1
|
Létocart AJ, Svensson RB, Mabesoone F, Charleux F, Marin F, Dermigny Q, Magnusson SP, Couppé C, Grosset JF. Structure and function of Achilles and patellar tendons following moderate slow resistance training in young and old men. Eur J Appl Physiol 2024; 124:2707-2723. [PMID: 38649478 DOI: 10.1007/s00421-024-05461-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/05/2024] [Indexed: 04/25/2024]
Abstract
The aim of this study was to investigate the effect of aging and resistance training with a moderate load on the size and mechanical properties of the patellar (PT) and Achilles tendon (AT) and their associated aponeuroses; medial gastrocnemius (MG) and vastus lateralis (VL). Young (Y55; 24.8 ± 3.8 yrs, n = 11) and old men (O55; 70.0 ± 4.6 yrs, n = 13) were assigned to undergo a training program (12 weeks; 3 times/week) of moderate slow resistance training [55% of one repetition maximum (RM)] of the triceps surae and quadriceps muscles. Tendon dimensions were assessed using 1.5 T magnetic resonance imaging before and after 12 weeks. AT and PT cross sectional area (CSA) were determined every 10% of tendon length. Mechanical properties of the free AT, MG aponeurosis, PT, and VL aponeurosis were assessed using ultrasonography (deformation) and tendon force measurements. CSA of the AT but not PT was greater in O55 compared with Y55. At baseline, mechanical properties were generally lower in O55 than Y55 for AT, MG aponeurosis and VL aponeurosis (Young's modulus) but not for PT. CSA of the AT and PT increased equally in both groups following training. Further, for a given force, stiffness and Young's modulus also increased equally for VL aponeurosis and AT, for boths groups. The present study highlights that except for the PT, older men have lower tendon (AT, MG aponeurosis, and VL aponeurosis) mechanical properties than young men and 12-weeks of moderate slow resistance training appears sufficient to improve tendon size and mechanical adaptations in both young and older men. New and Noteworthy: These novel findings suggest that short-term moderate slow resistance training induces equal improvements in tendon size and mechanics regardless of age.
Collapse
Affiliation(s)
- Adrien J Létocart
- UMR CNRS 7338 Biomécanique et Bioingénierie, Sorbonne Universités, Université de Technologie de Compiègne, 60205, Compiègne Cedex, France.
| | - René B Svensson
- Department of Physical and Occupational Therapy, Bispebjerg-Frederiksberg Hospitals, Copenhagen, Denmark
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Frédéric Marin
- UMR CNRS 7338 Biomécanique et Bioingénierie, Sorbonne Universités, Université de Technologie de Compiègne, 60205, Compiègne Cedex, France
| | - Quentin Dermigny
- UMR CNRS 7338 Biomécanique et Bioingénierie, Sorbonne Universités, Université de Technologie de Compiègne, 60205, Compiègne Cedex, France
| | - S Peter Magnusson
- Department of Physical and Occupational Therapy, Bispebjerg-Frederiksberg Hospitals, Copenhagen, Denmark
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Christian Couppé
- Department of Physical and Occupational Therapy, Bispebjerg-Frederiksberg Hospitals, Copenhagen, Denmark
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Jean-François Grosset
- UMR CNRS 7338 Biomécanique et Bioingénierie, Sorbonne Universités, Université de Technologie de Compiègne, 60205, Compiègne Cedex, France.
| |
Collapse
|
2
|
Aggouras AN, Stowe EJ, Mlawer SJ, Connizzo BK. Aged Tendons Exhibit Altered Mechanisms of Strain-Dependent Extracellular Matrix Remodeling. J Biomech Eng 2024; 146:071009. [PMID: 38584416 PMCID: PMC11080950 DOI: 10.1115/1.4065270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024]
Abstract
Aging is a primary risk factor for degenerative tendon injuries, yet the etiology and progression of this degeneration are poorly understood. While aged tendons have innate cellular differences that support a reduced ability to maintain mechanical tissue homeostasis, the response of aged tendons to altered levels of mechanical loading has not yet been studied. To address this question, we subjected young and aged murine flexor tendon explants to various levels of in vitro tensile strain. We first compared the effect of static and cyclic strain on matrix remodeling in young tendons, finding that cyclic strain is optimal for studying remodeling in vitro. We then investigated the remodeling response of young and aged tendon explants after 7 days of varied mechanical stimulus (stress deprivation, 1%, 3%, 5%, or 7% cyclic strain) via assessment of tissue composition, biosynthetic capacity, and degradation profiles. We hypothesized that aged tendons would show muted adaptive responses to changes in tensile strain and exhibit a shifted mechanical setpoint, at which the remodeling balance is optimal. Interestingly, we found that 1% cyclic strain best maintains native physiology while promoting extracellular matrix (ECM) turnover for both age groups. However, aged tendons display fewer strain-dependent changes, suggesting a reduced ability to adapt to altered levels of mechanical loading. This work has a significant impact on understanding the regulation of tissue homeostasis in aged tendons, which can inform clinical rehabilitation strategies for treating elderly patients.
Collapse
Affiliation(s)
- Anthony N. Aggouras
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02115
- Boston University
| | - Emma J. Stowe
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02115
| | - Samuel J. Mlawer
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02115
- Boston University
| | - Brianne K. Connizzo
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02115
| |
Collapse
|
3
|
Lambrianides Y, Epro G, Arampatzis A, Karamanidis K. Evidence of different sensitivity of muscle and tendon to mechano-metabolic stimuli. Scand J Med Sci Sports 2024; 34:e14638. [PMID: 38671559 DOI: 10.1111/sms.14638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/25/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
This study aimed to examine the temporal dynamics of muscle-tendon adaptation and whether differences between their sensitivity to mechano-metabolic stimuli would lead to non-uniform changes within the triceps surae (TS) muscle-tendon unit (MTU). Twelve young adults completed a 12-week training intervention of unilateral isometric cyclic plantarflexion contractions at 80% of maximal voluntary contraction until failure to induce a high TS activity and hence metabolic stress. Each participant trained one limb at a short (plantarflexed position, 115°: PF) and the other at a long (dorsiflexed position, 85°: DF) MTU length to vary the mechanical load. MTU mechanical, morphological, and material properties were assessed biweekly via simultaneous ultrasonography-dynamometry and magnetic resonance imaging. Our hypothesis that tendon would be more sensitive to the operating magnitude of tendon strain but less to metabolic stress exercise was confirmed as tendon stiffness, Young's modulus, and tendon size were only increased in the DF condition following the intervention. The PF leg demonstrated a continuous increment in maximal AT strain (i.e., higher mechanical demand) over time along with lack of adaptation in its biomechanical properties. The premise that skeletal muscle adapts at a higher rate than tendon and does not require high mechanical load to hypertrophy or increase its force potential during exercise was verified as the adaptive changes in morphological and mechanical properties of the muscle did not differ between DF and PF. Such differences in muscle-tendon sensitivity to mechano-metabolic stimuli may temporarily increase MTU imbalances that could have implications for the risk of tendon overuse injury.
Collapse
Affiliation(s)
- Yiannis Lambrianides
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London, UK
| | - Gaspar Epro
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London, UK
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kiros Karamanidis
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London, UK
- Department of Sport Science, Faculty for Mathematics and Natural Sciences, University of Koblenz, Koblenz, Germany
| |
Collapse
|
4
|
Tsai MS, Domroes T, Pentidis N, Koschinski S, Schroll A, Bohm S, Arampatzis A, Mersmann F. Effect of the temporal coordination and volume of cyclic mechanical loading on human Achilles tendon adaptation in men. Sci Rep 2024; 14:6875. [PMID: 38519507 PMCID: PMC10960029 DOI: 10.1038/s41598-024-56840-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
Human tendons adapt to mechanical loading, yet there is little information on the effect of the temporal coordination of loading and recovery or the dose-response relationship. For this reason, we assigned adult men to either a control or intervention group. In the intervention group, the two legs were randomly assigned to one of five high-intensity Achilles tendon (AT) loading protocols (i.e., 90% maximum voluntary contraction and approximately 4.5 to 6.5% tendon strain) that were systematically modified in terms of loading frequency (i.e., sessions per week) and overall loading volume (i.e., total time under loading). Before, at mid-term (8 weeks) and after completion of the 16 weeks intervention, AT mechanical properties were determined using a combination of inverse dynamics and ultrasonography. The cross-sectional area (CSA) and length of the free AT were measured using magnetic resonance imaging pre- and post-intervention. The data analysis with a linear mixed model showed significant increases in muscle strength, rest length-normalized AT stiffness, and CSA of the free AT in the intervention group (p < 0.05), yet with no marked differences between protocols. No systematic effects were found considering the temporal coordination of loading and overall loading volume. In all protocols, the major changes in normalized AT stiffness occurred within the first 8 weeks and were mostly due to material rather than morphological changes. Our findings suggest that-in the range of 2.5-5 sessions per week and 180-300 s total high strain loading-the temporal coordination of loading and recovery and overall loading volume is rather secondary for tendon adaptation.
Collapse
Affiliation(s)
- Meng-Shiuan Tsai
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Berlin, Germany
| | - Theresa Domroes
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Berlin, Germany
| | - Nikolaos Pentidis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Berlin, Germany
| | - Sophia Koschinski
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Berlin, Germany
| | - Arno Schroll
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Berlin, Germany
| | - Sebastian Bohm
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Berlin, Germany
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Berlin, Germany
| | - Falk Mersmann
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.
- Berlin School of Movement Science, Berlin, Germany.
| |
Collapse
|
5
|
Aggouras AN, Stowe EJ, Mlawer SJ, Connizzo BK. Aged Tendons Exhibit Altered Mechanisms of Strain-Dependent Extracellular Matrix Remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577397. [PMID: 38352312 PMCID: PMC10862756 DOI: 10.1101/2024.01.26.577397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Aging is a primary risk factor for degenerative tendon injuries, yet the etiology and progression of this degeneration is poorly understood. While aged tendons have innate cellular differences that support a reduced ability to maintain mechanical tissue homeostasis, the response of aged tendons to altered levels of mechanical loading has not yet been studied. To address this question, we subjected young and aged murine flexor tendon explants to various levels of in vitro tensile strain. We first compared the effect of static and cyclic strain on matrix remodeling in young tendons, finding that cyclic strain is optimal for studying remodeling in vitro. We then investigated the remodeling response of young and aged tendon explants after 7 days of varied mechanical stimulus (stress-deprivation, 1%, 3%, 5%, or 7% cyclic strain) via assessment of tissue composition, biosynthetic capacity, and degradation profiles. We hypothesized that aged tendons would show muted adaptive responses to changes in tensile strain and exhibit a shifted mechanical setpoint, at which the remodeling balance is optimal. Interestingly, we found 1% cyclic strain best maintains native physiology while promoting ECM turnover for both age groups. However, aged tendons display fewer strain-dependent changes, suggesting a reduced ability to adapt to altered levels of mechanical loading. This work has significant impact in understanding the regulation of tissue homeostasis in aged tendons, which can inform clinical rehabilitation strategies for treating elderly patients.
Collapse
Affiliation(s)
- Anthony N. Aggouras
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA., 44 Cummington Mall, Boston, Massachusetts, USA, 02115
| | - Emma J. Stowe
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA., 44 Cummington Mall, Boston, Massachusetts, USA, 02115
| | - Samuel J. Mlawer
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA., 44 Cummington Mall, Boston, Massachusetts, USA, 02115
| | - Brianne K. Connizzo
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA., 44 Cummington Mall, Boston, Massachusetts, USA, 02115
| |
Collapse
|
6
|
Pimentel RE, Sawicki GS, Franz JR. Simulations suggest walking with reduced propulsive force would not mitigate the energetic consequences of lower tendon stiffness. PLoS One 2023; 18:e0293331. [PMID: 37883368 PMCID: PMC10602298 DOI: 10.1371/journal.pone.0293331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Aging elicits numerous effects that impact both musculoskeletal structure and walking function. Tendon stiffness (kT) and push-off propulsive force (FP) both impact the metabolic cost of walking and are diminished by age, yet their interaction has not been studied. We combined experimental and computational approaches to investigate whether age-related changes in function (adopting smaller FP) may be adopted to mitigate the metabolic consequences arising from changes in structure (reduced kT). We recruited 12 young adults and asked them to walk on a force-sensing treadmill while prompting them to change FP (±20% & ±40% of typical) using targeted biofeedback. In models driven by experimental data from each of those conditions, we altered the kT of personalized musculoskeletal models across a physiological range (2-8% strain) and simulated individual-muscle metabolic costs for each kT and FP combination. We found that kT and FP independently affect walking metabolic cost, increasing with higher kT or as participants deviated from their typical FP. Our results show no evidence for an interaction between kT and FP in younger adults walking at fixed speeds. We also reveal complex individual muscle responses to the kT and FP landscape. For example, although total metabolic cost increased by 5% on average with combined reductions in kT and FP, the triceps surae muscles experienced a 7% local cost reduction on average. Our simulations suggest that reducing FP during walking would not mitigate the metabolic consequences of lower kT. Wearable devices and rehabilitative strategies can focus on either kT or FP to reduce age-related increases in walking metabolic cost.
Collapse
Affiliation(s)
- Richard E. Pimentel
- Joint Department of Biomedical Engineering, UNC Chapel Hill and NC State University, Chapel Hill, North Carolina, United States of America
| | - Gregory S. Sawicki
- Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, Georgia, United States of America
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, Georgia, United States of America
| | - Jason R. Franz
- Joint Department of Biomedical Engineering, UNC Chapel Hill and NC State University, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
7
|
Thomas E, Ficarra S, Nakamura M, Paoli A, Bellafiore M, Palma A, Bianco A. Effects of Different Long-Term Exercise Modalities on Tissue Stiffness. SPORTS MEDICINE - OPEN 2022; 8:71. [PMID: 35657537 PMCID: PMC9166919 DOI: 10.1186/s40798-022-00462-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/13/2022] [Indexed: 11/10/2022]
Abstract
AbstractStiffness is a fundamental property of living tissues, which may be modified by pathologies or traumatic events but also by nutritional, pharmacological and exercise interventions. This review aimed to understand if specific forms of exercise are able to determine specific forms of tissue stiffness adaptations. A literature search was performed on PubMed, Scopus and Web of Science databases to identify manuscripts addressing adaptations of tissue stiffness as a consequence of long-term exercise. Muscular, connective, peripheral nerve and arterial stiffness were considered for the purpose of this review. Resistance training, aerobic training, plyometric training and stretching were retrieved as exercise modalities responsible for tissue stiffness adaptations. Differences were observed related to each specific modality. When exercise was applied to pathological cohorts (i.e. tendinopathy or hypertension), stiffness changed towards a physiological condition. Exercise interventions are able to determine tissue stiffness adaptations. These should be considered for specific exercise prescriptions. Future studies should concentrate on identifying the effects of exercise on the stiffness of specific tissues in a broader spectrum of pathological populations, in which a tendency for increased stiffness is observed.
Collapse
|
8
|
Couppé C, Svensson RB, Skovlund SV, Jensen JK, Eriksen CS, Malmgaard-Clausen NM, Nybing JD, Kjaer M, Magnusson SP. Habitual side-specific loading leads to structural, mechanical and compositional changes in the patellar tendon of young and senior life-long male athletes. J Appl Physiol (1985) 2021; 131:1187-1199. [PMID: 34382838 DOI: 10.1152/japplphysiol.00202.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Effects of life-long physical activity on tendon function have been investigated in cross-sectional studies, but these are at risk of "survivorship" bias. Here, we investigate if life-long side-specific loading is associated with greater cross-sectional area (CSA), mechanical properties, cell density (DNA content) and collagen cross-link composition of the male human patellar tendon (PT), in vivo. Nine seniors and six young male life-long elite badminton players and fencers were included. CSA of the PT obtained by 3-tesla MRI, and ultrasonography-based bilateral PT mechanics were assessed. Collagen fibril characteristics, enzymatic cross-links, non-enzymatic glycation (autofluorescence), collagen and DNA content were measured biochemically in PT biopsies. The elite athletes had a ≥15% side-to-side difference in maximal knee extensor strength, reflecting chronic unilateral sport-specific loading patterns. The PT CSA was greater on the lead extremity compared with the non-lead extremity (17 %, p=0.0001). Furthermore, greater tendon stiffness (18 %, p=0.0404) together with lower tendon stress (22 %, p=0.0005) and tendon strain (18 %, p=0.0433) were observed on the lead extremity. No effects were demonstrated from side-to-side for glycation, enzymatic cross-link, collagen, and DNA content (50%, p=0.1160). Moreover, tendon fibril density was 87±28 fibrils/μm2 on the lead extremity and 68±26 fibrils/μm2 on the non-lead extremity (28%, p=0.0544). Tendon fibril diameter was 86±14 nm on the lead extremity and 94±14 nm on the non-lead extremity (-9%, p=0.1076). These novel data suggest that life-long side-specific loading in males yields greater patellar tendon size and stiffness possibly with concomitant greater fibril density but without changes of collagen cross-link composition.
Collapse
Affiliation(s)
- Christian Couppé
- Institute of Sports Medicine Copenhagen, Bispebjerg-Frederiksberg Hospitals, Denmark.,Department of Physical and Occupational Therapy, Bispebjerg-Frederiksberg Hospitals, Denmark
| | - Rene B Svensson
- Institute of Sports Medicine Copenhagen, Bispebjerg-Frederiksberg Hospitals, Denmark
| | - Sebastian V Skovlund
- Institute of Sports Medicine Copenhagen, Bispebjerg-Frederiksberg Hospitals, Denmark.,Department of Physical and Occupational Therapy, Bispebjerg-Frederiksberg Hospitals, Denmark
| | | | | | | | - Janus Damm Nybing
- Department of Radiology, Bispebjerg-Frederiksberg Hospitals, Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Bispebjerg-Frederiksberg Hospitals, Denmark
| | - S Peter Magnusson
- Institute of Sports Medicine Copenhagen, Bispebjerg-Frederiksberg Hospitals, Denmark.,Department of Physical and Occupational Therapy, Bispebjerg-Frederiksberg Hospitals, Denmark
| |
Collapse
|
9
|
Quinlan JI, Franchi MV, Gharahdaghi N, Badiali F, Francis S, Hale A, Phillips BE, Szewczyk N, Greenhaff PL, Smith K, Maganaris C, Atherton PJ, Narici MV. Muscle and tendon adaptations to moderate load eccentric vs. concentric resistance exercise in young and older males. GeroScience 2021; 43:1567-1584. [PMID: 34196903 PMCID: PMC8492846 DOI: 10.1007/s11357-021-00396-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Resistance exercise training (RET) is well-known to counteract negative age-related changes in both muscle and tendon tissue. Traditional RET consists of both concentric (CON) and eccentric (ECC) contractions; nevertheless, isolated ECC contractions are metabolically less demanding and, thus, may be more suitable for older populations. However, whether submaximal (60% 1RM) CON or ECC contractions differ in their effectiveness is relatively unknown. Further, whether the time course of muscle and tendon adaptations differs to the above is also unknown. Therefore, this study aimed to establish the time course of muscle and tendon adaptations to submaximal CON and ECC RET. Twenty healthy young (24.5 ± 5.1 years) and 17 older males (68.1 ± 2.4 years) were randomly allocated to either isolated CON or ECC RET which took place 3/week for 8 weeks. Tendon biomechanical properties, muscle architecture and maximal voluntary contraction were assessed every 2 weeks and quadriceps muscle volume every 4 weeks. Positive changes in tendon Young's modulus were observed after 4 weeks in all groups after which adaptations in young males plateaued but continued to increase in older males, suggesting a dampened rate of adaptation with age. However, both CON and ECC resulted in similar overall changes in tendon Young's modulus, in all groups. Muscle hypertrophy and strength increases were similar between CON and ECC in all groups. However, pennation angle increases were greater in CON, and fascicle length changes were greater in ECC. Notably, muscle and tendon adaptations appeared to occur in synergy, presumably to maintain the efficacy of the muscle-tendon unit.
Collapse
Affiliation(s)
- Jonathan Iain Quinlan
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK.,National Institute for Health Research, Birmingham Biomedical Research Centre At University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,MRC Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham Biomedical Research Centre, University of Nottingham's Royal Derby Hospital Centre, Nottingham, UK
| | - Martino Vladimiro Franchi
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham Biomedical Research Centre, University of Nottingham's Royal Derby Hospital Centre, Nottingham, UK.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Nima Gharahdaghi
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham Biomedical Research Centre, University of Nottingham's Royal Derby Hospital Centre, Nottingham, UK
| | - Francesca Badiali
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham Biomedical Research Centre, University of Nottingham's Royal Derby Hospital Centre, Nottingham, UK
| | - Susan Francis
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Andrew Hale
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Bethan Eileen Phillips
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham Biomedical Research Centre, University of Nottingham's Royal Derby Hospital Centre, Nottingham, UK
| | - Nathaniel Szewczyk
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham Biomedical Research Centre, University of Nottingham's Royal Derby Hospital Centre, Nottingham, UK.,Ohio Musculoskeletal and Neurological Institute (OMNI) and Department of Biomedical Sciences, Ohio University, Athens, OH, 43147, USA
| | - Paul Leonard Greenhaff
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham Biomedical Research Centre, University of Nottingham's Royal Derby Hospital Centre, Nottingham, UK
| | - Kenneth Smith
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham Biomedical Research Centre, University of Nottingham's Royal Derby Hospital Centre, Nottingham, UK
| | | | - Phillip James Atherton
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham Biomedical Research Centre, University of Nottingham's Royal Derby Hospital Centre, Nottingham, UK
| | - Marco Vincenzo Narici
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham Biomedical Research Centre, University of Nottingham's Royal Derby Hospital Centre, Nottingham, UK. .,Department of Biomedical Sciences, University of Padova, Padova, Italy. .,CIR-MYO Myology Center, University of Padova, Padova, Italy.
| |
Collapse
|
10
|
De Luca M, Mandala M, Rose G. Towards an understanding of the mechanoreciprocity process in adipocytes and its perturbation with aging. Mech Ageing Dev 2021; 197:111522. [PMID: 34147549 DOI: 10.1016/j.mad.2021.111522] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/29/2021] [Accepted: 06/15/2021] [Indexed: 12/25/2022]
Abstract
Adipose tissue (AT) is a complex organ, with multiple functions that are essential for maintaining metabolic health. A feature of AT is its capability to expand in response to physiological challenges, such as pregnancy and aging, and during chronic states of positive energy balance occurring throughout life. AT grows through adipogenesis and/or an increase in the size of existing adipocytes. One process that is required for healthy AT growth is the remodeling of the extracellular matrix (ECM), which is a necessary step to restore mechanical homeostasis and maintain tissue integrity and functionality. While the relationship between mechanobiology and adipogenesis is now well recognized, less is known about the role of adipocyte mechanosignaling pathways in AT growth. In this review article, we first summarize evidence linking ECM remodelling to AT expansion and how its perturbation is associated to a metabolically unhealthy phenotype. Subsequently, we highlight findings suggesting that molecules involved in the dynamic, bidirectional process (mechanoreciprocity) enabling adipocytes to sense changes in the mechanical properties of the ECM are interconnected to pathways regulating lipid metabolism. Finally, we discuss processes through which aging may influence the ability of adipocytes to appropriately respond to alterations in ECM composition.
Collapse
Affiliation(s)
- Maria De Luca
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Maurizio Mandala
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende, 87036, Italy
| | - Giuseppina Rose
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende, 87036, Italy
| |
Collapse
|
11
|
Epro G, König M, James D, Lambrianides Y, Werth J, Hunter S, Karamanidis K. Evidence that ageing does not influence the uniformity of the muscle-tendon unit adaptation in master sprinters. J Biomech 2021; 120:110364. [PMID: 33743395 DOI: 10.1016/j.jbiomech.2021.110364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 01/18/2021] [Accepted: 02/22/2021] [Indexed: 10/22/2022]
Abstract
Differences in the adaptation processes between muscle and tendon in response to mechanical loading can lead to non-uniform mechanical properties within the muscle-tendon unit (MTU), potentially increasing injury risk. The current study analysed the mechanical properties of the triceps surae (TS) MTU in 10 young (YS; 22 ± 3 yrs) and 10 older (OS; age 65 ± 8 yrs; i.e. master) (inter)national level sprinters and 11 young recreationally active adults (YC; 23 ± 3 yrs) to detect possible non-uniformities in muscle and tendon adaptation due to habitual mechanical loading and ageing. Triceps surae muscle strength, tendon stiffness and maximal tendon strain were assessed in both legs during maximal voluntary isometric plantarflexion contractions via dynamometry and ultrasonography. Irrespective of the leg, OS and YC in comparison to YS demonstrated significantly (P < 0.05) lower TS muscle strength and tendon stiffness, with no differences between OS and YC. Furthermore, no group differences were detected in the maximal tendon strain (average of both legs: OS 3.7 ± 0.8%, YC 4.4 ± 0.8% and YS 4.3 ± 0.9%) as well as in the inter-limb symmetry indexes in muscle strength, tendon stiffness and maximal tendon strain (range across groups: -5.8 to 4.9%; negative value reflects higher value for the non-preferred leg). Thus, the findings provide no clear evidence for a disruption in the TS MTU uniformity in master sprinters, demonstrating that ageing tendons can maintain their integrity to meet the increased functional demand due to elite sports.
Collapse
Affiliation(s)
- G Epro
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, United Kingdom.
| | - M König
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, United Kingdom
| | - D James
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, United Kingdom
| | - Y Lambrianides
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, United Kingdom
| | - J Werth
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, United Kingdom
| | - S Hunter
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, United Kingdom
| | - K Karamanidis
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, United Kingdom
| |
Collapse
|
12
|
Chen M, Shetye SS, Rooney SI, Soslowsky LJ. Short- and Long-Term Exercise Results in a Differential Achilles Tendon Mechanical Response. J Biomech Eng 2020; 142:081011. [PMID: 32253439 PMCID: PMC7477707 DOI: 10.1115/1.4046864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/22/2020] [Indexed: 12/28/2022]
Abstract
The study was conducted to define the biomechanical response of rat Achilles tendon after a single bout of exercise and a short or long duration of daily exercise. We hypothesized that a single bout or a short duration of exercise would cause a transient decrease in Achilles tendon mechanical properties and a long duration of daily exercise would improve these properties. One hundred and thirty-six Sprague-Dawley rats were divided into cage activity (CA) or exercise (EX) groups for a single bout, short-term, or long-term exercise. Animals in single bout EX groups were euthanized, 3, 12, 24, or 48 h upon completion of a single bout of exercise (10 m/min, 1 h) on a flat treadmill. Animals in short-term EX groups ran on a flat treadmill for 3 days, 1, or 2 weeks while animals in long-term EX groups ran for 8 weeks. Tendon quasi-static and viscoelastic response was evaluated for all Achilles tendons. A single bout of exercise increased tendon stiffness after 48 h of recovery. Short-term exercise up to 1 week decreased cross-sectional area, stiffness, modulus, and dynamic modulus of the Achilles tendon. In contrast, 8 weeks of daily exercise increased stiffness, modulus, and dynamic modulus of the tendon. This study highlights the response of Achilles tendons to single and sustained bouts of exercise. Adequate time intervals are important to allow for tendon adaptations when initiating a new training regimen and overall beneficial effects to the Achilles tendon.
Collapse
Affiliation(s)
- Mengcun Chen
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104; Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Snehal S. Shetye
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Louis J. Soslowsky
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, G13A Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104-6081
| |
Collapse
|
13
|
Arampatzis A, Mersmann F, Bohm S. Individualized Muscle-Tendon Assessment and Training. Front Physiol 2020; 11:723. [PMID: 32670094 PMCID: PMC7332733 DOI: 10.3389/fphys.2020.00723] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/02/2020] [Indexed: 01/27/2023] Open
Abstract
The interaction of muscle and tendon is of major importance for movement performance and a balanced development of muscle strength and tendon stiffness could protect athletes from overuse injury. However, muscle and tendon do not necessarily adapt in a uniform manner during a training process. The development of a diagnostic routine to assess both the strength capacity of muscle and the mechanical properties of tendons would enable the detection of muscle-tendon imbalances, indicate if the training should target muscle strength or tendon stiffness development and allow for the precise prescription of training loads to optimize tendon adaptation. This perspective article discusses a framework of individualized muscle-tendon assessment and training and outlines a methodological approach for the patellar tendon.
Collapse
Affiliation(s)
- Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Falk Mersmann
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sebastian Bohm
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
14
|
Pękala PA, Drzymała A, Kaythampillai L, Skinningsrud B, Mizia E, Rok T, Wojciechowski W, Tomaszewski KA. The influence of aging on the insertion of the Achilles tendon: A magnetic resonance study. Clin Anat 2020; 33:545-551. [DOI: 10.1002/ca.23431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/08/2019] [Indexed: 01/30/2023]
Affiliation(s)
- Przemysław A. Pękala
- International Evidence‐Based Anatomy Working Group Kraków Poland
- Department of AnatomyJagiellonian University Medical College Kraków Poland
| | - Anna Drzymała
- Department of OrthopedicsChildren's University Hospital of Kraków Poland
| | | | - Bendik Skinningsrud
- International Evidence‐Based Anatomy Working Group Kraków Poland
- Department of AnatomyJagiellonian University Medical College Kraków Poland
| | - Ewa Mizia
- International Evidence‐Based Anatomy Working Group Kraków Poland
| | - Tomasz Rok
- Department of BiophysicsJagiellonian University Medical College Kraków Poland
| | - Wadim Wojciechowski
- Department of RadiologyJagiellonian University Medical College Kraków Poland
- Department of RadiologyComarch Healthcare S.A. Kraków Poland
| | - Krzysztof A. Tomaszewski
- Faculty of Medicine and Health SciencesAndrzej Frycz Modrzewski Kraków University Kraków Poland
- Department of Orthopedic SurgeryScanmed St. Raphael Hospital Kraków Poland
| |
Collapse
|
15
|
Devaprakash D, Lloyd DG, Barrett RS, Obst SJ, Kennedy B, Adams KL, Hunter A, Vlahovich N, Pease DL, Pizzolato C. Magnetic Resonance Imaging and Freehand 3-D Ultrasound Provide Similar Estimates of Free Achilles Tendon Shape and 3-D Geometry. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:2898-2905. [PMID: 31471069 DOI: 10.1016/j.ultrasmedbio.2019.07.679] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/19/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
The purpose of this study was to assess the similarity of free Achilles tendon shape and 3-D geometry between magnetic resonance imaging (MRI) and freehand 3-D ultrasound (3-DUS) imaging methods. Fourteen elite/sub-elite middle-distance runners participated in the study. MRI and 3-DUS scans of the Achilles tendon were acquired on two separate imaging sessions, and all 3-D reconstructions were performed using identical methods. Shape similarity of free Achilles tendon reconstructed from MRI and 3-DUS data was assessed using Jaccard index, Hausdorff distance and root mean square error (RMSE). The Jaccard index, Hausdorff distance and RMSE values were 0.76 ± 0.05, 2.70 ± 0.70 and 0.61 ± 0.10 mm, respectively. The level of agreement between MRI and 3-DUS for free Achilles tendon volume, length and average cross-sectional area (CSA) was assessed using Bland-Altman analysis. Compared to MRI, freehand 3-DUS overestimated volume, length and average CSA by 30.6 ± 15.8 mm3 (1.1% ± 0.6%), 0.3 ± 0.7 mm (0.6% ± 1.9%) and 0.3 ± 1.42 mm2 (0.4% ± 2.0%), respectively. The upper and lower limits of agreement between MRI and 3-DUS for volume, length and average CSA were -0.4 to 61.7 mm3 (-0.2% to 2.3%), -1.0 to 1.5 mm (-3.2% to 4.5%) and -2.5 to 3.1 mm2 (-3.5% to 4.3%), respectively. There were no significant differences between imaging methods in CSA along the length of the tendon. In conclusion, MRI and freehand 3-DUS may be considered equivalent methods for estimating shape and 3-D geometry of the free Achilles tendon. These findings, together with the practical benefits of being able to assess 3-D Achilles tendon shape and geometry in a laboratory environment and under isometric loading, make 3-DUS an attractive alternative to MRI for assessing 3-D free Achilles tendon macro-structure in future studies.
Collapse
Affiliation(s)
- Daniel Devaprakash
- School of Allied Health Sciences, Griffith University, Queensland, Australia; Gold Coast Orthopaedic Research Engineering and Education Alliance (GCORE), Menzies Health Institute Queensland, Griffith University, Queensland, Australia.
| | - David G Lloyd
- School of Allied Health Sciences, Griffith University, Queensland, Australia; Gold Coast Orthopaedic Research Engineering and Education Alliance (GCORE), Menzies Health Institute Queensland, Griffith University, Queensland, Australia
| | - Rod S Barrett
- School of Allied Health Sciences, Griffith University, Queensland, Australia; Gold Coast Orthopaedic Research Engineering and Education Alliance (GCORE), Menzies Health Institute Queensland, Griffith University, Queensland, Australia
| | - Steven J Obst
- School of Allied Health Sciences, Griffith University, Queensland, Australia; School of Health, Medical, and Applied Sciences, Central Queensland University, Bundaberg, Queensland, Australia
| | - Ben Kennedy
- School of Allied Health Sciences, Griffith University, Queensland, Australia; QSCAN Radiology Clinics, Queensland, Australia
| | - Kahlee L Adams
- Australian Institute of Sport, Canberra, Australian Capital Territory, Australia
| | - Adam Hunter
- Australian Institute of Sport, Canberra, Australian Capital Territory, Australia
| | - Nicole Vlahovich
- Australian Institute of Sport, Canberra, Australian Capital Territory, Australia
| | - David L Pease
- Australian Institute of Sport, Canberra, Australian Capital Territory, Australia
| | - Claudio Pizzolato
- School of Allied Health Sciences, Griffith University, Queensland, Australia; Gold Coast Orthopaedic Research Engineering and Education Alliance (GCORE), Menzies Health Institute Queensland, Griffith University, Queensland, Australia
| |
Collapse
|
16
|
Can Myofascial Interventions Have a Remote Effect on ROM? A Systematic Review and Meta-Analysis. J Sport Rehabil 2019; 29:650-656. [PMID: 31629335 DOI: 10.1123/jsr.2019-0074] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/12/2019] [Accepted: 05/27/2019] [Indexed: 11/18/2022]
Abstract
CONTEXT Anatomical and in vivo studies suggest that muscles function synergistically as part of a myofascial chain. A related theory is that certain myofascial techniques have a remote and clinically important effect on range of motion (ROM). OBJECTIVE To determine if remote myofascial techniques can effectively increase the range of motion at a distant body segment. EVIDENCE ACQUISITION In November 2018, the authors searched 3 electronic databases (CENTRAL, MEDLINE, and PEDro) and hand-searched journals and conference proceedings. Inclusion criteria were randomized controlled trials comparing remote myofascial techniques with passive intervention (rest/sham) or local treatment intervention. The primary outcome of interest was ROM. Quality assessment was performed using the PEDro Scale. Three authors independently evaluated study quality and extracted data. RevMan software was used to pool data using a fixed-effect model. EVIDENCE SYNTHESIS Eight randomized controlled trials, comprising N = 354 participants were included (mean age range 22-36 y; 50% female). Study quality was low with PEDro scores ranging from 2 to 7 (median scores 4.5/10). None of the studies incorporated adequate allocation concealment and just 2 used blinded assessment of outcomes. In all studies, treatments and outcomes were developed around the same myofascial chain (superficial back line). Five studies included comparisons between remote interventions to sham or inactive controls; pooled results for ROM showed trends in favor of remote interventions (standard mean difference 0.23; 95% confidence intervals; -0.09 to 0.55; 4 studies) at immediate follow-ups. Effects sizes were small, corresponding to mean differences of 9% or 5° in cervical spine ROM, and 1 to 3 cm in sit and reach distance. Four studies compared remote interventions to local treatments, but there were few differences between groups. CONCLUSIONS Remote exercise interventions may increase ROM at distant body segments. However, effect sizes are small and the current evidence base is limited by selection and measurement bias.
Collapse
|
17
|
Yuan D, Delpierre S, Ke K, Raquez JM, Dubois P, Manas-Zloczower I. Biomimetic Water-Responsive Self-Healing Epoxy with Tunable Properties. ACS APPLIED MATERIALS & INTERFACES 2019; 11:17853-17862. [PMID: 30998311 DOI: 10.1021/acsami.9b04249] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
As dynamic cross-linking networks are intrinsically weaker than permanent covalent networks, it is a big challenge to obtain a stiff self-healing polymer using reversible networks. Inspired by the self-healable and mechanically adaptive nature of sea cucumber, we design a water-responsive self-healing polymer system with reversible and permanent covalent networks by cross-linking poly(propylene glycol) with boroxine and epoxy. This double cross-linked structure is self-healing due to the boroxine reversible network as well as showing a room-temperature tensile modulus of 1059 MPa and a tensile stress of 37 MPa, on a par with classic thermosets. The dynamic boroxine bonds provide the self-healing response and enable up to 80% recovery in modulus and tensile strength upon water contact. The system shows superior adhesion to metal substrates by comparison with the commercial epoxy-based structural adhesive. Besides, this system can change modulus from a stiff thermoset to soft rubber (by a factor of 150) upon water stimulus, enabling potential applications of either direct or transform printing for micro/nanofabrication. Moreover, by incorporating conductive nanofillers, it becomes feasible to fabricate self-healing and versatile strain/stress sensors based on a single thermoset, with potential applications in wearable electronics for human healthcare.
Collapse
Affiliation(s)
- Dian Yuan
- Department of Macromolecular Science and Engineering , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Sébastien Delpierre
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP) , University of Mons , Place du Parc 23 , 7000 Mons , Belgium
| | - Kai Ke
- Department of Macromolecular Science and Engineering , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Jean-Marie Raquez
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP) , University of Mons , Place du Parc 23 , 7000 Mons , Belgium
| | - Philippe Dubois
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP) , University of Mons , Place du Parc 23 , 7000 Mons , Belgium
| | - Ica Manas-Zloczower
- Department of Macromolecular Science and Engineering , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| |
Collapse
|
18
|
Eriksen CS, Svensson RB, Gylling AT, Couppé C, Magnusson SP, Kjaer M. Load magnitude affects patellar tendon mechanical properties but not collagen or collagen cross-linking after long-term strength training in older adults. BMC Geriatr 2019; 19:30. [PMID: 30704412 PMCID: PMC6357404 DOI: 10.1186/s12877-019-1043-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 01/23/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Regular loading of tendons may counteract the negative effects of aging. However, the influence of strength training loading magnitude on tendon mechanical properties and its relation to matrix collagen content and collagen cross-linking is sparsely described in older adults. The purpose of the present study was to compare the effects of moderate or high load resistance training on tendon matrix and its mechanical properties. METHODS Seventeen women and 19 men, age 62-70 years, were recruited and randomly allocated to 12 months of heavy load resistance training (HRT), moderate load resistance training (MRT) or control (CON). Pre- and post-intervention testing comprised isometric quadriceps strength test (IsoMVC), ultrasound based testing of in vivo patellar tendon (PT) mechanical properties, MRI-based measurement of PT cross-sectional area (CSA), PT biopsies for assessment of fibril morphology, collagen content, enzymatic cross-links, and tendon fluorescence as a measure of advanced glycation end-products (AGEs). RESULTS Thirty three participants completed the intervention and were included in the data analysis. IsoMVC increased more after HRT (+ 21%) than MRT (+ 8%) and CON (+ 7%) (p < 0.05). Tendon stiffness (p < 0.05) and Young's modulus (p = 0.05) were also differently affected by training load with a reduction in CON and MRT but not in HRT. PT-CSA increased equally after both MRT and HRT. Collagen content, fibril morphology, enzymatic cross-links, and tendon fluorescence were unaffected by training. CONCLUSION Despite equal improvements in tendon size after moderate and heavy load resistance training, only heavy. load training seemed to maintain tendon mechanical properties in old age. The effect of load magnitude on tendon biomechanics was unrelated to changes of major load bearing matrix components in the tendon core. The study is a sub-study of the LISA study, which was registered at http://clinicaltrials.gov (NCT02123641) April 25th 2014.
Collapse
Affiliation(s)
- Christian S Eriksen
- Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Nielsine Nielsens Vej 11, building 8, 1st floor, DK-2400, Copenhagen, Denmark. .,Center for Healthy Aging, Department of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, N, Denmark.
| | - Rene B Svensson
- Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Nielsine Nielsens Vej 11, building 8, 1st floor, DK-2400, Copenhagen, Denmark
| | - Anne T Gylling
- Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Nielsine Nielsens Vej 11, building 8, 1st floor, DK-2400, Copenhagen, Denmark.,Center for Healthy Aging, Department of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, N, Denmark
| | - Christian Couppé
- Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Nielsine Nielsens Vej 11, building 8, 1st floor, DK-2400, Copenhagen, Denmark.,Department of Physical and Occupational Therapy, Bispebjerg Hospital, Nielsine Nielsens Vej 11, DK-2400, Copenhagen, Denmark
| | - S Peter Magnusson
- Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Nielsine Nielsens Vej 11, building 8, 1st floor, DK-2400, Copenhagen, Denmark.,Department of Physical and Occupational Therapy, Bispebjerg Hospital, Nielsine Nielsens Vej 11, DK-2400, Copenhagen, Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Nielsine Nielsens Vej 11, building 8, 1st floor, DK-2400, Copenhagen, Denmark.,Center for Healthy Aging, Department of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, N, Denmark
| |
Collapse
|
19
|
Zügel M, Maganaris CN, Wilke J, Jurkat-Rott K, Klingler W, Wearing SC, Findley T, Barbe MF, Steinacker JM, Vleeming A, Bloch W, Schleip R, Hodges PW. Fascial tissue research in sports medicine: from molecules to tissue adaptation, injury and diagnostics: consensus statement. Br J Sports Med 2018; 52:1497. [PMID: 30072398 PMCID: PMC6241620 DOI: 10.1136/bjsports-2018-099308] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2018] [Indexed: 01/10/2023]
Abstract
The fascial system builds a three-dimensional continuum of soft, collagen-containing, loose and dense fibrous connective tissue that permeates the body and enables all body systems to operate in an integrated manner. Injuries to the fascial system cause a significant loss of performance in recreational exercise as well as high-performance sports, and could have a potential role in the development and perpetuation of musculoskeletal disorders, including lower back pain. Fascial tissues deserve more detailed attention in the field of sports medicine. A better understanding of their adaptation dynamics to mechanical loading as well as to biochemical conditions promises valuable improvements in terms of injury prevention, athletic performance and sports-related rehabilitation. This consensus statement reflects the state of knowledge regarding the role of fascial tissues in the discipline of sports medicine. It aims to (1) provide an overview of the contemporary state of knowledge regarding the fascial system from the microlevel (molecular and cellular responses) to the macrolevel (mechanical properties), (2) summarise the responses of the fascial system to altered loading (physical exercise), to injury and other physiological challenges including ageing, (3) outline the methods available to study the fascial system, and (4) highlight the contemporary view of interventions that target fascial tissue in sport and exercise medicine. Advancing this field will require a coordinated effort of researchers and clinicians combining mechanobiology, exercise physiology and improved assessment technologies.
Collapse
Affiliation(s)
- Martina Zügel
- Division of Sports Medicine, Ulm University, Ulm, Germany
| | - Constantinos N Maganaris
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Jan Wilke
- Department of Sports Medicine, Goethe University, Frankfurt, Germany
| | | | - Werner Klingler
- Department of Anesthesiology, BKH Günzburg, Günzburg, Germany
| | - Scott C Wearing
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Thomas Findley
- Department of Physical Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Mary F Barbe
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Andry Vleeming
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, Medical University Ghent, Ghent, Belgium
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Robert Schleip
- Fascia Research Group, Experimental Anesthesiology, Ulm University, Ulm, Germany
| | - Paul William Hodges
- Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
20
|
Delabastita T, Bogaerts S, Vanwanseele B. Age-Related Changes in Achilles Tendon Stiffness and Impact on Functional Activities: A Systematic Review and Meta-Analysis. J Aging Phys Act 2018; 27:1-12. [PMID: 29722592 DOI: 10.1123/japa.2017-0359] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Achilles tendon stiffness determines calf muscle functioning during functional activities. However, contrasting evidence was found in studies comparing Achilles tendon stiffness in older and younger adults. Therefore, this systematic review compares Achilles tendon stiffness and elastic modulus in older and younger adults and reviews functional implications. Studies revealed by systematic bibliographic searches were included if healthy older adults were investigated, and if Achilles tendon stiffness was measured using ultrasound and dynamometry. Meta-analyses were performed to compare Achilles tendon stiffness and elastic modulus in older and younger adults. Achilles tendon stiffness (weighted standardized mean difference = 1.40, 95% confidence intervals [0.42-2.38]) and elastic modulus (weighted standardized mean difference = 1.74, 95% confidence intervals [0.99-2.49]) were decreased in older compared with younger adults. Decreased Achilles tendon stiffness was related to walking performance and balance. Possibly, decreased Achilles tendon stiffness is caused by altered elastic modulus in older adults. Training interventions increasing Achilles tendon stiffness could improve functional capacity.
Collapse
|
21
|
Holzer D, Epro G, McCrum C, Doerner J, Luetkens JA, Scheef L, Kukuk GM, Boecker H, Mierau A, Brüggemann GP, Maganaris CN, Karamanidis K. The role of muscle strength on tendon adaptability in old age. Eur J Appl Physiol 2018; 118:2269-2279. [PMID: 30088133 PMCID: PMC6182320 DOI: 10.1007/s00421-018-3947-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 07/20/2018] [Indexed: 01/28/2023]
Abstract
PURPOSE The purpose of the study was to determine: (1) the relationship between ankle plantarflexor muscle strength and Achilles tendon (AT) biomechanical properties in older female adults, and (2) whether muscle strength asymmetries between the individually dominant and non-dominant legs in the above subject group were accompanied by inter-limb AT size differences. METHODS The maximal generated AT force, AT stiffness, AT Young's modulus, and AT cross-sectional area (CSA) along its length were determined for both legs in 30 women (65 ± 7 years) using dynamometry, ultrasonography, and magnetic resonance imaging. RESULTS No between-leg differences in triceps surae muscle strength were identified between dominant (2798 ± 566 N) and non-dominant limb (2667 ± 512 N). The AT CSA increased gradually in the proximo-distal direction, with no differences between the legs. There was a significant correlation (P < 0.05) of maximal AT force with AT stiffness (r = 0.500) and Young's modulus (r = 0.414), but only a tendency with the mean AT CSA. However, region-specific analysis revealed a significant relationship between maximal AT force and the proximal part of the AT, indicating that this region is more likely to display morphological adaptations following an increase in muscle strength in older adults. CONCLUSIONS These findings demonstrate that maximal force-generation capabilities play a more important role in the variation of AT stiffness and material properties than in tendon CSA, suggesting that exercise-induced increases in muscle strength in older adults may lead to changes in tendon stiffness foremost due to alterations in material rather than in its size.
Collapse
Affiliation(s)
- D Holzer
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - G Epro
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, 103 Borough Rd, London, SE1 0AA, UK.
| | - C McCrum
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands.,Institute of Movement and Sport Gerontology, German Sport University Cologne, Cologne, Germany
| | - J Doerner
- Department of Radiology, University of Bonn, Bonn, Germany
| | - J A Luetkens
- Department of Radiology, University of Bonn, Bonn, Germany
| | - L Scheef
- Department of Radiology, University of Bonn, Bonn, Germany
| | - G M Kukuk
- Department of Radiology, University of Bonn, Bonn, Germany
| | - H Boecker
- Department of Radiology, University of Bonn, Bonn, Germany
| | - A Mierau
- Department of Exercise and Sport Science, LUNEX International University of Health, Exercise and Sports, Differdange, Luxembourg.,Institute of Movement and Neuroscience, German Sport University Cologne, Cologne, Germany
| | - G-P Brüggemann
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics, Medical Faculty, University of Cologne, Cologne, Germany
| | - C N Maganaris
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - K Karamanidis
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, 103 Borough Rd, London, SE1 0AA, UK
| |
Collapse
|
22
|
Effects of high loading by eccentric triceps surae training on Achilles tendon properties in humans. Eur J Appl Physiol 2018; 118:1725-1736. [DOI: 10.1007/s00421-018-3904-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/24/2018] [Indexed: 11/26/2022]
|
23
|
Epro G, McCrum C, Mierau A, Leyendecker M, Brüggemann GP, Karamanidis K. Effects of triceps surae muscle strength and tendon stiffness on the reactive dynamic stability and adaptability of older female adults during perturbed walking. J Appl Physiol (1985) 2018; 124:1541-1549. [DOI: 10.1152/japplphysiol.00545.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study aimed to examine whether the triceps surae (TS) muscle-tendon unit (MTU) mechanical properties affect gait stability and its reactive adaptation potential to repeated perturbation exposure in older adults. Thirty-four older adults each experienced eight separate unexpected perturbations during treadmill walking, while a motion capture system was used to determine the margin of stability (MoS) and base of support (BoS). Ankle plantar flexor muscle strength and Achilles tendon (AT) stiffness were analyzed using ultrasonography and dynamometry. A median split and separation boundaries classified the subjects into two groups with GroupStrong ( n = 10) showing higher ankle plantar flexor muscle strength (2.26 ± 0.17 vs. 1.47 ± 0.20 N·m/kg, means ± SD; P < 0.001) and AT stiffness (544 ± 75 vs. 429 ± 86 N/mm; P = 0.004) than GroupWeak ( n = 12). The first perturbation caused a negative ΔMoS (MoS in relation to unperturbed baseline walking) at touchdown of perturbed step (PertR), indicating an unstable position. GroupStrong required four recovery steps to return to ΔMoS zero level, whereas GroupWeak was unable to return to baseline within the analyzed steps. However, after repeated perturbations, both groups increased ΔMoS at touchdown of PertR with a similar magnitude. Significant correlations between ΔBoS and ΔMoS at touchdown of the first recovery step and TS MTU capacities (0.41 < r < 0.57; 0.006 < P < 0.048) were found. We conclude that older adults with TS muscle weakness have a diminished ability to control gait stability during unexpected perturbations, increasing their fall risk, but that degeneration in muscle strength and tendon stiffness may not inhibit the ability of the locomotor system to adapt the reactive motor response to repeated perturbations. NEW & NOTEWORTHY Triceps surae muscle weakness and a more compliant Achilles tendon partly limit older adults’ ability to effectively enlarge the base of support and recover dynamic stability after an unexpected perturbation during walking, increasing their fall risk. However, the degeneration in muscle strength and tendon stiffness may not inhibit the ability of the locomotor system to adapt the reactive motor response to repeated perturbations.
Collapse
Affiliation(s)
- Gaspar Epro
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London, United Kingdom
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany
| | - Christopher McCrum
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Department of Human Movement Sciences, Maastricht University, Maastricht, The Netherlands
- Institute of Movement and Sport Gerontology, German Sport University Cologne, Cologne, Germany
| | - Andreas Mierau
- Institute of Movement and Neurosciences, German Sport University Cologne, Cologne, Germany
- Department of Exercise and Sport Science, LUNEX International University of Health, Exercise and Sports, Differdange, Luxembourg
| | - Michael Leyendecker
- Institute of Movement and Neurosciences, German Sport University Cologne, Cologne, Germany
| | - Gert-Peter Brüggemann
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany
- Cologne Center for Musculoskeletal Biomechanics, Medical Faculty, University of Cologne, Cologne, Germany
| | - Kiros Karamanidis
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London, United Kingdom
| |
Collapse
|
24
|
Massey GJ, Balshaw TG, Maden-Wilkinson TM, Folland JP. Tendinous tissue properties after short- and long-term functional overload: Differences between controls, 12 weeks and 4 years of resistance training. Acta Physiol (Oxf) 2018; 222:e13019. [PMID: 29253326 DOI: 10.1111/apha.13019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/27/2017] [Accepted: 12/08/2017] [Indexed: 01/20/2023]
Abstract
AIM The potential for tendinous tissues to adapt to functional overload, especially after several years of exposure to heavy-resistance training, is largely unexplored. This study compared the morphological and mechanical characteristics of the patellar tendon and knee extensor tendon-aponeurosis complex between young men exposed to long-term (4 years; n = 16), short-term (12 weeks; n = 15) and no (untrained controls; n = 39) functional overload in the form of heavy-resistance training. METHODS Patellar tendon cross-sectional area, vastus lateralis aponeurosis area and quadriceps femoris volume, plus patellar tendon stiffness and Young's modulus, and tendon-aponeurosis complex stiffness, were quantified with MRI, dynamometry and ultrasonography. RESULTS As expected, long-term trained had greater muscle strength and volume (+58% and +56% vs untrained, both P < .001), as well as a greater aponeurosis area (+17% vs untrained, P < .01), but tendon cross-sectional area (mean and regional) was not different between groups. Only long-term trained had reduced patellar tendon elongation/strain over the whole force/stress range, whilst both short-term and long-term overload groups had similarly greater stiffness/Young's modulus at high force/stress (short-term +25/22%, and long-term +17/23% vs untrained; all P < .05). Tendon-aponeurosis complex stiffness was not different between groups (ANOVA, P = .149). CONCLUSION Despite large differences in muscle strength and size, years of resistance training did not induce tendon hypertrophy. Both short-term and long-term overload demonstrated similar increases in high-force mechanical and material stiffness, but reduced elongation/strain over the whole force/stress range occurred only after years of overload, indicating a force/strain specific time-course to these adaptations.
Collapse
Affiliation(s)
- G. J. Massey
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis; Loughborough University; Leicestershire UK
- School of Sport, Exercise, and Health Sciences; Loughborough University; Leicestershire UK
| | - T. G. Balshaw
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis; Loughborough University; Leicestershire UK
- School of Sport, Exercise, and Health Sciences; Loughborough University; Leicestershire UK
| | - T. M. Maden-Wilkinson
- School of Sport, Exercise, and Health Sciences; Loughborough University; Leicestershire UK
- Faculty of Health and Wellbeing; Sheffield Hallam University; Sheffield UK
| | - J. P. Folland
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis; Loughborough University; Leicestershire UK
- School of Sport, Exercise, and Health Sciences; Loughborough University; Leicestershire UK
| |
Collapse
|
25
|
Eriksen CS, Henkel C, Svensson RB, Agergaard AS, Couppé C, Kjaer M, Magnusson SP. Lower tendon stiffness in very old compared with old individuals is unaffected by short-term resistance training of skeletal muscle. J Appl Physiol (1985) 2018; 125:205-214. [PMID: 29596014 DOI: 10.1152/japplphysiol.00028.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aging negatively affects collagen-rich tissue, like tendons, but in vivo tendon mechanical properties and the influence of physical activity after the 8th decade of life remain to be determined. This study aimed to compare in vivo patellar tendon mechanical properties in moderately old (old) and very old adults and the effect of short-term resistance training. Twenty old (9 women, 11 men, >65 yr) and 30 very old (11 women, 19 men, >83 yr) adults were randomly allocated to heavy resistance training (HRT) or no training (CON) and underwent testing of in vivo patellar tendon (PT) mechanical properties and PT dimensions before and after a 3-mo intervention. Previous measurements of muscle properties, blood parameters, and physical activity level were included in the analysis. Data from 9 old HRT, 10 old CON, 14 very old CON, and 12 old HRT adults were analyzed. In addition to lower quadriceps muscle strength and cross-sectional area (CSA), we found lower PT stiffness and Young's modulus ( P < 0.001) and a trend toward the lower mid-portion PT-CSA ( P = 0.09) in very old compared with old subjects. Daily step count was also lower in very old subjects ( P < 0.001). Resistance training improved muscle strength and cross-sectional area equally in old and very old subjects ( P < 0.05) but did not affect PT mechanical properties or dimension. We conclude that PT material properties are reduced in very old age, and this may likely be explained by reduced physical activity. Three months of resistance training however, could not alter PT mechanical properties in very old individuals. NEW & NOTEWORTHY This research is the first to quantify in vivo tendon mechanical properties in a group of very old adults in their eighties. Patellar tendon stiffness was lower in very old (87 yr on average) compared with moderately old (68 yr on average) individuals. Reduced physical activity with aging may explain some of the loss in tendon stiffness, but regular heavy resistance training for 3 mo was not sufficient to change tendon mechanical properties.
Collapse
Affiliation(s)
- Christian Skou Eriksen
- Institute of Sports Medicine Copenhagen, Bispebjerg Hospital , Copenhagen , Denmark.,Center for Healthy Aging, Department of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Cecilie Henkel
- Institute of Sports Medicine Copenhagen, Bispebjerg Hospital , Copenhagen , Denmark
| | - Rene B Svensson
- Institute of Sports Medicine Copenhagen, Bispebjerg Hospital , Copenhagen , Denmark.,Center for Healthy Aging, Department of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Anne-Sofie Agergaard
- Institute of Sports Medicine Copenhagen, Bispebjerg Hospital , Copenhagen , Denmark.,Department of Physical and Occupational Therapy, Bispebjerg Hospital , Copenhagen , Denmark
| | - Christian Couppé
- Institute of Sports Medicine Copenhagen, Bispebjerg Hospital , Copenhagen , Denmark.,Department of Physical and Occupational Therapy, Bispebjerg Hospital , Copenhagen , Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Bispebjerg Hospital , Copenhagen , Denmark.,Center for Healthy Aging, Department of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - S Peter Magnusson
- Institute of Sports Medicine Copenhagen, Bispebjerg Hospital , Copenhagen , Denmark.,Center for Healthy Aging, Department of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark.,Department of Physical and Occupational Therapy, Bispebjerg Hospital , Copenhagen , Denmark
| |
Collapse
|
26
|
Epro G, Mierau A, McCrum C, Leyendecker M, Brüggemann GP, Karamanidis K. Retention of gait stability improvements over 1.5 years in older adults: effects of perturbation exposure and triceps surae neuromuscular exercise. J Neurophysiol 2018. [PMID: 29537914 DOI: 10.1152/jn.00513.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The plantarflexors play a crucial role in recovery from sudden disturbances to gait. The objective of this study was to investigate whether medium (months)- or long(years)-term exercise-induced enhancement of triceps surae (TS) neuromuscular capacities affects older adults' ability to retain improvements in reactive gait stability during perturbed walking acquired from perturbation training sessions. Thirty-four adult women (65 ± 7 yr) were recruited to a perturbation training group ( n = 13) or a group that additionally completed 14 wk of TS neuromuscular exercise ( n = 21), 12 of whom continued with the exercise for 1.5 yr. The margin of stability (MoS) was analyzed at touchdown of the perturbed step and the first recovery step following eight separate unexpected trip perturbations during treadmill walking. TS muscle-tendon unit mechanical properties and motor skill performance were assessed with ultrasonography and dynamometry. Two perturbation training sessions (baseline and after 14 wk) caused an improvement in the reactive gait stability to the perturbations (increased MoS) in both groups. The perturbation training group retained the reactive gait stability improvements acquired over 14 wk and over 1.5 yr, with a minor decay over time. Despite the improvements in TS capacities in the additional exercise group, no benefits for the reactive gait stability following perturbations were identified. Therefore, older adults' neuromotor system shows rapid plasticity to repeated unexpected perturbations and an ability to retain these adaptations in reactive gait stability over a long time period, but an additional exercise-related enhancement of TS capacities seems not to further improve these effects. NEW & NOTEWORTHY Older adults' neuromotor system shows rapid plasticity to repeated exposure to unexpected perturbations to gait and an ability to retain the majority of these adaptations in reactive recovery responses over a prolonged time period of 1.5 yr. However, an additional exercise-related enhancement of TS neuromuscular capacities is not necessarily transferred to the recovery behavior during unexpected perturbations to gait in older adults.
Collapse
Affiliation(s)
- G Epro
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University , United Kingdom.,Institute of Biomechanics and Orthopaedics, German Sport University Cologne , Cologne , Germany
| | - A Mierau
- Institute of Movement and Neurosciences, German Sport University Cologne , Cologne , Germany.,Department of Exercise and Sport Science, LUNEX International University of Health, Exercise and Sports, Differdange, Luxembourg
| | - C McCrum
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ , Maastricht , The Netherlands.,Institute of Movement and Sport Gerontology, German Sport University Cologne , Cologne , Germany
| | - M Leyendecker
- Institute of Movement and Neurosciences, German Sport University Cologne , Cologne , Germany
| | - G-P Brüggemann
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne , Cologne , Germany.,Cologne Center for Musculoskeletal Biomechanics, Medical Faculty, University of Cologne , Cologne , Germany
| | - K Karamanidis
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University , United Kingdom
| |
Collapse
|
27
|
McCrum C, Leow P, Epro G, König M, Meijer K, Karamanidis K. Alterations in Leg Extensor Muscle-Tendon Unit Biomechanical Properties With Ageing and Mechanical Loading. Front Physiol 2018. [PMID: 29541035 PMCID: PMC5835978 DOI: 10.3389/fphys.2018.00150] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Tendons transfer forces produced by muscle to the skeletal system and can therefore have a large influence on movement effectiveness and safety. Tendons are mechanosensitive, meaning that they adapt their material, morphological and hence their mechanical properties in response to mechanical loading. Therefore, unloading due to immobilization or inactivity could lead to changes in tendon mechanical properties. Additionally, ageing may influence tendon biomechanical properties directly, as a result of biological changes in the tendon, and indirectly, due to reduced muscle strength and physical activity. This review aimed to examine age-related differences in human leg extensor (triceps surae and quadriceps femoris) muscle-tendon unit biomechanical properties. Additionally, this review aimed to assess if, and to what extent mechanical loading interventions could counteract these changes in older adults. There appear to be consistent reductions in human triceps surae and quadriceps femoris muscle strength, accompanied by similar reductions in tendon stiffness and elastic modulus with ageing, whereas the effect on tendon cross sectional area is unclear. Therefore, the observed age-related changes in tendon stiffness are predominantly due to changes in tendon material rather than size with age. However, human tendons appear to retain their mechanosensitivity with age, as intervention studies report alterations in tendon biomechanical properties in older adults of similar magnitudes to younger adults over 12–14 weeks of training. Interventions should implement tendon strains corresponding to high mechanical loads (i.e., 80–90% MVC) with repetitive loading for up to 3–4 months to successfully counteract age-related changes in leg extensor muscle-tendon unit biomechanical properties.
Collapse
Affiliation(s)
- Christopher McCrum
- Department of Human Movement Science, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands.,Institute of Movement and Sport Gerontology, German Sport University Cologne, Cologne, Germany
| | - Pamela Leow
- Department of Human Movement Science, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Gaspar Epro
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London, United Kingdom
| | - Matthias König
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London, United Kingdom
| | - Kenneth Meijer
- Department of Human Movement Science, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Kiros Karamanidis
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London, United Kingdom
| |
Collapse
|
28
|
Rooney SI, Torino DJ, Baskin R, Vafa RP, Kuntz AF, Soslowsky LJ. Rat supraspinatus tendon responds acutely and chronically to exercise. J Appl Physiol (1985) 2017; 123:757-763. [PMID: 28663377 DOI: 10.1152/japplphysiol.00368.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 06/21/2017] [Accepted: 06/27/2017] [Indexed: 12/24/2022] Open
Abstract
The objective of this study was to identify acute responses and chronic adaptations of supraspinatus tendon to noninjurious exercise. We hypothesized that chronic exercise (EX) increases tendon mechanical properties, and a single exercise bout increases matrix metalloproteinase (MMP) activity acutely. Rats were divided into acute or chronic EX or cage activity groups. Animals in acute EX groups were euthanized, 3, 12, 24, 48, or 72 h upon completion of a single bout of exercise (10 m/min, 1 h) on a flat treadmill. Animals in chronic EX groups walked on a flat treadmill for 3 days or 1, 2, or 8 wk. Tendon histology, MMP activity, and mechanics were measured. A single bout of exercise trended toward reducing tendon mechanical properties, but 2 or 8 wk of chronic EX increased tendon mechanics. Cell density was not affected. Cells became rounder with chronic EX. All tendons were highly organized. MMP activity decreased after a single bout of exercise and returned to baseline by 72 h. MMP activity decreased after 8 wk of chronic EX. Decreased MMP activity may indicate an anabolic instead of catabolic response in contrast to injury. Results suggest that mild, acute decreases in MMP activity and tendon mechanics following a single exercise bout lead to enhanced tendon mechanical adaptations with repeated exercise bouts. This study defines acute and chronic changes of MMP activity, mechanical properties, and histology of the rat supraspinatus tendon in response to beneficial exercise and proposes a mechanism by which acute responses translate to chronic adaptations.NEW & NOTEWORTHY The line between beneficial exercise and overuse has not been elucidated. This study defines the acute and chronic temporal response to exercise of supraspinatus tendon in an in vivo model. We found that decreased matrix metalloproteinase activity and tendon mechanics after a single bout of exercise are followed by beneficial chronic adaptations of the tendon with repeated bouts. How the acute responses to exercise lead to chronic adaptations may distinguish beneficial exercise from overuse.
Collapse
Affiliation(s)
| | - Daniel J Torino
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rachel Baskin
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rameen P Vafa
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew F Kuntz
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Louis J Soslowsky
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
29
|
Knight K. Achilles tendon exercises improve elderly mobility. J Exp Biol 2017; 220:953-954. [DOI: 10.1242/jeb.158659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|