1
|
Takvam M, Wood CM, Kryvi H, Nilsen TO. Role of the kidneys in acid-base regulation and ammonia excretion in freshwater and seawater fish: implications for nephrocalcinosis. Front Physiol 2023; 14:1226068. [PMID: 37457024 PMCID: PMC10339814 DOI: 10.3389/fphys.2023.1226068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Maintaining normal pH levels in the body fluids is essential for homeostasis and represents one of the most tightly regulated physiological processes among vertebrates. Fish are generally ammoniotelic and inhabit diverse aquatic environments that present many respiratory, acidifying, alkalinizing, ionic and osmotic stressors to which they are able to adapt. They have evolved flexible strategies for the regulation of acid-base equivalents (H+, NH4 +, OH- and HCO3 -), ammonia and phosphate to cope with these stressors. The gills are the main regulatory organ, while the kidneys play an important, often overlooked accessory role in acid-base regulation. Here we outline the kidneys role in regulation of acid-base equivalents and two of the key 'urinary buffers', ammonia and phosphate, by integrating known aspects of renal physiology with recent advances in the molecular and cellular physiology of membrane transport systems in the teleost kidneys. The renal transporters (NHE3, NBC1, AE1, SLC26A6) and enzymes (V-type H+ATPase, CAc, CA IV, ammoniagenic enzymes) involved in H+ secretion, bicarbonate reabsorption, and the net excretion of acidic and basic equivalents, ammonia, and inorganic phosphate are addressed. The role of sodium-phosphate cotransporter (Slc34a2b) and rhesus (Rh) glycoproteins (ammonia channels) in conjunction with apical V-type H+ ATPase and NHE3 exchangers in these processes are also explored. Nephrocalcinosis is an inflammation-like disorder due to the precipitation of calcareous material in the kidneys, and is listed as one of the most prevalent pathologies in land-based production of salmonids in recirculating aquaculture systems. The causative links underlying the pathogenesis and etiology of nephrocalcinosis in teleosts is speculative at best, but acid-base perturbation is probably a central pathophysiological cause. Relevant risk factors associated with nephrocalcinosis are hypercapnia and hyperoxia in the culture water. These raise internal CO2 levels in the fish, triggering complex branchial and renal acid-base compensations which may promote formation of kidney stones. However, increased salt loads through the rearing water and the feed may increase the prevalence of nephrocalcinosis. An increased understanding of the kidneys role in acid-base and ion regulation and how this relates to renal diseases such as nephrocalcinosis will have applied relevance for the biologist and aquaculturist alike.
Collapse
Affiliation(s)
- Marius Takvam
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Chris M. Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - H. Kryvi
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Tom O. Nilsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
2
|
Takvam M, Wood CM, Kryvi H, Nilsen TO. Ion Transporters and Osmoregulation in the Kidney of Teleost Fishes as a Function of Salinity. Front Physiol 2021; 12:664588. [PMID: 33967835 PMCID: PMC8098666 DOI: 10.3389/fphys.2021.664588] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
Euryhaline teleosts exhibit major changes in renal function as they move between freshwater (FW) and seawater (SW) environments, thus tolerating large fluctuations in salinity. In FW, the kidney excretes large volumes of water through high glomerular filtration rates (GFR) and low tubular reabsorption rates, while actively reabsorbing most ions at high rates. The excreted product has a high urine flow rate (UFR) with a dilute composition. In SW, GFR is greatly reduced, and the tubules reabsorb as much water as possible, while actively secreting divalent ions. The excreted product has a low UFR, and is almost isosmotic to the blood plasma, with Mg2+, SO42–, and Cl– as the major ionic components. Early studies at the organismal level have described these basic patterns, while in the last two decades, studies of regulation at the cell and molecular level have been implemented, though only in a few euryhaline groups (salmonids, eels, tilapias, and fugus). There have been few studies combining the two approaches. The aim of the review is to integrate known aspects of renal physiology (reabsorption and secretion) with more recent advances in molecular water and solute physiology (gene and protein function of transporters). The renal transporters addressed include the subunits of the Na+, K+- ATPase (NKA) enzyme, monovalent ion transporters for Na+, Cl–, and K+ (NKCC1, NKCC2, CLC-K, NCC, ROMK2), water transport pathways [aquaporins (AQP), claudins (CLDN)], and divalent ion transporters for SO42–, Mg2+, and Ca2+ (SLC26A6, SLC26A1, SLC13A1, SLC41A1, CNNM2, CNNM3, NCX1, NCX2, PMCA). For each transport category, we address the current understanding at the molecular level, try to synthesize it with classical knowledge of overall renal function, and highlight knowledge gaps. Future research on the kidney of euryhaline fishes should focus on integrating changes in kidney reabsorption and secretion of ions with changes in transporter function at the cellular and molecular level (gene and protein verification) in different regions of the nephrons. An increased focus on the kidney individually and its functional integration with the other osmoregulatory organs (gills, skin and intestine) in maintaining overall homeostasis will have applied relevance for aquaculture.
Collapse
Affiliation(s)
- Marius Takvam
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,NORCE, Norwegian Research Centre, NORCE Environment, Bergen, Norway
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Harald Kryvi
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Tom O Nilsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,NORCE, Norwegian Research Centre, NORCE Environment, Bergen, Norway
| |
Collapse
|
3
|
Wood CM, Pelster B, Braz-Mota S, Val AL. Gills versus kidney for ionoregulation in the obligate air-breathing Arapaima gigas, a fish with a kidney in its air-breathing organ. J Exp Biol 2020; 223:jeb232694. [PMID: 32895323 DOI: 10.1242/jeb.232694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/19/2020] [Indexed: 12/19/2022]
Abstract
In Arapaima gigas, an obligate air-breather endemic to ion-poor Amazonian waters, a large complex kidney runs through the air-breathing organ (ABO). Previous indirect evidence suggested that the kidney, relative to the small gills, may be exceptionally important in ionoregulation and nitrogen (N) waste excretion, with support of kidney function by direct O2 supply from the airspace. We tested these ideas by continuous urine collection and gill flux measurements in ∼700 g fish. ATPase activities were many-fold greater in kidney than gills. In normoxia, gill Na+ influx and efflux were in balance, with net losses of Cl- and K+ Urine flow rate (UFR, ∼11 ml kg-1 h-1) and urinary ions (< 0.2 mmol l-1) were exceptional, with [urine]:[plasma] ratios of 0.02-0.002 for K+, Na+, and Cl-, indicating strong reabsorption with negligible urinary ion losses. Urinary [ammonia] was very high (10 mmol l-1, [urine]:[plasma] ∼17) indicating strong secretion. The kidney accounted for 21-24% of N excretion, with ammonia dominating (95%) over urea-N through both routes. High urinary [ammonia] was coupled to high urinary [HCO3-]. Aerial hypoxia (15.3 kPa) and aerial hyperoxia (>40.9 kPa) had no effects on UFR, but both inhibited branchial Na+ influx, revealing novel aspects of the osmorespiratory compromise. Aquatic hypoxia (4.1 kPa), but not aquatic hyperoxia (>40.9 kPa), inhibited gill Na+ influx, UFR and branchial and urinary ammonia excretion. We conclude that the kidney is more important than gills in ionoregulation, and is significant in N excretion. Although not definitive, our results do not indicate direct O2 supply from the ABO for kidney function.
Collapse
Affiliation(s)
- Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
- Department of Biology, McMaster University, Hamilton, ON, Canada L8S 4K1
| | - Bernd Pelster
- Institute of Zoology, University of Innsbruck, Innsbruck A-6020, Austria
- Center for Molecular Biosciences, University Innsbruck, Innsbruck A-6020, Austria
| | - Susana Braz-Mota
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus 69080-971, Brazil
| | - Adalberto L Val
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus 69080-971, Brazil
| |
Collapse
|
4
|
Fehsenfeld S, Wood CM. A potential role for hyperpolarization-activated cyclic nucleotide-gated sodium/potassium channels (HCNs) in teleost acid-base and ammonia regulation. Comp Biochem Physiol B Biochem Mol Biol 2020; 248-249:110469. [PMID: 32653509 DOI: 10.1016/j.cbpb.2020.110469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 11/27/2022]
Abstract
Increasing evidence suggests the involvement of hyperpolarization-activated cyclic nucleotide-gated sodium/potassium channels (HCNs) not only in cardiac and neural function, but also in more general physiological processes including acid-base and ammonia regulation. We have identified four different HCN paralogs/isoforms in the goldfish Carassius auratus (CaHCN1, CaHCN2b, CaHCN4a and CaHCN4b) as likely candidates to contribute to renal, branchial and intestinal acid-base and ammonia regulation in this teleost. Quantitative real-time PCR showed not only high mRNA abundance of all isoforms in heart and brain, but also detectable levels (particularly of CaHCN2b and CaHCN4b) in non-excitable tissues, including gills and kidneys. In response to an internal or external acid-base and/or ammonia disturbance caused by feeding or high environmental ammonia, respectively, we observed differential and tissue-specific changes in mRNA abundance of all isoforms except CaHCN4b. Furthermore, our data suggest that the functions of specific HCN channels are supplemented by certain Rhesus glycoprotein functions to help in the protection of tissues from elevated ammonia levels, or as potential direct routes for ammonia transport in gills, kidney, and gut. The present results indicate important individual roles for each HCN isoform in response to acid-base and ammonia disturbances.
Collapse
Affiliation(s)
- Sandra Fehsenfeld
- Université du Quebec à Rimouski, Département de biologie, chimie et géographie, 300 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada; University of British Columbia, Department of Zoology, 4200 - 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada.
| | - Chris M Wood
- University of British Columbia, Department of Zoology, 4200 - 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
5
|
Lawrence MJ, Raby GD, Teffer AK, Jeffries KM, Danylchuk AJ, Eliason EJ, Hasler CT, Clark TD, Cooke SJ. Best practices for non-lethal blood sampling of fish via the caudal vasculature. JOURNAL OF FISH BIOLOGY 2020; 97:4-15. [PMID: 32243570 DOI: 10.1111/jfb.14339] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 05/07/2023]
Abstract
Blood sampling through the caudal vasculature is a widely used technique in fish biology for investigating organismal health and physiology. In live fishes, it can provide a quick, easy and relatively non-invasive method for obtaining a blood sample (cf. cannulation and cardiac puncture). Here, a general set of recommendations are provided for optimizing the blood sampling protocol that reflects best practices in animal welfare and sample integrity. This includes selecting appropriate use of anaesthetics for blood sampling as well as restraint techniques for situations where sedation is not used. In addition, ideal sampling environments where the fish can freely ventilate and strategies for minimizing handling time are discussed. This study summarizes the techniques used for extracting blood from the caudal vasculature in live fishes, highlighting the phlebotomy itself, the timing of sampling events and acceptable blood sample volumes. This study further discuss considerations for selecting appropriate physiological metrics when sampling in the caudal region and the potential benefits that this technique provides with respect to long-term biological assessments. Although general guidelines for blood sampling are provided here, it should be recognized that contextual considerations (e.g., taxonomic diversity, legal matters, environmental constraints) may influence the approach to blood sampling. Overall, it can be concluded that when done properly, blood sampling live fishes through the caudal vasculature is quick, efficient and minimally invasive, thus promoting conditions where live release of focal animals is possible.
Collapse
Affiliation(s)
- Michael J Lawrence
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Sciences, Carleton University, Ottawa, Ontario, Canada
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Graham D Raby
- Great Lakes Institute for Environmental Science, University of Windsor, Windsor, Ontario, Canada
| | - Amy K Teffer
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Ken M Jeffries
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andy J Danylchuk
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Erika J Eliason
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California, USA
| | - Caleb T Hasler
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada
| | - Timothy D Clark
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Sciences, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
Lawrence MJ, Eliason EJ, Zolderdo AJ, Lapointe D, Best C, Gilmour KM, Cooke SJ. Cortisol modulates metabolism and energy mobilization in wild-caught pumpkinseed (Lepomis gibbosus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1813-1828. [PMID: 31300974 DOI: 10.1007/s10695-019-00680-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
Acute elevation of cortisol via activation of the hypothalamic-pituitary-interrenal (HPI) axis aids the fish in dealing with a stressor. However, chronic elevation of cortisol has detrimental effects and has been studied extensively in lab settings. However, data pertaining to wild teleosts are lacking. Here, we characterized the metabolic consequences of prolonged cortisol elevation (96 h) in wild-caught pumpkinseed (Lepomis gibbosus). Pumpkinseed were implanted with cocoa butter alone (sham) or containing cortisol (25 mg kg-1 body weight), and at 24, 48, 72, and 96 h, tissue samples were collected, whole-body ammonia excretion was determined, and whole-organism metabolism was assessed using intermittent flow respirometry. Cortisol-treated pumpkinseed exhibited the highest plasma cortisol concentration at 24 h post-implantation, with levels decreasing over the subsequent time points although remaining higher than in sham-treated fish. Cortisol-treated fish exhibited higher standard and maximal metabolic rates than sham-treated fish, but the effect of cortisol treatment on aerobic scope was negligible. Indices of energy synthesis/mobilization, including blood glucose concentrations, hepatosomatic index, hepatic glycogen concentrations, and ammonia excretion rates, were higher in cortisol-treated fish compared with controls. Our work suggests that although aerobic scope was not diminished by prolonged elevation of cortisol levels, higher metabolic expenditures may be of detriment to the animal's performance in the longer term.
Collapse
Affiliation(s)
- Michael J Lawrence
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada.
| | - Erika J Eliason
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93117, USA
| | - Aaron J Zolderdo
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
- Queen's University Biological Station, Queen's University, Elgin, ON, K0G 1E0, Canada
| | - Dominique Lapointe
- St. Lawrence River Institute of Environmental Sciences, Cornwall, ON, K6H 4Z1, Canada
| | - Carol Best
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Kathleen M Gilmour
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| |
Collapse
|
7
|
Hao M, Zuo Q, Zhang W, Feng Y, Wang L, Yu L, Zhang X, Li J, Huang Z. Toxicological Assessment of Ammonia Exposure on Carassius auratus red var. Living in Landscape Waters. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 103:814-821. [PMID: 31606772 DOI: 10.1007/s00128-019-02728-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
To understand the toxic mechanism of ammonia and identify effective biomarkers on the oxidative stress for the fish Carassius auratus red var., acute and chronic toxicity tests were conducted. The 96-h LC50 of total ammonia nitrogen (TAN) for C. auratus was 135.4 mg L-1, the corresponding unionized ammonia (NH3) concentration was 1.5 mg L-1. The activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutathione-peroxidase (GSH-Px) and glutathione (GSH) showed an increase with a subsequent falling, while the malondialdehyde (MDA) increased during the chronic test. The SOD, MDA, and GSH could be effective biomarkers to evaluate the TAN oxidative stress, the maximum acceptable toxicant concentration (MATC) was 11.3 mg L-1 for TAN. To our knowledge, this is the first study to propose biomarkers to evaluate potential environmental risk and establish a risk threshold for TAN in C. auratus.
Collapse
Affiliation(s)
- Minghui Hao
- School of Water Conservancy Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Qiting Zuo
- School of Water Conservancy Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
- Zhengzhou Key Laboratory of Water Resource and Environment, Zhengzhou, 450001, China
- Henan Key Laboratory of Groundwater Pollution Prevention and Rehabilitation, Zhengzhou, 450001, China
| | - Wei Zhang
- School of Water Conservancy Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
- Zhengzhou Key Laboratory of Water Resource and Environment, Zhengzhou, 450001, China
- Henan Key Laboratory of Groundwater Pollution Prevention and Rehabilitation, Zhengzhou, 450001, China
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan, Henan, 467036, China
| | - Yakun Feng
- School of Water Conservancy Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Li Wang
- School of Water Conservancy Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.
| | - Luji Yu
- School of Water Conservancy Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Xu Zhang
- School of Water Conservancy Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Jing Li
- School of Water Conservancy Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Zehan Huang
- School of Water Conservancy Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| |
Collapse
|
8
|
Burggren W, Bautista N. Invited review: Development of acid-base regulation in vertebrates. Comp Biochem Physiol A Mol Integr Physiol 2019; 236:110518. [DOI: 10.1016/j.cbpa.2019.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/26/2022]
|
9
|
Fehsenfeld S, Kolosov D, Wood CM, O'Donnell MJ. Section-specific H + flux in renal tubules of fasted and fed goldfish. ACTA ACUST UNITED AC 2019; 222:jeb.200964. [PMID: 31138633 DOI: 10.1242/jeb.200964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022]
Abstract
A recent study demonstrated that in response to a feeding-induced metabolic acidosis, goldfish (Carassius auratus) adjust epithelial protein and/or mRNA expression in their kidney tubules for multiple transporters known to be relevant for acid-base regulation. These include Na+/H+ exchanger (NHE), V-type H+-ATPase (V-ATPase), cytoplasmic carbonic anhydrase, HCO3 - transporters and Rhesus proteins. Consequently, renal acid output in the form of protons and NH4 + increases. However, little is known about the mechanistic details of renal acid-base regulation in C. auratus and teleost fishes in general. The present study applied the scanning ion-selective electrode technique (SIET) to measure proton flux in proximal, distal and connecting tubules of goldfish. We detected increased H+ efflux into the extracellular fluid from the tubule in fed animals, resulting from paracellular back-flux of H+ through the tight junction. By applying inhibitors for selected acid-base regulatory epithelial transporters, we found that cytosolic carbonic anhydrase and HCO3 - transporters were important in mediating H+ flux in all three tubule segments of fed goldfish. Contrastingly, V-ATPase seemed to play a role in H+ flux only in proximal and distal tubules, and NHE in proximal and connecting tubules. We developed working models for transport of acid-base relevant equivalents (H+, HCO3 -, NH3/NH4 +) for each tubule segment in C. auratus kidney. While the proximal tubule appears to play a major role in both H+ secretion and HCO3 - reabsorption, the distal and connecting tubules seem to mainly serve for HCO3 - reabsorption and NH3/NH4 + secretion.
Collapse
Affiliation(s)
- Sandra Fehsenfeld
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, QC, G5L 3A1, Canada .,Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Dennis Kolosov
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.,Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | | |
Collapse
|
10
|
Thinh PV, Thanh Huong DT, Gam LTH, Damsgaard C, Phuong NT, Bayley M, Wang T. Renal acid excretion contributes to acid-base regulation during hypercapnia in air-exposed swamp eel ( Monopterus albus). ACTA ACUST UNITED AC 2019; 222:jeb.198259. [PMID: 30975740 DOI: 10.1242/jeb.198259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/07/2019] [Indexed: 02/02/2023]
Abstract
The swamp eel (Monopterus albus) uses its buccal cavity to air breathe, while the gills are strongly reduced. It burrows into mud during the dry season, is highly tolerant of air exposure, and experiences severe hypoxia both in its natural habitat and in aquaculture. To study the ability of M. albus to compensate for respiratory acidosis, we implanted catheters to sample both arterial blood and urine during hypercapnia (4% CO2) in either water or air, or during whole-animal air exposure. These hypercapnic challenges caused an immediate reduction in arterial pH, followed by progressive compensation through a marked elevation of plasma HCO3 - over the course of 72 h. There was no appreciable rise in urinary acid excretion in fish exposed to hypercapnia in water, although urine pH was reduced and ammonia excretion did increase. In the air-exposed fish, however, hypercapnia was attended by a large elevation of ammonia in the urine and a large rise in titratable acid excretion. The time course of the increased renal acid excretion overlapped with the time period required to elevate plasma HCO3 -, and we estimate that the renal compensation contributed significantly to whole-body acid-base compensation.
Collapse
Affiliation(s)
- Phan Vinh Thinh
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam.,Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| | - Do Thi Thanh Huong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam
| | - Le Thi Hong Gam
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam
| | - Christian Damsgaard
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| | - Nguyen Thanh Phuong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam
| | - Mark Bayley
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| | - Tobias Wang
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark .,Aarhus Institute of Advanced Studies, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
11
|
Fehsenfeld S, Wood CM. Section-specific expression of acid-base and ammonia transporters in the kidney tubules of the goldfish Carassius auratus and their responses to feeding. Am J Physiol Renal Physiol 2018; 315:F1565-F1582. [PMID: 30089033 DOI: 10.1152/ajprenal.00510.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In teleost fishes, renal contributions to acid-base and ammonia regulation are often neglected compared with the gills. In goldfish, increased renal acid excretion in response to feeding was indicated by increased urine ammonia and inorganic phosphate concentrations and decreased urine pH. By microdissecting the kidney tubules and performing quantitative real-time PCR and/or immunohistochemistry, we profiled the section-specific expression of glutamate dehydrogenase (GDH), glutamine synthetase (GS), Na+/H+-exchanger 3 (NHE3), carbonic anhydrase II (CAIIa), V-H+-ATPase subunit 1b, Cl-/ HCO3- -exchanger 1 (AE1), Na+/ HCO3- -cotransporter 1 (NBC1), Na+/K+-ATPase subunit 1α, and Rhesus-proteins Rhbg, Rhcg1a, and Rhcg1b. Here, we show for the first time that 1) the proximal tubule appears to be the major site for ammoniagenesis, 2) epithelial transporters are differentially expressed along the renal tubule, and 3) a potential feeding-related "acidic tide" results in the differential regulation of epithelial transporters, resembling the mammalian renal response to a metabolic acidosis. Specifically, GDH and NHE3 mRNAs were upregulated and GS downregulated in the proximal tubule upon feeding, suggesting this section as a major site for ammoniagenesis and acid secretion. The distal tubule may play a major role in renal ammonia secretion, with feeding-induced upregulation of mRNA and protein for apical NHE3, cytoplasmic CAIIa, universal Rhcg1a and apical Rhcg1b, and downregulation of basolateral Rhbg and AE1. Changes in mRNA expression of the Wolffian ducts and bladder suggest supporting roles in fine-tuning urine composition. The present study verifies an important renal contribution to acid-base balance and emphasizes that studies looking at the whole kidney may overlook key section-specific responses.
Collapse
Affiliation(s)
- Sandra Fehsenfeld
- University of British Columbia, Department of Zoology , Vancouver , Canada
| | - Chris M Wood
- University of British Columbia, Department of Zoology , Vancouver , Canada
| |
Collapse
|
12
|
Lawrence MJ, Jain-Schlaepfer S, Zolderdo AJ, Algera DA, Gilmour KM, Gallagher AJ, Cooke SJ. Are 3 minutes good enough for obtaining baseline physiological samples from teleost fish? CAN J ZOOL 2018. [DOI: 10.1139/cjz-2017-0093] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A prerequisite to studying the physiological status of wild animals is the ability to obtain blood samples that reflect the condition prior to capture or handling. Based on research in avian taxa, it is recommended that such samples be obtained within 3 min of capture; however, this guideline has not been validated in wild teleosts. The present study addresses the time course of physiological changes in a number of blood metrics across six species of freshwater fish. Fishes were caught using a standardized angling protocol and held in a water-filled trough prior to the collection of a blood sample, via caudal phlebotomy, between 0.5 and 11 min after capture. Changes in whole-blood glucose and lactate concentrations, hematocrit, and plasma cortisol concentrations were assessed. Change-point analyses indicated that blood lactate concentrations and hematocrit did not deviate from baseline values until ∼2–5 min of handling for all species, whereas blood glucose concentrations generally did not deviate significantly from baseline over the 11 min test period. In all species, plasma cortisol concentrations began to increase above baseline between ∼4 and 8 min after capture. Thus, to ensure that blood samples are representative of baseline conditions across multiple metrics, we recommend that sampling be limited to less than 2 min in teleost fishes.
Collapse
Affiliation(s)
- Michael J. Lawrence
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Sofia Jain-Schlaepfer
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- College of Marine and Environmental Sciences, James Cook University, Townsville, QLD, Australia, 4811
| | - Aaron J. Zolderdo
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Dirk A. Algera
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | | | - Austin J. Gallagher
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Beneath the Waves, Inc., Miami, FL 33133, USA
| | - Steven J. Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
13
|
Zheng J, Lin T, Chen W. Removal of the precursors of N-nitrosodiethylamine (NDEA), an emerging disinfection byproduct, in drinking water treatment process and its toxicity to adult zebrafish (Danio rerio). CHEMOSPHERE 2018; 191:1028-1037. [PMID: 29145131 DOI: 10.1016/j.chemosphere.2017.10.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/29/2017] [Accepted: 10/09/2017] [Indexed: 06/07/2023]
Abstract
N-nitrosodiethylamine (NDEA) is one of the emerging nitrogenous disinfection byproducts with probable cytotoxicity, genotoxicity, and carcinogenesis. Its potential toxicological effects have received extensive attention but remain to be poorly understood. In this study, changes in NDEA precursors in drinking water treatment process were studied using the trial of its formation potential (FP), and the toxicity induced by NDEA to adult zebrafish was investigated. NDEA FP in the raw water of Taihu Lake ranged from 46.9 to 68.3 ng/L. The NDEA precursors were removed effectively by O3/BAC process. Hydrophilic fraction and low-molecular-weight fraction (<1 kDa) had the highest NDEA FP. The toxicity results demonstrated that the acute lethal concentration of NDEA causing 50% mortality in 96 h (96-h LC50) was 210.4 mg/L, and NDEA was more likely to be accumulated in kidney, followed by liver and gill. NDEA induced oxidative stress and antioxidant defense to zebrafish metabolism system at concentrations over 5 μg/L. After a 42-day exposure, a significant DNA damage was observed in zebrafish liver cells at NDEA concentrations beyond 500 μg/L. This study investigated NDEA properties in both engineering prospective and toxicity evaluation, thus providing comprehensive information on its control in drinking water treatment process and its toxicity effect on zebrafish as a model animal.
Collapse
Affiliation(s)
- Jian Zheng
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Wei Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
14
|
Wood CM, Gonzalez RJ, Ferreira MS, Braz-Mota S, Val AL. The physiology of the Tambaqui (Colossoma macropomum) at pH 8.0. J Comp Physiol B 2017; 188:393-408. [DOI: 10.1007/s00360-017-1137-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/05/2017] [Accepted: 11/17/2017] [Indexed: 12/20/2022]
|
15
|
Lawrence MJ, Eliason EJ, Brownscombe JW, Gilmour KM, Mandelman JW, Cooke SJ. An experimental evaluation of the role of the stress axis in mediating predator-prey interactions in wild marine fish. Comp Biochem Physiol A Mol Integr Physiol 2017; 207:21-29. [DOI: 10.1016/j.cbpa.2017.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 01/20/2017] [Accepted: 02/01/2017] [Indexed: 02/03/2023]
|
16
|
Kersten S, Arjona FJ. Ion transport in the zebrafish kidney from a human disease angle: possibilities, considerations, and future perspectives. Am J Physiol Renal Physiol 2017; 312:F172-F189. [DOI: 10.1152/ajprenal.00425.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/11/2016] [Accepted: 11/14/2016] [Indexed: 12/31/2022] Open
Abstract
Unique experimental advantages, such as its embryonic/larval transparency, high-throughput nature, and ease of genetic modification, underpin the rapid emergence of the zebrafish ( Danio rerio) as a preeminent model in biomedical research. Particularly in the field of nephrology, the zebrafish provides a promising model for studying the physiological implications of human solute transport processes along consecutive nephron segments. However, although the zebrafish might be considered a valuable model for numerous renal ion transport diseases and functional studies of many channels and transporters, not all human renal electrolyte transport mechanisms and human diseases can be modeled in the zebrafish. With this review, we explore the ontogeny of zebrafish renal ion transport, its nephron structure and function, and thereby demonstrate the clinical translational value of this model. By critical assessment of genomic and amino acid conservation of human proteins involved in renal ion handling (channels, transporters, and claudins), kidney and nephron segment conservation, and renal electrolyte transport physiology in the zebrafish, we provide researchers and nephrologists with an indication of the possibilities and considerations of the zebrafish as a model for human renal ion transport. Combined with advanced techniques envisioned for the future, implementation of the zebrafish might expand beyond unraveling pathophysiological mechanisms that underlie distinct genetic or environmentally, i.e., pharmacological and lifestyle, induced renal transport deficits. Specifically, the ease of drug administration and the exploitation of improved genetic approaches might argue for the adoption of the zebrafish as a model for preclinical personalized medicine for distinct renal diseases and renal electrolyte transport proteins.
Collapse
Affiliation(s)
- Simone Kersten
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; and
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Francisco J. Arjona
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; and
| |
Collapse
|
17
|
Davis BE, Miller NA, Flynn EE, Todgham AE. Juvenile Antarctic rockcod (Trematomus bernacchii) are physiologically robust to CO2-acidified seawater. ACTA ACUST UNITED AC 2016; 219:1203-13. [PMID: 26944503 DOI: 10.1242/jeb.133173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/15/2016] [Indexed: 01/04/2023]
Abstract
To date, numerous studies have shown negative impacts of CO2-acidified seawater (i.e. ocean acidification, OA) on marine organisms, including calcifying invertebrates and fishes; however, limited research has been conducted on the physiological effects of OA on polar fishes and even less on the impact of OA on early developmental stages of polar fishes. We evaluated aspects of aerobic metabolism and cardiorespiratory physiology of juvenile emerald rockcod, ITALIC! Trematomus bernacchii, an abundant fish in the Ross Sea, Antarctica, to elevated partial pressure of carbon dioxide ( ITALIC! PCO2 ) [420 (ambient), 650 (moderate) and 1050 (high) μatm ITALIC! PCO2 ] over a 1 month period. We examined cardiorespiratory physiology, including heart rate, stroke volume, cardiac output and ventilation rate, whole organism metabolism via oxygen consumption rate and sub-organismal aerobic capacity by citrate synthase enzyme activity. Juvenile fish showed an increase in ventilation rate under high ITALIC! PCO2 compared with ambient ITALIC! PCO2 , whereas cardiac performance, oxygen consumption and citrate synthase activity were not significantly affected by elevated ITALIC! PCO2 Acclimation time had a significant effect on ventilation rate, stroke volume, cardiac output and citrate synthase activity, such that all metrics increased over the 4 week exposure period. These results suggest that juvenile emerald rockcod are robust to near-future increases in OA and may have the capacity to adjust for future increases in ITALIC! PCO2 by increasing acid-base compensation through increased ventilation.
Collapse
Affiliation(s)
- Brittany E Davis
- Department of Animal Sciences, University of California Davis, Davis, CA 95616, USA Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, CA 95616, USA
| | - Nathan A Miller
- Department of Animal Sciences, University of California Davis, Davis, CA 95616, USA Romberg Tiburon Center for Environmental Studies, San Francisco State University, Tiburon, CA 94920, USA
| | - Erin E Flynn
- Department of Animal Sciences, University of California Davis, Davis, CA 95616, USA
| | - Anne E Todgham
- Department of Animal Sciences, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|