1
|
Thi Hong Gam L, Montgomery DW, Laronde DS, Mackinnon R, Richards JG, Brauner CJ. Acute freshwater CO 2 exposure does not impair seawater transfer in three different sizes of Atlantic salmon (Salmo salar) subjected to different photoperiod manipulations. JOURNAL OF FISH BIOLOGY 2024. [PMID: 39377470 DOI: 10.1111/jfb.15957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/11/2024] [Accepted: 09/15/2024] [Indexed: 10/09/2024]
Abstract
There is a growing interest in Atlantic salmon (Salmo salar) aquaculture to extend the time fish are reared in freshwater (FW) recirculating aquaculture systems (RAS), producing larger FW salmon that can then be induced to undergo smoltification before transfer into marine net pens for grow-out and harvest. Smolts can be produced by photoperiod (PT) manipulation in RASs, but little is known about how delaying smoltification to larger body sizes affects susceptibility to elevated CO2 levels (hypercapnia), which can occur at high stocking densities in FW RAS or during transport from FW RAS rearing facilities to marine net pens. To address this, Atlantic salmon were reared from hatch to one of three different sizes (~230, ~580, or ~1300 g) in FW (3 ppt) under continuous light (24:0, light:dark). Once fish reached the desired sizes, a group of salmon were maintained on continuous light 24L:0D to serve as a control salmon. A second group of salmon were exposed to 8 weeks of 12L:12D and then to 4 weeks of 24L:0D to serve as PT treatment salmon, which is the PT manipulation commonly used in Atlantic salmon aquaculture to induce smoltification. At the end of PT manipulation, both control and PT treatment salmon were exposed to 0% or 1.5% CO2 (30 mg/L) for 96 h in FW and then transferred to air-equilibrated seawater (SW, 35 ppt, normocapnia). Salmon were sampled at the end of the 96-h FW CO2 exposure and at 24 h and 7 days in SW for measurements of blood ion/acid-base status, muscle water content (MWC), and gill and kidney Na+/K+ ATPase (NKA) activity. Exposure to 96 h of CO2 in FW resulted in acid-base disturbances in fish from all three size classes, with decreases in blood pH and increases in blood PCO2 and plasma [HCO3 -] but no mortality. Despite these large acid-base disturbances in FW, after transfer to normocapnic SW, there were no significant effects of CO2 exposure on extracellular blood pH, intracellular red blood cell pH, or plasma osmoregulatory status for all three sizes of post-smolt salmon. In general, SW transfer was associated with significant increases in plasma ions and osmolality, as well as gill and kidney NKA activity after 24 h and 1 week in SW with no significant impacts between different sizes of salmon. Thus, exposure to 30 mg CO2/L that mimics levels experienced during transport from FW RAS to an SW transfer site may have minimal effects on Atlantic salmon smolts up to 1300 g.
Collapse
Affiliation(s)
- Le Thi Hong Gam
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel W Montgomery
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel S Laronde
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Rachael Mackinnon
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jeffrey G Richards
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Colin J Brauner
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Montgomery DW, Kwan GT, Davison WG, Finlay J, Berry A, Simpson SD, Engelhard GH, Birchenough SNR, Tresguerres M, Wilson RW. Rapid blood acid-base regulation by European sea bass (Dicentrarchus labrax) in response to sudden exposure to high environmental CO2. J Exp Biol 2022; 225:jeb242735. [PMID: 35005768 PMCID: PMC8917447 DOI: 10.1242/jeb.242735] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 12/20/2021] [Indexed: 11/22/2022]
Abstract
Fish in coastal ecosystems can be exposed to acute variations in CO2 of between 0.2 and 1 kPa CO2 (2000-10,000 µatm). Coping with this environmental challenge will depend on the ability to rapidly compensate for the internal acid-base disturbance caused by sudden exposure to high environmental CO2 (blood and tissue acidosis); however, studies about the speed of acid-base regulatory responses in marine fish are scarce. We observed that upon sudden exposure to ∼1 kPa CO2, European sea bass (Dicentrarchus labrax) completely regulate erythrocyte intracellular pH within ∼40 min, thus restoring haemoglobin-O2 affinity to pre-exposure levels. Moreover, blood pH returned to normal levels within ∼2 h, which is one of the fastest acid-base recoveries documented in any fish. This was achieved via a large upregulation of net acid excretion and accumulation of HCO3- in blood, which increased from ∼4 to ∼22 mmol l-1. While the abundance and intracellular localisation of gill Na+/K+-ATPase (NKA) and Na+/H+ exchanger 3 (NHE3) remained unchanged, the apical surface area of acid-excreting gill ionocytes doubled. This constitutes a novel mechanism for rapidly increasing acid excretion during sudden blood acidosis. Rapid acid-base regulation was completely prevented when the same high CO2 exposure occurred in seawater with experimentally reduced HCO3- and pH, probably because reduced environmental pH inhibited gill H+ excretion via NHE3. The rapid and robust acid-base regulatory responses identified will enable European sea bass to maintain physiological performance during large and sudden CO2 fluctuations that naturally occur in coastal environments.
Collapse
Affiliation(s)
| | - Garfield T. Kwan
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- National Oceanic and Atmospheric Administration Fisheries Service, Southwest Fisheries Science Center, 8901 La Jolla Shores Drive, La Jolla, CA 92037, USA
| | - William G. Davison
- Biosciences, Geoffrey Pope Building, University of Exeter, Exeter, EX4 4QD, UK
| | - Jennifer Finlay
- Biosciences, Geoffrey Pope Building, University of Exeter, Exeter, EX4 4QD, UK
| | - Alex Berry
- Biosciences, Geoffrey Pope Building, University of Exeter, Exeter, EX4 4QD, UK
| | - Stephen D. Simpson
- Biosciences, Geoffrey Pope Building, University of Exeter, Exeter, EX4 4QD, UK
| | - Georg H. Engelhard
- Centre for Environment, Fisheries & Aquaculture Science (Cefas), Pakefield Road, Lowestoft, NR330HT, UK
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Silvana N. R. Birchenough
- Centre for Environment, Fisheries & Aquaculture Science (Cefas), Pakefield Road, Lowestoft, NR330HT, UK
| | - Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Rod W. Wilson
- Biosciences, Geoffrey Pope Building, University of Exeter, Exeter, EX4 4QD, UK
| |
Collapse
|
3
|
Morgan R, Tunnah L, Tuong DD, Hjelmstedt P, Nhu PN, Stiller KT, Phuong NT, Huong DTT, Bayley M, Wang T, Milsom WK. Striped catfish (Pangasianodon hypophthalmus) use air-breathing and aquatic surface respiration when exposed to severe aquatic hypercarbia. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:820-830. [PMID: 33773086 DOI: 10.1002/jez.2453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/26/2021] [Indexed: 11/06/2022]
Abstract
We investigated the extent to which the facultative air-breathing fish, the striped catfish (Pangasianodon hypophthalmus), uses air-breathing to cope with aquatic hypercarbia, and how air-breathing is influenced by the experimental exposure protocol and level of hypercarbia. We exposed individuals to severe aquatic hypercarbia (up to Pw CO2 = 81 mmHg) using step-wise and progressive exposure protocols while measuring gill ventilation rate, heart rate, mean arterial blood pressure, and air-breathing frequency, as well as arterial blood pH and PCO2 . We confirm that P. hypophthalmus is tolerant of hypercarbia. Under both protocols gill ventilation rate, heart rate, and mean arterial blood pressure were maintained near control levels even at very high CO2 levels. We observed a marked amount of individual variation in the PwCO2 at which air-breathing was elicited, with some individuals not responding at all. The experimental protocol also influenced the onset of air-breathing. Air-breathing began at lower Pw CO2 in the step-wise protocol (23 ± 4.1 mmHg) compared with the progressive protocol (46 ± 7.8 mmHg). Air-breathing was often followed by aquatic surface respiration, at higher PCO2 (71 ± 5.2 mmHg) levels. On average, the blood PCO2 was approximately 43% lower (46 ± 2.5 mmHg) than water Pw CO2 (~81 mmHg) at our highest tested CO2 level. While this suggests that aerial CO2 elimination is an effective, and perhaps critical, respiratory strategy used by P. hypophthalmus to cope with severe hypercarbia, this observation may also be explained by a long lag time required for equilibration.
Collapse
Affiliation(s)
- Rachael Morgan
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Louise Tunnah
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Dang D Tuong
- Department of Aquatic Nutrition and Products Processing, College of Aquaculture and Fisheries, Can Tho University, Can Tho, Vietnam
| | - Per Hjelmstedt
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Skara, Sweden
| | - Pham N Nhu
- Department of Aquatic Nutrition and Products Processing, College of Aquaculture and Fisheries, Can Tho University, Can Tho, Vietnam
| | - Kevin T Stiller
- Production Biology - The Norwegian Institute of Food, Fisheries and Aquaculture Research, Nofima AS, Sjølseng, Sunndalsøra, Norway
| | - Nguyen Thanh Phuong
- Department of Aquatic Nutrition and Products Processing, College of Aquaculture and Fisheries, Can Tho University, Can Tho, Vietnam
| | - Do Thi Thanh Huong
- Department of Aquatic Nutrition and Products Processing, College of Aquaculture and Fisheries, Can Tho University, Can Tho, Vietnam
| | - Mark Bayley
- Department of Bioscience, Zoophysiology, Aarhus, Denmark
| | - Tobias Wang
- Department of Bioscience, Zoophysiology, Aarhus, Denmark
| | - William K Milsom
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Shartau RB, Baker DW, Harter TS, Aboagye DL, Allen PJ, Val AL, Crossley DA, Kohl ZF, Hedrick MS, Damsgaard C, Brauner CJ. Preferential intracellular pH regulation is a common trait amongst fishes exposed to high environmental CO 2. J Exp Biol 2020; 223:jeb208868. [PMID: 32127382 DOI: 10.1242/jeb.208868] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 02/25/2020] [Indexed: 12/13/2022]
Abstract
Acute (<96 h) exposure to elevated environmental CO2 (hypercarbia) induces a pH disturbance in fishes that is often compensated by concurrent recovery of intracellular and extracellular pH (pHi and pHe, respectively; coupled pH regulation). However, coupled pH regulation may be limited at CO2 partial pressure (PCO2 ) tensions far below levels that some fishes naturally encounter. Previously, four hypercarbia-tolerant fishes had been shown to completely and rapidly regulate heart, brain, liver and white muscle pHi during acute exposure to >4 kPa PCO2 (preferential pHi regulation) before pHe compensation was observed. Here, we test the hypothesis that preferential pHi regulation is a widespread strategy of acid-base regulation among fish by measuring pHi regulation in 10 different fish species that are broadly phylogenetically separated, spanning six orders, eight families and 10 genera. Contrary to previous views, we show that preferential pHi regulation is the most common strategy for acid-base regulation within these fishes during exposure to severe acute hypercarbia and that this strategy is associated with increased hypercarbia tolerance. This suggests that preferential pHi regulation may confer tolerance to the respiratory acidosis associated with hypercarbia, and we propose that it is an exaptation that facilitated key evolutionary transitions in vertebrate evolution, such as the evolution of air breathing.
Collapse
Affiliation(s)
- R B Shartau
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - D W Baker
- Department of Fisheries and Aquaculture, Vancouver Island University, Nanaimo, BC, Canada V9R 5S5
| | - T S Harter
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - D L Aboagye
- Department of Wildlife, Fisheries and Aquaculture, Mississippi State University, Starkville, MS 39759, USA
| | - P J Allen
- Department of Wildlife, Fisheries and Aquaculture, Mississippi State University, Starkville, MS 39759, USA
| | - A L Val
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon (INPA), Manaus, AM CEP 69080-971, Brazil
| | - D A Crossley
- Department of Biological Sciences, University of North Texas, Denton, TX 76203-5017, USA
| | - Z F Kohl
- Department of Biological Sciences, University of North Texas, Denton, TX 76203-5017, USA
| | - M S Hedrick
- Department of Biological Sciences, California State University, East Bay, CA 94542, USA
| | - C Damsgaard
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - C J Brauner
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|
5
|
Damsgaard C, Baliga VB, Bates E, Burggren W, McKenzie DJ, Taylor E, Wright PA. Evolutionary and cardio-respiratory physiology of air-breathing and amphibious fishes. Acta Physiol (Oxf) 2020; 228:e13406. [PMID: 31630483 DOI: 10.1111/apha.13406] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/28/2019] [Accepted: 10/17/2019] [Indexed: 12/24/2022]
Abstract
Air-breathing and amphibious fishes are essential study organisms to shed insight into the required physiological shifts that supported the full transition from aquatic water-breathing fishes to terrestrial air-breathing tetrapods. While the origin of air-breathing in the evolutionary history of the tetrapods has received considerable focus, much less is known about the evolutionary physiology of air-breathing among fishes. This review summarizes recent advances within the field with specific emphasis on the cardiorespiratory regulation associated with air-breathing and terrestrial excursions, and how respiratory physiology of these living transitional forms are affected by development and personality. Finally, we provide a detailed and re-evaluated model of the evolution of air-breathing among fishes that serves as a framework for addressing new questions on the cardiorespiratory changes associated with it. This review highlights the importance of combining detailed studies on piscine air-breathing model species with comparative multi-species studies, to add an additional dimension to our understanding of the evolutionary physiology of air-breathing in vertebrates.
Collapse
Affiliation(s)
| | - Vikram B. Baliga
- Department of Zoology University of British Columbia Vancouver BC Canada
| | - Eric Bates
- Derailleur Interactive Vancouver BC Canada
| | - Warren Burggren
- Department of Biological Sciences University of North Texas Denton TX USA
| | - David J. McKenzie
- UMR Marbec, CNRS, IRD, Ifremer Université Montpellier Montpellier France
| | - Edwin Taylor
- School of Biosciences University of Birmingham Birmingham UK
| | | |
Collapse
|
6
|
Gam LTH, Thanh Huong DT, Tuong DD, Phuong NT, Jensen FB, Wang T, Bayley M. Effects of temperature on acid-base regulation, gill ventilation and air breathing in the clown knifefish, Chitala ornata. J Exp Biol 2020; 223:jeb216481. [PMID: 32001546 DOI: 10.1242/jeb.216481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/23/2020] [Indexed: 11/20/2022]
Abstract
Chitala ornata is a facultative air-breathing fish, which at low temperatures shows an arterial PCO2 (PaCO2 ) level only slightly elevated above that of water breathers. By holding fish with in-dwelling catheters at temperatures from 25 to 36°C and measuring blood gasses, we show that this animal follows the ubiquitous poikilotherm pattern of reducing arterial pH with increasing temperature. Surprisingly, the temperature increase caused an elevation of PaCO2 from 5 to 12 mmHg while the plasma bicarbonate concentration remained constant at around 8 mmol l-1 The temperature increase also gave rise to a larger fractional increase in air breathing than in gill ventilation frequency. These findings suggest that air breathing, and hence the partitioning of gas exchange, is to some extent regulated by acid-base status in air-breathing fish and that these bimodal breathers will be increasingly likely to adopt respiratory pH control as temperature rises, providing an interesting avenue for future research.
Collapse
Affiliation(s)
- Le Thi Hong Gam
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam
| | - Do Thi Thanh Huong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam
| | - Dang Diem Tuong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam
| | - Nguyen Thanh Phuong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam
| | - Frank Bo Jensen
- Department of Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Tobias Wang
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark
- Aarhus Institute of Advanced Studies, 8000 Aarhus C, Denmark
| | - Mark Bayley
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
7
|
Mattioli CC, Takata R, de Oliveira Paes Leme F, Costa DC, Luz RK. Response of juvenile Lophiosilurus alexandri to osmotic and thermic shock. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:51-61. [PMID: 31422544 DOI: 10.1007/s10695-019-00696-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
The objective of the present study was to evaluate the physiological responses of juvenile Lophiosilurus alexandri submitted to osmotic and thermic shock. Thirty juveniles were used for each test, of which 10 were not subjected to stress and remained in normal conditions (fresh water at 28.0 °C). The others were submitted to stress shock (saline water of 10.0 g of salt/L or water cooled to 18.0 °C). Blood samples were taken at 0 h (no exposure to the stress factor) and 1 h and 24 h after the tests. At 24 h, the survivorship was 100% in both tests. In both the osmotic and thermic shock tests, cortisol and glucose levels were higher at 1 h but then decreased after 24 h. Lactate dehydrogenase showed differences in the temperature test, but there was no difference between 1 and 24 h after exposure to osmotic shock (P > 0.05). The difference was recorded in blood gas variables (pH, PvCO2, PvO2, hemoglobin, sO2, BE, tCO2, HCO3-, and stHCO3-) and electrolytes (Na+, Ca++, nCa++, and K+) in both experiments. With regard to hematology and blood biochemistry, exposure to thermal shock did not affect (P > 0.05) ALP, total plasma protein, hematocrit, and ALT and AST at 1 h and 24 h. ALP and total protein in the blood of fish submitted to the osmotic shock were lowest (P < 0.05) at 24 h. Leukocyte and erythrocyte counts exhibited differences after osmotic shock, in contrast to erythrocyte counts of the temperature test, which did not change in 24 h (P > 0.05). Juveniles of L. alexandri were able to reestablish the main indicators of stress (cortisol, glucose), while the others (hematological, biochemical, and gasometric) varied in compensation for normal physiological reestablishment.
Collapse
Affiliation(s)
- Cristiano Campos Mattioli
- Departamento de Zootecnia, Laboratório de Aquacultura, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, no. 6627, Belo Horizonte, MG, CEP 30161-970, Brazil
| | - Rodrigo Takata
- Fundação Instituto de Pesca do Estado do Rio de Janeiro, Unidade de Pesquisa e Reprodução de Peixes, Av. Presidente Vargas, 197, Parque de Exposições, Cordeiro, RJ, CEP 28540-000, Brazil
| | - Fabiola de Oliveira Paes Leme
- Laboratório de apoio à pesquisa-LAPEQ, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, no. 6627, Belo Horizonte, MG, CEP 30161-970, Brazil
| | - Deliane Cristina Costa
- Departamento de Zootecnia, Laboratório de Aquacultura, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, no. 6627, Belo Horizonte, MG, CEP 30161-970, Brazil
| | - Ronald Kennedy Luz
- Departamento de Zootecnia, Laboratório de Aquacultura, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, no. 6627, Belo Horizonte, MG, CEP 30161-970, Brazil.
- Laboratório de Aquacultura da Escola de Veterinária, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brazil.
| |
Collapse
|
8
|
Shartau RB, Damsgaard C, Brauner CJ. Limits and patterns of acid-base regulation during elevated environmental CO2 in fish. Comp Biochem Physiol A Mol Integr Physiol 2019; 236:110524. [DOI: 10.1016/j.cbpa.2019.110524] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/29/2019] [Accepted: 07/07/2019] [Indexed: 01/07/2023]
|
9
|
Tuong DD, Huong DTT, Phuong NT, Bayley M, Milsom WK. Ventilatory responses of the clown knifefish, Chitala ornata, to arterial hypercapnia remain after gill denervation. J Comp Physiol B 2019; 189:673-683. [PMID: 31552490 DOI: 10.1007/s00360-019-01236-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/22/2019] [Accepted: 09/12/2019] [Indexed: 01/20/2023]
Abstract
The aim of this study was to corroborate the presence of CO2/H+-sensitive arterial chemoreceptors involved in producing air-breathing responses to aquatic hypercarbia in the facultative air-breathing clown knifefish (Chitala ornata) and to explore their possible location. Progressively increasing levels of CO2 mixed with air were injected into the air-breathing organ (ABO) of one group of intact fish to elevate internal PCO2 and decrease blood pH. Another group of fish in which the gills were totally denervated was exposed to aquatic hypercarbia (pH ~ 6) or arterial hypercapnia in aquatic normocarbia (by injection of acetazolamide to increase arterial PCO2 and decrease blood pH). Air-breathing frequency, gill ventilation frequency, heart rate and arterial PCO2 and pH were recorded during all treatments. The CO2 injections into the ABO induced progressive increases in air-breathing frequency, but did not alter gill ventilation or heart rate. Exposure to both hypercarbia and acetazolamide post-denervation of the gills also produced significant air-breathing responses, but no changes in gill ventilation. While all treatments produced increases in arterial PCO2 and decreases in blood pH, the modest changes in arterial PCO2/pH in the acetazolamide treatment produced the greatest increases in air-breathing frequency. These results strengthen the evidence that internal CO2/H+ sensing is involved in the stimulation of air breathing in clown knifefish and suggest that it involves extra-branchial chemoreceptors possibly situated either centrally or in the air-breathing organ.
Collapse
Affiliation(s)
- Dang Diem Tuong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho, Vietnam.
| | - Do Thi Thanh Huong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho, Vietnam
| | | | - Mark Bayley
- Department of Bioscience Zoophysiology, Aarhus University, Aarhus, Denmark
| | - William K Milsom
- Department of Zoology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
10
|
Cardiovascular and ventilatory interactions in the facultative air-breathing teleost Pangasianodon hypophthalmus. J Comp Physiol B 2019; 189:425-440. [DOI: 10.1007/s00360-019-01225-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/20/2019] [Accepted: 06/24/2019] [Indexed: 02/07/2023]
|
11
|
Thinh PV, Thanh Huong DT, Gam LTH, Damsgaard C, Phuong NT, Bayley M, Wang T. Renal acid excretion contributes to acid-base regulation during hypercapnia in air-exposed swamp eel ( Monopterus albus). ACTA ACUST UNITED AC 2019; 222:jeb.198259. [PMID: 30975740 DOI: 10.1242/jeb.198259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/07/2019] [Indexed: 02/02/2023]
Abstract
The swamp eel (Monopterus albus) uses its buccal cavity to air breathe, while the gills are strongly reduced. It burrows into mud during the dry season, is highly tolerant of air exposure, and experiences severe hypoxia both in its natural habitat and in aquaculture. To study the ability of M. albus to compensate for respiratory acidosis, we implanted catheters to sample both arterial blood and urine during hypercapnia (4% CO2) in either water or air, or during whole-animal air exposure. These hypercapnic challenges caused an immediate reduction in arterial pH, followed by progressive compensation through a marked elevation of plasma HCO3 - over the course of 72 h. There was no appreciable rise in urinary acid excretion in fish exposed to hypercapnia in water, although urine pH was reduced and ammonia excretion did increase. In the air-exposed fish, however, hypercapnia was attended by a large elevation of ammonia in the urine and a large rise in titratable acid excretion. The time course of the increased renal acid excretion overlapped with the time period required to elevate plasma HCO3 -, and we estimate that the renal compensation contributed significantly to whole-body acid-base compensation.
Collapse
Affiliation(s)
- Phan Vinh Thinh
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam.,Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| | - Do Thi Thanh Huong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam
| | - Le Thi Hong Gam
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam
| | - Christian Damsgaard
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| | - Nguyen Thanh Phuong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam
| | - Mark Bayley
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| | - Tobias Wang
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark .,Aarhus Institute of Advanced Studies, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
12
|
Mattioli CC, Takata R, de Oliveira Paes Leme F, Costa DC, Luz RK. Physiological and metabolic responses of juvenile Lophiosilurus alexandri catfish to air exposure. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:455-467. [PMID: 30368686 DOI: 10.1007/s10695-018-0576-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 10/02/2018] [Indexed: 06/08/2023]
Abstract
The present study aimed to evaluate the physiological and metabolic stress responses of juvenile Lophiosilurus alexandri submitted to an air exposure test. The subjects consisted of 72 juveniles. Blood samples were taken at: 0 h-fish not exposed to air; 0.5 h-fish shortly after exposure to air for 30 min (prior to returning to the tank); 1.5 h (90 min), 24, 48, and 96 h after the initiation of exposure to air for 30 min. After 96 h, survivorship was 100%. Cortisol and glucose levels were higher at 0.5 h, returning to baseline at 48 and 24 h, respectively. Lactate dehydrogenase levels were highest at 1.5 h after exposure to air, returning to normal values in 24 h. Several changes were recorded in gasometric blood values and electrolytes. With regard to hematology and blood chemistry, exposure to air did not affect globular volume and AST throughout the 96 h of the experiment. The values for alkaline phosphatase were highest at 0, 1.5, and 24 h. Total protein was similar between 0 and 1.5 h and lowest at 96 h, while ALT was highest at 0.5 h. Leukocytes were highest at 0.5, 1.5, 48, and 96 h, while erythrocytes were highest at 96 h. After 96 h, juvenile L. alexandri were able to reestablish the main indicators of stress (cortisol, glucose and lactate dehydrogenase), while other indicators (hematological, biochemical, and gasometric) exhibited compensatory variation for normal physiological re-establishment.
Collapse
Affiliation(s)
- Cristiano Campos Mattioli
- Escola de Veterinária, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, n° 6627, Belo Horizonte, CEP 30161-970, Brazil
| | - Rodrigo Takata
- Unidade de Pesquisa e Reprodução de Peixes, Fundação Instituto de Pesca do Estado do Rio de Janeiro, Av. Presidente Vargas, 197, Parque de Exposições, Niterói, CEP 28540-000, Brazil
| | - Fabiola de Oliveira Paes Leme
- Escola de Veterinária, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, n° 6627, Belo Horizonte, CEP 30161-970, Brazil
| | - Deliane Cristina Costa
- Escola de Veterinária, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, n° 6627, Belo Horizonte, CEP 30161-970, Brazil
| | - Ronald Kennedy Luz
- Escola de Veterinária, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, n° 6627, Belo Horizonte, CEP 30161-970, Brazil.
- Laboratório de Aquacultura da Escola de Veterinária da Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, Cep 31270-901, Brazil.
| |
Collapse
|
13
|
Brauner CJ, Shartau RB, Damsgaard C, Esbaugh AJ, Wilson RW, Grosell M. Acid-base physiology and CO2 homeostasis: Regulation and compensation in response to elevated environmental CO2. FISH PHYSIOLOGY 2019. [DOI: 10.1016/bs.fp.2019.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Bayley M, Damsgaard C, Thomsen M, Malte H, Wang T. Learning to Air-Breathe: The First Steps. Physiology (Bethesda) 2019; 34:14-29. [DOI: 10.1152/physiol.00028.2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Air-breathing in vertebrates has evolved many times among the bony fish while in water. Its appearance has had a fundamental impact on the regulation of ventilation and acid-base status. We review the physico-chemical constraints imposed by water and air, place the extant air-breathing fish into this framework, and show how that the advantages of combining control of ventilation and acid-base status are only available to the most obligate of air-breathing fish, thus highlighting promising avenues for research.
Collapse
Affiliation(s)
- Mark Bayley
- Section for Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Christian Damsgaard
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mikkel Thomsen
- Section for Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Hans Malte
- Section for Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Tobias Wang
- Section for Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
- Aarhus Institute of Advanced Sciences, Aarhus University, Aarhus, Denmark
| |
Collapse
|
15
|
Sackville MA, Shartau RB, Damsgaard C, Hvas M, Phuong LM, Wang T, Bayley M, Thanh Huong DT, Phuong NT, Brauner CJ. Water pH limits extracellular but not intracellular pH compensation in the CO 2-tolerant freshwater fish Pangasianodon hypophthalmus. ACTA ACUST UNITED AC 2018; 221:jeb.190413. [PMID: 30352827 DOI: 10.1242/jeb.190413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/17/2018] [Indexed: 11/20/2022]
Abstract
Preferentially regulating intracellular pH (pHi) confers exceptional CO2 tolerance on fish, but is often associated with reductions in extracellular pH (pHe) compensation. It is unknown whether these reductions are due to intrinsically lower capacities for pHe compensation, hypercarbia-induced reductions in water pH or other factors. To test how water pH affects capacities and strategies for pH compensation, we exposed the CO2-tolerant fish Pangasianodon hypophthalmus to 3 kPa P CO2 for 20 h at an ecologically relevant water pH of 4.5 or 5.8. Brain, heart and liver pHi was preferentially regulated in both treatments. However, blood pHe compensation was severely reduced at water pH 4.5 but not 5.8. This suggests that low water pH limits acute pHe but not pHi compensation in fishes preferentially regulating pHi Hypercarbia-induced reductions in water pH might therefore underlie the unexplained reductions to pHe compensation in fishes preferentially regulating pHi, and may increase selection for preferential pHi regulation.
Collapse
Affiliation(s)
- Michael A Sackville
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Ryan B Shartau
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | | | - Malthe Hvas
- Department of Bioscience, Aarhus University, 8000 Aarhus-C, Denmark
| | - Le My Phuong
- College of Aquaculture and Fisheries, Can Tho University, 92000 Can Tho City, Vietnam
| | - Tobias Wang
- Department of Bioscience, Aarhus University, 8000 Aarhus-C, Denmark
| | - Mark Bayley
- Department of Bioscience, Aarhus University, 8000 Aarhus-C, Denmark
| | - Do Thi Thanh Huong
- College of Aquaculture and Fisheries, Can Tho University, 92000 Can Tho City, Vietnam
| | - Nguyen Thanh Phuong
- College of Aquaculture and Fisheries, Can Tho University, 92000 Can Tho City, Vietnam
| | - Colin J Brauner
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|
16
|
Ventilatory responses of the clown knifefish, Chitala ornata, to hypercarbia and hypercapnia. J Comp Physiol B 2018; 188:581-589. [DOI: 10.1007/s00360-018-1150-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/13/2018] [Accepted: 02/17/2018] [Indexed: 12/31/2022]
|
17
|
Gam LTH, Jensen FB, Huong DTT, Phuong NT, Bayley M. The effects of elevated environmental CO 2 on nitrite uptake in the air-breathing clown knifefish, Chitala ornata. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 196:124-131. [PMID: 29367072 DOI: 10.1016/j.aquatox.2018.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/09/2018] [Accepted: 01/13/2018] [Indexed: 06/07/2023]
Abstract
Nitrite and carbon dioxide are common environmental contaminants in the intensive aquaculture ponds used to farm clown knifefish (Chitala ornata) in the Mekong delta, Vietnam. Here we tested the hypothesis that hypercapnia reduces nitrite uptake across the gills, because pH regulation will reduce chloride uptake and hence nitrite uptake as the two ions compete for the same transport route via the branchial HCO3-/Cl- exchanger. Fish fitted with arterial catheters were exposed to normocapnic/normoxic water (control), nitrite (1 mM), hypercapnia (21 mmHg CO2), or combined hypercapnia (acclimated hypercapnia) and nitrite for 96 h. Blood was sampled to measure acid-base status, haemoglobin derivatives and plasma ions. Plasma nitrite increased for 48 h, but levels stayed below the exposure concentration, and subsequently decreased as a result of nitrite detoxification to nitrate. The total uptake of nitrite (evaluated as [NO2-] + [NO3-]) was significantly decreased in hypercapnia, in accordance with the hypothesis. Methemoglobin and nitrosylhemoglobin levels were similarly lower during hypercapnic compared to normocapnic nitrite exposure. The respiratory acidosis induced by hypercapnia was half-compensated by bicarbonate accumulation in 96 h, which was mainly chloride-mediated (i.e. reduced Cl- influx via the branchial HCO3-/Cl- exchanger). Plasma osmolality and main ions (Na+, Cl-) were significantly decreased by hypercapnia and by nitrite exposure, consistent with inhibition of active transport. We conclude that hypercapnia induces a long-lasting, and mainly chloride-mediated acid-base regulation that reduces the uptake of nitrite across the gills.
Collapse
Affiliation(s)
- Le Thi Hong Gam
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Viet Nam
| | - Frank Bo Jensen
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Do Thi Thanh Huong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Viet Nam
| | - Nguyen Thanh Phuong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Viet Nam
| | - Mark Bayley
- Zoophysiology, Department of Bioscience, Aarhus University, Building 1131 C.F. Møllers Allé 3, DK-8000 Aarhus C., Denmark.
| |
Collapse
|
18
|
Phuong LM, Huong DTT, Malte H, Nyengaard JR, Bayley M. Ontogeny and morphometrics of the gills and swim bladder of air-breathing striped catfish Pangasianodon hypophthalmus. ACTA ACUST UNITED AC 2018; 221:jeb.168658. [PMID: 29191864 DOI: 10.1242/jeb.168658] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/27/2017] [Indexed: 11/20/2022]
Abstract
The air-breathing fish Pangasianodon hypophthalmus has been shown to have highly plastic branchial surfaces whose area (SA) increases with temperature and aquatic hypoxia. This modulation occurs through development of inter-lamellar cell mass (ILCM). Paradoxically, in conditions where this fish has been shown capable of covering its entire aerobic scope from the water phase, it has been shown to have a very small branchial SA. To address this paradox, we measured the SA, harmonic mean diffusion distance (τh) and calculated the anatomic diffusion factor (ADF) of the branchial and swim bladder surfaces in fish ranging from 3 to 1900 g at 27°C in normoxia. Since the lamellae were distinguishable from the ILCM, we measured the actual SA as well as the potential SA if ILCM were lost. As a result of low τh, P. hypophthalmus has a high capacity for branchial oxygen uptake with or without ILCM. Actual and potential gill ADF were 361 and 1002 cm2 µm-1 kg-1, respectively, for a 100 g fish and the ADF of the swim bladder was found to be 308 cm2 µm-1 kg-1 By swimming fish to exhaustion at different temperatures, we show that modulation of this SA is rapid, indicating that the apparent paradox between previous studies is eliminated. Regression analysis of log-log plots of respiratory SA in relation to body mass shows that the gill scales with mass similarly to the SA in active water-breathing fish, whereas the swim bladder scales with mass more like the mammalian lung does. This fish presents a combination of respiratory surfaces not previously seen in air-breathing fish.
Collapse
Affiliation(s)
- Le My Phuong
- Zoophysiology Section, Department of Bioscience, Aarhus University, Denmark.,Department of Aquatic Nutrition and Products Processing, College of Aquaculture and Fisheries, Can Tho University, 900000 Can Tho City, Vietnam
| | - Do Thi Thanh Huong
- Department of Aquatic Nutrition and Products Processing, College of Aquaculture and Fisheries, Can Tho University, 900000 Can Tho City, Vietnam
| | - Hans Malte
- Zoophysiology Section, Department of Bioscience, Aarhus University, Denmark
| | - Jens Randel Nyengaard
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, 8000 Aarhus C, Denmark
| | - Mark Bayley
- Zoophysiology Section, Department of Bioscience, Aarhus University, Denmark
| |
Collapse
|
19
|
Thinh PV, Phuong NT, Brauner CJ, Huong DTT, Wood AT, Kwan GT, Conner JL, Bayley M, Wang T. Acid-base regulation in the air-breathing swamp eel (Monopterus albus) at different temperatures. J Exp Biol 2018; 221:jeb.172551. [DOI: 10.1242/jeb.172551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/12/2018] [Indexed: 11/20/2022]
Abstract
Vertebrates reduce arterial blood pH (pHa) when body temperature increases. In water-breathers this response occurs primarily by reducing plasma HCO3− levels with small changes in the partial pressure of CO2 (PCO2). In contrast, air-breathers mediate the decrease in pHa by increasing arterial PCO2 (PaCO2) at constant plasma HCO3− by reducing lung ventilation relative to metabolic CO2 production. Much less is known in bimodal breathers that utilize both water and air. Here, we characterize the influence of temperature on arterial acid-base balance and intracellular pH (pHi) in the bimodal breathing swamp eel, Monopterus albus. This teleost uses the buccopharyngeal cavity for gas exchange and has very reduced gills. When exposed to ecologically relevant temperatures (20, 25, 30 and 35°C) for 24 and 48h, pHa decreased by -0.025 pH units/°C (U/°C) in association with an increased PaCO2, but without changes in plasma [HCO3−]. Intracellular pH (pHi) was also reduced with increased temperature. The slope of pHi of liver and muscle was -0.014 and -0.019 U/°C, while the heart muscle showed a smaller reduction (-0.008U/°C). When exposed to hypercapnia (7 or 14 mmHg) at either 25 or 35°C, Monopterus albus elevated plasma [HCO3−] and therefore seemed to defend the new pHa set-point, demonstrating an adjusted control of acid-base balance with temperature. Overall, the effects of temperature on acid-base balance in Monopterus albus resemble air-breathing amniotes, and we discuss the possibility that this pattern of acid-base balance results from a progressive transition in CO2 excretion from water to air as temperature rises.
Collapse
Affiliation(s)
- Phan Vinh Thinh
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam
| | - Nguyen Thanh Phuong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam
| | - Colin J. Brauner
- Department of Zoology, University of British Columbia, 6270 University Blvd.,Vancouver, BC, V6T 1Z4, Canada
| | - Do Thi Thanh Huong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam
| | | | - Garfield T. Kwan
- Scripps Institution of Oceanography, University of California San Diego, USA
| | | | - Mark Bayley
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Tobias Wang
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
- Aarhus Institute of Advanced Studies, 8000 Aarhus C, Denmark
| |
Collapse
|
20
|
Clifford AM, Weinrauch AM, Goss GG. Dropping the base: recovery from extreme hypercarbia in the CO2 tolerant Pacific hagfish (Eptatretus stoutii). J Comp Physiol B 2017; 188:421-435. [PMID: 29290001 DOI: 10.1007/s00360-017-1141-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/24/2017] [Accepted: 12/12/2017] [Indexed: 01/13/2023]
|
21
|
Damsgaard C, Thomsen MT, Bayley M, Wang T. Air-breathing changes the pattern for temperature-induced pH regulation in a bimodal breathing teleost. J Comp Physiol B 2017; 188:451-459. [DOI: 10.1007/s00360-017-1134-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/22/2017] [Accepted: 10/25/2017] [Indexed: 11/28/2022]
|
22
|
Thomsen MT, Wang T, Milsom WK, Bayley M. Lactate provides a strong pH-independent ventilatory signal in the facultative air-breathing teleost Pangasianodon hypophthalmus. Sci Rep 2017; 7:6378. [PMID: 28743938 PMCID: PMC5527003 DOI: 10.1038/s41598-017-06745-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/16/2017] [Indexed: 01/15/2023] Open
Abstract
Fish regulate ventilation primarily by sensing O2-levels in the water and arterial blood. It is well established that this sensory process involves several steps, but the underlying mechanisms remain frustratingly elusive. Here we examine the effect of increasing lactate ions at constant pH on ventilation in a teleost; specifically the facultative air-breathing catfish Pangasianodon hypophthalmus. At lactate levels within the physiological range obtained by Na-Lactate injections (3.5 ± 0.8 to 10.9 ± 0.7 mmol L−1), gill ventilation increased in a dose-dependent manner to levels comparable to those elicited by NaCN injections (2.0 µmol kg−1), which induces a hypoxic response and higher than those observed in any level of ambient hypoxia (lowest PO2 = 20 mmHg). High lactate concentrations also stimulated air-breathing. Denervation of the first gill arch reduced the ventilatory response to lactate suggesting that part of the sensory mechanism for lactate is located at the first gill arch. However, since a residual response remained after this denervation, the other gill arches or extrabranchial locations must also be important for lactate sensing. We propose that lactate plays a role as a signalling molecule in the hypoxic ventilatory response in fish.
Collapse
Affiliation(s)
- Mikkel T Thomsen
- Department of Bioscience, Zoophysiology, Aarhus University, Aarhus, Denmark.
| | - Tobias Wang
- Department of Bioscience, Zoophysiology, Aarhus University, Aarhus, Denmark
| | - William K Milsom
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Mark Bayley
- Department of Bioscience, Zoophysiology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
23
|
Gam LTH, Jensen FB, Damsgaard C, Huong DTT, Phuong NT, Bayley M. Extreme nitrite tolerance in the clown knifefish Chitala ornata is linked to up-regulation of methaemoglobin reductase activity. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 187:9-17. [PMID: 28351760 DOI: 10.1016/j.aquatox.2017.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/09/2017] [Accepted: 03/15/2017] [Indexed: 06/06/2023]
Abstract
The clown knifefish is a facultative air breather, which is widely farmed in freshwater ponds in Vietnam. Here we report a very high nitrite tolerance (96h LC50 of 7.82mM) in this species and examine the effects of 1mM (LC5) and 2.5mM (LC10) ambient nitrite on haemoglobin (Hb) derivatives, electrolyte levels, acid-base status, and total body water content during 7days of exposure. Furthermore, we tested the hypothesis that erythrocyte methaemoglobin (metHb) reductase activity is upregulated by nitrite exposure. Plasma nitrite levels increased for 2-3days but stayed below environmental levels and fell towards control values during the last half of the exposure period. Plasma nitrate, in contrast, rose continuously, reflecting detoxification of nitrite to nitrate. MetHb generated from the reaction between nitrite and erythrocyte Hb reached 38% at day 2, but then decreased to 17% by the end of experiment. The first order rate constant for metHb reduction by erythrocyte metHb reductase increased from 0.01 in controls to 0.046min-1 after 6days of nitrite exposure, showing up-regulation of this enzyme. While such upregulation has been suggested in nitrite-exposed fish species, this study provides the first experimental evidence.
Collapse
Affiliation(s)
- Le Thi Hong Gam
- College of Aquaculture and Fisheries, Can Tho Uiniversity, Can Tho City, Viet Nam
| | - Frank Bo Jensen
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | | | - Do Thi Thanh Huong
- College of Aquaculture and Fisheries, Can Tho Uiniversity, Can Tho City, Viet Nam
| | - Nguyen Thanh Phuong
- College of Aquaculture and Fisheries, Can Tho Uiniversity, Can Tho City, Viet Nam
| | - Mark Bayley
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
24
|
Gill remodelling and growth rate of striped catfish Pangasianodon hypophthalmus under impacts of hypoxia and temperature. Comp Biochem Physiol A Mol Integr Physiol 2016; 203:288-296. [PMID: 27768904 DOI: 10.1016/j.cbpa.2016.10.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 10/11/2016] [Accepted: 10/14/2016] [Indexed: 01/01/2023]
Abstract
Gill morphometric and gill plasticity of the air-breathing striped catfish (Pangasianodon hypophthalmus) exposed to different temperatures (present day 27°C and future 33°C) and different air saturation levels (92% and 35%) during 6weeks were investigated using vertical sections to estimate the respiratory lamellae surface areas, harmonic mean barrier thicknesses, and gill component volumes. Gill respiratory surface area (SA) and harmonic mean water - blood barrier thicknesses (HM) of the fish were strongly affected by both environmental temperature and oxygen level. Thus initial values for 27°C normoxic fish (12.4±0.8g) were 211.8±21.6mm2g-1 and 1.67±0.12μm for SA and HM respectively. After 5weeks in same conditions or in the combinations of 33°C and/or PO2 of 55mmHg, this initial surface area scaled allometrically with size for the 33°C hypoxic group, whereas branchial SA was almost eliminated in the 27°C normoxic group, with other groups intermediate. In addition, elevated temperature had an astounding effect on growth with the 33°C group growing nearly 8-fold faster than the 27°C fish.
Collapse
|
25
|
Air breathing and aquatic gas exchange during hypoxia in armoured catfish. J Comp Physiol B 2016; 187:117-133. [DOI: 10.1007/s00360-016-1024-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/23/2016] [Accepted: 07/19/2016] [Indexed: 10/21/2022]
|
26
|
Hvas M, Damsgaard C, Gam LTH, Huong DTT, Jensen FB, Bayley M. The effect of environmental hypercapnia and size on nitrite toxicity in the striped catfish (Pangasianodon hypophthalmus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 176:151-160. [PMID: 27135703 DOI: 10.1016/j.aquatox.2016.04.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/07/2016] [Accepted: 04/21/2016] [Indexed: 06/05/2023]
Abstract
Striped catfish (Pangasianodon hypophthalmus) are farmed intensively at high stocking densities in Vietnam where they are likely to encounter environmental hypercapnia as well as occasional high levels of aquatic nitrite. Nitrite competes with Cl(-) for uptake at the branchial HCO3(-)/Cl(-) exchanger, causing a drastic reduction in the blood oxygen carrying capacity through the formation of methaemoglobin and nitrosylhaemoglobin. Environmental hypercapnia induces a respiratory acidosis where the branchial HCO3(-)/Cl(-) exchange activity is reduced in order to retain HCO3(-) for pH recovery, which should lead to a reduced nitrite uptake. To assess the effect of hypercapnia on nitrite uptake, fish were cannulated in the dorsal aorta, allowing repeated blood sampling for measurements of haemoglobin derivatives, plasma ions and acid-base status during exposure to 0.9mM nitrite alone and in combination with acute and 48h acclimated hypercapnia over a period of 72h. Nitrite uptake was initially reduced during the hypercapnia-induced acidosis, but after pH recovery the situation was reversed, resulting in higher plasma nitrite concentrations and lower functional haemoglobin levels that eventually caused mortality. This suggests that branchial HCO3(-)/Cl(-) exchange activity is reduced only during the initial acid-base compensation, but subsequently increases with the greater availability of internal HCO3(-) counter-ions as pH is compensated. The data further suggest that branchial Na(+)/H(+) exchange plays a significant role in the initial phase of acid-base compensation. Overall, longer term environmental hypercapnia does not protect against nitrite uptake in P. hypophthalmus, but instead enhances it. In addition, we observed a significant size effect in nitrite accumulation, where large fish attained plasma [nitrite] above the ambient concentration, while small fish did not. Small P. hypophthalmus instead had significantly higher plasma [nitrate], and haemoglobin concentrations, revealing greater capacity for detoxifying nitrite by oxidising it to nitrate.
Collapse
Affiliation(s)
- Malthe Hvas
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | | | - Le Thi Hong Gam
- College of Aquaculture and Fisheries, Can Tho University, Can Tho, Vietnam
| | - Do Thi Thanh Huong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho, Vietnam
| | - Frank B Jensen
- Department of Biology, University of Southern Denmark, Denmark
| | - Mark Bayley
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
27
|
Regan MD, Turko AJ, Heras J, Andersen MK, Lefevre S, Wang T, Bayley M, Brauner CJ, Huong DTT, Phuong NT, Nilsson GE. Ambient CO2, fish behaviour and altered GABAergic neurotransmission: exploring the mechanism of CO2-altered behaviour by taking a hypercapnia dweller down to low CO2 levels. J Exp Biol 2016; 219:109-18. [DOI: 10.1242/jeb.131375] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
ABSTRACT
Recent studies suggest that projected rises of aquatic CO2 levels cause acid–base regulatory responses in fishes that lead to altered GABAergic neurotransmission and disrupted behaviour, threatening fitness and population survival. It is thought that changes in Cl− and HCO3− gradients across neural membranes interfere with the function of GABA-gated anion channels (GABAA receptors). So far, such alterations have been revealed experimentally by exposing species living in low-CO2 environments, like many oceanic habitats, to high levels of CO2 (hypercapnia). To examine the generality of this phenomenon, we set out to study the opposite situation, hypothesizing that fishes living in typically hypercapnic environments also display behavioural alterations if exposed to low CO2 levels. This would indicate that ion regulation in the fish brain is fine-tuned to the prevailing CO2 conditions. We quantified pH regulatory variables and behavioural responses of Pangasianodon hypophthalmus, a fish native to the hypercapnic Mekong River, acclimated to high-CO2 (3.1 kPa) or low-CO2 (0.04 kPa) water. We found that brain and blood pH was actively regulated and that the low-CO2 fish displayed significantly higher activity levels, which were reduced after treatment with gabazine, a GABAA receptor blocker. This indicates an involvement of the GABAA receptor and altered Cl− and HCO3− ion gradients. Indeed, Goldman calculations suggest that low levels of environmental CO2 may cause significant changes in neural ion gradients in P. hypophthalmus. Taken together, the results suggest that brain ion regulation in fishes is fine-tuned to the prevailing ambient CO2 conditions and is prone to disruption if these conditions change.
Collapse
Affiliation(s)
- Matthew D. Regan
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Andy J. Turko
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Joseph Heras
- Department of Ecology and Evolutionary Biology, University of California at Irvine, Irvine, CA 92697-2525, USA
| | | | - Sjannie Lefevre
- Department of Biosciences, University of Oslo, Oslo NO-0316, Norway
| | - Tobias Wang
- Department of Bioscience, Aarhus University, 8000 Aarhus-C, Denmark
| | - Mark Bayley
- Department of Bioscience, Aarhus University, 8000 Aarhus-C, Denmark
| | - Colin J. Brauner
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Do Thi Thanh Huong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho, Vietnam
| | | | - Göran E. Nilsson
- Department of Biosciences, University of Oslo, Oslo NO-0316, Norway
| |
Collapse
|
28
|
Joyce W, Gesser H, Bayley M, Wang T. Anoxia and Acidosis Tolerance of the Heart in an Air-Breathing Fish (Pangasianodon hypophthalmus). Physiol Biochem Zool 2015; 88:648-59. [PMID: 26658412 DOI: 10.1086/682701] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- William Joyce
- Department of Zoophysiology, Aarhus University, Building 1131, Universitetsparken, 8000 Aarhus C, Denmark
| | | | | | | |
Collapse
|