1
|
Nogueira J, Castelló ME, Lescano C, Caputi ÁA. Distinct neuron phenotypes may serve object feature sensing in the electrosensory lobe of Gymnotus omarorum. J Exp Biol 2021; 224:237807. [PMID: 33707195 DOI: 10.1242/jeb.242242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/01/2021] [Indexed: 11/20/2022]
Abstract
Early sensory relay circuits in the vertebrate medulla often adopt a cerebellum-like organization specialized for comparing primary afferent inputs with central expectations. These circuits usually have a dual output, carried by center ON and center OFF neurons responding in opposite ways to the same stimulus at the center of their receptive fields. Here, we show in the electrosensory lateral line lobe of Gymnotiform weakly electric fish that basilar pyramidal neurons, representing 'ON' cells, and non-basilar pyramidal neurons, representing 'OFF' cells, have different intrinsic electrophysiological properties. We used classical anatomical techniques and electrophysiological in vitro recordings to compare these neurons. Basilar neurons are silent at rest, have a high threshold to intracellular stimulation, delayed responses to steady-state depolarization and low pass responsiveness to membrane voltage variations. They respond to low-intensity depolarizing stimuli with large, isolated spikes. As stimulus intensity increases, the spikes are followed by a depolarizing after-potential from which phase-locked spikes often arise. Non-basilar neurons show a pacemaker-like spiking activity, smoothly modulated in frequency by slow variations of stimulus intensity. Spike-frequency adaptation provides a memory of their recent firing, facilitating non-basilar response to stimulus transients. Considering anatomical and functional dimensions, we conclude that basilar and non-basilar pyramidal neurons are clear-cut, different anatomo-functional phenotypes. We propose that, in addition to their role in contrast processing, basilar pyramidal neurons encode sustained global stimuli such as those elicited by large or distant objects while non-basilar pyramidal neurons respond to transient stimuli due to movement of objects with a textured surface.
Collapse
Affiliation(s)
- Javier Nogueira
- Departamento Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, Uruguay.,Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Av. Gral Flores 2515, Montevideo, Uruguay
| | - María E Castelló
- Laboratorio Desarrollo y Evolución Neural, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, Uruguay
| | - Carolina Lescano
- Laboratorio Desarrollo y Evolución Neural, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, Uruguay
| | - Ángel A Caputi
- Departamento Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, Uruguay
| |
Collapse
|
2
|
Bai Y, Neveln ID, Peshkin M, MacIver MA. Enhanced detection performance in electrosense through capacitive sensing. BIOINSPIRATION & BIOMIMETICS 2016; 11:055001. [PMID: 27501202 DOI: 10.1088/1748-3190/11/5/055001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Weakly electric fish emit an AC electric field into the water and use thousands of sensors on the skin to detect field perturbations due to surrounding objects. The fish's active electrosensory system allows them to navigate and hunt, using separate neural pathways and receptors for resistive and capacitive perturbations. We have previously developed a sensing method inspired by the weakly electric fish to detect resistive perturbations and now report on an extension of this system to detect capacitive perturbations as well. In our method, an external object is probed by an AC field over multiple frequencies. We present a quantitative framework that relates the response of a capacitive object at multiple frequencies to the object's composition and internal structure, and we validate this framework with an electrosense robot that implements our capacitive sensing method. We define a metric for comparing the electrosensory range of different underwater electrosense systems. For detecting non-conductive objects, we show that capacitive sensing performs better than resistive sensing by almost an order of magnitude using this measure, while for conductive objects there is a four-fold increase in performance. Capacitive sensing could therefore provide electric fish with extended sensing range for capacitive objects such as prey, and gives artificial electrolocation systems enhanced range for targets that are capacitive.
Collapse
Affiliation(s)
- Yang Bai
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | | | | | | |
Collapse
|
3
|
Bai Y, Snyder JB, Peshkin M, MacIver MA. Finding and identifying simple objects underwater with active electrosense. Int J Rob Res 2015. [DOI: 10.1177/0278364915569813] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Active electrosense is used by some fish for the sensing of nearby objects by means of the perturbations the objects induce in a self-generated electric field. As with echolocation (sensing via perturbations of an emitted acoustic field) active electrosense is particularly useful in environments where darkness, clutter or turbidity makes vision ineffective. Work on engineered variants of active electrosense is motivated by the need for sensors in underwater systems that function well at short range and where vision-based approaches can be problematic, as well as to aid in understanding the computational principles of biological active electrosense. Prior work in robotic active electrosense has focused on tracking and localization of spherical objects. In this study, we present an algorithm for estimating the size, shape, orientation, and location of ellipsoidal objects, along with experimental results. The algorithm is implemented in a robotic active electrosense system whose basic approach is similar to biological active electrosense systems, including the use of movement as part of sensing. At a range up to ≈20 cm, or about half the length of the robot, the algorithm localizes spheroids that are one-tenth the length of the robot with accuracy of better than 1 cm for position and 5° in orientation. The algorithm estimates object size and length-to-width ratio with an accuracy of around 10%.
Collapse
Affiliation(s)
- Yang Bai
- Department of Mechanical Engineering,
Northwestern University, Evanston, IL, USA
| | - James B. Snyder
- Department of Biomedical Engineering,
Northwestern University, Evanston, IL, USA
| | - Michael Peshkin
- Department of Mechanical Engineering,
Northwestern University, Evanston, IL, USA
| | - Malcolm A. MacIver
- Department of Mechanical Engineering,
Northwestern University, Evanston, IL, USA
- Department of Biomedical Engineering,
Northwestern University, Evanston, IL, USA
- Department of Neurobiology, Northwestern
University, Evanston, IL, USA
| |
Collapse
|
4
|
Bale R, Shirgaonkar AA, Neveln ID, Bhalla APS, MacIver MA, Patankar NA. Separability of drag and thrust in undulatory animals and machines. Sci Rep 2014; 4:7329. [PMID: 25491270 PMCID: PMC5376980 DOI: 10.1038/srep07329] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 11/04/2014] [Indexed: 11/09/2022] Open
Abstract
For nearly a century, researchers have tried to understand the swimming of aquatic animals in terms of a balance between the forward thrust from swimming movements and drag on the body. Prior approaches have failed to provide a separation of these two forces for undulatory swimmers such as lamprey and eels, where most parts of the body are simultaneously generating drag and thrust. We nonetheless show that this separation is possible, and delineate its fundamental basis in undulatory swimmers. Our approach unifies a vast diversity of undulatory aquatic animals (anguilliform, sub-carangiform, gymnotiform, bal-istiform, rajiform) and provides design principles for highly agile bioinspired underwater vehicles. This approach has practical utility within biology as well as engineering. It is a predictive tool for use in understanding the role of the mechanics of movement in the evolutionary emergence of morphological features relating to locomotion. For example, we demonstrate that the drag-thrust separation framework helps to predict the observed height of the ribbon fin of electric knifefish, a diverse group of neotropical fish which are an important model system in sensory neurobiology. We also show how drag-thrust separation leads to models that can predict the swimming velocity of an organism or a robotic vehicle.
Collapse
Affiliation(s)
- Rahul Bale
- Department of Mechanical Engineering, Northwestern University
| | | | - Izaak D Neveln
- Department of Biomedical Engineering, Northwestern University
| | | | - Malcolm A MacIver
- 1] Department of Mechanical Engineering, Northwestern University [2] Department of Biomedical Engineering, Northwestern University [3] Department of Neurobiology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | | |
Collapse
|
5
|
Pereira AC, Rodríguez-Cattáneo A, Caputi AA. The slow pathway in the electrosensory lobe of Gymnotus omarorum: field potentials and unitary activity. ACTA ACUST UNITED AC 2014; 108:71-83. [PMID: 25088503 DOI: 10.1016/j.jphysparis.2014.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 07/15/2014] [Accepted: 07/17/2014] [Indexed: 11/26/2022]
Abstract
This is a first communication on the self-activation pattern of the electrosensory lobe in the pulse weakly electric fish Gymnotus omarorum. Field potentials in response to the fish's own electric organ discharge (EOD) were recorded along vertical tracks (50μm step) and on a transversal lattice array across the electrosensory lobe (resolution 50μm×100μm). The unitary activity of 82 neurons was recorded in the same experiments. Field potential analysis indicates that the slow electrosensory path shows a characteristic post-EOD pattern of activity marked by three main events: (i) a small and early component at about 7ms, (ii) an intermediate peak about 13ms and (iii) a late broad component peaking after 20ms. Unit firing rate showed a wide range of latencies between 3 and 30ms and a variable number of spikes (median 0.28units/EOD). Conditional probability analysis showed monomodal and multimodal post-EOD histograms, with the peaks of unit activity histograms often matching the timing of the main components of the field potentials. Monomodal responses were sub-classified as phase locked monomodal (variance smaller than 1ms), early monomodal (intermediate variance, often firing in doublets, peaking range 10-17ms) and late monomodal (large variance, often firing two spikes separated about 10ms, peaking beyond 17ms). The responses of multimodal units showed that their firing probability was either enhanced, or depressed just after the EOD. In this last (depressed) subtype of unit the probability stepped down just after the EOD. Early inhibition and the presence of early phase locked units suggest that the observed pattern may be influenced by a fast feed forward inhibition. We conclude that the ELL in pulse gymnotiformes is activated in a complex sequence of events that reflects the ELL network connectivity.
Collapse
Affiliation(s)
- Ana Carolina Pereira
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Alejo Rodríguez-Cattáneo
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Angel A Caputi
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| |
Collapse
|
6
|
Shirahata T. Analysis of the electrosensory pyramidal cell bursting model for weakly electric fish: model prediction under low levels of dendritic potassium conductance. ACTA BIOLOGICA HUNGARICA 2012; 63:313-20. [PMID: 22963912 DOI: 10.1556/abiol.63.2012.3.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pyramidal cells in the electrosensory lateral line lobe (ELL) of weakly electric fish produce burst discharge. A Hodgkin-Huxley-type model, called ghostburster, consisting of two compartments (soma and dendrite) reproduces ELL pyramidal cell bursting observed in vitro. A previous study analyzed the ghostburster by treating Is and gDr,d as bifurcation parameters (Is: current injected into the somatic compartment and gDr,d: maximal conductance of the delayed rectifying potassium current in the dendritic compartment) and indicated that when both Is and gDr,d are set at particular values, the ghostburster shows a codimension-two bifurcation at which both saddle-node bifurcation of fixed points and saddle-node bifurcation of limit cycles occur simultaneously. In the present study, the ghostburster was investigated to clarify the bursting that occurred at gDr,d values smaller than that at the codimension-two bifurcation. Based on the number of spikes per burst, various burst patterns were observed depending on the (Is, gDr,d) values. Depending on the (Is, gDr,d) values, the burst trajectory in a phase space of the ghostburster showed either a high or a low degree of periodicity. Compared to the previous study, the present findings contribute to a more detailed understanding of ghostburster bursting.
Collapse
Affiliation(s)
- T Shirahata
- Laboratory of Pharmaceutics, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1, Shido, Sanuki Kagawa 769-2193, Japan.
| |
Collapse
|
7
|
Khosravi-Hashemi N, Fortune ES, Chacron MJ. Coding movement direction by burst firing in electrosensory neurons. J Neurophysiol 2011; 106:1954-68. [PMID: 21775723 DOI: 10.1152/jn.00116.2011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Directional selectivity, in which neurons respond strongly to an object moving in a given direction ("preferred") but respond weakly or not at all to an object moving in the opposite direction ("null"), is a critical computation achieved in brain circuits. Previous measures of direction selectivity have compared the numbers of action potentials elicited by each direction of movement, but most sensory neurons display patterning, such as bursting, in their spike trains. To examine the contribution of patterned responses to direction selectivity, we recorded from midbrain neurons in weakly electric fish and found that most neurons responded with a combination of both bursts and isolated spikes to moving object stimuli. In these neurons, we separated bursts and isolated spikes using an interspike interval (ISI) threshold. The directional bias of bursts was significantly higher than that of either the full spike train or the isolated spike train. To examine the encoding and decoding of bursts, we built biologically plausible models that examine 1) the upstream mechanisms that generate these spiking patterns and 2) downstream decoders of bursts. Our model of upstream mechanisms uses an interaction between afferent input and subthreshold calcium channels to give rise to burst firing that occurs preferentially for one direction of movement. We tested this model in vivo by application of calcium antagonists, which reduced burst firing and eliminated the differences in direction selectivity between bursts, isolated spikes, and the full spike train. Our model of downstream decoders used strong synaptic facilitation to achieve qualitatively similar results to those obtained using the ISI threshold criterion. This model shows that direction selective information carried by bursts can be decoded by downstream neurons using biophysically plausible mechanisms.
Collapse
|
8
|
Deemyad T, Maler L, Chacron MJ. Inhibition of SK and M channel-mediated currents by 5-HT enables parallel processing by bursts and isolated spikes. J Neurophysiol 2011; 105:1276-94. [PMID: 21209357 PMCID: PMC4850069 DOI: 10.1152/jn.00792.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although serotonergic innervation of sensory brain areas is ubiquitous, its effects on sensory information processing remain poorly understood. We investigated these effects in pyramidal neurons within the electrosensory lateral line lobe (ELL) of weakly electric fish. Surprisingly, we found that 5-HT is present at different levels across the different ELL maps; the presence of 5-HT fibers was highest in the map that processes intraspecies communication signals. Electrophysiological recordings revealed that 5-HT increased excitability and burst firing through a decreased medium afterhyperpolarization resulting from reduced small-conductance calcium-activated (SK) currents as well as currents mediated by an M-type potassium channel. We next investigated how 5-HT alters responses to sensory input. 5-HT application decreased the rheobase current, increased the gain, and decreased first spike latency. Moreover, it reduced discriminability between different stimuli, as quantified by the mutual information rate. We hypothesized that 5-HT shifts pyramidal neurons into a burst-firing mode where bursts, when considered as events, can detect the presence of particular stimulus features. We verified this hypothesis using signal detection theory. Our results indeed show that serotonin-induced bursts of action potentials, when considered as events, could detect specific stimulus features that were distinct from those detected by isolated spikes. Moreover, we show the novel result that isolated spikes transmit more information after 5-HT application. Our results suggest a novel function for 5-HT in that it enables differential processing by action potential patterns in response to current injection.
Collapse
Affiliation(s)
- Tara Deemyad
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
9
|
Chacron MJ, Toporikova N, Fortune ES. Differences in the time course of short-term depression across receptive fields are correlated with directional selectivity in electrosensory neurons. J Neurophysiol 2009; 102:3270-9. [PMID: 19793877 DOI: 10.1152/jn.00645.2009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Directional selectivity, in which neurons respond preferentially to one direction of movement ("preferred") over the opposite direction ("null"), is a critical computation that is found in the nervous systems of many animals. Here we show the first experimental evidence for a correlation between differences in short-term depression and direction-selective responses to moving objects. As predicted by quantitative models, the observed differences in the time courses of short-term depression at different locations within receptive fields were correlated with measures of direction selectivity in awake, behaving weakly electric fish (Apteronotus leptorhynchus). Because short-term depression is ubiquitous in the central nervous systems of vertebrate animals, it may be a common mechanism used for the generation of directional selectivity and other spatiotemporal computations.
Collapse
Affiliation(s)
- Maurice J Chacron
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
10
|
Toporikova N, Chacron MJ. SK channels gate information processing in vivo by regulating an intrinsic bursting mechanism seen in vitro. J Neurophysiol 2009; 102:2273-87. [PMID: 19675292 DOI: 10.1152/jn.00282.2009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Understanding the mechanistic substrates of neural computations that lead to behavior remains a fundamental problem in neuroscience. In particular, the contributions of intrinsic neural properties such as burst firing and dendritic morphology to the processing of behaviorally relevant sensory input have received much interest recently. Pyramidal cells within the electrosensory lateral line lobe of weakly electric fish display an intrinsic bursting mechanism that relies on somato-dendritic interactions when recorded in vitro: backpropagating somatic action potentials trigger dendritic action potentials that lead to a depolarizing afterpotential (DAP) at the soma. We recorded intracellularly from these neurons in vivo and found firing patterns that were quite different from those seen in vitro: we found no evidence for DAPs as each somatic action potential was followed by a pronounced afterhyperpolarization (AHP). Calcium chelators injected in vivo reduced the AHP, thereby unmasking the DAP and inducing in vitro-like bursting in pyramidal cells. These bursting dynamics significantly reduced the cell's ability to encode the detailed time course of sensory input. We performed additional in vivo pharmacological manipulations and mathematical modeling to show that calcium influx through N-methyl-d-aspartate (NMDA) receptors activate dendritic small conductance (SK) calcium-activated potassium channels, which causes an AHP that counteracts the DAP and leads to early termination of the burst. Our results show that ion channels located in dendrites can have a profound influence on the processing of sensory input by neurons in vivo through the modulation of an intrinsic bursting mechanism.
Collapse
Affiliation(s)
- Natalia Toporikova
- Department of Physiology, Center for Nonlinear Dynamics, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
11
|
Caputi AA, Castelló ME, Aguilera PA, Pereira C, Nogueira J, Rodríguez-Cattaneo A, Lezcano C. Active electroreception in Gymnotus omari: imaging, object discrimination, and early processing of actively generated signals. ACTA ACUST UNITED AC 2008; 102:256-71. [PMID: 18992336 DOI: 10.1016/j.jphysparis.2008.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Weakly electric fishes "electrically illuminate" the environment in two forms: pulse fishes emit a succession of discrete electric discharges while wave fishes emit a continuous wave. These strategies are present in both taxonomic groups of weakly electric fishes, mormyrids and gymnotids. As a consequence one can distinguish four major types of active electrosensory strategies evolving in parallel. Pulse gymnotids have an electrolocating strategy common with pulse mormyrids, but brains of pulse and wave gymnotids are alike. The beating strategy associated to other differences in the electrogenic system and electrosensory responses suggests that similar hardware might work in a different mode for processing actively generated electrosensory images. In this review we summarize our findings in pulse gymnotids' active electroreception and outline a primary agenda for the next research.
Collapse
Affiliation(s)
- Angel A Caputi
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo CP 11600, Uruguay.
| | | | | | | | | | | | | |
Collapse
|
12
|
Mehaffey WH, Ellis LD, Krahe R, Dunn RJ, Chacron MJ. Ionic and neuromodulatory regulation of burst discharge controls frequency tuning. JOURNAL OF PHYSIOLOGY, PARIS 2008; 102:195-208. [PMID: 18992813 PMCID: PMC4529324 DOI: 10.1016/j.jphysparis.2008.10.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Sensory neurons encode natural stimuli by changes in firing rate or by generating specific firing patterns, such as bursts. Many neural computations rely on the fact that neurons can be tuned to specific stimulus frequencies. It is thus important to understand the mechanisms underlying frequency tuning. In the electrosensory system of the weakly electric fish, Apteronotus leptorhynchus, the primary processing of behaviourally relevant sensory signals occurs in pyramidal neurons of the electrosensory lateral line lobe (ELL). These cells encode low frequency prey stimuli with bursts of spikes and high frequency communication signals with single spikes. We describe here how bursting in pyramidal neurons can be regulated by intrinsic conductances in a cell subtype specific fashion across the sensory maps found within the ELL, thereby regulating their frequency tuning. Further, the neuromodulatory regulation of such conductances within individual cells and the consequences to frequency tuning are highlighted. Such alterations in the tuning of the pyramidal neurons may allow weakly electric fish to preferentially select for certain stimuli under various behaviourally relevant circumstances.
Collapse
Affiliation(s)
- W. Hamish Mehaffey
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Lee D. Ellis
- Center for Research in Neuroscience, McGill University, Montreal, QC, Canada H3G 1A4
| | - Rüdiger Krahe
- Department of Biology, McGill University, Montreal, QC, Canada H3A 1B1
| | - Robert J. Dunn
- Center for Research in Neuroscience, McGill University, Montreal, QC, Canada H3G 1A4
| | - Maurice J. Chacron
- Department of Physiology and Physics, Center for Non-linear Dynamics, McGill University, McIntyre Medical Sciences Building, 3655 Promenade Sir William Osler, Montréal, Québec, Canada H3G 1Y6
| |
Collapse
|
13
|
Abstract
We explore the capabilities of a robotic sensing system designed to locate objects underwater through active movement of an electric field emitter and sensor apparatus. The system is inspired by the biological phenomenon of active electrolocation, a sensing strategy found in two groups of freshwater fishes known to emit weak electric fields for target localization and communication. An analytical model for the observation of simple targets is used to qualitatively predict some characteristics of the sensor including the detection distance as a function of sensor noise. We characterize the performance of the robot using different automatic electrolocation controllers, objects and water salinities. We demonstrate successful electrolocation both in the conditions in which it is naturally observed (i.e. in low conductivity water) as well as in conditions in which it is not observed (i.e. in water of ocean salinity). For the electrolocation experiments using an active controller based on a probabilistic sensor model, the median positional estimation error for spheres is 1 3% of sphere diameter. Spheres were detected at distances similar to the distance between the two field electrodes.
Collapse
Affiliation(s)
- James R. Solberg
- Department of Mechanical Engineering R. R. McCormick School of Engineering and Applied Science Northwestern University Evanston, IL 60208-3111 USA
| | - Kevin M. Lynch
- Department of Mechanical Engineering R. R. McCormick School of Engineering and Applied Science Northwestern University Evanston, IL 60208-3111 USA
| | - Malcolm A. MacIver
- Department of Mechanical Engineering R. R. McCormick School of Engineering and Applied Science Northwestern University Evanston, IL 60208-3111 USA,
| |
Collapse
|
14
|
Ellis LD, Krahe R, Bourque CW, Dunn RJ, Chacron MJ. Muscarinic receptors control frequency tuning through the downregulation of an A-type potassium current. J Neurophysiol 2007; 98:1526-37. [PMID: 17615127 PMCID: PMC5053812 DOI: 10.1152/jn.00564.2007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The functional role of cholinergic input in the modulation of sensory responses was studied using a combination of in vivo and in vitro electrophysiology supplemented by mathematical modeling. The electrosensory system of weakly electric fish recognizes different environmental stimuli by their unique alteration of a self-generated electric field. Variations in the patterns of stimuli are primarily distinguished based on their frequency. Pyramidal neurons in the electrosensory lateral line lobe (ELL) are often tuned to respond to specific input frequencies. Alterations in the tuning of the pyramidal neurons may allow weakly electric fish to preferentially select for certain stimuli. Here we show that muscarinic receptor activation in vivo enhances the excitability, burst firing, and subsequently the response of pyramidal cells to naturalistic sensory input. Through a combination of in vitro electrophysiology and mathematical modeling, we reveal that this enhanced excitability and bursting likely results from the down-regulation of an A-type potassium current. Further, we provide an explanation of the mechanism by which these currents can mediate frequency tuning.
Collapse
Affiliation(s)
- Lee D Ellis
- Center for Research in Neuroscience, McGill University, Montreal, Canada
| | | | | | | | | |
Collapse
|
15
|
Zupanc GKH. Neurogenesis and neuronal regeneration in the adult fish brain. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2006; 192:649-70. [PMID: 16463148 DOI: 10.1007/s00359-006-0104-y] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 11/02/2005] [Accepted: 12/26/2005] [Indexed: 10/25/2022]
Abstract
Fish are distinctive in their enormous potential to continuously produce new neurons in the adult brain, whereas in mammals adult neurogenesis is restricted to the olfactory bulb and the hippocampus. In fish new neurons are not only generated in structures homologous to those two regions, but also in dozens of other brain areas. In some regions of the fish brain, such as the optic tectum, the new cells remain near the proliferation zones in the course of their further development. In others, as in most subdivisions of the cerebellum, they migrate, often guided by radial glial fibers, to specific target areas. Approximately 50% of the young cells undergo apoptotic cell death, whereas the others survive for the rest of the fish's life. A large number of the surviving cells differentiate into neurons. Two key factors enabling highly efficient brain repair in fish after injuries involve the elimination of damaged cells by apoptosis (instead of necrosis, the dominant type of cell death in mammals) and the replacement of cells lost to injury by newly generated ones. Proteome analysis has suggested well over 100 proteins, including two dozen identified ones, to be involved in the individual steps of this phenomenon of neuronal regeneration.
Collapse
Affiliation(s)
- G K H Zupanc
- School of Engineering and Science, International University Bremen, P.O. Box 750 561, 28725 Bremen, Germany.
| |
Collapse
|
16
|
Smith GT, Unguez GA, Weber CM. Distribution of Kv1-like potassium channels in the electromotor and electrosensory systems of the weakly electric fishApteronotus leptorhynchus. ACTA ACUST UNITED AC 2006; 66:1011-31. [PMID: 16779822 DOI: 10.1002/neu.20283] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The electromotor and electrosensory systems of the weakly electric fish Apteronotus leptorhynchus are model systems for studying mechanisms of high-frequency motor pattern generation and sensory processing. Voltage-dependent ionic currents, including low-threshold potassium currents, influence excitability of neurons in these circuits and thereby regulate motor output and sensory filtering. Although Kv1-like potassium channels are likely to carry low-threshold potassium currents in electromotor and electrosensory neurons, the distribution of Kv1 alpha subunits in A. leptorhynchus is unknown. In this study, we used immunohistochemistry with six different antibodies raised against specific mammalian Kv1 alpha subunits (Kv1.1-Kv1.6) to characterize the distribution of Kv1-like channels in electromotor and electrosensory structures. Each Kv1 antibody labeled a distinct subset of neurons, fibers, and/or dendrites in electromotor and electrosensory nuclei. Kv1-like immunoreactivity in the electrosensory lateral line lobe (ELL) and pacemaker nucleus are particularly relevant in light of previous studies suggesting that potassium currents carried by Kv1 channels regulate neuronal excitability in these regions. Immunoreactivity of pyramidal cells in the ELL with several Kv1 antibodies is consistent with Kv1 channels carrying low-threshold outward currents that regulate spike waveform in these cells (Fernandez et al., J Neurosci 2005;25:363-371). Similarly, Kv1-like immunoreactivity in the pacemaker nucleus is consistent with a role of Kv1 channels in spontaneous high-frequency firing in pacemaker neurons. Robust Kv1-like immunoreactivity in several other structures, including the dorsal torus semicircularis, tuberous electroreceptors, and the electric organ, indicates that Kv1 channels are broadly expressed and are likely to contribute significantly to generating the electric organ discharge and processing electrosensory inputs.
Collapse
Affiliation(s)
- G Troy Smith
- Department of Biology, Program in Neuroscience, and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, 47405, USA.
| | | | | |
Collapse
|
17
|
Chacron MJ, Longtin A, Maler L. Delayed excitatory and inhibitory feedback shape neural information transmission. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005; 72:051917. [PMID: 16383655 PMCID: PMC5283875 DOI: 10.1103/physreve.72.051917] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2005] [Indexed: 05/05/2023]
Abstract
Feedback circuitry with conduction and synaptic delays is ubiquitous in the nervous system. Yet the effects of delayed feedback on sensory processing of natural signals are poorly understood. This study explores the consequences of delayed excitatory and inhibitory feedback inputs on the processing of sensory information. We show, through numerical simulations and theory, that excitatory and inhibitory feedback can alter the firing frequency response of stochastic neurons in opposite ways by creating dynamical resonances, which in turn lead to information resonances (i.e., increased information transfer for specific ranges of input frequencies). The resonances are created at the expense of decreased information transfer in other frequency ranges. Using linear response theory for stochastically firing neurons, we explain how feedback signals shape the neural transfer function for a single neuron as a function of network size. We also find that balanced excitatory and inhibitory feedback can further enhance information tuning while maintaining a constant mean firing rate. Finally, we apply this theory to in vivo experimental data from weakly electric fish in which the feedback loop can be opened. We show that it qualitatively predicts the observed effects of inhibitory feedback. Our study of feedback excitation and inhibition reveals a possible mechanism by which optimal processing may be achieved over selected frequency ranges.
Collapse
Affiliation(s)
- Maurice J Chacron
- Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Canada K1N 6N5
| | | | | |
Collapse
|
18
|
Coombs S, New JG, Nelson M. Information-processing demands in electrosensory and mechanosensory lateral line systems. ACTA ACUST UNITED AC 2004; 96:341-54. [PMID: 14692483 DOI: 10.1016/s0928-4257(03)00013-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The electrosensory and mechanosensory lateral line systems of fish exhibit many common features in their structural and functional organization, both at the sensory periphery as well as in central processing pathways. These two sensory systems also appear to play similar roles in many behavioral tasks such as prey capture, orientation with respect to external environmental cues, navigation in low-light conditions, and mediation of interactions with nearby animals. In this paper, we briefly review key morphological, physiological, and behavioral aspects of these two closely related sensory systems. We present arguments that the information processing demands associated with spatial processing are likely to be quite similar, due largely to the spatial organization of both systems and the predominantly dipolar nature of many electrosensory and mechanosensory stimulus fields. Demands associated with temporal processing may be quite different, however, due primarily to differences in the physical bases of electrosensory and mechanosensory stimuli (e.g. speed of transmission). With a better sense of the information processing requirements, we turn our attention to an analysis of the functional organization of the associated first-order sensory nuclei in the hindbrain, including the medial octavolateral nucleus (MON), dorsal octavolateral nucleus (DON), and electrosensory lateral line lobe (ELL). One common feature of these systems is a set of neural mechanisms for improving signal-to-noise ratios, including mechanisms for adaptive suppression of reafferent signals. This comparative analysis provides new insights into how the nervous system extracts biologically significant information from dipolar stimulus fields in order to solve a variety of behaviorally relevant problems faced by aquatic animals.
Collapse
Affiliation(s)
- Sheryl Coombs
- Parmly Hearing Institute and Biology Department, Loyola University Chicago, 6525 N. Sheridan Rd., Chicago, IL 60626, USA
| | | | | |
Collapse
|
19
|
|
20
|
Naundorf B, Freund JA. Signal detection by means of phase coherence induced through phase resetting. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2002; 66:040901. [PMID: 12443169 DOI: 10.1103/physreve.66.040901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2002] [Indexed: 05/24/2023]
Abstract
Detection and location of moving prey utilizing electrosense or mechanosense is a strategy commonly followed by animals which cannot rely on visual sense or hearing. In this paper we consider the possibility to detect the source of a localized stimulus that travels along a chain of detectors at constant speed. The detectors are autonomous oscillators whose frequencies have a given natural spread. The detection mechanism is based on phase coherence which is built up by phase resetting induced by the passing stimulus.
Collapse
Affiliation(s)
- Björn Naundorf
- Institut für Physik, Humboldt-Universität zu Berlin, Invalidenstrasse 110, D-10115 Berlin, Germany
| | | |
Collapse
|
21
|
|
22
|
Doiron B, Longtin A, Turner RW, Maler L. Model of gamma frequency burst discharge generated by conditional backpropagation. J Neurophysiol 2001; 86:1523-45. [PMID: 11600618 DOI: 10.1152/jn.2001.86.4.1523] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pyramidal cells of the electrosensory lateral line lobe (ELL) of the weakly electric fish Apteronotus leptorhynchus have been shown to produce oscillatory burst discharge in the gamma-frequency range (20-80 Hz) in response to constant depolarizing stimuli. Previous in vitro studies have shown that these bursts arise through a recurring spike backpropagation from soma to apical dendrites that is conditional on the frequency of action potential discharge ("conditional backpropagation"). Spike bursts are characterized by a progressive decrease in inter-spike intervals (ISIs), and an increase of dendritic spike duration and the amplitude of a somatic depolarizing afterpotential (DAP). The bursts are terminated when a high-frequency somatic spike doublet exceeds the dendritic spike refractory period, preventing spike backpropagation. We present a detailed multi-compartmental model of an ELL basilar pyramidal cell to simulate somatic and dendritic spike discharge and test the conditions necessary to produce a burst output. The model ionic channels are described by modified Hodgkin-Huxley equations and distributed over both soma and dendrites under the constraint of available immunocytochemical and electrophysiological data. The currents modeled are somatic and dendritic sodium and potassium involved in action potential generation, somatic and proximal apical dendritic persistent sodium, and K(V)3.3 and fast transient A-like potassium channels distributed over the entire model cell. The core model produces realistic somatic and dendritic spikes, differential spike refractory periods, and a somatic DAP. However, the core model does not produce oscillatory spike bursts with constant depolarizing stimuli. We find that a cumulative inactivation of potassium channels underlying dendritic spike repolarization is a necessary condition for the model to produce a sustained gamma-frequency burst pattern matching experimental results. This cumulative inactivation accounts for a frequency-dependent broadening of dendritic spikes and results in a conditional failure of backpropagation when the intraburst ISI exceeds dendritic spike refractory period, terminating the burst. These findings implicate ion channels involved in repolarizing dendritic spikes as being central to the process of conditional backpropagation and oscillatory burst discharge in this principal sensory output neuron of the ELL.
Collapse
Affiliation(s)
- B Doiron
- Physics Department, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| | | | | | | |
Collapse
|
23
|
Abstract
This report describes the variability of spontaneous firing characteristics of sensory neurons, electrosensory lateral line lobe (ELL) pyramidal cells, within the electrosensory lateral line lobe of weakly electric fish in vivo. We show that these cells' spontaneous firing frequency, measures of spike train regularity (interspike interval coefficient of variation), and the tendency of these cells to produce bursts of action potentials are correlated with the size of the cell's apical dendritic arbor. We also show that bursting behavior may be influenced or controlled by descending inputs from higher centers that provide excitatory and inhibitory inputs to the pyramidal cells' apical dendrites. Pyramidal cells were classified as "bursty" or "nonbursty" according to whether or not spike trains deviated significantly from the expected properties of random (Poisson) spike trains of the same average firing frequency, and, in the case of bursty cells, the maximum within-burst interspike interval characteristic of bursts was determined. Each cell's probability of producing bursts above the level expected for a Poisson spike train was determined and related to spontaneous firing frequency and dendritic morphology. Pyramidal cells with large apical dendritic arbors have lower rates of spontaneous activity and higher probabilities of producing bursts above the expected level, while cells with smaller apical dendrites fire at higher frequencies and are less bursty. The effect of blocking non-N-methyl-D-aspartate (non-NMDA) glutamatergic synaptic inputs to the apical dendrites of these cells, and to local inhibitory interneurons, significantly reduced the spontaneous occurrence of spike bursts and intracellular injection of hyperpolarizing current mimicked this effect. The results suggest that bursty firing of ELL pyramidal cells may be under descending control allowing activity in electrosensory feedback pathways to influence the firing properties of sensory neurons early in the processing hierarchy.
Collapse
Affiliation(s)
- J Bastian
- Department of Zoology, University of Oklahoma, Norman, Oklahoma 73019, USA.
| | | |
Collapse
|
24
|
Gabbiani F, Metzner W. Encoding and processing of sensory information in neuronal spike trains. J Exp Biol 1999; 202:1267-79. [PMID: 10210667 DOI: 10.1242/jeb.202.10.1267] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recently, a statistical signal-processing technique has allowed the information carried by single spike trains of sensory neurons on time-varying stimuli to be characterized quantitatively in a variety of preparations. In weakly electric fish, its application to first-order sensory neurons encoding electric field amplitude (P-receptor afferents) showed that they convey accurate information on temporal modulations in a behaviorally relevant frequency range (<80 Hz). At the next stage of the electrosensory pathway (the electrosensory lateral line lobe, ELL), the information sampled by first-order neurons is used to extract upstrokes and downstrokes in the amplitude modulation waveform. By using signal-detection techniques, we determined that these temporal features are explicitly represented by short spike bursts of second-order neurons (ELL pyramidal cells). Our results suggest that the biophysical mechanism underlying this computation is of dendritic origin. We also investigated the accuracy with which upstrokes and downstrokes are encoded across two of the three somatotopic body maps of the ELL (centromedial and lateral). Pyramidal cells of the centromedial map, in particular I-cells, encode up- and downstrokes more reliably than those of the lateral map. This result correlates well with the significance of these temporal features for a particular behavior (the jamming avoidance response) as assessed by lesion experiments of the centromedial map.
Collapse
Affiliation(s)
- F Gabbiani
- Division of Biology, Pasadena, CA 91125, USA and Department of Biology, University of California at Riverside, Riverside, CA 92521-0427, USA.
| | | |
Collapse
|