed two interesting paradoxes: (a) the flowers phenotypically biased towards the more inconsistent pollinator; and (b) floral display demands an abundance of resources that seems maladaptive in the habitats of C. spinosa. The transition to a binary pollination system accommodating large bees has not required phenotypic changes, owing to specific eco-physiological adaptations, unrelated to pollination, which make this plant an unusual case in pollination ecology.
Collapse
Affiliation(s)
- Aphrodite Kantsa
- Department of GeographyUniversity of the AegeanMytileneGreece
- Present address:
Department of Environmental Systems ScienceETH ZürichZürichSwitzerland
| | - Jair E. Garcia
- Bio‐Inspired Digital Sensing Laboratory, School of Media and CommunicationRMIT UniversityMelbourneAustralia
| | - Robert A. Raguso
- Department of Neurobiology and BehaviorCornell University, IthacaNew YorkUSA
| | - Adrian G. Dyer
- Bio‐Inspired Digital Sensing Laboratory, School of Media and CommunicationRMIT UniversityMelbourneAustralia
- Department of PhysiologyMonash UniversityClaytonAustralia
- Present address:
Department of Developmental Biology and NeurobiologyJohannes Gutenberg UniversityMainzGermany
| | - Ronny Steen
- Department of Ecology and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway
| | | | | |
Collapse
|
4
|
Harrison AS, Rands SA. The Ability of Bumblebees Bombus terrestris (Hymenoptera: Apidae) to Detect Floral Humidity is Dependent Upon Environmental Humidity. ENVIRONMENTAL ENTOMOLOGY 2022; 51:1010-1019. [PMID: 35899458 PMCID: PMC9585368 DOI: 10.1093/ee/nvac049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Indexed: 06/15/2023]
Abstract
Flowers produce local humidity that is often greater than that of the surrounding environment, and studies have shown that insect pollinators may be able to use this humidity difference to locate and identify suitable flowers. However, environmental humidity is highly heterogeneous, and is likely to affect the detectability of floral humidity, potentially constraining the contexts in which it can be used as a salient communication pathway between plants and their pollinators. In this study, we use differential conditioning techniques on bumblebees Bombus terrestris audax (Harris) to explore the detectability of an elevated floral humidity signal when presented against different levels of environmental noise. Artificial flowers were constructed that could be either dry or humid, and individual bumblebees were presented with consistent rewards in either the humid or dry flowers presented in an environment with four levels of constant humidity, ranging from low (~20% RH) to highly saturated (~95% RH). Ability to learn was dependent upon both the rewarding flower type and the environment: the bumblebees were able to learn rewarding dry flowers in all environments, but their ability to learn humid rewarding flowers was dependent on the environmental humidity, and they were unable to learn humid rewarding flowers when the environment was highly saturated. This suggests that floral humidity might be masked from bumblebees in humid environments, suggesting that it may be a more useful signal to insect pollinators in arid environments.
Collapse
Affiliation(s)
- Amy S Harrison
- School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, United Kingdom
| | | |
Collapse
|
5
|
Deora T, Ahmed MA, Brunton BW, Daniel TL. Learning to feed in the dark: how light level influences feeding in the hawkmoth Manduca sexta. Biol Lett 2021; 17:20210320. [PMID: 34520685 PMCID: PMC8440038 DOI: 10.1098/rsbl.2021.0320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Nocturnal insects like moths are essential for pollination, providing resilience to the diurnal pollination networks. Moths use both vision and mechanosensation to locate the nectary opening in the flowers with their proboscis. However, increased light levels due to artificial light at night (ALAN) pose a serious threat to nocturnal insects. Here, we examined how light levels influence the efficacy by which the crepuscular hawkmoth Manduca sexta locates the nectary. We used three-dimensional-printed artificial flowers fitted with motion sensors in the nectary and machine vision to track the motion of hovering moths under two light levels: 0.1 lux (moonlight) and 50 lux (dawn/dusk). We found that moths in higher light conditions took significantly longer to find the nectary, even with repeated visits to the same flower. In addition to taking longer, moths in higher light conditions hovered further from the flower during feeding. Increased light levels adversely affect learning and motor control in these animals.
Collapse
Affiliation(s)
- Tanvi Deora
- Department of Biology, University of Washington, Seattle, Washington
| | - Mahad A Ahmed
- Department of Biology, University of Washington, Seattle, Washington
| | - Bingni W Brunton
- Department of Biology, University of Washington, Seattle, Washington
| | - Thomas L Daniel
- Department of Biology, University of Washington, Seattle, Washington
| |
Collapse
|
6
|
Adam E, Hansson BS, Knaden M. Moths sense but do not learn flower odors with their proboscis during flower investigation. J Exp Biol 2021; 224:271919. [PMID: 34427309 PMCID: PMC8467027 DOI: 10.1242/jeb.242780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/13/2021] [Indexed: 11/25/2022]
Abstract
Insect pollinators, such as the tobacco hawkmoth Manduca sexta, are known for locating flowers and learning floral odors by using their antennae. A recent study revealed, however, that the tobacco hawkmoth additionally possesses olfactory sensilla at the tip of its proboscis. Here, we asked whether this second ‘nose’ of the hawkmoth is involved in odor learning, similar to the antennae. We first show that M. sexta foraging efficiency at Nicotiana attenuata flowers increases with experience. This raises the question whether olfactory learning with the proboscis plays a role during flower handling. By rewarding the moths at an artificial flower, we show that, although moths learn an odor easily when they perceive it with their antennae, experiencing the odor just with the proboscis is not sufficient for odor learning. Furthermore, experiencing the odor with the antennae during training does not affect the behavior of the moths when they later detect the learned odor with the proboscis only. Therefore, there seems to be no cross-talk between the antennae and proboscis, and information learnt by the antennae cannot be retrieved by the proboscis. Highlighted Article: The hawkmoth Manduca sexta is able to detect odors with the tip of its tongue: this ‘second nose’ is not used for olfactory learning during flower investigation.
Collapse
Affiliation(s)
- Elisabeth Adam
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745Jena, Germany
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745Jena, Germany
| |
Collapse
|
7
|
Broadhead GT, Raguso RA. Associative learning of non-sugar nectar components: amino acids modify nectar preference in a hawkmoth. J Exp Biol 2021; 224:269206. [PMID: 34142140 PMCID: PMC8246342 DOI: 10.1242/jeb.234633] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 05/20/2021] [Indexed: 11/20/2022]
Abstract
The nearly ubiquitous presence of amino acids in the nectar of flowering plants has led to significant interest in the relevance of these compounds to pollinator behavior and physiology. A number of flower-visiting animals exhibit behavioral preferences for nectar solutions containing amino acids, but these preferences vary by species and are often context or condition dependent. Furthermore, the relative strength of these preferences and potential influence on the foraging behavior of flower-visiting animals remains unclear. Here, we used innate preference tests and associative learning paradigms to examine the nectar preferences of the flower-visiting hawkmoth Manduca sexta, in relation to both sugar and amino acid content. Manduca sexta exhibited a strong preference for higher sucrose concentrations, while the effect of amino acids on innate feeding preference was only marginally significant. However, with experience, moths were able to learn nectar composition and flower color associations and to forage preferentially (against innate color preference) for nectar with a realistic amino acid composition. Foraging moths responding to learned color cues of nectar amino acid content exhibited a behavioral preference comparable to that observed in response to a 5% difference in nectar sucrose concentration. These results demonstrate that experienced foragers may assess nectar amino acid content in addition to nectar sugar content and caloric value during nectar-foraging bouts.
Collapse
Affiliation(s)
- Geoffrey T Broadhead
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY14853, USA
| | - Robert A Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY14853, USA
| |
Collapse
|
8
|
Rico-Guevara A, Hurme KJ, Elting R, Russell AL. Bene"fit" Assessment in Pollination Coevolution: Mechanistic Perspectives on Hummingbird Bill-Flower Matching. Integr Comp Biol 2021; 61:681-695. [PMID: 34050734 DOI: 10.1093/icb/icab111] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
One of the reasons why flowering plants became the most diverse group of land plants is their association with animals to reproduce. The earliest examples of this mutualism involved insects foraging for food from plants and, in the process, pollinating them. Vertebrates are latecomers to these mutualisms, but birds, in particular, present a wide variety of nectar-feeding clades that have adapted to solve similar challenges. Such challenges include surviving on small caloric rewards widely scattered across the landscape, matching their foraging strategy to nectar replenishment rate, and efficiently collecting this liquid food from well-protected chambers deep inside flowers. One particular set of convergent traits among plants and their bird pollinators has been especially well studied: the match between the shape and size of bird bills and ornithophilous flowers. Focusing on a highly specialized group, hummingbirds, we examine the expected benefits from bill-flower matching, with a strong focus on the benefits to the hummingbird and how to quantify them. Explanations for the coevolution of bill-flower matching include (1) that the evolution of traits by bird-pollinated plants, such as long and thin corollas, prevents less efficient pollinators (e.g., insects) from accessing the nectar and (2) that increased matching, as a result of reciprocal adaptation, benefits both the bird (nectar extraction efficiency) and the plant (pollen transfer). In addition to nectar-feeding, we discuss how interference and exploitative competition also play a significant role in the evolution and maintenance of trait matching. We present hummingbird-plant interactions as a model system to understand how trait matching evolves and how pollinator behavior can modify expectations based solely on morphological matching, and discuss the implications of this behavioral modulation for the maintenance of specialization. While this perspective piece directly concerns hummingbird-plant interactions, the implications are much broader. Functional trait matching is likely common in coevolutionary interactions (e.g., in predator-prey interactions), yet the physical mechanisms underlying trait matching are understudied and rarely quantified. We summarize existing methods and present novel approaches that can be used to quantify key benefits to interacting partners in a variety of ecological systems.
Collapse
Affiliation(s)
- Alejandro Rico-Guevara
- Department of Biology, University of Washington, 24 Kincaid Hall, Seattle, WA 98105, USA.,Division of Ornithology, Burke Museum of Natural History and Culture, 4300 15th Ave NE, Seattle, WA 98105, USA
| | - Kristiina J Hurme
- Department of Biology, University of Washington, 24 Kincaid Hall, Seattle, WA 98105, USA
| | - Rosalee Elting
- Department of Biology, University of Washington, 24 Kincaid Hall, Seattle, WA 98105, USA.,Division of Ornithology, Burke Museum of Natural History and Culture, 4300 15th Ave NE, Seattle, WA 98105, USA
| | - Avery L Russell
- Department of Biology, Missouri State University, 910 S John Q Hammons Pkwy, Springfield, MO 65897, USA
| |
Collapse
|
9
|
Deora T, Ahmed MA, Daniel TL, Brunton BW. Tactile active sensing in an insect plant pollinator. J Exp Biol 2021; 224:jeb.239442. [PMID: 33441388 DOI: 10.1242/jeb.239442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/03/2021] [Indexed: 11/20/2022]
Abstract
The interaction between insects and the flowers they pollinate has driven the evolutionary diversity of both insects and flowering plants, two groups with the most numerous species on Earth. Insects use vision and olfaction to localize host plants, but we know relatively little about how they find the tiny nectary opening in the flower, which can be well beyond their visual resolution. Especially when vision is limited, touch becomes crucial in successful insect-plant pollination interactions. Here, we studied the remarkable feeding behavior of crepuscular hawkmoths Manduca sexta, which use their long, actively controlled, proboscis to expertly explore flower-like surfaces. Using machine vision and 3D-printed artificial flower-like feeders, we revealed a novel behavior that shows moths actively probe surfaces, sweeping their proboscis from the feeder edge to its center repeatedly until they locate the nectary opening. Moreover, naive moths rapidly learn to exploit these flowers, and they adopt a tactile search strategy to more directly locate the nectary opening in as few as three to five consecutive visits. Our results highlight the proboscis as a unique active sensory structure and emphasize the central role of touch in nectar foraging insect-plant pollinator interactions.
Collapse
Affiliation(s)
- Tanvi Deora
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Mahad A Ahmed
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Thomas L Daniel
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Bing W Brunton
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
10
|
Moré M, Ibañez AC, Drewniak ME, Cocucci AA, Raguso RA. Flower Diversification Across "Pollinator Climates": Sensory Aspects of Corolla Color Evolution in the Florally Diverse South American Genus Jaborosa (Solanaceae). FRONTIERS IN PLANT SCIENCE 2020; 11:601975. [PMID: 33365042 PMCID: PMC7750315 DOI: 10.3389/fpls.2020.601975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
Flower phenotype may diverge within plant lineages when moving across "pollinator climates" (geographic differences in pollinator abundance or preference). Here we explored the potential importance of pollinators as drivers of floral color diversification in the nightshade genus Jaborosa, taking into account color perception capabilities of the actual pollinators (nocturnal hawkmoths vs. saprophilous flies) under a geographic perspective. We analyzed the association between transitions across environments and perceptual color axes using comparative methods. Our results revealed two major evolutionary themes in Jaborosa: (1) a "warm subtropical sphingophilous clade" composed of three hawkmoth-pollinated species found in humid lowland habitats, with large white flowers that clustered together in the visual space of a model hawkmoth (Manduca sexta) and a "cool-temperate brood-deceptive clade" composed of largely fly-pollinated species with small dark flowers found at high altitudes (Andes) or latitudes (Patagonian Steppe), that clustered together in the visual space of a model blowfly (Lucilia sp.) and a syrphid fly (Eristalis tenax). Our findings suggest that the ability of plants to colonize newly formed environments during Andean orogeny and the ecological changes that followed were concomitant with transitions in flower color as perceived by different pollinator functional groups. Our findings suggest that habitat and pollination mode are inextricably linked in the history of this South American plant lineage.
Collapse
Affiliation(s)
- Marcela Moré
- Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal, CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ana C. Ibañez
- Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal, CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M. Eugenia Drewniak
- Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal, CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Andrea A. Cocucci
- Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal, CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Robert A. Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, United States
| |
Collapse
|
11
|
Biomimicry of the Hawk Moth, Manduca sexta (L.), Produces an Improved Flapping-Wing Mechanism. Biomimetics (Basel) 2020; 5:biomimetics5020025. [PMID: 32512859 PMCID: PMC7344917 DOI: 10.3390/biomimetics5020025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/02/2022] Open
Abstract
Flapping-wing micro air vehicles (FWMAVs) that mimic the flight capabilities of insects have been sought for decades. Core to the vehicle’s flight capabilities is the mechanism that drives the wings to produce thrust and lift. This article describes a newly designed flapping-wing mechanism (FWM) inspired by the North American hawk moth, Manduca sexta. Moreover, the hardware, software, and experimental testing methods developed to measure the efficiency of insect-scale flapping-wing systems (i.e., the lift produced per unit of input power) are detailed. The new FWM weighs 1.2 grams without an actuator and wings attached, and its maximum dimensions are 21 × 24 × 11 mm. This FWM requires 402 mW of power to operate, amounting to a 48% power reduction when compared to a previous version. In addition, it generates 1.3 gram-force of lift at a flapping frequency of 21.6 Hz. Results show progress, but they have not yet met the power efficiency of the naturally occurring Manduca sexta. Plans to improve the technique for measuring efficiency are discussed as well as strategies to more closely mimic the efficiency of the Manduca sexta-inspired FWM.
Collapse
|
12
|
Daniels RJ, Johnson SD, Peter CI. Flower orientation in Gloriosa superba (Colchicaceae) promotes cross-pollination via butterfly wings. ANNALS OF BOTANY 2020; 125:1137-1149. [PMID: 32188969 PMCID: PMC7262471 DOI: 10.1093/aob/mcaa048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND AIMS Complex modifications of angiosperm flowers often function for precise pollen placement on pollinators and to promote cross-pollination. We explore the functional significance of the unusually elaborate morphology of Gloriosa superba flowers, which are divided into one hermaphrodite meranthium and five male meranthia (functional pollination units of a single flower). METHODS We used controlled pollination experiments, floral measurements, pollen load analyses and visitor observations in four populations of G. superba in South Africa to determine the breeding system, mechanism of pollination and role of flower in the promotion of cross-pollination. KEY RESULTS We established that G. superba is self-compatible, but reliant on pollinators for seed production. Butterflies, in particular the pierid Eronia cleodora, were the primary pollinators (>90 % of visitors). Butterflies brush against the anthers and stigma during nectar feeding and pollen is carried on their ventral wing surfaces. Butterfly scales were positively correlated with the number of pollen grains on stigmas. We demonstrate that the styles were orientated towards clearings in the vegetation and we confirm that the highest proportion of initial visits was to hermaphrodite meranthia pointing towards clearings. CONCLUSIONS The flower morphology of G. superba results in effective pollen transfer on the wings of butterfly visitors. The style-bearing hermaphrodite meranthium of the flowers orientates towards open spaces in the vegetation, thus increasing the probability that butterflies land first on the hermaphrodite meranthium. This novel aspect of flower orientation is interpreted as a mechanism that promotes cross-pollination.
Collapse
Affiliation(s)
- Ryan J Daniels
- Department of Botany, Rhodes University, Grahamstown, South Africa
| | - Steven D Johnson
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, South Africa
| | - Craig I Peter
- Department of Botany, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
13
|
Harrap MJM, Hempel de Ibarra N, Whitney HM, Rands SA. Floral temperature patterns can function as floral guides. ARTHROPOD-PLANT INTERACTIONS 2020; 14:193-206. [PMID: 32215113 PMCID: PMC7073333 DOI: 10.1007/s11829-020-09742-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/03/2020] [Indexed: 05/25/2023]
Abstract
Floral guides are signal patterns that lead pollinators to floral rewards after they have located the flower, and increase foraging efficiency and pollen transfer. Patterns of several floral signalling modalities, particularly colour patterns, have been identified as being able to function as floral guides. Floral temperature frequently shows patterns that can be used by bumblebees for locating and recognising the flower, but whether these temperature patterns can function as a floral guide has not been explored. Furthermore, how combined patterns (using multiple signalling modalities) affect floral guide function has only been investigated in a few modality combinations. We assessed how artificial flowers induce behaviours in bumblebees when rewards are indicated by unimodal temperature patterns, unimodal colour patterns or multimodal combinations of these. Bees visiting flowers with unimodal temperature patterns showed an increased probability of finding rewards and increased learning of reward location, compared to bees visiting flowers without patterns. However, flowers with contrasting unimodal colour patterns showed further guide-related behavioural changes in addition to these, such as reduced reward search times and attraction to the rewarding feeder without learning. This shows that temperature patterns alone can function as a floral guide, but with reduced efficiency. When temperature patterns were added to colour patterns, bees showed similar improvements in learning reward location and reducing their number of failed visits in addition to the responses seen to colour patterns. This demonstrates that temperature pattern guides can have beneficial effects on flower handling both when alone or alongside colour patterns.
Collapse
Affiliation(s)
- Michael J. M. Harrap
- School of Biological Sciences, University of Bristol, 24 Tyndall Ave, Bristol, BS8 1TQ UK
| | | | - Heather M. Whitney
- School of Biological Sciences, University of Bristol, 24 Tyndall Ave, Bristol, BS8 1TQ UK
| | - Sean A. Rands
- School of Biological Sciences, University of Bristol, 24 Tyndall Ave, Bristol, BS8 1TQ UK
| |
Collapse
|
14
|
Hawkmoth pollination of the orchid Habenaria clavata: mechanical wing guides, floral scent and electroantennography. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Floral morphology can play a key role in mechanically guiding pollinators towards reproductive structures, particularly when visibility is limited at night, but the functional significance of morphological traits has seldom been considered in this context. Here we describe a remarkably intricate pollination mechanism in the hawkmoth-pollinated African grassland orchid Habenaria clavata, and also document aspects of the reproductive success and chemical ecology of this pollination system. The flowers are pollinated by several short-tongued hawkmoths, particularly Basiothia schenki, which was the most frequent visitor and occurred at all sites. Moths are probably attracted by the strong scent, which was dominated by several oxygenated aromatics that also elicited strong electrophysiological responses from antennae of B. schenki. Apart from the white rostellum lobes and stigma, which serve as a visual guide to the spur entrance, the flower parts are entirely green and indistinguishable from leaves in terms of spectral information. Using motion-activated video cameras we established that the leading edges of the forewings of foraging hawkmoths contact the two upwardly curving petal lobes, and that hawkmoths are then apparently mechanically guided down onto the reproductive structures. Pollinaria are attached in an unusual place – among hairs on the ventral surface of the thorax, between the middle legs – and are brushed over the protruding stigma lobes when the proboscis is fully inserted in the 41-mm-long spur. These results highlight how multiple traits (morphology, spectral reflectance and scent) can act synergistically to ensure transfer of pollen among flowers.
Collapse
|
15
|
Mutagenesis of odorant coreceptor Orco fully disrupts foraging but not oviposition behaviors in the hawkmoth Manduca sexta. Proc Natl Acad Sci U S A 2019; 116:15677-15685. [PMID: 31320583 PMCID: PMC6681710 DOI: 10.1073/pnas.1902089116] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hawkmoth Manduca sexta and one of its preferred hosts in the North American Southwest, Datura wrightii, share a model insect-plant relationship based on mutualistic and antagonistic life-history traits. D. wrightii is the innately preferred nectar source and oviposition host for M. sexta Hence, the hawkmoth is an important pollinator while the M. sexta larvae are specialized herbivores of the plant. Olfactory detection of plant volatiles plays a crucial role in the behavior of the hawkmoth. In vivo, the odorant receptor coreceptor (Orco) is an obligatory component for the function of odorant receptors (ORs), a major receptor family involved in insect olfaction. We used CRISPR-Cas9 targeted mutagenesis to knock out (KO) the MsexOrco gene to test the consequences of a loss of OR-mediated olfaction in an insect-plant relationship. Neurophysiological characterization revealed severely reduced antennal and antennal lobe responses to representative odorants emitted by D. wrightii In a wind-tunnel setting with a flowering plant, Orco KO hawkmoths showed disrupted flight orientation and an ablated proboscis extension response to the natural stimulus. The Orco KO gravid female displayed reduced attraction toward a nonflowering plant. However, more than half of hawkmoths were able to use characteristic odor-directed flight orientation and oviposit on the host plant. Overall, OR-mediated olfaction is essential for foraging and pollination behaviors, but plant-seeking and oviposition behaviors are sustained through additional OR-independent sensory cues.
Collapse
|
16
|
Stöckl AL, Kelber A. Fuelling on the wing: sensory ecology of hawkmoth foraging. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:399-413. [PMID: 30880349 PMCID: PMC6579779 DOI: 10.1007/s00359-019-01328-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 02/25/2019] [Accepted: 03/05/2019] [Indexed: 11/28/2022]
Abstract
Hawkmoths (Lepidoptera, Sphingidae) comprise around 1500 species, most of which forage on nectar from flowers in their adult stage, usually while hovering in front of the flower. The majority of species have a nocturnal lifestyle and are important nocturnal pollinators, but some species have turned to a diurnal lifestyle. Hawkmoths use visual and olfactory cues including CO2 and humidity to detect and recognise rewarding flowers; they find the nectary in the flowers by means of mechanoreceptors on the proboscis and vision, evaluate it with gustatory receptors on the proboscis, and control their hovering flight position using antennal mechanoreception and vision. Here, we review what is presently known about the sensory organs and sensory-guided behaviour that control feeding behaviour of this fascinating pollinator taxon. We also suggest that more experiments on hawkmoth behaviour in natural settings are needed to fully appreciate their sensory capabilities.
Collapse
Affiliation(s)
- Anna Lisa Stöckl
- Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Almut Kelber
- Department of Biology, Lund University, Sölvegatan 35, 22362, Lund, Sweden.
| |
Collapse
|
17
|
Peng F, Campos EO, Sullivan JG, Berry N, Song BB, Daniel TL, Bradshaw HD. Morphospace exploration reveals divergent fitness optima between plants and pollinators. PLoS One 2019; 14:e0213029. [PMID: 30865672 PMCID: PMC6415803 DOI: 10.1371/journal.pone.0213029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/13/2019] [Indexed: 11/18/2022] Open
Abstract
The obligate mutualism and exquisite specificity of many plant-pollinator interactions lead to the expectation that flower phenotypes (e.g., corolla tube length) and corresponding pollinator traits (e.g., hawkmoth proboscis length) are congruent as a result of coevolution by natural selection. However, the effect of variation in flower morphology on the fitness of plants and their pollinators has not been quantified systematically. In this study, we employed the theoretical morphospace paradigm using a combination of 3D printing, electronic sensing, and machine vision technologies to determine the influence of two flower morphological features (corolla curvature and nectary diameter) on the fitness of both parties: the artificial flower and its hawkmoth pollinator. Contrary to the expectation that the same flower morphology maximizes the fitness of both plant and pollinator, we found that the two parties have divergent optima for corolla curvature, with non-overlapping fitness peaks in flower morphospace. The divergent fitness optima between plants and pollinators could lead to evolutionary diversification in both groups.
Collapse
Affiliation(s)
- Foen Peng
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Eric O. Campos
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Joseph Garret Sullivan
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Nathan Berry
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Bo Bin Song
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Thomas L. Daniel
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - H. D. Bradshaw
- Department of Biology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
18
|
Bauder JAS, Karolyi F. Superlong Proboscises as Co-adaptations to Flowers. INSECT MOUTHPARTS 2019. [DOI: 10.1007/978-3-030-29654-4_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Hu P, Gao C, Tao J, Lu P, Luo Y, Ren L. Sensilla on six olfactory organs of male Eogystia hippophaecolus (Lepidoptera: Cossidae). Microsc Res Tech 2018; 81:1059-1070. [PMID: 30351496 DOI: 10.1002/jemt.23072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 05/05/2018] [Accepted: 05/25/2018] [Indexed: 11/07/2022]
Abstract
Eogystia hippophaecolus (Hua et al.) is an important boring pest that primarily damages sea buckthorn, causing large ecological and economic damages in China. In this study, we used scanning electron microscopy to investigate the sensilla on six olfactory tissues of male E. hippophaecolus: antennae, labial palps, external genitals, propodeum, mesopodium, and metapedes. On the antennae, two types of sensillum trichodea, two types of sensillum basiconica, a type of sensillum coeloconica, and Böhm's bristles were found. The labial palps had sensilla trichodea and chaetica. On the external genitals, three types of sensilla trichodea were the only sensilla. Böhm bristles were found on the base of the tibia and at the terminus of the tarsus. Most sensilla were distributed on the tarsus of the three pairs of legs, and notably, a majority of which were sensilla trichodea and sensilla chaetica, were on the pretarsus and telotarsus of the three pairs of legs. In this study, the distribution, number, type, and morphology of the sensilla on six olfactory organs of E. hippophaecolus were determined, which established the foundation for a future immunohistochemical search of olfactory proteins. RESEARCH HIGHLIGHTS: Eogystia hippophaecolus is a serious pest of seabuckthorn. The distribution, number, type, and morphology of olfactory sensilla of E. hippophaecolus are determined. The function and distribution of sensilla are compared with those of other insects.
Collapse
Affiliation(s)
- Ping Hu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, P. R. China
- Xingan Vocational and technical college, Xinganmeng, China
| | - Chenglong Gao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, P. R. China
| | - Jing Tao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, P. R. China
| | - Pengfei Lu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, P. R. China
| | - Youqing Luo
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, P. R. China
| | - Lili Ren
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, P. R. China
| |
Collapse
|
20
|
The prevalence of olfactory- versus visual-signal encounter by searching bumblebees. Sci Rep 2018; 8:14590. [PMID: 30275496 PMCID: PMC6167322 DOI: 10.1038/s41598-018-32897-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/18/2018] [Indexed: 11/08/2022] Open
Abstract
While the phrase 'foraging bumblebee' brings to mind a bumbling bee flying flower to flower in a sunny meadow, foraging is a complicated series of behaviors such as: locating a floral patch; selecting a flower-type; learning handling skills for pollen and nectar extraction; determining when to move-on from a patch; learning within-patch paths (traplining); and learning efficient hive-to-patch routes (spatial navigation). Thus the term 'forager' encompasses multiple distinct behaviors that rely on different sensory modalities. Despite a robust literature on bumblebee foraging behavior, few studies are directly relevant to sensory-guided search; i.e. how workers locate novel patches. The first step in answering this question is to determine what sensory information is available to searching bumblebees. This manuscript presents a computational model that elucidates the relative frequency of visual and olfactory cues that are available to workers searching for floral resources under a range of ecologically relevant scenarios. Model results indicate that odor is the most common sensory cue encountered during search flights. When the likelihood of odor-plume contact is higher, odor-encounter is ubiquitous. While integrative (visual + olfactory) cues are common when foragers are searching for larger flowers (e.g. Echinacea), they become rare when foragers are searching for small flowers (e.g. Penstemon). Visual cues are only encountered in isolation when foragers are seeking large flowers with a low odor-plume contact probability. These results indicate that despite the multisensory nature of floral signals, different modalities may be encountered in isolation during search-behavior, as opposed to the reliably multimodal signals encountered during patch-exploitation or nectar/ pollen acquisition.
Collapse
|
21
|
Tan MK, Goh FN, Tan HTW. Consistent Between-Individual Differences in Foraging Performance in a Floriphilic Katydid in Response to Different Choices. ENVIRONMENTAL ENTOMOLOGY 2018; 47:918-926. [PMID: 29878088 DOI: 10.1093/ee/nvy087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
The neural constraint hypothesis is one of the central ideas for the understanding of insect-plant interaction but there are still knowledge gaps in the data for foraging behavior and the performance of herbivores, and particularly florivores. We used a floriphilic katydid, Phaneroptera brevis (Serville, 1838) (Orthoptera: Tettigoniidae) and a naturalized weed, Bidens pilosa L. (Asteraceae) in caged experiments in an insectary to answer these questions: 1) How does the foraging performance of the floriphilic katydid vary when exposed to a choice in the number of capitula and types of florets of B. pilosa? 2) Does the foraging performance of the katydid, when exposed to multiple choices, improve with time, and are between-individual differences in foraging performance consistent? We observed that having more choices in the floret types and number of capitula is generally associated with a reduced foraging performance of the katydids. Floret types and number of capitula, however, did not have an interactive effect on foraging performance. We also found that the differences in foraging performance in response to choice tend to be consistent between katydids but each katydid became more efficient and decisive over time. That learning and experience can improve the foraging performance of the katydid has provided us with some insights as to how a continuum of efficient and inefficient katydids can be maintained in a population.
Collapse
Affiliation(s)
- Ming Kai Tan
- Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore
| | - Fang Ni Goh
- Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore
| | - Hugh Tiang Wah Tan
- Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore
| |
Collapse
|
22
|
Wolfin MS, Raguso RA, Davidowitz G, Goyret J. Context dependency of in-flight responses by Manduca sexta moths to ambient differences in relative humidity. ACTA ACUST UNITED AC 2018; 221:jeb.177774. [PMID: 29691308 DOI: 10.1242/jeb.177774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/18/2018] [Indexed: 11/20/2022]
Abstract
The use of sensory information to control behavior usually involves the integration of sensory input from different modalities. This integration is affected by behavioral states and experience, and it is also sensitive to the spatiotemporal patterns of stimulation and other general contextual cues. Following the finding that hawkmoths can use relative humidity (RH) as a proxy for nectar content during close-range foraging, we evaluate here whether RH could be used during locomotive flight under two simulated contexts in a wind tunnel: (1) dispersion and (2) search phase of the foraging behavior. Flying moths showed a bias towards air with a higher RH in a context devoid of foraging stimuli, but the addition of visual and olfactory floral stimuli elicited foraging responses that overrode the behavioral effects of RH. We discuss the results in relation to the putative adaptive value of the context-dependent use of sensory information.
Collapse
Affiliation(s)
- Michael S Wolfin
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Robert A Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Goggy Davidowitz
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Joaquin Goyret
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA .,Department of Biological Sciences, University of Tennessee, Martin, TN 38238, USA
| |
Collapse
|
23
|
Dresp-Langley B, Reeves A. Colour for Behavioural Success. Iperception 2018; 9:2041669518767171. [PMID: 29770183 PMCID: PMC5946649 DOI: 10.1177/2041669518767171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/05/2018] [Indexed: 11/17/2022] Open
Abstract
Colour information not only helps sustain the survival of animal species by guiding sexual selection and foraging behaviour but also is an important factor in the cultural and technological development of our own species. This is illustrated by examples from the visual arts and from state-of-the-art imaging technology, where the strategic use of colour has become a powerful tool for guiding the planning and execution of interventional procedures. The functional role of colour information in terms of its potential benefits to behavioural success across the species is addressed in the introduction here to clarify why colour perception may have evolved to generate behavioural success. It is argued that evolutionary and environmental pressures influence not only colour trait production in the different species but also their ability to process and exploit colour information for goal-specific purposes. We then leap straight to the human primate with insight from current research on the facilitating role of colour cues on performance training with precision technology for image-guided surgical planning and intervention. It is shown that local colour cues in two-dimensional images generated by a surgical fisheye camera help individuals become more precise rapidly across a limited number of trial sets in simulator training for specific manual gestures with a tool. This facilitating effect of a local colour cue on performance evolution in a video-controlled simulator (pick-and-place) task can be explained in terms of colour-based figure-ground segregation facilitating attention to local image parts when more than two layers of subjective surface depth are present, as in all natural and surgical images.
Collapse
Affiliation(s)
- Birgitta Dresp-Langley
- ICube UMR 7357, Centre National de la Recherche Scientifique, University of Strasbourg, France
| | - Adam Reeves
- Department of Psychology, Northeastern University, Boston, MA, USA
| |
Collapse
|
24
|
Ramos BDCM, Rodríguez-Gironés MA, Rodrigues D. Learning in two butterfly species when using flowers of the tropical milkweed Asclepias curassavica: No benefits for pollination. AMERICAN JOURNAL OF BOTANY 2017; 104:1168-1178. [PMID: 28790090 DOI: 10.3732/ajb.1700040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/16/2017] [Indexed: 06/07/2023]
Abstract
PREMISE OF THE STUDY The ability of insect visitors to learn to manipulate complex flowers has important consequences for foraging efficiency and plant fitness. We investigated learning by two butterfly species, Danaus erippus and Heliconius erato, as they foraged on the complex flowers of Asclepias curassavica, as well as the consequences for pollination. METHODS To examine learning with respect to flower manipulation, butterflies were individually tested during four consecutive days under insectary conditions. At the end of each test, we recorded the number of pollinaria attached to the body of each butterfly and scored visited flowers for numbers of removed and inserted pollinia. We also conducted a field study to survey D. erippus and H. erato visiting flowers of A. curassavica, as well as to record numbers of pollinaria attached to the butterflies' bodies, and surveyed A. curassavica plants in the field to inspect flowers for pollinium removal and insertion. KEY RESULTS Learning improves the ability of both butterfly species to avoid the nonrewarding flower parts and to locate nectar more efficiently. There were no experience effects, for either species, on the numbers of removed and inserted pollinia. Heliconius erato removed and inserted more pollinia than D. erippus. For both butterfly species, pollinium removal was higher than pollinium insertion. CONCLUSION This study is the first to show that Danaus and Heliconius butterflies can learn to manipulate complex flowers, but this learning ability does not confer benefits to pollination in A. curassavica.
Collapse
Affiliation(s)
- Bruna de Cássia Menezes Ramos
- Laboratório de Interações Inseto-Planta, Programa de Pós-Graduação em Ecologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, P.O. Box 68020, 21.941-902 Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Miguel Angel Rodríguez-Gironés
- Department of Functional and Evolutionary Ecology, Estación Experimental de Zonas Áridas (EEZA/CSIC), Ctra. de Sacramento S/N, La Cañada de San Urbano, 04120 Almería, Spain
| | - Daniela Rodrigues
- Laboratório de Interações Inseto-Planta, Programa de Pós-Graduação em Ecologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, P.O. Box 68020, 21.941-902 Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
- Departamento de Ecologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, P.O. Box 68020, 21.941-902 Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
25
|
Abstract
The relationship between plants and insects is influenced by insects' behavioral decisions during foraging and oviposition. In mutualistic pollinators and antagonistic herbivores, past experience (learning) affects such decisions, which ultimately can impact plant fitness. The higher levels of dietary generalism in pollinators than in herbivores may be an explanation for the differences in learning seen between these two groups. Generalist pollinators experience a high level of environmental variation, which we suggest favors associative learning. Larval herbivores employ habituation and sensitization-strategies useful in their less variable environments. Exceptions to these patterns based on habitats, mobility, and life history provide critical tests of current theory. Relevant plant traits should be under selection to be easily learned and remembered in pollinators and difficult to learn in herbivores. Insect learning thereby has the potential to have an important, yet largely unexplored, role in plant-insect coevolution.
Collapse
Affiliation(s)
- Patricia L Jones
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853; ,
| | - Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853; ,
- Department of Entomology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
26
|
Haverkamp A, Yon F, Keesey IW, Mißbach C, Koenig C, Hansson BS, Baldwin IT, Knaden M, Kessler D. Hawkmoths evaluate scenting flowers with the tip of their proboscis. eLife 2016; 5:e15039. [PMID: 27146894 PMCID: PMC4884077 DOI: 10.7554/elife.15039] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/03/2016] [Indexed: 11/22/2022] Open
Abstract
Pollination by insects is essential to many ecosystems. Previously, we have shown that floral scent is important to mediate pollen transfer between plants (Kessler et al., 2015). Yet, the mechanisms by which pollinators evaluate volatiles of single flowers remained unclear. Here, Nicotiana attenuata plants, in which floral volatiles have been genetically silenced and its hawkmoth pollinator, Manduca sexta, were used in semi-natural tent and wind-tunnel assays to explore the function of floral scent. We found that floral scent functions to increase the fitness of individual flowers not only by increasing detectability but also by enhancing the pollinator's foraging efforts. Combining proboscis choice tests with neurophysiological, anatomical and molecular analyses we show that this effect is governed by newly discovered olfactory neurons on the tip of the moth's proboscis. With the tip of their tongue, pollinators assess the advertisement of individual flowers, an ability essential for maintaining this important ecosystem service.
Collapse
Affiliation(s)
- Alexander Haverkamp
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Felipe Yon
- Department of Molecular Ecology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Ian W Keesey
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Christine Mißbach
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Christopher Koenig
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Danny Kessler
- Department of Molecular Ecology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
27
|
Hempel de Ibarra N, Langridge KV, Vorobyev M. More than colour attraction: behavioural functions of flower patterns. CURRENT OPINION IN INSECT SCIENCE 2015; 12:64-70. [PMID: 27064650 PMCID: PMC4804388 DOI: 10.1016/j.cois.2015.09.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Flower patterns are thought to influence foraging decisions of insect pollinators. However, the resolution of insect compound eyes is poor. Insects perceive flower patterns only from short distances when they initiate landings or search for reward on the flower. From further away flower displays jointly form larger-sized patterns within the visual scene that will guide the insect's flight. Chromatic and achromatic cues in such patterns may help insects to find, approach and learn rewarded locations in a flower patch, bringing them close enough to individual flowers. Flight trajectories and the spatial resolution of chromatic and achromatic vision in insects determine the effectiveness of floral displays, and both need to be considered in studies of plant-pollinator communication.
Collapse
Affiliation(s)
- Natalie Hempel de Ibarra
- University of Exeter, Centre for Research in Animal Behaviour, Department of Psychology, Exeter, UK
| | - Keri V Langridge
- University of Exeter, Centre for Research in Animal Behaviour, Department of Psychology, Exeter, UK
| | - Misha Vorobyev
- University of Auckland, School of Optometry and Vision Science, Auckland, New Zealand
| |
Collapse
|
28
|
Abstract
UNLABELLED Four of the five major sensory systems (vision, olfaction, somatosensation, and audition) are thought to use different but partially overlapping sets of neurons to form unique representations of vast numbers of stimuli. The only exception is gustation, which is thought to represent only small numbers of basic taste categories. However, using new methods for delivering tastant chemicals and making electrophysiological recordings from the tractable gustatory system of the moth Manduca sexta, we found chemical-specific information is as follows: (1) initially encoded in the population of gustatory receptor neurons as broadly distributed spatiotemporal patterns of activity; (2) dramatically integrated and temporally transformed as it propagates to monosynaptically connected second-order neurons; and (3) observed in tastant-specific behavior. Our results are consistent with an emerging view of the gustatory system: rather than constructing basic taste categories, it uses a spatiotemporal population code to generate unique neural representations of individual tastant chemicals. SIGNIFICANCE STATEMENT Our results provide a new view of taste processing. Using a new, relatively simple model system and a new set of techniques to deliver taste stimuli and to examine gustatory receptor neurons and their immediate followers, we found no evidence for labeled line connectivity, or basic taste categories such as sweet, salty, bitter, and sour. Rather, individual tastant chemicals are represented as patterns of spiking activity distributed across populations of receptor neurons. These representations are transformed substantially as multiple types of receptor neurons converge upon follower neurons, leading to a combinatorial coding format that uniquely, rapidly, and efficiently represents individual taste chemicals. Finally, we found that the information content of these neurons can drive tastant-specific behavior.
Collapse
|
29
|
Sponberg S, Dyhr JP, Hall RW, Daniel TL. INSECT FLIGHT. Luminance-dependent visual processing enables moth flight in low light. Science 2015; 348:1245-8. [PMID: 26068850 DOI: 10.1126/science.aaa3042] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 04/29/2015] [Indexed: 11/02/2022]
Abstract
Animals must operate under an enormous range of light intensities. Nocturnal and twilight flying insects are hypothesized to compensate for dim conditions by integrating light over longer times. This slowing of visual processing would increase light sensitivity but should also reduce movement response times. Using freely hovering moths tracking robotic moving flowers, we showed that the moth's visual processing does slow in dim light. These longer response times are consistent with models of how visual neurons enhance sensitivity at low light intensities, but they could pose a challenge for moths feeding from swaying flowers. Dusk-foraging moths avoid this sensorimotor tradeoff; their nervous systems slow down but not so much as to interfere with their ability to track the movements of real wind-blown flowers.
Collapse
Affiliation(s)
- Simon Sponberg
- Department of Biology, University of Washington, Seattle, WA 98195, USA. School of Physics and School of Applied Physiology, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Jonathan P Dyhr
- Department of Biology, University of Washington, Seattle, WA 98195, USA. Department of Biology, Northwest University, Kirkland, WA 98033, USA
| | - Robert W Hall
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Thomas L Daniel
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
30
|
Campos EO, Bradshaw HD, Daniel TL. Shape matters: corolla curvature improves nectar discovery in the hawkmoth Manduca sexta. Funct Ecol 2015; 29:462-468. [PMID: 25987763 DOI: 10.1111/1365-2435.12378] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. We measured the effects of variation in corolla curvature and nectary aperture radius on pollinator foraging ability using the hawkmoth Manduca sexta and 3D-printed artificial flowers whose shapes were mathematically specified. 2. In dimorphic arrays containing trumpet-shaped flowers and flat-disk flowers, hawkmoths were able to empty the nectaries of significantly more trumpet-shaped flowers regardless of nectary aperture size. Interestingly, trumpet-shaped flowers needed to deviate only slightly from the flat-disk morphotype in order to significantly increase hawkmoth foraging ability. 3. Whole-flower three-dimensional shape, particularly corolla curvature, has the potential to act as a mechanical guide for Manduca sexta, further implicating direct flower-proboscis contact as an important contributor to foraging success during flower handling in hawkmoths.
Collapse
Affiliation(s)
- E O Campos
- Department of Biology, University of Washington, 98195, USA
| | - H D Bradshaw
- Department of Biology, University of Washington, 98195, USA
| | - T L Daniel
- Department of Biology, University of Washington, 98195, USA
| |
Collapse
|
31
|
Goyret J, Yuan ML. Influence of Ambient Illumination on the Use of Olfactory and Visual Signals by a Nocturnal Hawkmoth During Close-Range Foraging. Integr Comp Biol 2015; 55:486-94. [DOI: 10.1093/icb/icv009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
Schendzielorz T, Schirmer K, Stolte P, Stengl M. Octopamine regulates antennal sensory neurons via daytime-dependent changes in cAMP and IP3 levels in the hawkmoth Manduca sexta. PLoS One 2015; 10:e0121230. [PMID: 25785721 PMCID: PMC4364694 DOI: 10.1371/journal.pone.0121230] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/29/2015] [Indexed: 01/01/2023] Open
Abstract
The biogenic amine octopamine (OA) mediates reward signals in olfactory learning and memory as well as circadian rhythms of sleep and activity. In the crepuscular hawkmoth Manduca sexta, OA changed pheromone detection thresholds daytime-dependently, suggesting that OA confers circadian control of olfactory transduction. Thus, with enzyme-linked immunosorbent assays we searched hawkmoth antennae for daytime-dependent changes in the concentration of OA and its respective second messengers. Antennal stimulation with OA raised cAMP- and IP3 levels. Furthermore, antennae expressed daytime-dependent changes in the concentration of OA, with maxima at Zeitgebertime (ZT) 20 when moths were active and also maximal concentrations of cAMP occurred. Maximal IP3 levels at ZT 18 and 23 correlated with maximal flight activity of male moths, while minimal IP3 levels at dusk correlated with peaks of feeding activity. Half maximal effective concentration (EC50) for activation of the OA-receptor decreased during the moth’s activity phase suggesting daytime-dependent changes in OA receptor sensitivity. With an antiserum against tyramine, the precursor of OA, two centrifugal neurons were detected projecting out into the sensory cell layer of the antenna, possibly mediating more rapid stimulus-dependent OA actions. Indeed, in fast kinetic assays OA receptor stimulation increased cAMP concentrations within 50 msec. Thus, we hypothesize that fast, stimulus-dependent centrifugal control of OA-release in the antenna occurs. Additional slow systemic OA actions might be based upon circadian release of OA into the hemolymph mediating circadian rhythms of antennal second messenger levels. The resulting rhythms of odor sensitivity are suggested to underlie circadian rhythms in odor-mediated behavior.
Collapse
Affiliation(s)
| | - Katja Schirmer
- University of Kassel, Biology, Animal Physiology, 34132, Kassel, Germany
| | - Paul Stolte
- University of Kassel, Biology, Animal Physiology, 34132, Kassel, Germany
| | - Monika Stengl
- University of Kassel, Biology, Animal Physiology, 34132, Kassel, Germany
- * E-mail:
| |
Collapse
|
33
|
Whitfield M, Köhler A, Nicolson SW. Sunbirds increase foraging success by using color as a cue for nectar quality. Behav Ecol 2013. [DOI: 10.1093/beheco/art115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
The effect of olfactory exposure to non-insecticidal agrochemicals on bumblebee foraging behavior. PLoS One 2013; 8:e76273. [PMID: 24204608 PMCID: PMC3811974 DOI: 10.1371/journal.pone.0076273] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/21/2013] [Indexed: 11/19/2022] Open
Abstract
Declines in bumblebee populations have led to investigations into potential causes - including agrochemical effects on bumblebee physiology. The indirect effects of agrochemicals (i.e. behavior modulation) have been postulated, but rarely directly tested. Olfactory information is critical in mediating bumblebee-floral interactions. As agrochemicals emit volatiles, they may indirectly modify foraging behavior. We tested the effects of olfactory contamination of floral odor by agrochemical scent on foraging activity of Bombus impatiens using two behavioral paradigms: localization of food within a maze and forced-choice preference. The presence of a fungicide decreased bumblebees' ability to locate food within a maze. Additionally, bumblebees preferred to forage in non-contaminated feeding chambers when offered a choice between control and either fertilizer- or fungicide-scented chambers.
Collapse
|
35
|
Anne-Sophie Bauder J, Handschuh S, Metscher BD, Krenn HW. Functional morphology of the feeding apparatus and evolution of proboscis length in metalmark butterflies (Lepidoptera: Riodinidae). Biol J Linn Soc Lond 2013; 110:291-304. [PMID: 24839308 PMCID: PMC4021108 DOI: 10.1111/bij.12134] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
An assessment of the anatomical costs of extremely long proboscid mouthparts can contribute to the understanding of the evolution of form and function in the context of insect feeding behaviour. An integrative analysis of expenses relating to an exceptionally long proboscis in butterflies includes all organs involved in fluid feeding, such as the proboscis plus its musculature, sensilla, and food canal, as well as organs for proboscis movements and the suction pump for fluid uptake. In the present study, we report a morphometric comparison of derived long-tongued (proboscis approximately twice as long as the body) and short-tongued Riodinidae (proboscis half as long as the body), which reveals the non-linear scaling relationships of an extremely long proboscis. We found no elongation of the tip region, low numbers of proboscis sensilla, short sensilla styloconica, and no increase of galeal musculature in relation to galeal volume, but a larger food canal, as well as larger head musculature in relation to the head capsule. The results indicate the relatively low extra expense on the proboscis musculature and sensilla equipment but significant anatomical costs, such as reinforced haemolymph and suction pump musculature, as well as thick cuticular proboscis walls, which are functionally related to feeding performance in species possessing an extremely long proboscis. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110, 291–304.
Collapse
Affiliation(s)
| | - Stephan Handschuh
- Theoretical Biology, University of Vienna, Althanstraße 14, Vienna, 1090, Austria ; Konrad Lorenz Institute for Evolution and Cognition Research, Adolf Lorenz Gasse 2, Altenberg, 3422, Austria
| | | | | |
Collapse
|
36
|
Martins DJ, Johnson SD. Interactions between hawkmoths and flowering plants in East Africa: polyphagy and evolutionary specialization in an ecological context. Biol J Linn Soc Lond 2013. [DOI: 10.1111/bij.12107] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dino J. Martins
- School of Life Sciences; University of KwaZulu-Natal; Private Bag X01, Scottsville; Pietermaritzburg; 3209; South Africa
| | - Steven D. Johnson
- School of Life Sciences; University of KwaZulu-Natal; Private Bag X01, Scottsville; Pietermaritzburg; 3209; South Africa
| |
Collapse
|
37
|
Brandenburg A, Kuhlemeier C, Bshary R. Innate Adjustment of Visitation Behavior to Rewarding and Reward-Minimized Petunia axillaris (Solanacea) Plants by Hawkmoth Manduca sexta (Sphingidae). Ethology 2012. [DOI: 10.1111/j.1439-0310.2012.02055.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Cris Kuhlemeier
- Institute of Plant Science; University of Bern; Bern; Switzerland
| | - Redouan Bshary
- Institute of Biology; University of Neuchâtel; Neuchâtel; Switzerland
| |
Collapse
|
38
|
Kaczorowski RL, Seliger AR, Gaskett AC, Wigsten SK, Raguso RA. Corolla shape vs. size in flower choice by a nocturnal hawkmoth pollinator. Funct Ecol 2012. [DOI: 10.1111/j.1365-2435.2012.01982.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Chromatic signals control proboscis movements during hovering flight in the hummingbird hawkmoth Macroglossum stellatarum. PLoS One 2012; 7:e34629. [PMID: 22529922 PMCID: PMC3328476 DOI: 10.1371/journal.pone.0034629] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 03/02/2012] [Indexed: 12/02/2022] Open
Abstract
Most visual systems are more sensitive to luminance than to colour signals. Animals resolve finer spatial detail and temporal changes through achromatic signals than through chromatic ones. Probably, this explains that detection of small, distant, or moving objects is typically mediated through achromatic signals. Macroglossum stellatarum are fast flying nectarivorous hawkmoths that inspect flowers with their long proboscis while hovering. They can visually control this behaviour using floral markings known as nectar guides. Here, we investigate whether this is mediated by chromatic or achromatic cues. We evaluated proboscis placement, foraging efficiency, and inspection learning of naïve moths foraging on flower models with coloured markings that offered either chromatic, achromatic or both contrasts. Hummingbird hawkmoths could use either achromatic or chromatic signals to inspect models while hovering. We identified three, apparently independent, components controlling proboscis placement: After initial contact, 1) moths directed their probing towards the yellow colour irrespectively of luminance signals, suggesting a dominant role of chromatic signals; and 2) moths tended to probe mainly on the brighter areas of models that offered only achromatic signals. 3) During the establishment of the first contact, naïve moths showed a tendency to direct their proboscis towards the small floral marks independent of their colour or luminance. Moths learned to find nectar faster, but their foraging efficiency depended on the flower model they foraged on. Our results imply that M. stellatarum can perceive small patterns through colour vision. We discuss how the different informational contents of chromatic and luminance signals can be significant for the control of flower inspection, and visually guided behaviours in general.
Collapse
|
40
|
GASKETT ANNEC. Floral shape mimicry and variation in sexually deceptive orchids with a shared pollinator. Biol J Linn Soc Lond 2012. [DOI: 10.1111/j.1095-8312.2012.01902.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Hansen DM, Van der Niet T, Johnson SD. Floral signposts: testing the significance of visual 'nectar guides' for pollinator behaviour and plant fitness. Proc Biol Sci 2011; 279:634-9. [PMID: 21795269 DOI: 10.1098/rspb.2011.1349] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nectar guides, contrasting patterns on flowers that supposedly direct pollinators towards a concealed nectar reward, are taxonomically widespread. However, there have been few studies of their functional significance and effects on plant fitness. Most previous studies focused on pollinator behaviour and used artificial flowers in laboratory settings. We experimentally investigated the role of putative nectar guides in a natural system: the South African iris Lapeirousia oreogena, whose flowers have a clearly visible pattern of six white arrow-markings pointing towards the narrow entrance of the long corolla tube, and its sole pollinator, a long-proboscid nemestrinid fly. We painted over none, some or all of the white arrow-markings with ink that matched the colour of the corolla background. Although arrow-marking removal had little effect on the approaches by flies to flowers from a distance, it dramatically reduced the likelihood of proboscis insertion. Export of pollen dye analogue (an estimate of male fitness) was reduced to almost zero in flowers from which all nectar guides had been removed, and fruit set (a measure of female fitness) was also significantly reduced. Our results confirm that the markings on L. oreogena flowers serve as nectar guides and suggest that they are under strong selective maintenance through both male and female fitness components in this pollination system.
Collapse
Affiliation(s)
- Dennis M Hansen
- School of Biological and Conservation Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa.
| | | | | |
Collapse
|
42
|
Goyret J, Kelber A. How does a diurnal hawkmoth find nectar? Differences in sensory control with a nocturnal relative. Behav Ecol 2011. [DOI: 10.1093/beheco/arr078] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
43
|
|
44
|
Goyret J. Look and touch: multimodal sensory control of flower inspection movements in the nocturnal hawkmoth Manduca sexta. J Exp Biol 2010; 213:3676-82. [DOI: 10.1242/jeb.045831] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
A crucial stage in the interaction between pollinators and plants is the moment of physical contact between them, known as flower inspection, or handling. Floral guides – conspicuous colour markings, or structural features of flower corollas – have been shown to be important in the inspecting behaviour of many insects, particularly in diurnal species. For the nocturnal hawkmoth Manduca sexta tactile input has an important role in flower inspection, but there is no knowledge about the use of visual floral guides in this behaviour. I carried out a series of experiments to first, evaluate the putative role of floral guides during flower inspection and second, to explore how simultaneous tactile and visual guides could influence this behaviour. Results show that visual floral guides affect flower inspection by M. sexta. Moths confine proboscis placement to areas of higher light reflectance regardless of their chromaticity, but do not appear to show movements in any particular direction within these areas. I also recorded inspection times, finding that moths can learn to inspect flowers more efficiently when visual floral guides are available. Additionally, I found that some visual floral guides can affect the body orientation that moths adopt while hovering in front of horizontal models. Finally, when presented with flower models offering both visual and tactile guides, the former influenced proboscis placement, whereas the latter controlled proboscis movements. Results show that innate inspection behaviour is under multimodal sensory control, consistent with other components of the foraging task. Fine scale inspection movements (elicited by diverse floral traits) and the tight adjustment between the morphology of pollinators and flowers appear to be adaptively integrated, facilitating reward assessment and effective pollen transfer.
Collapse
Affiliation(s)
- Joaquín Goyret
- Department of Neurobiology and Behavior, Seeley G. Mudd Hall, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
45
|
Krenn HW. Feeding mechanisms of adult Lepidoptera: structure, function, and evolution of the mouthparts. ANNUAL REVIEW OF ENTOMOLOGY 2010; 55:307-27. [PMID: 19961330 PMCID: PMC4040413 DOI: 10.1146/annurev-ento-112408-085338] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The form and function of the mouthparts in adult Lepidoptera and their feeding behavior are reviewed from evolutionary and ecological points of view. The formation of the suctorial proboscis encompasses a fluid-tight food tube, special linking structures, modified sensory equipment, and novel intrinsic musculature. The evolution of these functionally important traits can be reconstructed within the Lepidoptera. The proboscis movements are explained by a hydraulic mechanism for uncoiling, whereas recoiling is governed by the intrinsic proboscis musculature and the cuticular elasticity. Fluid uptake is accomplished by the action of the cranial sucking pump, which enables uptake of a wide range of fluid quantities from different food sources. Nectar-feeding species exhibit stereotypical proboscis movements during flower handling. Behavioral modifications and derived proboscis morphology are often associated with specialized feeding preferences or an obligatory switch to alternative food sources.
Collapse
Affiliation(s)
- Harald W Krenn
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria.
| |
Collapse
|
46
|
Theobald JC, Warrant EJ, O'Carroll DC. Wide-field motion tuning in nocturnal hawkmoths. Proc Biol Sci 2009; 277:853-60. [PMID: 19906663 DOI: 10.1098/rspb.2009.1677] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nocturnal hawkmoths are known for impressive visually guided behaviours in dim light, such as hovering while feeding from nectar-bearing flowers. This requires tight visual feedback to estimate and counter relative motion. Discrimination of low velocities, as required for stable hovering flight, is fundamentally limited by spatial resolution, yet in the evolution of eyes for nocturnal vision, maintenance of high spatial acuity compromises absolute sensitivity. To investigate these trade-offs, we compared responses of wide-field motion-sensitive neurons in three species of hawkmoth: Manduca sexta (a crepuscular hoverer), Deilephila elpenor (a fully nocturnal hoverer) and Acherontia atropos (a fully nocturnal hawkmoth that does not hover as it feeds uniquely from honey in bees' nests). We show that despite smaller eyes, the motion pathway of D. elpenor is tuned to higher spatial frequencies and lower temporal frequencies than A. atropos, consistent with D. elpenor's need to detect low velocities for hovering. Acherontia atropos, however, presumably evolved low-light sensitivity without sacrificing temporal acuity. Manduca sexta, active at higher light levels, is tuned to the highest spatial frequencies of the three and temporal frequencies comparable with A. atropos. This yields similar tuning to low velocities as in D. elpenor, but with the advantage of shorter neural delays in processing motion.
Collapse
Affiliation(s)
- Jamie C Theobald
- Biology Department, University of Washington, 24 Kincaid Hall, Seattle, WA 98195-1800, USA.
| | | | | |
Collapse
|
47
|
Goyret J. The breath of a flower: CO(2) adds another channel-and then some-to plant-pollinator interactions. Commun Integr Biol 2009; 1:66-8. [PMID: 19513201 DOI: 10.4161/cib.1.1.6119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 04/16/2008] [Indexed: 11/19/2022] Open
Abstract
In this article I comment on our findings that floral carbon dioxide (CO(2)) can be used by Manduca sexta hawkmoths in a scale- and context-dependent fashion. We firstly found, in wind tunnel assays, that diffusing floral CO(2) is used as long-distance cue (e.g., meters). Moths track CO(2) plumes up-wind in the same manner they track floral odors. Nevertheless, CO(2) did not appear to function as a local stimulus for flower probing, evidencing a scale-dependent role in nectar foraging. These results were further enriched by a second finding. In dual choice assays, where moths were offered two scented artificial flowers of which only one emitted above-ambient CO(2)-levels, female Manduca sexta chose to feed on the CO(2) emitting flower only when host-plant volatiles were added to the background. We discuss this apparent measurement of oviposition obligations during foraging in the context of the life histories of both insect and plant species. These findings seem to pinpoint the usually artificial nature of compartmentalizing herbivory and pollination as different, isolated aspects of insect-plant interactions. Insects do not seem to have a defined response to a certain stimulus; instead, motor programs appear to be in response to composite arrangements of external stimuli and inner states. If animal-plant interactions have evolved under these premises, I believe it may prove beneficial to include a non-linear, integrative view of plant multi-signaling and life history aspects into the study of pollination biology.
Collapse
Affiliation(s)
- Joaquín Goyret
- Department of Neurobiology and Behavior; Cornell University; Ithaca, New York USA
| |
Collapse
|
48
|
Goyret J, Kelber A, Pfaff M, Raguso RA. Flexible responses to visual and olfactory stimuli by foraging Manduca sexta: larval nutrition affects adult behaviour. Proc Biol Sci 2009; 276:2739-45. [PMID: 19419987 DOI: 10.1098/rspb.2009.0456] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Here, we show that the consequences of deficient micronutrient (beta-carotene) intake during larval stages of Manduca sexta are carried across metamorphosis, affecting adult behaviour. Our manipulation of larval diet allowed us to examine how developmental plasticity impacts the interplay between visual and olfactory inputs on adult foraging behaviour. Larvae of M. sexta were reared on natural (Nicotiana tabacum) and artificial laboratory diets containing different concentrations of beta-carotene (standard diet, low beta-carotene, high beta-carotene and cornmeal). This vitamin-A precursor has been shown to be crucial for photoreception sensitivity in the retina of M. sexta. After completing development, post-metamorphosis, starved adults were presented with artificial feeders that could be either scented or unscented. Regardless of their larval diet, adult moths fed with relatively high probabilities on scented feeders. When feeders were unscented, moths reared on tobacco were more responsive than moths reared on beta-carotene-deficient artificial diets. Strikingly, moths reared on artificial diets supplemented with increasing amounts of beta-carotene (low beta and high beta) showed increasing probabilities of response to scentless feeders. We discuss these results in relationship to the use of complex, multi-modal sensory information by foraging animals.
Collapse
Affiliation(s)
- Joaquín Goyret
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| | | | | | | |
Collapse
|
49
|
Santer RD, Hebets EA. Tactile learning by a whip spider, Phrynus marginemaculatus C.L. Koch (Arachnida, Amblypygi). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2009; 195:393-9. [PMID: 19198849 DOI: 10.1007/s00359-009-0417-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 01/12/2009] [Accepted: 01/16/2009] [Indexed: 12/01/2022]
Abstract
The ability of animals to learn and remember underpins many behavioural actions and can be crucial for survival in certain contexts, for example in finding and recognising a habitual refuge. The sensory cues that an animal learns in such situations are to an extent determined by its own sensory specialisations. Whip spiders (Arachnida, Amblypygi) are nocturnal and possess uniquely specialised sensory systems that include elongated 'antenniform' forelegs specialised for use as chemo- and mechanosensory feelers. We tested the tactile learning abilities of the whip spider Phrynus marginemaculatus in a maze learning task with two tactile cues of different texture--one associated with an accessible refuge, and the other with an inaccessible refuge. Over ten training trials, whip spiders got faster and more accurate at finding the accessible refuge. During a subsequent test trial where both refuges were inaccessible, whip spiders searched for significantly longer at the tactile cue previously associated with the accessible refuge. Using high-speed cinematography, we describe three distinct antenniform leg movements used by whip spiders during tactile examination. We discuss the potential importance of tactile learning in whip spider behaviour and a possible role for their unique giant sensory neurons in accessing tactile information.
Collapse
Affiliation(s)
- Roger D Santer
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| | | |
Collapse
|
50
|
Dornhaus A. Specialization does not predict individual efficiency in an ant. PLoS Biol 2009; 6:e285. [PMID: 19018663 PMCID: PMC2586388 DOI: 10.1371/journal.pbio.0060285] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 10/09/2008] [Indexed: 11/18/2022] Open
Abstract
The ecological success of social insects is often attributed to an increase in efficiency achieved through division of labor between workers in a colony. Much research has therefore focused on the mechanism by which a division of labor is implemented, i.e., on how tasks are allocated to workers. However, the important assumption that specialists are indeed more efficient at their work than generalist individuals—the “Jack-of-all-trades is master of none” hypothesis—has rarely been tested. Here, I quantify worker efficiency, measured as work completed per time, in four different tasks in the ant Temnothorax albipennis: honey and protein foraging, collection of nest-building material, and brood transports in a colony emigration. I show that individual efficiency is not predicted by how specialized workers were on the respective task. Worker efficiency is also not consistently predicted by that worker's overall activity or delay to begin the task. Even when only the worker's rank relative to nestmates in the same colony was used, specialization did not predict efficiency in three out of the four tasks, and more specialized workers actually performed worse than others in the fourth task (collection of sand grains). I also show that the above relationships, as well as median individual efficiency, do not change with colony size. My results demonstrate that in an ant species without morphologically differentiated worker castes, workers may nevertheless differ in their ability to perform different tasks. Surprisingly, this variation is not utilized by the colony—worker allocation to tasks is unrelated to their ability to perform them. What, then, are the adaptive benefits of behavioral specialization, and why do workers choose tasks without regard for whether they can perform them well? We are still far from an understanding of the adaptive benefits of division of labor in social insects. Social insects, including ants, bees, and termites, may make up 75% of the world's insect biomass. This success is often attributed to their complex colony organization. Each individual is thought to specialize in a particular task and thus become an “expert” for this task. Researchers have long assumed that the ecological success of social insects derives from division of labor, just as the increase in productivity achieved in human societies; however, this assumption has not been thoroughly tested. Here, I have measured task performance of specialized and unspecialized ants. In the ant species studied here, it turns out that specialists are no better at their jobs than generalists, and sometimes even perform worse. In addition, most of the work in the colony is not performed by the most efficient workers. So the old adage “The Jack of all trades is a master of none” does not seem to apply to these ants, suggesting that we may have to revise our understanding of the benefits of colony organization The assumption that the success of social insects rests on the increased efficiency of dividing tasks within the colony is challenged by evidence that specialists are not always better at their jobs.
Collapse
Affiliation(s)
- Anna Dornhaus
- Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, United States of America.
| |
Collapse
|