1
|
Tajima Y, Seow CY, Dong SJ, Tsutsui M, Cheung CY, Welch I, Mowbray L, Imlach B, Hildebrandt R, Apperloo K, Ryomoto B, Goodacre E, Myrdal C, Machan L, Wolff K, Elizur E, Vasilescu DM, Sin DD. Development of a unilateral porcine emphysema model induced by porcine pancreatic elastase. J Appl Physiol (1985) 2023; 135:1001-1011. [PMID: 37767558 DOI: 10.1152/japplphysiol.00801.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Emphysema is one of the pathological hallmarks of chronic obstructive pulmonary disease. We have recently reported that radiofrequency therapy improves lung function in rodent models of emphysema. However, preclinical data using large animals is necessary for clinical translation. Here, we describe the work performed to establish a unilateral porcine emphysema model. Different doses of porcine pancreatic elastase (PPE) were instilled into the left lung of 10 Yucatan pigs. Three additional pigs were used as controls. Six weeks after instillation, lungs were harvested. Lung compliance was measured by a water displacement method and plethysmography. Systematic uniform random sampling of the left and right lungs was performed independently to measure alveolar surface area using micro-computed tomography (micro-CT) and histology. In pigs instilled with 725-750 U/kg of PPE (PPE group, n = 6), the compliance of the left lung was significantly higher by 37.6% than that of the right lung (P = 0.03) using the water displacement method. With plethysmography, the volume of the left lung was significantly larger than that of the right lung at 3, 5, and 10 cmH2O. Measurements from either micro-CT or histology images showed a significant decrease in alveolar surface area by 14.2% or 14.5% (P = 0.031) in the left lung compared with the right lung of the PPE group. A unilateral model for mild emphysema in Yucatan pigs has been established, which can now be used for evaluating novel therapeutics and interventional strategies.NEW & NOTEWORTHY For clinical translation, preclinical data using large animal models is necessary. However, papers describing an emphysema model in pigs, which are anatomically and physiologically similar to humans, are lacking. Here, we report success in creating a unilateral mild-emphysema model in pigs with only one single dose of porcine pancreatic elastase. This model will be useful in bringing novel technologies and therapies from small animals to humans with emphysema.
Collapse
Affiliation(s)
- Yuki Tajima
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chun Y Seow
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shou-Jin Dong
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Respiratory Department, Chengdu First People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mai Tsutsui
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chung Y Cheung
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ian Welch
- Centre for Comparative Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laura Mowbray
- Centre for Comparative Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brittany Imlach
- Centre for Comparative Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rhonda Hildebrandt
- Centre for Comparative Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kayla Apperloo
- Centre for Comparative Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian Ryomoto
- Centre for Comparative Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Evan Goodacre
- Ikomed Technologies Inc, Vancouver, British Columbia, Canada
| | - Corey Myrdal
- Ikomed Technologies Inc, Vancouver, British Columbia, Canada
| | - Lindsay Machan
- Ikomed Technologies Inc, Vancouver, British Columbia, Canada
| | - Kim Wolff
- Ikomed Technologies Inc, Vancouver, British Columbia, Canada
| | - Eran Elizur
- Ikomed Technologies Inc, Vancouver, British Columbia, Canada
| | - Dragoș M Vasilescu
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Don D Sin
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Cole MR, Ware C, McHuron EA, Costa DP, Ponganis PJ, McDonald BI. Deep dives and high tissue density increase mean dive costs in California sea lions (Zalophus californianus). J Exp Biol 2023; 226:jeb246059. [PMID: 37345474 DOI: 10.1242/jeb.246059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
Diving is central to the foraging strategies of many marine mammals and seabirds. Still, the effect of dive depth on foraging cost remains elusive because energy expenditure is difficult to measure at fine temporal scales in wild animals. We used depth and acceleration data from eight lactating California sea lions (Zalophus californianus) to model body density and investigate the effect of dive depth and tissue density on rates of energy expenditure. We calculated body density in 5 s intervals from the rate of gliding descent. We modeled body density across depth in each dive, revealing high tissue densities and diving lung volumes (DLVs). DLV increased with dive depth in four individuals. We used the buoyancy calculated from dive-specific body-density models and drag calculated from swim speed to estimate metabolic power and cost of transport in 5 s intervals during descents and ascents. Deeper dives required greater mean power for round-trip vertical transit, especially in individuals with higher tissue density. These trends likely follow from increased mean swim speed and buoyant hinderance that increasingly outweighs buoyant aid in deeper dives. This suggests that deep diving is either a 'high-cost, high-reward' strategy or an energetically expensive option to access prey when prey in shallow waters are limited, and that poor body condition may increase the energetic costs of deep diving. These results add to our mechanistic understanding of how foraging strategy and body condition affect energy expenditure in wild breath-hold divers.
Collapse
Affiliation(s)
- Mason R Cole
- Moss Landing Marine Laboratories, San Jose State University, 8272 Moss Landing Rd, Moss Landing, CA 95039, USA
| | - Colin Ware
- Center for Coastal and Ocean Mapping, University of New Hampshire, Durham, NH 03924, USA
| | - Elizabeth A McHuron
- Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington, Seattle, WA 98105, USA
| | - Daniel P Costa
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA
| | - Paul J Ponganis
- Scripps Institution of Oceanography, University of California San Diego, Center for Marine Biodiversity and Biomedicine, 8655 Kennel Way, La Jolla, CA 92037, USA
| | - Birgitte I McDonald
- Moss Landing Marine Laboratories, San Jose State University, 8272 Moss Landing Rd, Moss Landing, CA 95039, USA
| |
Collapse
|
3
|
Borque-Espinosa A, Rode KD, Ferrero-Fernández D, Forte A, Capaccioni-Azzati R, Fahlman A. Subsurface swimming and stationary diving are metabolically cheap in adult Pacific walruses (Odobenus rosmarus divergens). J Exp Biol 2021; 224:273381. [PMID: 34746957 DOI: 10.1242/jeb.242993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/02/2021] [Indexed: 11/20/2022]
Abstract
Walruses rely on sea-ice to efficiently forage and rest between diving bouts while maintaining proximity to prime foraging habitat. Recent declines in summer sea ice have resulted in walruses hauling out on land where they have to travel farther to access productive benthic habitat while potentially increasing energetic costs. Despite the need to better understand the impact of sea ice loss on energy expenditure, knowledge about metabolic demands of specific behaviours in walruses is scarce. In the present study, 3 adult female Pacific walruses (Odobenus rosmarus divergens) participated in flow-through respirometry trials to measure metabolic rates while floating inactive at the water surface during a minimum of 5 min, during a 180-second stationary dive, and while swimming horizontally underwater for ∼90 m. Metabolic rates during stationary dives (3.82±0.56 l O2 min-1) were lower than those measured at the water surface (4.64±1.04 l O2 min-1), which did not differ from rates measured during subsurface swimming (4.91±0.77 l O2 min-1). Thus, neither stationary diving nor subsurface swimming resulted in metabolic rates above those exhibited by walruses at the water surface. These results suggest that walruses minimize their energetic investment during underwater behaviours as reported for other marine mammals. Although environmental factors experienced by free-ranging walruses (e.g., winds or currents) likely affect metabolic rates, our results provide important information for understanding how behavioural changes affect energetic costs and can be used to improve bioenergetics models aimed at predicting the metabolic consequences of climate change on walruses.
Collapse
Affiliation(s)
- Alicia Borque-Espinosa
- Universitat de València, Av. de Blasco Ibáñez 13, 46010 Valencia, Spain.,Fundación Oceanogràfic de la Comunitat Valenciana, Gran Vía Marqués del Turia 19, 46005 Valencia, Spain
| | - Karyn D Rode
- U.S. Geological Survey Alaska Science Center, , 4210 University Dr, Anchorage, 99508 AK, USA
| | | | - Anabel Forte
- Universitat de València, Av. de Blasco Ibáñez 13, 46010 Valencia, Spain
| | | | - Andreas Fahlman
- Fundación Oceanogràfic de la Comunitat Valenciana, Gran Vía Marqués del Turia 19, 46005 Valencia, Spain.,Global Diving Research, Inc. Ottawa, K2J 5E8 ON, Canada
| |
Collapse
|
4
|
Borque-Espinosa A, Ferrero-Fernández D, Capaccioni-Azzati R, Fahlman A. Lung function assessment in the Pacific walrus ( Odobenus rosmarus divergens) while resting on land and submerged in water. J Exp Biol 2021; 224:jeb227389. [PMID: 33188062 DOI: 10.1242/jeb.227389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 11/09/2020] [Indexed: 11/20/2022]
Abstract
In the present study, we examined lung function in healthy resting adult (born in 2003) Pacific walruses (Odobenus rosmarus divergens) by measuring respiratory flow ([Formula: see text]) using a custom-made pneumotachometer. Three female walruses (670-1025 kg) voluntarily participated in spirometry trials while spontaneously breathing on land (sitting and lying down in sternal recumbency) and floating in water. While sitting, two walruses performed active respiratory efforts, and one animal participated in lung compliance measurements. For spontaneous breaths, [Formula: see text] was lower when walruses were lying down (e.g. expiration: 7.1±1.2 l s-1) as compared with in water (9.9±1.4 l s-1), while tidal volume (VT, 11.5±4.6 l), breath duration (4.6±1.4 s) and respiratory frequency (7.6±2.2 breaths min-1) remained the same. The measured VT and specific dynamic lung compliance (0.32±0.07 cmH2O-1) for spontaneous breaths were higher than those estimated for similarly sized terrestrial mammals. VT increased with body mass (allometric mass-exponent=1.29) and ranged from 3% to 43% of the estimated total lung capacity (TLCest) for spontaneous breaths. When normalized for TLCest, the maximal expiratory [Formula: see text] ([Formula: see text]exp) was higher than that estimated in phocids, but lower than that reported in cetaceans and the California sea lion. [Formula: see text]exp was maintained over all lung volumes during spontaneous and active respiratory manoeuvres. We conclude that location (water or land) affects lung function in the walrus and should be considered when studying respiratory physiology in semi-aquatic marine mammals.
Collapse
Affiliation(s)
- Alicia Borque-Espinosa
- Fundación Oceanogràfic de la Comunitat Valenciana, Gran Vía Marqués del Turia 19, 46005 Valencia, Spain
- Universitat de València, Av. de Blasco Ibáñez 13, 46010 Valencia, Spain
| | | | | | - Andreas Fahlman
- Fundación Oceanogràfic de la Comunitat Valenciana, Gran Vía Marqués del Turia 19, 46005 Valencia, Spain
- Global Diving Research, Inc., Ottawa, ON, Canada, K2J 5E8
| |
Collapse
|
5
|
Fahlman A, Sato K, Miller P. Improving estimates of diving lung volume in air-breathing marine vertebrates. ACTA ACUST UNITED AC 2020; 223:223/12/jeb216846. [PMID: 32587107 DOI: 10.1242/jeb.216846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The air volume in the respiratory system of marine tetrapods provides a store of O2 to fuel aerobic metabolism during dives; however, it can also be a liability, as the associated N2 can increase the risk of decompression sickness. In order to more fully understand the physiological limitations of different air-breathing marine vertebrates, it is therefore important to be able to accurately estimate the air volume in the respiratory system during diving. One method that has been used to do so is to calculate the air volume from glide phases - periods of movement during which no thrust is produced by the animal - which many species conduct during ascent periods, when gases are expanding owing to decreasing hydrostatic pressure. This method assumes that there is conservation of mass in the respiratory system, with volume changes only driven by pressure. In this Commentary, we use previously published data to argue that both the respiratory quotient and differences in tissue and blood gas solubility potentially alter the mass balance in the respiratory system throughout a dive. Therefore, near the end of a dive, the measured volume of gas at a given pressure may be 12-50% less than from the start of the dive; the actual difference will depend on the length of the dive, the cardiac output, the pulmonary shunt and the metabolic rate. Novel methods and improved understanding of diving physiology will be required to verify the size of the effects described here and to more accurately estimate the volume of gas inhaled at the start of a dive.
Collapse
Affiliation(s)
- Andreas Fahlman
- Global Diving Research Inc., Ottawa, ON, Canada, K2J 5E8 .,Fundación Oceanogràfic de la Comunitat Valenciana, Gran Vía Marqués del Turia 19, 46005 Valencia, Spain
| | - Katsufumi Sato
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Patrick Miller
- SMRU (Sea Mammal Research Unit), University of St Andrews, St Andrews, Fife KY16 8LB, UK
| |
Collapse
|
6
|
Wada T, Jaw JE, Tsuruta M, Moritani K, Tsutsui M, Tam A, Vasilescu DM, Cheung CY, Yamasaki K, Lichtenstein S, Machan L, Gelbart D, Man SP, Sin DD. External radiofrequency as a novel extracorporeal therapy for emphysema. Eur Respir J 2020; 56:13993003.01422-2020. [PMID: 32471932 DOI: 10.1183/13993003.01422-2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/13/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Takeyuki Wada
- Centre for Heart Lung Innovation, St Paul's Hospital, and Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Both authors contributed equally to this work
| | - Jen-Erh Jaw
- Centre for Heart Lung Innovation, St Paul's Hospital, and Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Both authors contributed equally to this work
| | - Masashi Tsuruta
- Centre for Heart Lung Innovation, St Paul's Hospital, and Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Konosuke Moritani
- Centre for Heart Lung Innovation, St Paul's Hospital, and Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Mai Tsutsui
- Centre for Heart Lung Innovation, St Paul's Hospital, and Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Anthony Tam
- Centre for Heart Lung Innovation, St Paul's Hospital, and Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Dragoş M Vasilescu
- Centre for Heart Lung Innovation, St Paul's Hospital, and Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Chung Yan Cheung
- Centre for Heart Lung Innovation, St Paul's Hospital, and Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kei Yamasaki
- Centre for Heart Lung Innovation, St Paul's Hospital, and Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Samuel Lichtenstein
- Ikomed Technologies Inc., Vancouver, BC, Canada.,Division of Cardiac Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Lindsay Machan
- Ikomed Technologies Inc., Vancouver, BC, Canada.,Dept of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Dan Gelbart
- Ikomed Technologies Inc., Vancouver, BC, Canada
| | - S Paul Man
- Centre for Heart Lung Innovation, St Paul's Hospital, and Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Don D Sin
- Centre for Heart Lung Innovation, St Paul's Hospital, and Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Denk M, Fahlman A, Dennison-Gibby S, Song Z, Moore M. Hyperbaric tracheobronchial compression in cetaceans and pinnipeds. J Exp Biol 2020; 223:jeb217885. [PMID: 32041809 DOI: 10.1242/jeb.217885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/31/2020] [Indexed: 11/20/2022]
Abstract
Assessment of the compressibility of marine mammal airways at depth is crucial to understanding vital physiological processes such as gas exchange during diving. Very few studies have directly assessed changes in cetacean and pinniped tracheobronchial shape, and none have quantified changes in volume with increasing pressure. A harbor seal, gray seal, harp seal, harbor porpoise and common dolphin were imaged promptly post mortem via computed tomography in a radiolucent hyperbaric chamber. Volume reconstructions were performed of segments of the trachea and bronchi of the pinnipeds and bronchi of the cetaceans for each pressure treatment. All specimens examined demonstrated significant decreases in airway volume with increasing pressure, with those of the harbor seal and common dolphin nearing complete collapse at the highest pressures. The common dolphin bronchi demonstrated distinctly different compression dynamics between 50% and 100% lung inflation treatments, indicating the importance of air in maintaining patent airways, and collapse occurred caudally to cranially in the 50% treatment. Dynamics of the harbor seal and gray seal airways indicated that the trachea was less compliant than the bronchi. These findings indicate potential species-specific variability in airway compliance, and cessation of gas exchange may occur at greater depths than those predicted in models assuming rigid airways. This may potentially increase the likelihood of decompression sickness in these animals during diving.
Collapse
Affiliation(s)
- Michael Denk
- Kansas State University College of Veterinary Medicine, Manhattan, KS 66502, USA
| | - Andreas Fahlman
- Fundación Oceanogràfic de la Comunitat Valenciana, Gran Vía Marqués del Turia 19, 46005 Valencia, Spain
| | | | - Zhongchang Song
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
- Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, People's Republic of China
| | - Michael Moore
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| |
Collapse
|
8
|
Fahlman A, Borque-Espinosa A, Facchin F, Fernandez DF, Caballero PM, Haulena M, Rocho-Levine J. Comparative Respiratory Physiology in Cetaceans. Front Physiol 2020; 11:142. [PMID: 32194433 PMCID: PMC7063064 DOI: 10.3389/fphys.2020.00142] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/11/2020] [Indexed: 11/26/2022] Open
Abstract
In the current study, we used breath-by-breath respirometry to evaluate respiratory physiology under voluntary control in a male beluga calf [Delphinapterus leucas, body mass range (M b): 151-175 kg], an adult female (estimated M b = 500-550 kg) and a juvenile male (M b = 279 kg) false killer whale (Pseudorca crassidens) housed in managed care. Our results suggest that the measured breathing frequency (f R) is lower, while tidal volume (V T) is significantly greater as compared with allometric predictions from terrestrial mammals. Including previously published data from adult bottlenose dolphin (Tursiops truncatus) beluga, harbor porpoise (Phocoena phocoena), killer whale (Orcinus orca), pilot whale (Globicephala scammoni), and gray whale (Eschrichtius robustus) show that the allometric mass-exponents for V T and f R are similar to that for terrestrial mammals (V T: 1.00, f R: -0.20). In addition, our results suggest an allometric relationship for respiratory flow ( V . ), with a mass-exponent between 0.63 and 0.70, and where the expiratory V . was an average 30% higher as compared with inspiratory V . . These data provide enhanced understanding of the respiratory physiology of cetaceans and are useful to provide proxies of lung function to better understand lung health or physiological limitations.
Collapse
Affiliation(s)
- Andreas Fahlman
- Research Department, Fundación Oceanogràfic de la Comunitat Valenciana, Valencia, Spain
- Global Diving Research Inc., Ottawa, ON, Canada
| | - Alicia Borque-Espinosa
- Research Department, Fundación Oceanogràfic de la Comunitat Valenciana, Valencia, Spain
- University of Valencia, Valencia, Spain
| | - Federico Facchin
- Research Department, Fundación Oceanogràfic de la Comunitat Valenciana, Valencia, Spain
| | | | | | | | | |
Collapse
|
9
|
Hermann-Sorensen H, Thometz NM, Woodie K, Dennison-Gibby S, Reichmuth C. In Vivo Measurements of Lung Volumes in Ringed Seals: Insights from Biomedical Imaging. J Exp Biol 2020:jeb.235507. [PMID: 34005800 DOI: 10.1242/jeb.235507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/11/2020] [Indexed: 11/20/2022]
Abstract
Marine mammals rely on oxygen stored in blood, muscle, and lungs to support breath-hold diving and foraging at sea. Here, we used biomedical imaging to examine lung oxygen stores and other key respiratory parameters in living ringed seals (Pusa hispida). Three-dimensional models created from computed tomography (CT) images were used to quantify total lung capacity (TLC), respiratory dead space, minimum air volume, and total body volume to improve assessments of lung oxygen storage capacity, scaling relationships, and buoyant force estimates. Results suggest that lung oxygen stores determined in vivo are smaller than those derived from postmortem measurements. We also demonstrate that-while established allometric relationships hold well for most pinnipeds-these relationships consistently overestimate TLC for the smallest phocid seal. Finally, measures of total body volume reveal differences in body density and net vertical forces in the water column that influence costs associated with diving and foraging in free-ranging seals.
Collapse
Affiliation(s)
- Holly Hermann-Sorensen
- University of California Santa Cruz. Department of Ocean Sciences, 115 McAllister Way, Santa Cruz CA 95060, USA
| | - Nicole M Thometz
- University of San Francisco, Department of Biology. 2130 Fulton Street, San Francisco, CA 94117, USA
- University of California Santa Cruz. Institute of Marine Sciences, 115 McAllister Way, Santa Cruz CA 95060, USA
| | - Kathleen Woodie
- Alaska SeaLife Center, 301 Railway Ave, Seward, AK 99664, USA
| | | | - Colleen Reichmuth
- Alaska SeaLife Center, 301 Railway Ave, Seward, AK 99664, USA
- University of California Santa Cruz. Institute of Marine Sciences, 115 McAllister Way, Santa Cruz CA 95060, USA
| |
Collapse
|
10
|
Choy ES, Campbell KL, Berenbrink M, Roth JD, Loseto LL. Body condition impacts blood and muscle oxygen storage capacity of free-living beluga whales ( Delphinapterus leucas). ACTA ACUST UNITED AC 2019; 222:jeb.191916. [PMID: 31097602 DOI: 10.1242/jeb.191916] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 05/11/2019] [Indexed: 11/20/2022]
Abstract
Arctic marine ecosystems are currently undergoing rapid environmental changes. Over the past 20 years, individual growth rates of beluga whales (Delphinapterus leucas) have declined, which may be a response to climate change; however, the scarcity of physiological data makes it difficult to gauge the adaptive capacity and resilience of the species. We explored relationships between body condition and physiological parameters pertaining to oxygen (O2) storage capacity in 77 beluga whales in the eastern Beaufort Sea. Muscle myoglobin concentrations averaged 77.9 mg g-1, one of the highest values reported among mammals. Importantly, blood haematocrit, haemoglobin and muscle myoglobin concentrations correlated positively to indices of body condition, including maximum half-girth to length ratios. Thus, a whale with the lowest body condition index would have ∼27% lower blood (26.0 versus 35.7 ml kg-1) and 12% lower muscle (15.6 versus 17.7 ml kg-1) O2 stores than a whale of equivalent mass with the highest body condition index; with the conservative assumption that underwater O2 consumption rates are unaffected by body condition, this equates to a >3 min difference in maximal aerobic dive time between the two extremes (14.3 versus 17.4 min). Consequently, environmental changes that negatively impact body condition may hinder the ability of whales to reach preferred prey sources, evade predators and escape ice entrapments. The relationship between body condition and O2 storage capacity may represent a vicious cycle, in which environmental changes resulting in decreased body condition impair foraging, leading to further reductions in condition through diminished prey acquisition and/or increased foraging efforts.
Collapse
Affiliation(s)
- Emily S Choy
- Department of Natural Resource Sciences, McGill University, Ste Anne de Bellevue, QC, H9X 3V9, Canada .,Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Kevin L Campbell
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Michael Berenbrink
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - James D Roth
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Lisa L Loseto
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.,Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, MB, R3T 2N6, Canada
| |
Collapse
|
11
|
Fahlman A, Brodsky M, Miedler S, Dennison S, Ivančić M, Levine G, Rocho-Levine J, Manley M, Rocabert J, Borque-Espinosa A. Ventilation and gas exchange before and after voluntary static surface breath-holds in clinically healthy bottlenose dolphins, Tursiops truncatus. ACTA ACUST UNITED AC 2019; 222:jeb.192211. [PMID: 30760549 DOI: 10.1242/jeb.192211] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/05/2019] [Indexed: 01/14/2023]
Abstract
We measured respiratory flow (V̇), breathing frequency (f R), tidal volume (V T), breath duration and end-expired O2 content in bottlenose dolphins (Tursiops truncatus) before and after static surface breath-holds ranging from 34 to 292 s. There was considerable variation in the end-expired O2, V T and f R following a breath-hold. The analysis suggests that the dolphins attempt to minimize recovery following a dive by altering V T and f R to rapidly replenish the O2 stores. For the first breath following a surface breath-hold, the end-expired O2 decreased with dive duration, while V T and f R increased. Throughout the recovery period, end-expired O2 increased while the respiratory effort (V T, f R) decreased. We propose that the dolphins alter respiratory effort following a breath-hold according to the reduction in end-expired O2 levels, allowing almost complete recovery after 1.2 min.
Collapse
Affiliation(s)
- Andreas Fahlman
- Departamento de investigación, Fundación Oceanogràfic de la Comunitat Valenciana, Gran Vía Marqués del Turia 19, 46005 Valencia, Spain .,Departamento de Zoología, Grupo de Investigación Biomédica en Imagen GIBI230, Instituto de Investigación Sanitaria La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Micah Brodsky
- Micah Brodsky, V.M.D. Consulting, 1287 NE 96th Street, Miami Shores, FL 33138, USA
| | - Stefan Miedler
- Departamento de investigación, Fundación Oceanogràfic de la Comunitat Valenciana, Gran Vía Marqués del Turia 19, 46005 Valencia, Spain
| | - Sophie Dennison
- TeleVet Imaging Solutions, PLLC, PO BOX 3344, Oakton, VA 22124, USA
| | - Marina Ivančić
- Chicago Zoological Society, 3300 Golf Road, Brookfield, IL 60513, USA
| | - Gregg Levine
- Dolphin Quest, Oahu, 5000 Kahala Ave, Honolulu, HI 96816, USA
| | | | - Mercy Manley
- Siegfried & Roy's Secret Garden and Dolphin Habitat, The Mirage, Las Vegas, NV 89109, USA
| | - Joan Rocabert
- Mellow Design, C/ Bany dels pavesos 3, 46001 Valencia, Spain
| | - Alicia Borque-Espinosa
- Departamento de investigación, Fundación Oceanogràfic de la Comunitat Valenciana, Gran Vía Marqués del Turia 19, 46005 Valencia, Spain.,Departamento de Zoología, Grupo de Investigación Biomédica en Imagen GIBI230, Instituto de Investigación Sanitaria La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain.,Universidad de Valencia, Av. de Blasco Ibáñez, 13, 46010 Valencia, Spain
| |
Collapse
|
12
|
Ponganis PJ. State of the art review: from the seaside to the bedside: insights from comparative diving physiology into respiratory, sleep and critical care. Thorax 2019; 74:512-518. [PMID: 30826734 DOI: 10.1136/thoraxjnl-2018-212136] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/20/2019] [Accepted: 01/28/2019] [Indexed: 11/04/2022]
Abstract
Anatomical and physiological adaptations of animals to extreme environments provide insight into basic physiological principles and potential therapies for human disease. In that regard, the diving physiology of marine mammals and seabirds is especially relevant to pulmonary and cardiovascular function, and to the pathology and potential treatment of patients with hypoxaemia and/or ischaemia. This review highlights past and recent progress in the field of comparative diving physiology with emphasis on its potential relevance to human medicine.
Collapse
Affiliation(s)
- Paul J Ponganis
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
13
|
Fahlman A, Epple A, García-Párraga D, Robeck T, Haulena M, Piscitelli-Doshkov M, Brodsky M. Characterizing respiratory capacity in belugas (Delphinapterus leucas). Respir Physiol Neurobiol 2019; 260:63-69. [DOI: 10.1016/j.resp.2018.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 11/24/2022]
|
14
|
Isojunno S, Aoki K, Curé C, Kvadsheim PH, Miller PJO. Breathing Patterns Indicate Cost of Exercise During Diving and Response to Experimental Sound Exposures in Long-Finned Pilot Whales. Front Physiol 2018; 9:1462. [PMID: 30459631 PMCID: PMC6232938 DOI: 10.3389/fphys.2018.01462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/26/2018] [Indexed: 02/05/2023] Open
Abstract
Air-breathing marine predators that target sub-surface prey have to balance the energetic benefit of foraging against the time, energetic and physiological costs of diving. Here we use on-animal data loggers to assess whether such trade-offs can be revealed by the breathing rates (BR) and timing of breaths in long-finned pilot whales (Globicephela melas). We used the period immediately following foraging dives in particular, for which respiratory behavior can be expected to be optimized for gas exchange. Breath times and fluke strokes were detected using onboard sensors (pressure, 3-axis acceleration) attached to animals using suction cups. The number and timing of breaths were quantified in non-linear mixed models that incorporated serial correlation and individual as a random effect. We found that pilot whales increased their BR in the 5–10 min period prior to, and immediately following, dives that exceeded 31 m depth. While pre-dive BRs did not vary with dive duration, the initial post-dive BR was linearly correlated with duration of >2 min dives, with BR then declining exponentially. Apparent net diving costs were 1.7 (SE 0.2) breaths per min of diving (post-dive number of breaths, above pre-dive breathing rate unrelated to dive recovery). Every fluke stroke was estimated to cost 0.086 breaths, which amounted to 80–90% average contribution of locomotion to the net diving costs. After accounting for fluke stroke rate, individuals in the small body size class took a greater number of breaths per diving minute. Individuals reduced their breathing rate (from the rate expected by diving behavior) by 13–16% during playbacks of killer whale sounds and their first exposure to 1–2 kHz naval sonar, indicating similar responses to interspecific competitor/predator and anthropogenic sounds. Although we cannot rule out individuals increasing their per-breath O2 uptake to match metabolic demand, our results suggest that behavioral responses to experimental sound exposures were not associated with increased metabolic rates in a stress response, but metabolic rates instead appear to decrease. Our results support the hypothesis that maximal performance leads to predictable (optimized) breathing patterns, which combined with further physiological measurements could improve proxies of field metabolic rates and per-stroke energy costs from animal-borne behavior data.
Collapse
Affiliation(s)
- Saana Isojunno
- Sea Mammal Research Unit, Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Kagari Aoki
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | | | | | - Patrick James O'Malley Miller
- Sea Mammal Research Unit, Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
15
|
Fahlman A, McHugh K, Allen J, Barleycorn A, Allen A, Sweeney J, Stone R, Faulkner Trainor R, Bedford G, Moore MJ, Jensen FH, Wells R. Resting Metabolic Rate and Lung Function in Wild Offshore Common Bottlenose Dolphins, Tursiops truncatus, Near Bermuda. Front Physiol 2018; 9:886. [PMID: 30065656 PMCID: PMC6056772 DOI: 10.3389/fphys.2018.00886] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 06/19/2018] [Indexed: 11/16/2022] Open
Abstract
Diving mammals have evolved a suite of physiological adaptations to manage respiratory gases during extended breath-hold dives. To test the hypothesis that offshore bottlenose dolphins have evolved physiological adaptations to improve their ability for extended deep dives and as protection for lung barotrauma, we investigated the lung function and respiratory physiology of four wild common bottlenose dolphins (Tursiops truncatus) near the island of Bermuda. We measured blood hematocrit (Hct, %), resting metabolic rate (RMR, l O2 ⋅ min-1), tidal volume (VT, l), respiratory frequency (fR, breaths ⋅ min-1), respiratory flow (l ⋅ min-1), and dynamic lung compliance (CL, l ⋅ cmH2O-1) in air and in water, and compared measurements with published results from coastal, shallow-diving dolphins. We found that offshore dolphins had greater Hct (56 ± 2%) compared to shallow-diving bottlenose dolphins (range: 30–49%), thus resulting in a greater O2 storage capacity and longer aerobic diving duration. Contrary to our hypothesis, the specific CL (sCL, 0.30 ± 0.12 cmH2O-1) was not different between populations. Neither the mass-specific RMR (3.0 ± 1.7 ml O2 ⋅ min-1 ⋅ kg-1) nor VT (23.0 ± 3.7 ml ⋅ kg-1) were different from coastal ecotype bottlenose dolphins, both in the wild and under managed care, suggesting that deep-diving dolphins do not have metabolic or respiratory adaptations that differ from the shallow-diving ecotypes. The lack of respiratory adaptations for deep diving further support the recently developed hypothesis that gas management in cetaceans is not entirely passive but governed by alteration in the ventilation-perfusion matching, which allows for selective gas exchange to protect against diving related problems such as decompression sickness.
Collapse
Affiliation(s)
- Andreas Fahlman
- Fundación Oceanografic de la Comunidad Valenciana, Gran Vía Marques del Turia, Valencia, Spain.,Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States.,Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Katherine McHugh
- Chicago Zoological Society's Sarasota Dolphin Research Program, Mote Marine Laboratory, Sarasota, FL, United States
| | - Jason Allen
- Chicago Zoological Society's Sarasota Dolphin Research Program, Mote Marine Laboratory, Sarasota, FL, United States
| | - Aaron Barleycorn
- Chicago Zoological Society's Sarasota Dolphin Research Program, Mote Marine Laboratory, Sarasota, FL, United States
| | - Austin Allen
- Duke University Marine Lab, Beaufort, NC, United States
| | | | - Rae Stone
- Dolphin Quest, Waikoloa, HI, United States
| | | | - Guy Bedford
- Wildlife Consulting Service, Currumbin, QLD, Australia
| | - Michael J Moore
- Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Frants H Jensen
- Woods Hole Oceanographic Institution, Woods Hole, MA, United States.,Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Randall Wells
- Chicago Zoological Society's Sarasota Dolphin Research Program, Mote Marine Laboratory, Sarasota, FL, United States
| |
Collapse
|
16
|
Fahlman A, Jensen FH, Tyack PL, Wells RS. Modeling Tissue and Blood Gas Kinetics in Coastal and Offshore Common Bottlenose Dolphins, Tursiops truncatus. Front Physiol 2018; 9:838. [PMID: 30072907 PMCID: PMC6060447 DOI: 10.3389/fphys.2018.00838] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/14/2018] [Indexed: 01/07/2023] Open
Abstract
Bottlenose dolphins (Tursiops truncatus) are highly versatile breath-holding predators that have adapted to a wide range of foraging niches from rivers and coastal ecosystems to deep-water oceanic habitats. Considerable research has been done to understand how bottlenose dolphins manage O2 during diving, but little information exists on other gases or how pressure affects gas exchange. Here we used a dynamic multi-compartment gas exchange model to estimate blood and tissue O2, CO2, and N2 from high-resolution dive records of two different common bottlenose dolphin ecotypes inhabiting shallow (Sarasota Bay) and deep (Bermuda) habitats. The objective was to compare potential physiological strategies used by the two populations to manage shallow and deep diving life styles. We informed the model using species-specific parameters for blood hematocrit, resting metabolic rate, and lung compliance. The model suggested that the known O2 stores were sufficient for Sarasota Bay dolphins to remain within the calculated aerobic dive limit (cADL), but insufficient for Bermuda dolphins that regularly exceeded their cADL. By adjusting the model to reflect the body composition of deep diving Bermuda dolphins, with elevated muscle mass, muscle myoglobin concentration and blood volume, the cADL increased beyond the longest dive duration, thus reflecting the necessary physiological and morphological changes to maintain their deep-diving life-style. The results indicate that cardiac output had to remain elevated during surface intervals for both ecotypes, and suggests that cardiac output has to remain elevated during shallow dives in-between deep dives to allow sufficient restoration of O2 stores for Bermuda dolphins. Our integrated modeling approach contradicts predictions from simple models, emphasizing the complex nature of physiological interactions between circulation, lung compression, and gas exchange.
Collapse
Affiliation(s)
- Andreas Fahlman
- Global Diving Research, Ottawa, ON, Canada
- Fundación Oceanografic de la Comunidad Valenciana, Valencia, Spain
| | - Frants H. Jensen
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Peter L. Tyack
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, United Kingdom
| | - Randall S. Wells
- Chicago Zoological Society's Sarasota Dolphin Research Program, Mote Marine Laboratory, Sarasota, FL, United States
| |
Collapse
|
17
|
Garcia Párraga D, Moore M, Fahlman A. Pulmonary ventilation-perfusion mismatch: a novel hypothesis for how diving vertebrates may avoid the bends. Proc Biol Sci 2018; 285:20180482. [PMID: 29695441 PMCID: PMC5936736 DOI: 10.1098/rspb.2018.0482] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 03/28/2018] [Indexed: 11/22/2022] Open
Abstract
Hydrostatic lung compression in diving marine mammals, with collapsing alveoli blocking gas exchange at depth, has been the main theoretical basis for limiting N2 uptake and avoiding gas emboli (GE) as they ascend. However, studies of beached and bycaught cetaceans and sea turtles imply that air-breathing marine vertebrates may, under unusual circumstances, develop GE that result in decompression sickness (DCS) symptoms. Theoretical modelling of tissue and blood gas dynamics of breath-hold divers suggests that changes in perfusion and blood flow distribution may also play a significant role. The results from the modelling work suggest that our current understanding of diving physiology in many species is poor, as the models predict blood and tissue N2 levels that would result in severe DCS symptoms (chokes, paralysis and death) in a large fraction of natural dive profiles. In this review, we combine published results from marine mammals and turtles to propose alternative mechanisms for how marine vertebrates control gas exchange in the lung, through management of the pulmonary distribution of alveolar ventilation ([Formula: see text]) and cardiac output/lung perfusion ([Formula: see text]), varying the level of [Formula: see text] in different regions of the lung. Man-made disturbances, causing stress, could alter the [Formula: see text] mismatch level in the lung, resulting in an abnormally elevated uptake of N2, increasing the risk for GE. Our hypothesis provides avenues for new areas of research, offers an explanation for how sonar exposure may alter physiology causing GE and provides a new mechanism for how air-breathing marine vertebrates usually avoid the diving-related problems observed in human divers.
Collapse
Affiliation(s)
| | - Michael Moore
- Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Andreas Fahlman
- Fundación Oceanogràfic, Ciudad de las Artes y las Ciencias, 46013 Valencia, Spain
| |
Collapse
|
18
|
Lillie MA, Vogl AW, Raverty S, Haulena M, McLellan WA, Stenson GB, Shadwick RE. Controlling thoracic pressures in cetaceans during a breath-hold dive: importance of the diaphragm. J Exp Biol 2017; 220:3464-3477. [DOI: 10.1242/jeb.162289] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/17/2017] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Internal pressures change throughout a cetacean's body during swimming or diving, and uneven pressures between the thoracic and abdominal compartments can affect the cardiovascular system. Pressure differentials could arise from ventral compression on each fluke downstroke or by a faster equilibration of the abdominal compartment with changing ambient ocean pressures compared with the thoracic compartment. If significant pressure differentials do develop, we would expect the morphology of the diaphragm to adapt to its in vivo loading. Here, we tested the hypothesis that significant pressure differentials develop between the thoracic and abdominal cavities in diving cetaceans by examining diaphragms from several cetacean and pinniped species. We found that: (1) regions of cetacean diaphragms possess subserosal collagen fibres that would stabilize the diaphragm against craniocaudal stretch; (2) subserosal collagen covers 5–60% of the thoracic diaphragm surface, and area correlates strongly with published values for swimming speed of each cetacean species (P<0.001); and (3) pinnipeds, which do not locomote by vertical fluking, do not possess this subserosal collagen. These results strongly suggest that this collagen is associated with loads experienced during a dive, and they support the hypothesis that diving cetaceans experience periods during which abdominal pressures significantly exceed thoracic pressures. Our results are consistent with the generation of pressure differentials by fluking and by different compartmental equilibration rates. Pressure differentials during diving would affect venous and arterial perfusion and alter transmural pressures in abdominal arteries.
Collapse
Affiliation(s)
- Margo A. Lillie
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - A. Wayne Vogl
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Stephen Raverty
- Animal Health Centre, 1767 Angus Campbell Road, Abbotsford, BC, Canada V3G 2M3
| | - Martin Haulena
- Vancouver Aquarium Marine Science Centre, PO Box 3232, Vancouver, BC, Canada V6G 3E2
| | - William A. McLellan
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC 28403, USA
| | | | - Robert E. Shadwick
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|
19
|
Fahlman A, Moore MJ, Garcia-Parraga D. Respiratory function and mechanics in pinnipeds and cetaceans. J Exp Biol 2017; 220:1761-1773. [DOI: 10.1242/jeb.126870] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
In this Review, we focus on the functional properties of the respiratory system of pinnipeds and cetaceans, and briefly summarize the underlying anatomy; in doing so, we provide an overview of what is currently known about their respiratory physiology and mechanics. While exposure to high pressure is a common challenge among breath-hold divers, there is a large variation in respiratory anatomy, function and capacity between species – how are these traits adapted to allow the animals to withstand the physiological challenges faced during dives? The ultra-deep diving feats of some marine mammals defy our current understanding of respiratory physiology and lung mechanics. These animals cope daily with lung compression, alveolar collapse, transient hyperoxia and extreme hypoxia. By improving our understanding of respiratory physiology under these conditions, we will be better able to define the physiological constraints imposed on these animals, and how these limitations may affect the survival of marine mammals in a changing environment. Many of the respiratory traits to survive exposure to an extreme environment may inspire novel treatments for a variety of respiratory problems in humans.
Collapse
Affiliation(s)
- Andreas Fahlman
- Fundación Oceanográfic de la Comunidad Valenciana, Gran Vía Marques del Turia 19, Valencia 46005, Spain
- Department of Life Sciences, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| | - Michael J. Moore
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Daniel Garcia-Parraga
- Fundación Oceanográfic de la Comunidad Valenciana, Gran Vía Marques del Turia 19, Valencia 46005, Spain
- Oceanográfic-Avanqua, Ciudad de las Artes y las Ciencias, Valencia 46013, Spain
| |
Collapse
|
20
|
Fahlman A, van der Hoop J, Moore MJ, Levine G, Rocho-Levine J, Brodsky M. Response to 'On the importance of understanding physiology when estimating energetics in cetaceans'. Biol Open 2017; 6:307-308. [PMID: 28202473 PMCID: PMC5312109 DOI: 10.1242/bio.023143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Summary: Our paper highlights how temporal changes in tidal volume and the oxygen exchange ratio significantly affect the accuracy of models that use only breathing frequency to estimate metabolic rate.
Collapse
Affiliation(s)
- A Fahlman
- Fundación Oceanogràfic, c/Gran Vía Marqués del Turia 19, 46005, Valencia, Spain .,Texas A&M University - Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| | - J van der Hoop
- Massachusetts Institute of Technology - Woods Hole Oceanographic Institution Joint Program in Oceanography, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| | - M J Moore
- Biology Department, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, Woods Hole, MA 02543, USA
| | - G Levine
- Dolphin Quest, Oahu, 5000 Kahala Ave, Honolulu, HI 96816, USA
| | - J Rocho-Levine
- Dolphin Quest, Oahu, 5000 Kahala Ave, Honolulu, HI 96816, USA
| | - M Brodsky
- V.M.D. Consulting, Miami, FL 33138, USA
| |
Collapse
|
21
|
Fahlman A, Madigan J. Respiratory Function in Voluntary Participating Patagonia Sea Lions ( Otaria flavescens) in Sternal Recumbency. Front Physiol 2016; 7:528. [PMID: 27899896 PMCID: PMC5110536 DOI: 10.3389/fphys.2016.00528] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/24/2016] [Indexed: 11/15/2022] Open
Abstract
We measured esophageal pressures (n = 4), respiratory flow rates (n = 5), and expired O2 and CO2 (n = 4) in five adult Patagonia sea lions (Otaria flavescens, body mass range 94.3–286.0 kg) during voluntary breaths while laying down out of water. The data were used to estimate the dynamic specific lung compliance (sCL), the O2 consumption rate (V˙O2) and CO2 production rates (V˙CO2) during rest. Our results indicate that the resting tidal volume in Patagonia sea lions is approximately 47–73% of the estimated total lung capacity. The esophageal pressures indicated that expiration is passive during voluntary breaths. The average sCL of sea lions was 0.41 ± 0.11 cmH2O−1, which is similar to those measured in anesthetized sea lions and awake cetaceans, and significantly higher as compared to humans (0.08 cmH2O−1). The average estimated V˙O2 and V˙CO2 using breath-by-breath respirometry were 1.023 ± 0.327 L O2 min−1 (range: 0.695–1.514 L O2 min−1) and 0.777 ± 0.318 L CO2 min−1, (range: 0.510–1.235 L CO2 min−1), respectively, which is similar to previously published metabolic measurements from California and Steller sea lions using conventional flow-through respirometry. Our data provide end-tidal gas composition and offer novel data for respiratory physiology in pinnipeds, which may be important for clinical medicine and conservation efforts.
Collapse
Affiliation(s)
- Andreas Fahlman
- Fundación Oceanografic de la Comunidad ValencianaValencia, Spain; Department of Life Sciences, Texas A&M University-Corpus ChristiCorpus Christi, TX, USA
| | | |
Collapse
|
22
|
Updating a gas dynamics model using estimates for California sea lions (Zalophus californianus). Respir Physiol Neurobiol 2016; 234:1-8. [PMID: 27562522 DOI: 10.1016/j.resp.2016.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 07/24/2016] [Accepted: 08/21/2016] [Indexed: 11/22/2022]
Abstract
Theoretical models are used to predict how breath-hold diving vertebrates manage O2, CO2, and N2 while underwater. One recent gas dynamics model used available lung and tracheal compliance data from various species. As variation in respiratory compliance significantly affects alveolar compression and pulmonary shunt, the current study objective was to evaluate changes in model output when using species-specific parameters from California sea lions (Zalophus californianus). We explored the effects of lung and dead space compliance on the uptake of N2, O2, and CO2 in various tissues during a series of hypothetical dives. The updated parameters allowed for increased compliance of the lungs and an increased stiffness in the trachea. When comparing updated model output with a model using previous compliance values, there was a large decrease in N2 uptake but little change in O2 and CO2 levels. Therefore, previous models may overestimate N2 tensions and the risk of gas-related disease, such as decompression sickness (DCS), in marine mammals.
Collapse
|
23
|
Fahlman A, van der Hoop J, Moore MJ, Levine G, Rocho-Levine J, Brodsky M. Estimating energetics in cetaceans from respiratory frequency: why we need to understand physiology. Biol Open 2016; 5:436-42. [PMID: 26988759 PMCID: PMC4890674 DOI: 10.1242/bio.017251] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The accurate estimation of field metabolic rates (FMR) in wild animals is a key component of bioenergetic models, and is important for understanding the routine limitations for survival as well as individual responses to disturbances or environmental changes. Several methods have been used to estimate FMR, including accelerometer-derived activity budgets, isotope dilution techniques, and proxies from heart rate. Counting the number of breaths is another method used to assess FMR in cetaceans, which is attractive in its simplicity and the ability to measure respiration frequency from visual cues or data loggers. This method hinges on the assumption that over time a constant tidal volume (VT) and O2 exchange fraction (ΔO2) can be used to predict FMR. To test whether this method of estimating FMR is valid, we measured breath-by-breath tidal volumes and expired O2 levels of bottlenose dolphins, and computed the O2 consumption rate (V̇O2) before and after a pre-determined duration of exercise. The measured V̇O2 was compared with three methods to estimate FMR. Each method to estimate V̇O2 included variable VT and/or ΔO2. Two assumption-based methods overestimated V̇O2 by 216-501%. Once the temporal changes in cardio-respiratory physiology, such as variation in VT and ΔO2, were taken into account, pre-exercise resting V̇O2 was predicted to within 2%, and post-exercise V̇O2 was overestimated by 12%. Our data show that a better understanding of cardiorespiratory physiology significantly improves the ability to estimate metabolic rate from respiratory frequency, and further emphasizes the importance of eco-physiology for conservation management efforts. Summary: Accounting for changes in tidal volume and gas exchange improves the ability to estimate field metabolic rate from respiratory frequency in cetaceans.
Collapse
Affiliation(s)
- A Fahlman
- Texas A&M University - Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA Oceanográfic, Research Department , Carrer Eduardo Primo Yúfera 1B, Valencia 46012, Spain
| | - J van der Hoop
- Massachusetts Institute of Technology - Woods Hole Oceanographic Institution Joint Program in Oceanography, 77 Massachusetts Ave, Cambridge, MA 02139, USA Biology Department, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, Woods Hole, MA 02543, USA
| | - M J Moore
- Biology Department, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, Woods Hole, MA 02543, USA
| | - G Levine
- Dolphin Quest, Oahu, 5000 Kahala Ave, Honolulu, HI 96816, USA
| | - J Rocho-Levine
- Dolphin Quest, Oahu, 5000 Kahala Ave, Honolulu, HI 96816, USA
| | - M Brodsky
- V.M.D. Consulting, Miami, FL 33138, USA
| |
Collapse
|
24
|
Fahlman A, Loring SH, Levine G, Rocho-Levine J, Austin T, Brodsky M. Lung mechanics and pulmonary function testing in cetaceans. J Exp Biol 2015; 218:2030-8. [DOI: 10.1242/jeb.119149] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
We measured esophageal pressures, respiratory flow rates, and expired O2 and CO2 in six adult bottlenose dolphins (Tursiops truncatus) during voluntary breaths and maximal (chuff) respiratory efforts. The data were used to estimate the dynamic specific lung compliance (sCL), the O2 consumption rate (V̇O2) and CO2 production rates (V̇CO2) during rest. Our results indicate that bottlenose dolphins have the capacity to generate respiratory flow rates that exceed 130 l s−1 and 30 l s−1 during expiration and inspiration, respectively. The esophageal pressures indicated that expiration is passive during voluntary breaths, but active during maximal efforts, whereas inspiration is active for all breaths. The average sCL of dolphins was 0.31±0.04 cmH2O−1, which is considerably higher than that of humans (0.08 cmH2O−1) and that previously measured in a pilot whale (0.13 cmH2O−1). The average estimated V̇O2 and V̇CO2 using our breath-by-breath respirometry system ranged from 0.857 to 1.185 l O2 min−1 and 0.589 to 0.851 l CO2 min−1, respectively, which is similar to previously published metabolic measurements from the same animals using conventional flow-through respirometry. In addition, our custom-made system allows us to approximate end tidal gas composition. Our measurements provide novel data for respiratory physiology in cetaceans, which may be important for clinical medicine and conservation efforts.
Collapse
Affiliation(s)
- Andreas Fahlman
- Department of Life Science, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| | - Stephen H. Loring
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Gregg Levine
- Dolphin Quest, Oahu, 5000 Kahala Ave, Honolulu, HI 96816, USA
| | | | | | | |
Collapse
|
25
|
Gutierrez DB, Fahlman A, Gardner M, Kleinhenz D, Piscitelli M, Raverty S, Haulena M, Zimba PV. Phosphatidylcholine composition of pulmonary surfactant from terrestrial and marine diving mammals. Respir Physiol Neurobiol 2015; 211:29-36. [PMID: 25812797 DOI: 10.1016/j.resp.2015.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/06/2015] [Accepted: 02/09/2015] [Indexed: 11/26/2022]
Abstract
Marine mammals are repeatedly exposed to elevated extra-thoracic pressure and alveolar collapse during diving and readily experience alveolar expansion upon inhalation - a unique capability as compared to terrestrial mammals. How marine mammal lungs overcome the challenges of frequent alveolar collapse and recruitment remains unknown. Recent studies indicate that pinniped lung surfactant has more anti-adhesive components compared to terrestrial mammals, which would aid in alveolar opening. However, pulmonary surfactant composition has not yet been investigated in odontocetes, whose physiology and diving behavior differ from pinnipeds. The aim of this study was to investigate the phosphatidylcholine (PC) composition of lung surfactants from various marine mammals and compare these to a terrestrial mammal. We found an increase in anti-adhesive PC species in harp seal (Pagophilus groenlandicus) and California sea lion (Zalophus californianus) compared to dog (Canus lupus familiaris), as well as an increase in the fluidizing PCs 16:0/14:0 and 16:0/16:1 in pinnipeds compared to odontocetes. The harbor porpoise (a representative of the odontocetes) did not have higher levels of fluidizing PCs compared to dog. Our preliminary results support previous findings that pinnipeds may have adapted unique surfactant compositions that allow them to dive at high pressures for extended periods without adverse effects. Future studies will need to investigate the differences in other surfactant components to fully assess the surfactant composition in odontocetes.
Collapse
Affiliation(s)
- Danielle B Gutierrez
- Department of Life Sciences, Texas A&M University - Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA.
| | - Andreas Fahlman
- Comparative Physiology Laboratory, Department of Life Sciences, Texas A&M University - Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA.
| | - Manuela Gardner
- Department of Life Sciences, Texas A&M University - Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA.
| | - Danielle Kleinhenz
- Comparative Physiology Laboratory, Department of Life Sciences, Texas A&M University - Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA.
| | - Marina Piscitelli
- Department of Zoology, The University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada.
| | - Stephen Raverty
- Ministry of Agriculture and Lands, Animal Health Center, 1767 Angus Campbell Road, Abbotsford, BC V3G 2M3, Canada; Fisheries Centre, The University of British Columbia, 2202 Main Mall, Vancouver, BC V6T 1Z4, Canada.
| | - Martin Haulena
- Vancouver Aquarium, 845 Avison Way, Vancouver, BC V6G 3E2, Canada.
| | - Paul V Zimba
- Department of Life Sciences, Texas A&M University - Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA.
| |
Collapse
|
26
|
Fahlman A, Loring SH, Johnson SP, Haulena M, Trites AW, Fravel VA, Van Bonn WG. Inflation and deflation pressure-volume loops in anesthetized pinnipeds confirms compliant chest and lungs. Front Physiol 2014; 5:433. [PMID: 25426080 PMCID: PMC4226140 DOI: 10.3389/fphys.2014.00433] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 10/22/2014] [Indexed: 11/13/2022] Open
Abstract
We examined structural properties of the marine mammal respiratory system, and tested Scholander's hypothesis that the chest is highly compliant by measuring the mechanical properties of the respiratory system in five species of pinniped under anesthesia (Pacific harbor seal, Phoca vitulina; northern elephant seal, Mirounga angustirostris; northern fur seal Callorhinus ursinus; California sea lion, Zalophus californianus; and Steller sea lion, Eumetopias jubatus). We found that the chest wall compliance (CCW) of all five species was greater than lung compliance (airways and alveoli, CL) as predicted by Scholander, which suggests that the chest provides little protection against alveolar collapse or lung squeeze. We also found that specific respiratory compliance was significantly greater in wild animals than in animals raised in an aquatic facility. While differences in ages between the two groups may affect this incidental finding, it is also possible that lung conditioning in free-living animals may increase pulmonary compliance and reduce the risk of lung squeeze during diving. Overall, our data indicate that compliance of excised pinniped lungs provide a good estimate of total respiratory compliance.
Collapse
Affiliation(s)
- Andreas Fahlman
- Life Sciences, Texas A&M University-Corpus Christi Corpus Christi, TX, USA
| | - Stephen H Loring
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center Boston, MA, USA
| | | | | | - Andrew W Trites
- Marine Mammal Research Unit, Fisheries Centre, University of British Columbia Vancouver, BC, Canada
| | | | - William G Van Bonn
- The Marine Mammal Center Sausalito, CA, USA ; A. Watson Armour III Center for Animal Health and Welfare, Shedd Aquarium Chicago, IL, USA
| |
Collapse
|
27
|
Bernasconi M, Patel R, Nøttestad L, Pedersen G, Brierley AS. The effect of depth on the target strength of a humpback whale (Megaptera novaeangliae). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 134:4316. [PMID: 25669243 DOI: 10.1121/1.4826178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Marine mammals are very seldom detected and tracked acoustically at different depths. The air contained in body cavities, such as lungs or swimbladders, has a significant effect on the acoustic energy backscattered from whale and fish species. Target strength data were obtained while a humpback whale (Megaptera novaeangliae) swam at the surface and dove underneath a research vessel, providing valuable multi-frequency echosounder recordings of its scattering characteristics from near surface to a depth of about 240 m. Increasing depth dramatically influenced the backscattered energy coming from the large cetacean. This study is tightly linked to the ultimate goal of developing an automated whale detection system for mitigation purposes.
Collapse
Affiliation(s)
- M Bernasconi
- Institute of Marine Research, P.O. Box 1870, Nordnes 5817 Bergen, Norway
| | - R Patel
- CodeLab Bergen, Klostergaten 26, 5005 Bergen, Norway
| | - L Nøttestad
- Institute of Marine Research, P.O. Box 1870, Nordnes 5817 Bergen, Norway
| | - G Pedersen
- Christian Michelsen Research AS, P.O. Box 6031, NO-5892, Bergen, Norway
| | - A S Brierley
- Pelagic Ecology Research Group, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife, KY16 8LB, Scotland, United Kingdom
| |
Collapse
|
28
|
Piscitelli MA, Raverty SA, Lillie MA, Shadwick RE. A review of cetacean lung morphology and mechanics. J Morphol 2013; 274:1425-40. [DOI: 10.1002/jmor.20192] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 06/25/2013] [Accepted: 08/05/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Marina A. Piscitelli
- Department of Zoology; University of British Columbia; Vancouver British Columbia Canada V6T 1Z4
| | - Stephen A. Raverty
- Department of Zoology; University of British Columbia; Vancouver British Columbia Canada V6T 1Z4
- Division of Plant and Animal Health; British Columbia Ministry of Agriculture; Abbotsford British Columbia Canada V3G 2M3
| | - Margo A. Lillie
- Department of Zoology; University of British Columbia; Vancouver British Columbia Canada V6T 1Z4
| | - Robert E. Shadwick
- Department of Zoology; University of British Columbia; Vancouver British Columbia Canada V6T 1Z4
| |
Collapse
|
29
|
Moore C, Moore M, Trumble S, Niemeyer M, Lentell B, McLellan W, Costidis A, Fahlman A. A comparative analysis of marine mammal tracheas. J Exp Biol 2013; 217:1154-66. [DOI: 10.1242/jeb.093146] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
In 1940, Scholander suggested that stiffened upper airways remained open and received air from highly compressible alveoli during marine mammal diving. There are little data available on the structural and functional adaptations of the marine mammal respiratory system. The aim of this research was to investigate the anatomical (gross) and structural (compliance) characteristics of excised marine mammal tracheas. Here we defined different types of tracheal structures, categorizing pinniped tracheas by varying degrees of continuity of cartilage (categories 1-4) and cetacean tracheas by varying compliance values (categories 5A and 5B). Some tracheas fell into more than one category, along their length, for example, the harbor seal (Phoca vitulina) demonstrated complete rings cranially, and as the trachea progressed caudally tracheal rings changed morphology. Dolphins and porpoises had less stiff, more compliant spiraling rings while beaked whales had very stiff, less compliant spiraling rings. The pressure-volume (P-V) relationships of isolated tracheas from different species were measured to assess structural differences between species. These findings lend evidence for pressure-induced collapse and re-inflation of lungs, perhaps influencing variability in dive depth or ventilation rates of the species investigated.
Collapse
|
30
|
Dennison S, Fahlman A, Moore M. The use of Diagnostic Imaging for Identifying Abnormal Gas Accumulations in Cetaceans and Pinnipeds. Front Physiol 2012; 3:181. [PMID: 22685439 PMCID: PMC3368393 DOI: 10.3389/fphys.2012.00181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/17/2012] [Indexed: 11/23/2022] Open
Abstract
Recent dogma suggested that marine mammals are not at risk of decompression sickness due to a number of evolutionary adaptations. Several proposed adaptations exist. Lung compression and alveolar collapse that terminate gas-exchange before a depth is reached where supersaturation is significant and bradycardia with peripheral vasoconstriction affecting the distribution, and dynamics of blood and tissue nitrogen levels. Published accounts of gas and fat emboli and dysbaric osteonecrosis in marine mammals and theoretical modeling have challenged this view-point, suggesting that decompression-like symptoms may occur under certain circumstances, contrary to common belief. Diagnostic imaging modalities are invaluable tools for the non-invasive examination of animals for evidence of gas and have been used to demonstrate the presence of incidental decompression-related renal gas accumulations in some stranded cetaceans. Diagnostic imaging has also contributed to the recognition of clinically significant gas accumulations in live and dead cetaceans and pinnipeds. Understanding the appropriate application and limitations of the available imaging modalities is important for accurate interpretation of results. The presence of gas may be asymptomatic and must be interpreted cautiously alongside all other available data including clinical examination, clinical laboratory testing, gas analysis, necropsy examination, and histology results.
Collapse
|
31
|
Kvadsheim PH, Miller PJO, Tyack PL, Sivle LD, Lam FPA, Fahlman A. Estimated Tissue and Blood N(2) Levels and Risk of Decompression Sickness in Deep-, Intermediate-, and Shallow-Diving Toothed Whales during Exposure to Naval Sonar. Front Physiol 2012; 3:125. [PMID: 22590458 PMCID: PMC3349243 DOI: 10.3389/fphys.2012.00125] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 04/14/2012] [Indexed: 11/29/2022] Open
Abstract
Naval sonar has been accused of causing whale stranding by a mechanism which increases formation of tissue N2 gas bubbles. Increased tissue and blood N2 levels, and thereby increased risk of decompression sickness (DCS), is thought to result from changes in behavior or physiological responses during diving. Previous theoretical studies have used hypothetical sonar-induced changes in both behavior and physiology to model blood and tissue N2 tension PN2, but this is the first attempt to estimate the changes during actual behavioral responses to sonar. We used an existing mathematical model to estimate blood and tissue N2 tension PN2 from dive data recorded from sperm, killer, long-finned pilot, Blainville’s beaked, and Cuvier’s beaked whales before and during exposure to Low- (1–2 kHz) and Mid- (2–7 kHz) frequency active sonar. Our objectives were: (1) to determine if differences in dive behavior affects risk of bubble formation, and if (2) behavioral- or (3) physiological responses to sonar are plausible risk factors. Our results suggest that all species have natural high N2 levels, with deep diving generally resulting in higher end-dive PN2 as compared with shallow diving. Sonar exposure caused some changes in dive behavior in both killer whales, pilot whales and beaked whales, but this did not lead to any increased risk of DCS. However, in three of eight exposure session with sperm whales, the animal changed to shallower diving, and in all these cases this seem to result in an increased risk of DCS, although risk was still within the normal risk range of this species. When a hypothetical removal of the normal dive response (bradycardia and peripheral vasoconstriction), was added to the behavioral response during model simulations, this led to an increased variance in the estimated end-dive N2 levels, but no consistent change of risk. In conclusion, we cannot rule out the possibility that a combination of behavioral and physiological responses to sonar have the potential to alter the blood and tissue end-dive N2 tension to levels which could cause DCS and formation of in vivo bubbles, but the actually observed behavioral responses of cetaceans to sonar in our study, do not imply any significantly increased risk of DCS.
Collapse
Affiliation(s)
- P H Kvadsheim
- Maritime Systems Division, Norwegian Defence Research Establishment (FFI) Horten, Norway
| | | | | | | | | | | |
Collapse
|