1
|
Williams-Simon PA, Oster C, Moaton JA, Ghidey R, Ng’oma E, Middleton KM, King EG. Naturally segregating genetic variants contribute to thermal tolerance in a Drosophila melanogaster model system. Genetics 2024; 227:iyae040. [PMID: 38506092 PMCID: PMC11075556 DOI: 10.1093/genetics/iyae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/11/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
Thermal tolerance is a fundamental physiological complex trait for survival in many species. For example, everyday tasks such as foraging, finding a mate, and avoiding predation are highly dependent on how well an organism can tolerate extreme temperatures. Understanding the general architecture of the natural variants within the genes that control this trait is of high importance if we want to better comprehend thermal physiology. Here, we take a multipronged approach to further dissect the genetic architecture that controls thermal tolerance in natural populations using the Drosophila Synthetic Population Resource as a model system. First, we used quantitative genetics and Quantitative Trait Loci mapping to identify major effect regions within the genome that influences thermal tolerance, then integrated RNA-sequencing to identify differences in gene expression, and lastly, we used the RNAi system to (1) alter tissue-specific gene expression and (2) functionally validate our findings. This powerful integration of approaches not only allows for the identification of the genetic basis of thermal tolerance but also the physiology of thermal tolerance in a natural population, which ultimately elucidates thermal tolerance through a fitness-associated lens.
Collapse
Affiliation(s)
- Patricka A Williams-Simon
- Department of Biology, University of Pennsylvania, 433 S University Ave., 226 Leidy Laboratories, Philadelphia, PA 19104, USA
| | - Camille Oster
- Ash Creek Forest Management, 2796 SE 73rd Ave., Hillsboro, OR 97123, USA
| | | | - Ronel Ghidey
- ECHO Data Analysis Center, Johns Hopkins Bloomberg School of Public Health, 504 Cathedral St., Baltimore, MD 2120, USA
| | - Enoch Ng’oma
- Division of Biology, University of Missouri, 226 Tucker Hall, Columbia, MO 65211, USA
| | - Kevin M Middleton
- Division of Biology, University of Missouri, 222 Tucker Hall, Columbia, MO 65211, USA
| | - Elizabeth G King
- Division of Biology, University of Missouri, 401 Tucker Hall, Columbia, MO 65211, USA
| |
Collapse
|
2
|
Shahmohamadloo RS, Fryxell JM, Rudman SM. Transgenerational epigenetic inheritance increases trait variation but is not adaptive. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589575. [PMID: 38659883 PMCID: PMC11042258 DOI: 10.1101/2024.04.15.589575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Understanding processes that can produce adaptive phenotypic shifts in response to rapid environmental change is critical to reducing biodiversity loss. The ubiquity of environmentally induced epigenetic marks has led to speculation that epigenetic inheritance could potentially enhance population persistence in response to environmental change. Yet, the magnitude and fitness consequences of epigenetic marks carried beyond maternal inheritance are largely unknown. Here, we tested how transgenerational epigenetic inheritance (TEI) shapes the phenotypic response of Daphnia clones to the environmental stressor Microcystis. We split individuals from each of eight genotypes into exposure and control treatments (F0 generation) and tracked the fitness of their descendants to the F3 generation. We found transgenerational epigenetic exposure to Microcystis led to reduced rates of survival and individual growth and no consistent effect on offspring production. Increase in trait variance in the F3 relative to F0 generations suggests potential for heritable bet hedging driven by TEI, which could impact population dynamics. Our findings are counter to the working hypothesis that TEI is a generally adaptive mechanism likely to prevent extinction for populations inhabiting rapidly changing environments.
Collapse
Affiliation(s)
- René S. Shahmohamadloo
- School of Biological Sciences, Washington State University, Vancouver, WA, United States
| | - John M. Fryxell
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Seth M. Rudman
- School of Biological Sciences, Washington State University, Vancouver, WA, United States
| |
Collapse
|
3
|
Goulding MQ. Acclimation of intertidally reproducing sea-snails protects embryos from lethal effects of transient hyperthermia. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024. [PMID: 38291725 DOI: 10.1002/jez.b.23240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 12/18/2023] [Accepted: 01/05/2024] [Indexed: 02/01/2024]
Abstract
Embryos of Ilyanassa obsoleta (from Massachusetts and Florida) and Phrontis vibex (from Florida) were exposed to temperatures from 33 to 37°C. In both species, very young embryos are especially sensitive to thermal stress. Brief early heat shock did not disturb spiral cleavage geometry but led to variable, typically severe defects in larval morphogenesis and tissue differentiation. In Ilyanassa but not P. vibex, early heat shock resulted in immediate slowing or arrest of interphase progression during early cleavage. This reversible arrest was correlated with improved prognosis for larval development and (in Massachusetts snails, at least) depended on parental acclimation to warm temperature (~25.5°C). Embryos from Massachusetts snails housed at lower temperature (16°C) exhibited cytokinesis failure when briefly incubated at 33°C during early cleavage, and tissue differentiation failure during incubation at 33°C begun at later stages. This preliminary study reveals a case in which stress-conditioned parents may endow embryos with protection against potentially lethal thermal stress during the most vulnerable stages of life.
Collapse
Affiliation(s)
- Morgan Q Goulding
- Research Division, International Snail Station, Seattle, Washington, USA
| |
Collapse
|
4
|
Lim MYT, Bernier NJ. Intergenerational plasticity to cycling high temperature and hypoxia affects offspring stress responsiveness and tolerance in zebrafish. J Exp Biol 2023; 226:jeb245583. [PMID: 37497728 PMCID: PMC10482009 DOI: 10.1242/jeb.245583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023]
Abstract
Predicted climate change-induced increases in heat waves and hypoxic events will have profound effects on fishes, yet the capacity of parents to alter offspring phenotype via non-genetic inheritance and buffer against these combined stressors is not clear. This study tested how prolonged adult zebrafish exposure to combined diel cycles of thermal stress and hypoxia affect offspring early survival and development, parental investment of cortisol and heat shock proteins (HSPs), larval offspring stress responses, and both parental and offspring heat and hypoxia tolerance. Parental exposure to the combined stressor did not affect fecundity, but increased mortality, produced smaller embryos and delayed hatching. The combined treatment also reduced maternal deposition of cortisol and increased embryo hsf1, hsp70a, HSP70, hsp90aa and HSP90 levels. In larvae, basal cortisol levels did not differ between treatments, but acute exposure to combined heat stress and hypoxia increased cortisol levels in control larvae with no effect on larvae from exposed parents. In contrast, whereas larval basal hsf1, hsp70a and hsp90aa levels differed between parental treatments, the combined acute stressor elicited similar transcriptional responses across treatments. Moreover, the combined acute stressor only induced a marked increase in HSP47 levels in the larvae derived from exposed parents. Finally, combined hypoxia and elevated temperatures increased both thermal and hypoxia tolerance in adults and conferred an increase in offspring thermal but not hypoxia tolerance. These results demonstrate that intergenerational acclimation to combined thermal stress and hypoxia elicit complex carryover effects on stress responsiveness and offspring tolerance with potential consequences for resilience.
Collapse
Affiliation(s)
- Michael Y.-T. Lim
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Nicholas J. Bernier
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
5
|
Lang BJ, Donelson JM, Bairos‐Novak KR, Wheeler CR, Caballes CF, Uthicke S, Pratchett MS. Impacts of ocean warming on echinoderms: A meta-analysis. Ecol Evol 2023; 13:e10307. [PMID: 37565029 PMCID: PMC10409743 DOI: 10.1002/ece3.10307] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/02/2023] [Indexed: 08/12/2023] Open
Abstract
Rising ocean temperatures are threatening marine species and populations worldwide, and ectothermic taxa are particularly vulnerable. Echinoderms are an ecologically important phylum of marine ectotherms and shifts in their population dynamics can have profound impacts on the marine environment. The effects of warming on echinoderms are highly variable across controlled laboratory-based studies. Accordingly, synthesis of these studies will facilitate the better understanding of broad patterns in responses of echinoderms to ocean warming. Herein, a meta-analysis incorporating the results of 85 studies (710 individual responses) is presented, exploring the effects of warming on various performance predictors. The mean responses of echinoderms to all magnitudes of warming were compared across multiple biological responses, ontogenetic life stages, taxonomic classes, and regions, facilitated by multivariate linear mixed effects models. Further models were conducted, which only incorporated responses to warming greater than the projected end-of-century mean annual temperatures at the collection sites. This meta-analysis provides evidence that ocean warming will generally accelerate metabolic rate (+32%) and reduce survival (-35%) in echinoderms, and echinoderms from subtropical (-9%) and tropical (-8%) regions will be the most vulnerable. The relatively high vulnerability of echinoderm larvae to warming (-20%) indicates that this life stage may be a significant developmental bottleneck in the near-future, likely reducing successful recruitment into populations. Furthermore, asteroids appear to be the class of echinoderms that are most negatively affected by elevated temperature (-30%). When considering only responses to magnitudes of warming representative of end-of-century climate change projections, the negative impacts on asteroids, tropical species and juveniles were exacerbated (-51%, -34% and -40% respectively). The results of these analyses enable better predictions of how keystone and invasive echinoderm species may perform in a warmer ocean, and the possible consequences for populations, communities and ecosystems.
Collapse
Affiliation(s)
- Bethan J. Lang
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- AIMS@JCUJames Cook UniversityTownsvilleQueenslandAustralia
| | - Jennifer M. Donelson
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Kevin R. Bairos‐Novak
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- AIMS@JCUJames Cook UniversityTownsvilleQueenslandAustralia
| | - Carolyn R. Wheeler
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- School for the EnvironmentThe University of Massachusetts BostonBostonMassachusettsUSA
| | - Ciemon F. Caballes
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- National Science Foundation EPSCoR—Guam Ecosystems Collaboratorium for Corals and OceansUniversity of Guam Marine LaboratoryMangilaoGuamUSA
| | - Sven Uthicke
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
| | - Morgan S. Pratchett
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| |
Collapse
|
6
|
Williams-Simon PA, Oster C, Moaton JA, Ghidey R, Ng'oma E, Middleton KM, Zars T, King EG. Naturally segregating genetic variants contribute to thermal tolerance in a D. melanogaster model system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.547110. [PMID: 37461510 PMCID: PMC10350013 DOI: 10.1101/2023.07.06.547110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Thermal tolerance is a fundamental physiological complex trait for survival in many species. For example, everyday tasks such as foraging, finding a mate, and avoiding predation, are highly dependent on how well an organism can tolerate extreme temperatures. Understanding the general architecture of the natural variants of the genes that control this trait is of high importance if we want to better comprehend how this trait evolves in natural populations. Here, we take a multipronged approach to further dissect the genetic architecture that controls thermal tolerance in natural populations using the Drosophila Synthetic Population Resource (DSPR) as a model system. First, we used quantitative genetics and Quantitative Trait Loci (QTL) mapping to identify major effect regions within the genome that influences thermal tolerance, then integrated RNA-sequencing to identify differences in gene expression, and lastly, we used the RNAi system to 1) alter tissue-specific gene expression and 2) functionally validate our findings. This powerful integration of approaches not only allows for the identification of the genetic basis of thermal tolerance but also the physiology of thermal tolerance in a natural population, which ultimately elucidates thermal tolerance through a fitness-associated lens.
Collapse
|
7
|
Hilker M, Salem H, Fatouros NE. Adaptive Plasticity of Insect Eggs in Response to Environmental Challenges. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:451-469. [PMID: 36266253 DOI: 10.1146/annurev-ento-120120-100746] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Insect eggs are exposed to a plethora of abiotic and biotic threats. Their survival depends on both an innate developmental program and genetically determined protective traits provided by the parents. In addition, there is increasing evidence that (a) parents adjust the egg phenotype to the actual needs, (b) eggs themselves respond to environmental challenges, and (c) egg-associated microbes actively shape the egg phenotype. This review focuses on the phenotypic plasticity of insect eggs and their capability to adjust themselves to their environment. We outline the ways in which the interaction between egg and environment is two-way, with the environment shaping the egg phenotype but also with insect eggs affecting their environment. Specifically, insect eggs affect plant defenses, host biology (in the case of parasitoid eggs), and insect oviposition behavior. We aim to emphasize that the insect egg, although it is a sessile life stage, actively responds to and interacts with its environment.
Collapse
Affiliation(s)
- Monika Hilker
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, Berlin, Germany;
| | - Hassan Salem
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen, Germany;
| | - Nina E Fatouros
- Biosystematics Group, Wageningen University and Research, Wageningen, The Netherlands;
| |
Collapse
|
8
|
Du WG, Shine R. The behavioural and physiological ecology of embryos: responding to the challenges of life inside an egg. Biol Rev Camb Philos Soc 2022; 97:1272-1286. [PMID: 35166012 DOI: 10.1111/brv.12841] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 12/24/2022]
Abstract
Adaptations of post-hatching animals have attracted far more study than have embryonic responses to environmental challenges, but recent research suggests that we have underestimated the complexity and flexibility of embryos. We advocate a dynamic view of embryos as organisms capable of responding - on both ecological and evolutionary timescales - to their developmental environments. By viewing embryos in this way, rather than assuming an inability of pre-hatching stages to adapt and respond, we can broaden the ontogenetic breadth of evolutionary and ecological research. Both biotic and abiotic factors affect embryogenesis, and embryos exhibit a broad range of behavioural and physiological responses that enable them to deal with changes in their developmental environments in the course of interactions with their parents, with other embryos, with predators, and with the physical environment. Such plasticity may profoundly affect offspring phenotypes and fitness, and in turn influence the temporal and spatial dynamics of populations and communities. Future research in this field could benefit from an integrated framework that combines multiple approaches (field investigations, manipulative experiments, ecological modelling) to clarify the mechanisms and consequences of embryonic adaptations and plasticity.
Collapse
Affiliation(s)
- Wei-Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Richard Shine
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| |
Collapse
|
9
|
Fitness Analysis and Transcriptome Profiling Following Repeated Mild Heat Stress of Varying Frequency in Drosophila melanogaster Females. BIOLOGY 2021; 10:biology10121323. [PMID: 34943239 PMCID: PMC8698867 DOI: 10.3390/biology10121323] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary We studied the effect of mild heat stress (38 °C, 1 h) occurring once a day or once a week on D. melanogaster fertility, longevity, body composition metabolism and differential gene expression in fat body and adjacent tissues. Weekly stress in the first two weeks did not affect longevity but caused a decrease in fat content and an increase in the total level of fertility. Daily stress caused a significant longevity, fertility and fat content decrease, but an increase in carbohydrate levels compared with the control group. These data agree well with the results of transcriptome analysis, which demonstrated significant changes in expression levels of genes involved in proteolysis/digestion following daily stress. Heat shock protein 23 and stress-inducible humoral factor Turandot gene network are also involved. It is notable that daily and weekly heat stress resulted in different changes in metabolism, fitness and differential gene expression. Abstract Understanding how repeated stress affects metabolic and physiological functions in the long run is of crucial importance for evaluating anthropogenic pressure on the environment. We investigated fertility, longevity and metabolism in D. melanogaster females exposed to short-term heat stress (38 °C, 1 h) repeated daily or weekly. Daily stress was shown to cause a significant decrease in both fertility and longevity, as well as in body mass and triglyceride (fat) content, but a significant increase in trehalose and glucose content. Weekly stress did not affect longevity and carbohydrate metabolism but resulted in a significant decrease in body mass and fat content. Weekly stress did not affect the total level of fertility, despite sharp fertility drops on the exact days of stressing. However, stressing insects weekly, only in the first two weeks after eclosion, caused a significant increase in the total level of fertility. The analysis of differentially expressed genes in the fat bodies and adjacent tissues of researched groups with the use of RNA-Seq profiling revealed changes in signal pathways related to proteolysis/digestion, heat shock protein 23, and in the tightly linked stress-inducible humoral factor Turandot gene network.
Collapse
|
10
|
Rebolledo AP, Sgrò CM, Monro K. Thermal Performance Curves Are Shaped by Prior Thermal Environment in Early Life. Front Physiol 2021; 12:738338. [PMID: 34744779 PMCID: PMC8564010 DOI: 10.3389/fphys.2021.738338] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/21/2021] [Indexed: 01/31/2023] Open
Abstract
Understanding links between thermal performance and environmental variation is necessary to predict organismal responses to climate change, and remains an ongoing challenge for ectotherms with complex life cycles. Distinct life stages can differ in thermal sensitivity, experience different environmental conditions as development unfolds, and, because stages are by nature interdependent, environmental effects can carry over from one stage to affect performance at others. Thermal performance may therefore respond to carryover effects of prior thermal environments, yet detailed insights into the nature, strength, and direction of those responses are still lacking. Here, in an aquatic ectotherm whose early planktonic stages (gametes, embryos, and larvae) govern adult abundances and dynamics, we explore the effects of prior thermal environments at fertilization and embryogenesis on thermal performance curves at the end of planktonic development. We factorially manipulate temperatures at fertilization and embryogenesis, then, for each combination of prior temperatures, measure thermal performance curves for survival of planktonic development (end of the larval stage) throughout the performance range. By combining generalized linear mixed modeling with parametric bootstrapping, we formally estimate and compare curve descriptors (thermal optima, limits, and breadth) among prior environments, and reveal carryover effects of temperature at embryogenesis, but not fertilization, on thermal optima at completion of development. Specifically, thermal optima shifted to track temperature during embryogenesis, while thermal limits and breadth remained unchanged. Our results argue that key aspects of thermal performance are shaped by prior thermal environment in early life, warranting further investigation of the possible mechanisms underpinning that response, and closer consideration of thermal carryover effects when predicting organismal responses to climate change.
Collapse
|
11
|
Hocaoglu H, Wang L, Yang M, Yue S, Sieber M. Heritable shifts in redox metabolites during mitochondrial quiescence reprogramme progeny metabolism. Nat Metab 2021; 3:1259-1274. [PMID: 34545253 PMCID: PMC8462065 DOI: 10.1038/s42255-021-00450-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 08/06/2021] [Indexed: 02/08/2023]
Abstract
Changes in maternal diet and metabolic defects in mothers can profoundly affect health and disease in their progeny. However, the biochemical mechanisms that induce the initial reprogramming events at the cellular level have remained largely unknown owing to limitations in obtaining pure populations of quiescent oocytes. Here, we show that the precocious onset of mitochondrial respiratory quiescence causes a reprogramming of progeny metabolic state. The premature onset of mitochondrial respiratory quiescence drives the lowering of Drosophila oocyte NAD+ levels. NAD+ depletion in the oocyte leads to reduced methionine cycle production of the methyl donor S-adenosylmethionine in embryos and lower levels of histone H3 lysine 27 trimethylation, resulting in enhanced intestinal lipid metabolism in progeny. In addition, we show that triggering cellular quiescence in mammalian cells and chemotherapy-resistant human cancer cell models induces cellular reprogramming events identical to those seen in Drosophila, suggesting a conserved metabolic mechanism in systems reliant on quiescent cells.
Collapse
Affiliation(s)
- Helin Hocaoglu
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Lei Wang
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Mengye Yang
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sibiao Yue
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Matthew Sieber
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
12
|
Rivera HE, Chen CY, Gibson MC, Tarrant AM. Plasticity in parental effects confers rapid larval thermal tolerance in the estuarine anemone Nematostella vectensis. J Exp Biol 2021; 224:jeb.236745. [PMID: 33547184 DOI: 10.1242/jeb.236745] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/20/2021] [Indexed: 12/25/2022]
Abstract
Parental effects can prepare offspring for different environments and facilitate survival across generations. We exposed parental populations of the estuarine anemone, Nematostella vectensis, from Massachusetts to elevated temperatures and quantified larval mortality across a temperature gradient. We found that parental exposure to elevated temperatures resulted in a consistent increase in larval thermal tolerance, as measured by the temperature at which 50% of larvae die (LT50), with a mean increase in LT50 of 0.3°C. Larvae from subsequent spawns returned to baseline thermal thresholds when parents were returned to normal temperatures, indicating plasticity in these parental effects. Histological analyses of gametogenesis in females suggested that these dynamic shifts in larval thermal tolerance may be facilitated by maternal effects in non-overlapping gametic cohorts. We also compared larvae from North Carolina (a genetically distinct population with higher baseline thermal tolerance) and Massachusetts parents, and observed that larvae from heat-exposed Massachusetts parents had thermal thresholds comparable to those of larvae from unexposed North Carolina parents. North Carolina parents also increased larval thermal tolerance under the same high-temperature regime, suggesting that plasticity in parental effects is an inherent trait for N. vectensis Overall, we find that larval thermal tolerance in N. vectensis shows a strong genetic basis and can be modulated by parental effects. Further understanding of the mechanisms behind these shifts can elucidate the fate of thermally sensitive ectotherms in a rapidly changing thermal environment.
Collapse
Affiliation(s)
- Hanny E Rivera
- Massachusetts Institute of Technology-Woods Hole Oceanographic Institution (MIT-WHOI) Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge and Woods Hole, MA, USA .,Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.,Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 64110, USA
| | - Cheng-Yi Chen
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Matthew C Gibson
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, The University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | - Ann M Tarrant
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| |
Collapse
|
13
|
Le Lann C, van Baaren J, Visser B. Dealing with predictable and unpredictable temperatures in a climate change context: the case of parasitoids and their hosts. J Exp Biol 2021; 224:224/Suppl_1/jeb238626. [PMID: 33627468 DOI: 10.1242/jeb.238626] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Earth's climate is changing at a rapid pace. To survive in increasingly fluctuating and unpredictable environments, species can either migrate or evolve through rapid local adaptation, plasticity and/or bet-hedging. For small ectotherm insects, like parasitoids and their hosts, phenotypic plasticity and bet-hedging could be critical strategies for population and species persistence in response to immediate, intense and unpredictable temperature changes. Here, we focus on studies evaluating phenotypic responses to variable predictable thermal conditions (for which phenotypic plasticity is favoured) and unpredictable thermal environments (for which bet-hedging is favoured), both within and between host and parasitoid generations. We then address the effects of fluctuating temperatures on host-parasitoid interactions, potential cascading effects on the food web, as well as biological control services. We conclude our review by proposing a road map for designing experiments to assess if plasticity and bet-hedging can be adaptive strategies, and to disentangle how fluctuating temperatures can affect the evolution of these two strategies in parasitoids and their hosts.
Collapse
Affiliation(s)
- Cécile Le Lann
- Université de Rennes, CNRS, ECOBIO (écosystèmes, biodiversité, évolution) - UMR 6553, 263 Avenue du Général Leclerc, 35042 Rennes, France
| | - Joan van Baaren
- Université de Rennes, CNRS, ECOBIO (écosystèmes, biodiversité, évolution) - UMR 6553, 263 Avenue du Général Leclerc, 35042 Rennes, France
| | - Bertanne Visser
- Evolution and Ecophysiology Group, Biodiversity Research Centre, Earth and Life Institute, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
14
|
Diaz F, Kuijper B, Hoyle RB, Talamantes N, Coleman JM, Matzkin LM. Environmental predictability drives adaptive within‐ and transgenerational plasticity of heat tolerance across life stages and climatic regions. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fernando Diaz
- Department of Entomology University of Arizona Tucson AZ USA
| | - Bram Kuijper
- Center for Ecology and Conservation University of Exeter Penryn UK
| | - Rebecca B. Hoyle
- School of Mathematical Sciences University of Southampton Southampton UK
| | | | | | - Luciano M. Matzkin
- Department of Entomology University of Arizona Tucson AZ USA
- BIO5 InstituteUniversity of Arizona Tucson AZ USA
- Department of Ecology and Evolutionary Biology University of Arizona Tucson AZ USA
| |
Collapse
|
15
|
Anantanawat K, Papanicolaou A, Hill K, Xu W. Molecular Response of the Mediterranean Fruit Fly (Diptera: Tephritidae) to Heat. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2495-2504. [PMID: 32725189 DOI: 10.1093/jee/toaa147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Indexed: 06/11/2023]
Abstract
Tephritid fruit flies are highly successful invaders and some-such as the Mediterranean fruit fly, Ceratitis capitata (Wiedemann)-are able to adapt to a large range of crops. Biosecurity controls require that shipments of produce are ensured to be pest-free, which is increasingly difficult due to the ban of key pesticides. Instead, stress-based strategies including controlled atmosphere, temperature, and irradiation can be used to eradicate flies inside products. However, unlike pesticide science, we do not yet have a robust scientific approach to measure cost-effectively whether a sufficiently lethal stress has been delivered and understand what this stress does to the biology of the pest. The latter is crucial as it would enable a combination of stresses targeting multiple molecular pathways and thus allow for lower doses of each to achieve higher lethality and reduce the development of resistance. Using heat as an example, this is the first study investigating the molecular stress response to heat in Tephritidae. Using a novel setup delivering measured doses of heat on C. capitata larvae and a high-density 11 timepoint gene expression experiment, we identified key components of lethal heat-stress response. While unraveling the complete molecular mechanism of fruit fly response to lethal stress would be a long-term project, this work curates and develops 31 potential biomarkers to assess whether sufficient lethal stress has been delivered. Further, as these protocols are straightforward and less expensive than other-omic approaches, our studies and approach will assist other researchers working on stress response.
Collapse
Affiliation(s)
- Kay Anantanawat
- Agricultural Sciences, Murdoch University, Murdoch, WA, Australia
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, Australia
- South Australian Research and Development Institute, Hartley Grove, Urrbrae, SA, Australia
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, Australia
| | - Kelly Hill
- South Australian Research and Development Institute, Hartley Grove, Urrbrae, SA, Australia
| | - Wei Xu
- Agricultural Sciences, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
16
|
Pimsler ML, Oyen KJ, Herndon JD, Jackson JM, Strange JP, Dillon ME, Lozier JD. Biogeographic parallels in thermal tolerance and gene expression variation under temperature stress in a widespread bumble bee. Sci Rep 2020; 10:17063. [PMID: 33051510 PMCID: PMC7553916 DOI: 10.1038/s41598-020-73391-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
Global temperature changes have emphasized the need to understand how species adapt to thermal stress across their ranges. Genetic mechanisms may contribute to variation in thermal tolerance, providing evidence for how organisms adapt to local environments. We determine physiological thermal limits and characterize genome-wide transcriptional changes at these limits in bumble bees using laboratory-reared Bombus vosnesenskii workers. We analyze bees reared from latitudinal (35.7-45.7°N) and altitudinal (7-2154 m) extremes of the species' range to correlate thermal tolerance and gene expression among populations from different climates. We find that critical thermal minima (CTMIN) exhibit strong associations with local minimums at the location of queen origin, while critical thermal maximum (CTMAX) was invariant among populations. Concordant patterns are apparent in gene expression data, with regional differentiation following cold exposure, and expression shifts invariant among populations under high temperatures. Furthermore, we identify several modules of co-expressed genes that tightly correlate with critical thermal limits and temperature at the region of origin. Our results reveal that local adaptation in thermal limits and gene expression may facilitate cold tolerance across a species range, whereas high temperature responses are likely constrained, both of which may have implications for climate change responses of bumble bees.
Collapse
Affiliation(s)
- Meaghan L Pimsler
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA.
| | - Kennan J Oyen
- Department of Zoology and Physiology and Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - James D Herndon
- USDA-ARS Pollinating Insects Research Unit, Utah State University, Logan, UT, 84322, USA
| | - Jason M Jackson
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - James P Strange
- USDA-ARS Pollinating Insects Research Unit, Utah State University, Logan, UT, 84322, USA
- Department of Entomology, The Ohio State University, Columbus, OH, 44691, USA
| | - Michael E Dillon
- Department of Zoology and Physiology and Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA
| | - Jeffrey D Lozier
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA.
| |
Collapse
|
17
|
Santana E, de los Reyes T, Casas-Tintó S. Small heat shock proteins determine synapse number and neuronal activity during development. PLoS One 2020; 15:e0233231. [PMID: 32437379 PMCID: PMC7241713 DOI: 10.1371/journal.pone.0233231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/30/2020] [Indexed: 01/31/2023] Open
Abstract
Environmental changes cause stress, Reactive Oxygen Species and unfolded protein accumulation which hamper synaptic activity and trigger cell death. Heat shock proteins (HSPs) assist protein refolding to maintain proteostasis and cellular integrity. Mechanisms regulating the activity of HSPs include transcription factors and posttranslational modifications that ensure a rapid response. HSPs preserve synaptic function in the nervous system upon environmental insults or pathological factors and contribute to the coupling between environmental cues and neuron control of development. We have performed a biased screening in Drosophila melanogaster searching for synaptogenic modulators among HSPs during development. We explore the role of two small-HSPs (sHSPs), sHSP23 and sHSP26 in synaptogenesis and neuronal activity. Both sHSPs immunoprecipitate together and the equilibrium between both chaperones is required for neuronal development and activity. The molecular mechanism controlling HSP23 and HSP26 accumulation in neurons relies on a novel gene (CG1561), which we name Pinkman (pkm). We propose that sHSPs and Pkm are targets to modulate the impact of stress in neurons and to prevent synapse loss.
Collapse
|
18
|
Irvine SQ. Embryonic canalization and its limits-A view from temperature. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:128-144. [PMID: 32011096 DOI: 10.1002/jez.b.22930] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
Abstract
Many animals are able to produce similar offspring over a range of environmental conditions. This property of the developmental process has been termed canalization-the channeling of developmental pathways to generate a stable outcome despite varying conditions. Temperature is one environmental parameter that has fundamental effects on cell physiology and biochemistry, yet developmental programs generally result in a stable phenotype under a range of temperatures. On the other hand, there are typically upper and lower temperature limits beyond which the developmental program is unable to produce normal offspring. This review summarizes data on how development is affected by temperature, particularly high temperature, in various animal species. It also brings together information on potential cell biological and developmental genetic factors that may be responsible for developmental stability in varying temperatures, and likely critical mechanisms that break down at high temperature. Also reviewed are possible means for studying temperature effects on embryogenesis and how to determine which factors are most critical at the high-temperature limits for normal development. Increased knowledge of these critical factors will point to the targets of selection under climate change, and more generally, how developmental robustness in varying environments is maintained.
Collapse
Affiliation(s)
- Steven Q Irvine
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island
| |
Collapse
|
19
|
Vasudeva R, Sutter A, Sales K, Dickinson ME, Lumley AJ, Gage MJG. Adaptive thermal plasticity enhances sperm and egg performance in a model insect. eLife 2019; 8:e49452. [PMID: 31570120 PMCID: PMC6773439 DOI: 10.7554/elife.49452] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/13/2019] [Indexed: 12/16/2022] Open
Abstract
Rising and more variable global temperatures pose a challenge for biodiversity, with reproduction and fertility being especially sensitive to heat. Here, we assessed the potential for thermal adaptation in sperm and egg function using Tribolium flour beetles, a warm-temperate-tropical insect model. Following temperature increases through adult development, we found opposing gamete responses, with males producing shorter sperm and females laying larger eggs. Importantly, this gamete phenotypic plasticity was adaptive: thermal translocation experiments showed that both sperm and eggs produced in warmer conditions had superior reproductive performance in warmer environments, and vice versa for cooler production conditions and reproductive environments. In warmer environments, gamete plasticity enabled males to double their reproductive success, and females could increase offspring production by one-third. Our results reveal exciting potential for sensitive but vital traits within reproduction to handle increasing and more variable thermal regimes in the natural environment.
Collapse
Affiliation(s)
| | - Andreas Sutter
- School of Biological SciencesUniversity of East AngliaNorwichUnited Kingdom
| | - Kris Sales
- School of Biological SciencesUniversity of East AngliaNorwichUnited Kingdom
| | | | - Alyson J Lumley
- School of Biological SciencesUniversity of East AngliaNorwichUnited Kingdom
| | - Matthew JG Gage
- School of Biological SciencesUniversity of East AngliaNorwichUnited Kingdom
| |
Collapse
|
20
|
Zhang Y, Million WC, Ruggeri M, Kenkel CD. Family matters: Variation in the physiology of brooded Porites astreoides larvae is driven by parent colony effects. Comp Biochem Physiol A Mol Integr Physiol 2019; 238:110562. [PMID: 31493555 DOI: 10.1016/j.cbpa.2019.110562] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/01/2019] [Accepted: 08/29/2019] [Indexed: 11/16/2022]
Abstract
The planktonic larval phase of scleractinian coral life-history represents a crucial stage when dispersal takes place and genetic diversity among populations is maintained. Understanding the dynamics influencing larval survival is especially relevant in the context of climate change, as larvae may be more vulnerable to environmental disturbances than adults. Several physiological parameters of coral larvae have been shown to vary by release time and past environmental history. However, the contribution of parental or genetic effects is largely unknown. To investigate these potential familial effects, we collected adult Porites astreoides colonies in April 2018 from two reef zones in the lower Florida Keys and quantified physiological traits and thermal tolerance of the newly released larvae. Family accounted for more variation than day of release and reef origin, with >60% of the variation in chlorophyll a and protein content explained by family. The survivorship of larvae under 36 °C acute temperature stress was also tightly linked to what parent colony they were released from. During a 32 °C moderate temperature stress experiment, inshore larvae tended to bleach less than offshore larvae, mirroring the enhanced bleaching resistance previously observed in inshore adult coral populations. The significant familial effects identified in the present study suggest that researchers should be cautious when interpreting results of studies which pool larvae among families, and that future studies should take care to account for this variation.
Collapse
Affiliation(s)
- Yingqi Zhang
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089, United States of America
| | - Wyatt C Million
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089, United States of America
| | - Maria Ruggeri
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089, United States of America
| | - Carly D Kenkel
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089, United States of America.
| |
Collapse
|
21
|
Gulyas L, Powell JR. Predicting the Future: Parental Progeny Investment in Response to Environmental Stress Cues. Front Cell Dev Biol 2019; 7:115. [PMID: 31275936 PMCID: PMC6593227 DOI: 10.3389/fcell.2019.00115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/05/2019] [Indexed: 01/13/2023] Open
Abstract
Environmental stressors can severely limit the ability of an organism to reproduce as lifespan is decreased and resources are shifted away from reproduction to survival. Although this is often detrimental to the organism's reproductive fitness, certain other reproductive stress responses may mitigate this effect by increasing the likelihood of progeny survival in the F1 and subsequent generations. Here we review three means by which these progeny may be conferred a competitive edge as a result of stress encountered in the parental generation: heritable epigenetic modifications to nucleotides and histones, simple maternal investments of cytosolic components, and the partially overlapping phenomenon of terminal investment, which can entail extreme parental investment strategies in either cytosolic components or gamete production. We examine instances of these categories and their ability to subsequently impact offspring fitness and reproduction. Ultimately, without impacting nucleotide sequence, these more labile alterations may shape development, evolution, ecology and even human health, necessitating further understanding and research into the specific mechanisms by which environmental stressors are sensed and elicit a corresponding response in the parental germline.
Collapse
Affiliation(s)
- Leah Gulyas
- Department of Biology, Gettysburg College, Gettysburg, PA, United States
| | - Jennifer R Powell
- Department of Biology, Gettysburg College, Gettysburg, PA, United States
| |
Collapse
|
22
|
Gu X, Zhao Y, Su Y, Wu J, Wang Z, Hu J, Liu L, Zhao Z, Hoffmann AA, Chen B, Li Z. A transcriptional and functional analysis of heat hardening in two invasive fruit fly species, Bactrocera dorsalis and Bactrocera correcta. Evol Appl 2019; 12:1147-1163. [PMID: 31293628 PMCID: PMC6597872 DOI: 10.1111/eva.12793] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/01/2019] [Accepted: 03/07/2019] [Indexed: 12/15/2022] Open
Abstract
Many insects have the capacity to increase their resistance to high temperatures by undergoing heat hardening at nonlethal temperatures. Although this response is well established, its molecular underpinnings have only been investigated in a few species where it seems to relate at least partly to the expression of heat shock protein (Hsp) genes. Here, we studied the mechanism of hardening and associated transcription responses in larvae of two invasive fruit fly species in China, Bactrocera dorsalis and Bactrocera correcta. Both species showed hardening which increased resistance to 45°C, although the more widespread B. dorsalis hardened better at higher temperatures compared to B. correcta which hardened better at lower temperatures. Transcriptional analyses highlighted expression changes in a number of genes representing different biochemical pathways, but these changes and pathways were inconsistent between the two species. Overall B. dorsalis showed expression changes in more genes than B. correcta. Hsp genes tended to be upregulated at a hardening temperature of 38°C in both species, while at 35°C many Hsp genes tended to be upregulated in B. correcta but not B. dorsalis. One candidate gene (the small heat shock protein gene, Hsp23) with a particularly high level of upregulation was investigated functionally using RNA interference (RNAi). We found that RNAi may be more efficient in B. dorsalis, in which suppression of the expression of this gene removed the hardening response, whereas in B. correcta RNAi did not decrease the hardening response. The different patterns of gene expression in these two species at the two hardening temperatures highlight the diverse mechanisms underlying hardening even in closely related species. These results may provide target genes for future control efforts against such pest species.
Collapse
Affiliation(s)
- Xinyue Gu
- Department of Entomology, College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Yan Zhao
- Department of Entomology, College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Yun Su
- Department of Entomology, College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Jiajiao Wu
- Guangdong Inspection and Quarantine Technology CenterGuangzhouChina
| | - Ziya Wang
- Department of Entomology, College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Juntao Hu
- Redpath MuseumMcGill UniversityMontrealQuebecCanada
- Department of BiologyMcGill UniversityMontrealQuebecCanada
| | - Lijun Liu
- Department of Entomology, College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Zihua Zhao
- Department of Entomology, College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Ary A. Hoffmann
- School of BioSciences, Bio21 InstituteUniversity of MelbourneParkvilleVictoriaAustralia
| | - Bing Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Present address:
College of Life SciencesHebei UniversityBaodingChina
| | - Zhihong Li
- Department of Entomology, College of Plant ProtectionChina Agricultural UniversityBeijingChina
| |
Collapse
|
23
|
Carra S, Alberti S, Benesch JLP, Boelens W, Buchner J, Carver JA, Cecconi C, Ecroyd H, Gusev N, Hightower LE, Klevit RE, Lee HO, Liberek K, Lockwood B, Poletti A, Timmerman V, Toth ME, Vierling E, Wu T, Tanguay RM. Small heat shock proteins: multifaceted proteins with important implications for life. Cell Stress Chaperones 2019; 24:295-308. [PMID: 30758704 PMCID: PMC6439001 DOI: 10.1007/s12192-019-00979-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2019] [Indexed: 12/21/2022] Open
Abstract
Small Heat Shock Proteins (sHSPs) evolved early in the history of life; they are present in archaea, bacteria, and eukaryota. sHSPs belong to the superfamily of molecular chaperones: they are components of the cellular protein quality control machinery and are thought to act as the first line of defense against conditions that endanger the cellular proteome. In plants, sHSPs protect cells against abiotic stresses, providing innovative targets for sustainable agricultural production. In humans, sHSPs (also known as HSPBs) are associated with the development of several neurological diseases. Thus, manipulation of sHSP expression may represent an attractive therapeutic strategy for disease treatment. Experimental evidence demonstrates that enhancing the chaperone function of sHSPs protects against age-related protein conformation diseases, which are characterized by protein aggregation. Moreover, sHSPs can promote longevity and healthy aging in vivo. In addition, sHSPs have been implicated in the prognosis of several types of cancer. Here, sHSP upregulation, by enhancing cellular health, could promote cancer development; on the other hand, their downregulation, by sensitizing cells to external stressors and chemotherapeutics, may have beneficial outcomes. The complexity and diversity of sHSP function and properties and the need to identify their specific clients, as well as their implication in human disease, have been discussed by many of the world's experts in the sHSP field during a dedicated workshop in Québec City, Canada, on 26-29 August 2018.
Collapse
Affiliation(s)
- Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, and Centre for Neuroscience and Nanotechnology, University of Modena and Reggio Emilia, via G. Campi 287, 41125, Modena, Italy.
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
- Center for Molecular and Cellular Bioengineering (CMCB), Biotechnology Center (BIOTEC), Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany
| | - Justin L P Benesch
- Department of Chemistry, Physical and Theoretical Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Wilbert Boelens
- Department of Biomolecular Chemistry, Institute of Molecules and Materials, Radboud University, NL-6500, Nijmegen, The Netherlands
| | - Johannes Buchner
- Center for Integrated Protein Science Munich (CIPSM) and Department Chemie, Technische Universität München, D-85748, Garching, Germany
| | - John A Carver
- Research School of Chemistry, The Australian National University, Acton, ACT, 2601, Australia
| | - Ciro Cecconi
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, 41125, Modena, Italy
- Center S3, CNR Institute Nanoscience, Via Campi 213/A, 41125, Modena, Italy
| | - Heath Ecroyd
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Nikolai Gusev
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, Russian Federation, 117234
| | - Lawrence E Hightower
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT, 06269-3125, USA
| | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Hyun O Lee
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Krzysztof Liberek
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
| | - Brent Lockwood
- Department of Biology, University of Vermont, Burlington, VT, 05405, USA
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Univrsità degli Studi di Milano, Milan, Italy
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Melinda E Toth
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Elizabeth Vierling
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Tangchun Wu
- MOE Key Lab of Environment and Health, Tongji School of Public Health, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Robert M Tanguay
- Laboratory of Cell and Developmental Genetics, IBIS, and Department of Molecular Biology, Medical Biochemistry and Pathology, Medical School, Université Laval, QC, Québec, G1V 0A6, Canada.
| |
Collapse
|
24
|
Leftwich PT, Nash WJ, Friend LA, Chapman T. Contribution of maternal effects to dietary selection in Mediterranean fruit flies. Evolution 2019; 73:278-292. [PMID: 30592536 PMCID: PMC6492002 DOI: 10.1111/evo.13664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 11/25/2018] [Indexed: 01/15/2023]
Abstract
Individual responses to dietary variation represent a fundamental component of fitness, and nutritional adaptation can occur over just a few generations. Maternal effects can show marked proximate responses to nutrition, but whether they contribute to longer term dietary adaptation is unclear. Here, we tested the hypotheses that maternal effects: (i) contribute to dietary adaptation, (ii) diminish when dietary conditions are constant between generations, (iii) are trait-specific and (iv) interact with high- and low-quality food. We used experimental evolution regimes in the medfly (Ceratitis capitata) to test these predictions by subjecting an outbred laboratory-adapted population to replicated experimental evolution on either constant high calorie sugar ('A') or low-calorie starch ('S') larval diets, with a standard adult diet across both regimes. We measured the contribution of maternal effects by comparing developmental and adult phenotypes of individuals reared on their own diet with those swapped onto the opposite diet for either one or two generations (high and low maternal effect conditions, respectively), both at the start and after 30 generations of selection. Initially, there were strong maternal effects on female body mass and male mating success but not larval survival. Interestingly, the initial maternal effects observed in female body mass and male mating success showed sex-specific interactions when individuals from high calorie regimes were tested on low calorie diets. However, as populations responded to selection, the effects of maternal provisioning on all traits diminished. The results broadly supported the predictions. They show how the contribution of maternal effects to dietary responses evolves in a context-dependent manner, with significant variation across different fitness-related traits. We conclude that maternal effects can evolve during nutritional adaptation and hence may be an important life history trait to measure, rather than to routinely minimize.
Collapse
Affiliation(s)
- Philip T. Leftwich
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUnited Kingdom
- The Pirbright InstituteWokingSurreyGU24 0NFUnited Kingdom
| | - William J. Nash
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUnited Kingdom
- Evolutionary Genomics GroupEarlham InstituteNorwich Research ParkNorwichNR4 7UZUnited Kingdom
| | - Lucy A. Friend
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUnited Kingdom
| | - Tracey Chapman
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUnited Kingdom
| |
Collapse
|
25
|
Developmental Expression and Functions of the Small Heat Shock Proteins in Drosophila. Int J Mol Sci 2018; 19:ijms19113441. [PMID: 30400176 PMCID: PMC6274884 DOI: 10.3390/ijms19113441] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 02/05/2023] Open
Abstract
Heat shock proteins (Hsps) form a large family of evolutionarily conserved molecular chaperones that help balance protein folding and protect cells from various stress conditions. However, there is growing evidence that Hsps may also play an active role in developmental processes. Here, we take the example of developmental expression and function of one class of Hsps characterized by low molecular weight, the small Hsps (sHsps). We discuss recent reports and genome-wide datasets that support vital sHsps functions in the developing nervous system, reproductive system, and muscles. This tissue- and time-specific sHsp expression is developmentally regulated, so that the enhancer sequence of an sHsp gene expressed in developing muscle, in addition to stress-inducible elements, also carries binding sites for myogenic regulatory factors. One possible reason for sHsp genes to switch on during development and in non-stress conditions is to protect vital developing organs from environmental insults.
Collapse
|
26
|
Sato A. Chaperones, Canalization, and Evolution of Animal Forms. Int J Mol Sci 2018; 19:E3029. [PMID: 30287767 PMCID: PMC6213012 DOI: 10.3390/ijms19103029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/18/2022] Open
Abstract
Over half a century ago, British developmental biologist Conrad Hal Waddington proposed the idea of canalization, that is, homeostasis in development. Since the breakthrough that was made by Rutherford and Lindquist (1998), who proposed a role of Hsp90 in developmental buffering, chaperones have gained much attention in the study of canalization. However, recent studies have revealed that a number of other molecules are also potentially involved in canalization. Here, I introduce the emerging role of DnaJ chaperones in canalization. I also discuss how the expression levels of such buffering molecules can be altered, thereby altering organismal development. Since developmental robustness is maternally inherited in various organisms, I propose that dynamic bet hedging, an increase in within-clutch variation in offspring phenotypes that is caused by unpredictable environmental challenges to the mothers, plays a key role in altering the expression levels of buffering molecules. Investigating dynamic bet hedging at the molecular level and how it impacts upon morphological phenotypes will help our understanding of the molecular mechanisms of canalization and evolutionary processes.
Collapse
Affiliation(s)
- Atsuko Sato
- Department of Biology, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-0012, Japan.
- Marine Biological Association of the UK, The Laboratory, Plymouth PL1 2PB, UK.
| |
Collapse
|
27
|
Tangwancharoen S, Moy GW, Burton RS. Multiple Modes of Adaptation: Regulatory and Structural Evolution in a Small Heat Shock Protein Gene. Mol Biol Evol 2018; 35:2110-2119. [DOI: 10.1093/molbev/msy138] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Sumaetee Tangwancharoen
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, CA
| | - Gary W Moy
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, CA
| | - Ronald S Burton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, CA
| |
Collapse
|
28
|
Knight K. Fruit fly mum's gift protects larvae through development. J Exp Biol 2017. [DOI: 10.1242/jeb.172692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Lockwood BL, Julick CR, Montooth KL. Maternal loading of a small heat shock protein increases embryo thermal tolerance in Drosophila melanogaster. J Exp Biol 2017; 220:4492-4501. [PMID: 29097593 PMCID: PMC5769566 DOI: 10.1242/jeb.164848] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/02/2017] [Indexed: 01/05/2023]
Abstract
Maternal investment is likely to have direct effects on offspring survival. In oviparous animals whose embryos are exposed to the external environment, maternal provisioning of molecular factors like mRNAs and proteins may help embryos cope with sudden changes in the environment. Here, we sought to modify the maternal mRNA contribution to offspring embryos and test for maternal effects on acute thermal tolerance in early embryos of Drosophila melanogaster We drove in vivo overexpression of a small heat shock protein gene (Hsp23) in female ovaries and measured the effects of acute thermal stress on offspring embryonic survival and larval development. We report that overexpression of the Hsp23 gene in female ovaries produced offspring embryos with increased thermal tolerance. We also found that brief heat stress in the early embryonic stage (0-1 h old) caused decreased larval performance later in life (5-10 days old), as indexed by pupation height. Maternal overexpression of Hsp23 protected embryos against this heat-induced defect in larval performance. Our data demonstrate that transient products of single genes have large and lasting effects on whole-organism environmental tolerance. Further, our results suggest that maternal effects have a profound impact on offspring survival in the context of thermal variability.
Collapse
Affiliation(s)
- Brent L Lockwood
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | - Cole R Julick
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Kristi L Montooth
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| |
Collapse
|