1
|
Steell SC, Cooke SJ, Eliason EJ. Artificial light at night does not alter heart rate or locomotor behaviour in Caribbean spiny lobster ( Panulirus argus): insights into light pollution and physiological disturbance using biologgers. CONSERVATION PHYSIOLOGY 2020; 8:coaa097. [PMID: 33304586 PMCID: PMC7720088 DOI: 10.1093/conphys/coaa097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/12/2020] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
Light pollution is a rapidly growing threat to biodiversity, with many unknown or poorly understood effects on species and ecosystems spanning terrestrial and aquatic environments. Relative to other taxa, the effects of artificial light at night on aquatic invertebrates are poorly understood, despite the abundance and integral significance of invertebrates to marine and freshwater ecosystems. We affixed heart rate and acceleration biologgers to adult Caribbean spiny lobster (Panulirus argus), an ecologically, culturally and economically significant species in the western Atlantic ocean, to test the effect of artificial light at night on this species' physiology and behaviour relative to appropriate controls. The experiment was conducted in a simulated reef mesocosm in The Bahamas with incandescent lighting used to illuminate it at 1 lux, approximating light levels offshore of urban areas. In the conditions tested here, artificial light at night was found to have no effect on heart rate or locomotor activity in P. argus. We observed a dissociation between activity and heart rate at both short-term and long-term temporal scales. Lobsters were more active at night and nocturnal activity was higher in trials closer to new moon; however, heart rate did not vary with diel or lunar cycle. There was less than 8% difference between daytime and night time average heart rate despite the average percentage of time spent active almost tripling in nights versus days, to 19.5% from 7.2%, respectively. Our findings suggest P. argus may have some resilience to low levels of light pollution, which warrants further research on aspects of this species' life history, performance and fitness in the face of this potential anthropogenic disturbance.
Collapse
Affiliation(s)
- S Clay Steell
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada
| | - Erika J Eliason
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
2
|
Hoelters L, O'Grady JF, Webster SG, Wilcockson DC. Characterization, localization and temporal expression of crustacean hyperglycemic hormone (CHH) in the behaviorally rhythmic peracarid crustaceans, Eurydice pulchra (Leach) and Talitrus saltator (Montagu). Gen Comp Endocrinol 2016; 237:43-52. [PMID: 27468954 DOI: 10.1016/j.ygcen.2016.07.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/19/2016] [Accepted: 07/24/2016] [Indexed: 11/15/2022]
Abstract
Crustacean hyperglycemic hormone (CHH) has been extensively studied in decapod crustaceans where it is known to exert pleiotropic effects, including regulation of blood glucose levels. Hyperglycemia in decapods seems to be temporally gated to coincide with periods of activity, under circadian clock control. Here, we used gene cloning, in situ hybridization and immunohistochemistry to describe the characterization and localization of CHH in two peracarid crustaceans, Eurydice pulchra and Talitrus saltator. We also exploited the robust behavioral rhythmicity of these species to test the hypothesis that CHH mRNA expression would resonate with their circatidal (12.4h) and circadian (24h) behavioral phenotypes. We show that both species express a single CHH transcript in the cerebral ganglia, encoding peptides featuring all expected, conserved characteristics of other CHHs. E. pulchra preproCHH is an amidated 73 amino acid peptide N-terminally flanked by a short, 18 amino acid precursor related peptide (CPRP) whilst the T. saltator prohormone is also amidated but 72 amino acids in length and has a 56 residue CPRP. The localization of both was mapped by immunohistochemistry to the protocerebrum with axon tracts leading to the sinus gland and into the tritocerebrum, with striking similarities to terrestrial isopod species. We substantiated the cellular position of CHH immunoreactive cells by in situ hybridization. Although both species showed robust activity rhythms, neither exhibited rhythmic transcriptional activity indicating that CHH transcription is not likely to be under clock control. These data make a contribution to the inventory of CHHs that is currently lacking for non-decapod species.
Collapse
Affiliation(s)
- Laura Hoelters
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion SY23 3DA, UK.
| | - Joseph Francis O'Grady
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion SY23 3DA, UK.
| | - Simon George Webster
- School of Biological Sciences, Bangor University, Brambell Building, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK.
| | - David Charles Wilcockson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion SY23 3DA, UK; School of Biological Sciences, Bangor University, Brambell Building, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK.
| |
Collapse
|
3
|
Tinikul Y, Poljaroen J, Tinikul R, Sobhon P. Changes in the levels, expression, and possible roles of serotonin and dopamine during embryonic development in the giant freshwater prawn, Macrobrachium rosenbergii. Gen Comp Endocrinol 2016; 225:71-80. [PMID: 26393313 DOI: 10.1016/j.ygcen.2015.09.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 09/08/2015] [Accepted: 09/17/2015] [Indexed: 11/26/2022]
Abstract
We investigated the changes in the levels of serotonin (5-HT) and dopamine (DA), and their possible roles during embryonic development of the freshwater prawn, Macrobrachium rosenbergii. The 5-HT and DA concentrations were quantified using high performance liquid chromatography with electrochemical detection (HPLC-ECD). The levels of 5-HT and DA gradually increased from early developing embryos to late developing embryos. The 5-HT concentrations gradually increased from the pale yellow egg to orange egg stages, and reaching a maximum at the black egg stage. DA concentrations were much lower in the early embryos than those of 5-HT (P<0.05), and gradually increased to reach the highest level at the black egg stage. Immunohistochemically, 5-HT was firstly detected in the early embryonic stages, whereas DA developed later than 5-HT. Functionally, 5-HT-treated female prawns at doses of 2.5×10(-5), 2.5×10(-6) and 2.5×10(-7)mol/prawn, produced embryos with significantly shortened lengths of early embryonic stages, whereas DA-treated prawns at all three doses, exerted its effects by significantly lengthening the period of mid-embryonic stage onwards. These results suggest significant involvement of 5-HT and DA in embryonic developmental processes of this species.
Collapse
Affiliation(s)
- Yotsawan Tinikul
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Mahidol University, Nakhonsawan Campus, Nakhonsawan 60130, Thailand.
| | - Jaruwan Poljaroen
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Mahidol University, Nakhonsawan Campus, Nakhonsawan 60130, Thailand
| | - Ruchanok Tinikul
- Mahidol University, Nakhonsawan Campus, Nakhonsawan 60130, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
4
|
Tomina Y, Kibayashi A, Yoshii T, Takahata M. Chronic electromyographic analysis of circadian locomotor activity in crayfish. Behav Brain Res 2013; 249:90-103. [PMID: 23631885 DOI: 10.1016/j.bbr.2013.04.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/18/2013] [Accepted: 04/20/2013] [Indexed: 11/27/2022]
Abstract
Animals generally exhibit circadian rhythms of locomotor activity. They initiate locomotor behavior not only reflexively in response to external stimuli but also spontaneously in the absence of any specific stimulus. The neuronal mechanisms underlying circadian locomotor activity can, therefore, be based on the rhythmic changes in either reflexive efficacy or endogenous activity. In crayfish Procambarus clarkii, it can be determined by analyzing electromyographic (EMG) patterns of walking legs whether the walking behavior is initiated reflexively or spontaneously. In this study, we examined quantitatively the leg muscle activity that underlies the locomotor behavior showing circadian rhythms in crayfish. We newly developed a chronic EMG recording system that allowed the animal to freely behave under a tethered condition for more than 10 days. In the LD condition in which the animals exhibited LD entrainment, the rhythmic burst activity of leg muscles for stepping behavior was preceded by non-rhythmic tonic activation that lasted for 1323±488ms when the animal initiated walking. In DD and LL free-running conditions, the pre-burst activation lasted for 1779±31 and 1517±39ms respectively. In the mechanical stimulus-evoked walking, the pre-burst activation ended within 79±6ms. These data suggest that periodic changes in the crayfish locomotor activity under the condition of LD entrainment or free-running are based on activity changes in the spontaneous initiation mechanism of walking behavior rather than those in the sensori-motor pathway connecting mechanoreceptors with leg movements.
Collapse
Affiliation(s)
- Yusuke Tomina
- Animal Behavior and Intelligence, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan.
| | | | | | | |
Collapse
|
5
|
Stemme T, Iliffe TM, Bicker G, Harzsch S, Koenemann S. Serotonin immunoreactive interneurons in the brain of the Remipedia: new insights into the phylogenetic affinities of an enigmatic crustacean taxon. BMC Evol Biol 2012; 12:168. [PMID: 22947030 PMCID: PMC3497878 DOI: 10.1186/1471-2148-12-168] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/24/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Remipedia, a group of homonomously segmented, cave-dwelling, eyeless arthropods have been regarded as basal crustaceans in most early morphological and taxonomic studies. However, molecular sequence information together with the discovery of a highly differentiated brain led to a reconsideration of their phylogenetic position. Various conflicting hypotheses have been proposed including the claim for a basal position of Remipedia up to a close relationship with Malacostraca or Hexapoda. To provide new morphological characters that may allow phylogenetic insights, we have analyzed the architecture of the remipede brain in more detail using immunocytochemistry (serotonin, acetylated α-tubulin, synapsin) combined with confocal laser-scanning microscopy and image reconstruction techniques. This approach allows for a comprehensive neuroanatomical comparison with other crustacean and hexapod taxa. RESULTS The dominant structures of the brain are the deutocerebral olfactory neuropils, which are linked by the olfactory globular tracts to the protocerebral hemiellipsoid bodies. The olfactory globular tracts form a characteristic chiasm in the center of the brain. In Speleonectes tulumensis, each brain hemisphere contains about 120 serotonin immunoreactive neurons, which are distributed in distinct cell groups supplying fine, profusely branching neurites to 16 neuropilar domains. The olfactory neuropil comprises more than 300 spherical olfactory glomeruli arranged in sublobes. Eight serotonin immunoreactive neurons homogeneously innervate the olfactory glomeruli. In the protocerebrum, serotonin immunoreactivity revealed several structures, which, based on their position and connectivity resemble a central complex comprising a central body, a protocerebral bridge, W-, X-, Y-, Z-tracts, and lateral accessory lobes. CONCLUSIONS The brain of Remipedia shows several plesiomorphic features shared with other Mandibulata, such as deutocerebral olfactory neuropils with a glomerular organization, innervations by serotonin immunoreactive interneurons, and connections to protocerebral neuropils. Also, we provided tentative evidence for W-, X-, Y-, Z-tracts in the remipedian central complex like in the brain of Malacostraca, and Hexapoda. Furthermore, Remipedia display several synapomorphies with Malacostraca supporting a sister group relationship between both taxa. These homologies include a chiasm of the olfactory globular tract, which connects the olfactory neuropils with the lateral protocerebrum and the presence of hemiellipsoid bodies. Even though a growing number of molecular investigations unites Remipedia and Cephalocarida, our neuroanatomical comparison does not provide support for such a sister group relationship.
Collapse
Affiliation(s)
- Torben Stemme
- Division of Cell Biology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | | | | | | |
Collapse
|
6
|
Valdés-Fuentes M, Prieto-Sagredo J, Fanjul-Moles ML. Crayfish brain-protocerebrum and retina show serotonergic functional relationship. Brain Res 2011; 1417:36-44. [DOI: 10.1016/j.brainres.2011.08.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 08/09/2011] [Accepted: 08/15/2011] [Indexed: 10/17/2022]
|
7
|
Tinikul Y, Poljaroen J, Kornthong N, Chotwiwatthanakun C, Anuracpreeda P, Poomtong T, Hanna PJ, Sobhon P. Distribution and changes of serotonin and dopamine levels in the central nervous system and ovary of the Pacific white shrimp, Litopenaeus vannamei, during ovarian maturation cycle. Cell Tissue Res 2011; 345:103-24. [PMID: 21607566 DOI: 10.1007/s00441-011-1176-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 04/13/2011] [Indexed: 11/28/2022]
Abstract
We investigated changes in serotonin (5-HT) and dopamine (DA) levels and in their distribution patterns in the central nervous system (CNS) and ovary during the ovarian maturation cycle in the Pacific white shrimp, Litopenaeus vannamei. The concentrations of these two neurotransmitters were determined by using high performance liquid chromatography with electrochemical detection. The 5-HT concentration exhibited a gradual increase in the brain and thoracic ganglia during early ovarian stages I, II, and III, reaching a maximum at the mature ovarian stage IV, whereas DA showed its highest concentration at ovarian stage II in the brain and thoracic ganglia and then declined to its lowest concentration at ovarian stage IV. In the ovaries, 5-HT was lowest at ovarian stage I and gradually increased to a peak at ovarian stage IV. Conversely, the concentration of DA was highest at ovarian stages I and II and lowest at ovarian stage IV. In the brain, 5-HT immunoreactivity (-ir) from stage IV and DA-ir from stage II were distributed extensively in neurons of clusters 6, 11, and 17, in fibers, and in the anterior and posterior medial protocerebral, olfactory, antenna II, and tegumentary neuropils. In the circumesophageal, subesophageal, thoracic, and abdominal ganglia, both 5-HT-ir and DA-ir were detected in neuropils and surrounding neurons and fibers. 5-HT-ir and DA-ir were more intense in the thoracic ganglia than in other parts of the CNS. In the ovary, 5-HT-ir exhibited high intensity in late oocytes, whereas DA-ir was more intense in early oocytes. Thus, opposing changes occur in the levels of these two neurotransmitters and in their specific localizations in the CNS and ovary during ovarian maturation, indicating their important involvement in female reproduction.
Collapse
Affiliation(s)
- Yotsawan Tinikul
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok, Thailand.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Watthanasurorot A, Söderhäll K, Jiravanichpaisal P, Söderhäll I. An ancient cytokine, astakine, mediates circadian regulation of invertebrate hematopoiesis. Cell Mol Life Sci 2011; 68:315-23. [PMID: 20652616 PMCID: PMC11114880 DOI: 10.1007/s00018-010-0458-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 07/05/2010] [Accepted: 07/05/2010] [Indexed: 10/19/2022]
Abstract
Invertebrate circulating hemocytes are key players in the innate immune defense and their continuous renewal from hematopoietic tissues is tightly regulated in crustaceans by astakine, a new family of cytokines sharing a prokineticin (PROK) domain. In vertebrates, brain PROKs function as transmitters of circadian rhythms and we present evidence that hemocyte release from hematopoietic tissues in crayfish is under circadian regulation, a direct result of rhythmic expression of astakine. We demonstrate that the observed variation in astakine expression has an impact on innate immunity assessed as susceptibility to a pathogenic Pseudomonas species. These findings enlighten the importance of comparing immune responses at fixed times not to neglect circadian regulation of innate immunity. Moreover, our results entail an evolutionary conserved function for prokineticins as mediators of circadian rhythm, and for the first time show a role for this domain in circadian regulation of hematopoiesis that may have implications also in vertebrates.
Collapse
Affiliation(s)
- Apiruck Watthanasurorot
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 75236 Uppsala, Sweden
| | - Kenneth Söderhäll
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 75236 Uppsala, Sweden
| | - Pikul Jiravanichpaisal
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 75236 Uppsala, Sweden
- Aquatic Molecular Genetics and Biotechnology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd., Klong 1, Klongluang, Pathumthani 12120 Thailand
| | - Irene Söderhäll
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 75236 Uppsala, Sweden
| |
Collapse
|
9
|
Escamilla-Chimal EG, Velázquez-Amado RM, Fiordelisio T, Fanjul-Moles ML. Putative pacemakers of crayfish show clock proteins interlocked with circadian oscillations. J Exp Biol 2010; 213:3723-33. [DOI: 10.1242/jeb.047548] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Although the molecular mechanisms that control circadian rhythms in many animals, particularly in the fly, are well known, molecular and biochemical studies addressing the location and function of the proteins and genes contributing to the cycling of the clock in crayfish Procambarus clarkii are scarce. In this study, we investigated whether three proteins that interact in the feedback loop of the molecular clock described for Drosophila are expressed in the putative circadian pacemakers of crayfish retina, eyestalk and brain and whether their expression cycles in a manner consistent with elements of the circadian clock. Here we identified PER, TIM and CLK immunoreactivity in the cytoplasm and nucleus of cells located in the retina as well as in clusters of cells and neuropils of the optic ganglia, lateral protocerebrum and brain. Brain clusters 6, 10, 9 and 11, in particular, showed Per, Tim and Clk-like immunoreactivity at the perikarya and nucleus, and these antigens colocalized at Zeitgeber time (ZT) 0 and/or ZT 12. A biochemical assay demonstrated circadian functionality of Per, Tim and Clk proteins. Both in the eyestalk and in the brain, these proteins demonstrated apparent daily and circadian rhythms. The presence and colocalization of these clock proteins in the cytoplasm and/or nucleus of several cells of retina, optic lobe and brain, depending on time, as well as their circadian oscillations, suggest interactions between positive and negative transcription factors and clock proteins similar to those forming the feedback loop of the canonical model proposed for different animals.
Collapse
Affiliation(s)
- Elsa G. Escamilla-Chimal
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias UNAM, Avenida Universidad 3000, Ciudad Universitaria, México 04510, México
| | - Rosa María Velázquez-Amado
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias UNAM, Avenida Universidad 3000, Ciudad Universitaria, México 04510, México
| | - Tatiana Fiordelisio
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias UNAM, Avenida Universidad 3000, Ciudad Universitaria, México 04510, México
| | - María Luisa Fanjul-Moles
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias UNAM, Avenida Universidad 3000, Ciudad Universitaria, México 04510, México
| |
Collapse
|
10
|
Aguzzi J, Company JB. Chronobiology of deep-water decapod crustaceans on continental margins. ADVANCES IN MARINE BIOLOGY 2010; 58:155-225. [PMID: 20959158 DOI: 10.1016/b978-0-12-381015-1.00003-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Species have evolved biological rhythms in behaviour and physiology with a 24-h periodicity in order to increase their fitness, anticipating the onset of unfavourable habitat conditions. In marine organisms inhabiting deep-water continental margins (i.e. the submerged outer edges of continents), day-night activity rhythms are often referred to in three ways: vertical water column migrations (i.e. pelagic), horizontal displacements within benthic boundary layer of the continental margin, along bathymetric gradients (i.e. nektobenthic), and endobenthic movements (i.e. rhythmic emergence from the substrate). Many studies have been conducted on crustacean decapods that migrate vertically in the water column, but much less information is available for other endobenthic and nektobenthic species. Also, the types of displacement and major life habits of most marine species are still largely unknown, especially in deep-water continental margins, where steep clines in habitat factors (i.e. light intensity and its spectral quality, sediment characteristics, and hydrography) take place. This is the result of technical difficulties in performing temporally scheduled sampling and laboratory testing on living specimens. According to this scenario, there are several major issues that still need extensive research in deep-water crustacean decapods. First, the regulation of their behaviour and physiology by a biological clock is almost unknown compared to data for coastal species that are easily accessible to direct observation and sampling. Second, biological rhythms may change at different life stages (i.e. size-related variations) or at different moments of the reproductive cycle (e.g. at egg-bearing) based on different intra- and interspecific interactions. Third, there is still a major lack of knowledge on the links that exist among the observed bathymetric distributions of species and selected autoecological traits that are controlled by their biological clock, such as the diel rhythm of behaviour. Species evolved in a photically variable environment where intra- and inter-specific interactions change along with the community structure over 24 h. Accordingly, the regulation of their biology through a biological clock may be the major evolutionary constraint that is responsible for their reported bathymetric distributions. In this review, our aim is to propose a series of innovative guidelines for a discussion of the modulation of behavioural rhythms of adult decapod crustaceans, focusing on the deep waters of the continental margin areas of the Mediterranean as a paradigm for other marine zones of the world.
Collapse
Affiliation(s)
- Jacopo Aguzzi
- Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
| | | |
Collapse
|
11
|
Escamilla-Chimal EG, Fanjul-Moles ML. Daily and circadian expression of cryptochrome during the ontogeny of crayfish. Comp Biochem Physiol A Mol Integr Physiol 2008; 151:461-470. [PMID: 17363311 DOI: 10.1016/j.cbpa.2007.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 01/17/2007] [Accepted: 02/05/2007] [Indexed: 11/22/2022]
Abstract
Cryptochromes (CRY) are proteins with a dual role in the circadian function of different animals, participating in phototransduction and light signaling to the clock and as a transcriptional repressor that provides negative feedback in the clock feedback loop. Here we characterize functional expression of CRY as a marker of the functionality of the circadian pacemaker of crayfish (Procambarus clarkii) throughout post-embryonic development. Using different experimental light protocols and by means of immunofluorescence and biochemical methods, we report that, as in the adult, in young crayfish from the first embryonic stage CRY is present in cells adjacent to the eyestalk hemiellipsoidal body and the anterior margin of the brain protocerebrum. In the brain, CRY cycles after 72 h darkness, entraining to LD cycles. Meanwhile, as in the adult eye, in juveniles CRY is driven by light, showing an arrhythmic pattern in DD and cycling under LD. These results, as well as the completely different period length found in the brain circadian oscillations of 2nd post-embryonic stage and juvenile animals, suggest important changes in the properties of the crayfish pacemaker through the development. Therefore these data support a previous idea about the functionality of the circadian system from hatching.
Collapse
Affiliation(s)
- Elsa G Escamilla-Chimal
- Lab. Neurofisiología Comparada, Departamento de Biología, Facultad de Ciencias, Universidad Nacional Autónoma de México, México
| | - María Luisa Fanjul-Moles
- Lab. Neurofisiología Comparada, Departamento de Biología, Facultad de Ciencias, Universidad Nacional Autónoma de México, México.
| |
Collapse
|
12
|
Tinikul Y, Joffre Mercier A, Soonklang N, Sobhon P. Changes in the levels of serotonin and dopamine in the central nervous system and ovary, and their possible roles in the ovarian development in the giant freshwater prawn, Macrobrachium rosenbergii. Gen Comp Endocrinol 2008; 158:250-8. [PMID: 18713629 DOI: 10.1016/j.ygcen.2008.07.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 07/14/2008] [Accepted: 07/22/2008] [Indexed: 11/26/2022]
Abstract
Serotonin or 5-hydroxytryptamine (5-HT) and dopamine (DA) are the two key neurotransmitters that control gonadal development in decapod crustaceans. This study investigated changes in the levels of 5-HT and DA in the CNS and ovary during different phases of the ovarian cycle of the freshwater prawn, Macrobrachium rosenbergii. The levels of 5-HT and DA were quantified by using High Performance Liquid Chromatography with electrochemical detection (HPLC-ECD). Moreover, changes of vitellogenin (Vg) concentrations in the hemolymph after treatment with 5-HT and DA (at doses of 2.5 x 10(-6) and 2.5 x 10(-7)mol per prawn) were also examined. 5-HT exhibited a gradual increase in concentration in the brain and thoracic ganglia from ovarian stage I (0.12+/-0.01 nmol/mg, 0.22+/-0.01 nmol/mg, respectively) to reach a maximum (0.66+/-0.03 nmol/mg, 1.48+/-0.03 nmol/mg, respectively) at ovarian stage IV. In contrast, DA in the brain and thoracic ganglia showed the highest concentrations at ovarian stage II (0.20+/-0.01 nmol/mg, 1.27+/-0.06 nmol/mg, respectively) and then decreased to the lowest concentrations (0.06+/-0.01 nmol/mg, 0.28+/-0.04 nmol/mg, respectively) at ovarian stage IV. The ovarian concentration of 5-HT was 0.53+/-0.11 nmol/mg at ovarian stage I and gradually increased to 1.63+/-0.16 nmol/mg at ovarian stage IV. In contrast, the concentration of DA was highest at ovarian stage I (29.05+/-1.31 nmol/mg), and lowest at the ovarian stage IV (11.43+/-0.74 nmol/mg). Injecting 5-HT into prawns significantly increased Vg concentration in the hemolymph at ovarian stage IV compared to control groups, and injecting DA into prawns had the opposite effect. The inverse relationship between 5-HT and DA levels in neural ganglia and ovaries, and their opposing effects on hemolymph Vg levels suggest that these two transmitters play opposite regulatory roles in controlling ovarian maturation and oocyte development in this species.
Collapse
Affiliation(s)
- Yotsawan Tinikul
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, Thailand
| | | | | | | |
Collapse
|
13
|
Durán-Lizarraga ME, Prieto-Sagredo J, Eugenia Gonsebatt M, Fanjul-Moles ML. Crayfish Procambarus clarkii shows Circadian Variations in Different Parameters of the GSH Cycle¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2001)0740350cpcscv2.0.co2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Rodríguez-Sosa L, Calderón-Rosete G, Flores G, Porras MG. Serotonin-caused phase shift of circadian rhythmicity in a photosensitive neuron. Synapse 2007; 61:801-8. [PMID: 17598151 DOI: 10.1002/syn.20425] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In the sixth abdominal ganglion (sixth AG) of the crayfish, two photosensitive neurons are located and have been identified as caudal photoreceptors (CPRs). We have expanded our investigation on the role of 5-Hydroxytryptamine (5-HT) as a modulator of the spontaneous and light-induced activity of the CPR. We located, by using immunocytochemistry, neurons in the sixth AG that contain the 5HT1A receptor. The expression of these receptors was examined by binding assays with [3H] 8-hydroxy-2 (di-n-propylamino) tetralin ([3H(8-OH-DPAT). We examined the exogenous action of both 5HT and its agonist 8-OH-DPAT on the phase of circadian rhythms of the spontaneous electrical activity and the photoresponse of the CPR in the isolated sixth AG by conventional extracellular recording methods. Experiments were made on the adult crayfish Procambarus clarkii and Cherax quadricarinatus. Thirteen immunopositive neurons were located, principally near the ventral and dorsal surface of the sixth AG, with the mean diameter of their somata 20+/-3 microm. The specific binding data showed the presence of 5-HT1A receptors with a mean level of 22.4+/-6.6 fmol/mg of wet tissue. Spontaneous and light-induced electrical activity of the CPR showed circadian variations with their activity more intense at night than in the day. Exogenous application of 5-HT or 8-OH-DPAT causes a circadian phase-shift in electrical activity of the CPR. Taken together, these results lead us to believe the 5-HT acts as a modulator of circadian electrical activity of the CPR in the isolated sixth AG of crayfish. Moreover, it suggests that the 5-HT1A receptor participates in this modulation.
Collapse
Affiliation(s)
- Leonardo Rodríguez-Sosa
- División de Estudios de Posgrado, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Ciudad Universitaria, 04510 Mexico.
| | | | | | | |
Collapse
|
15
|
Calderón-Rosete G, Flores G, Rodríguez-Sosa L. Diurnal rhythm in the levels of the serotonin 5-HT1A receptors in the crayfish eyestalk. Synapse 2006; 59:368-73. [PMID: 16447179 DOI: 10.1002/syn.20252] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The crayfish eyestalk (ES) has been postulated as a possible circadian clock. 5-Hydroxytryptamine (5-HT) has been shown to play the role of a neurotransmitter or a modulator in the ES. However, little is known about the 5-HT receptors in the ES. The purpose of this work is to determine the specific binding sites using [(3)H]8-hydroxy-2(di-n-propylamino)tetralin ([(3)H]8-OH-DPAT), a specific agonist of the 5-HT(1A) receptor, and to characterize the diurnal rhythm in the binding by an autoradiography procedure in the crayfish ES. Data show the presence of a circadian rhythmicity in the level of the 5-HT(1A) receptors, principally in two regions: (a) the complex retina (R)-lamina ganglionaris (LG), with the acrophase at dusk and (b) the medulla terminalis (MT), where it was in antiphase. It is suggested that (1) the expression of levels of 5-HT(1A) receptors is modulated by light-dark (LD) cycles, (2) the level of 5-HT(1A) receptors in the R-LG and MT are in antiphase during the 24-h cycle, and (3) there is a different mechanism of action of LD cycles in each of these two anatomical regions of the crayfish ES.
Collapse
Affiliation(s)
- Gabina Calderón-Rosete
- División de Estudios de Posgrado e Investigación, Facultad de Medicina, UNAM., Av. Universidad 3000, Circuito Interior, Unidad de Posgrado, 1er. Piso., 04510 México D. F., México
| | | | | |
Collapse
|
16
|
Rodríguez-Sosa L, Calderón-Rosete G, Villalobos MGP, Mendoza Zamora E, González VA. Serotonin modulation of caudal photoreceptor in crayfish. Comp Biochem Physiol C Toxicol Pharmacol 2006; 142:220-230. [PMID: 16298168 DOI: 10.1016/j.cbpc.2005.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 10/06/2005] [Accepted: 10/07/2005] [Indexed: 11/29/2022]
Abstract
The sixth abdominal ganglion (6th AG) of the crayfish contains two photosensitive neurons. This caudal photoreceptor (CPR) displays spontaneous electrical activity and phasic-tonic responses to light pulses. In this paper, we analyzed the presence of serotonin in the 6th AG and its effects in the modulation of the activity of CPR. In the first part of our study, we identified serotonergic neurons in the 6th AG by immunostaining using an antibody against serotonin. Next, we quantified the serotonin contents in the 6th AG by using liquid chromatography. Finally, we searched for serotonergic modulation of the CPR electrical activity by using conventional extracellular recordings. We found 13 immunopositive neurons located in the ventral side of the 6th AG. The mean diameter of their somata was 23+/-9 microm. In addition, there was immunopositive staining in neuropilar fibers and varicosities. The contents of serotonin and its precursors in the 6th AG varied along the 24-h cycle. Its maximum value was reached by midday. Topic application of serotonin to ganglia kept in darkness increased the CPR spontaneous firing rate and reduced its light responsiveness. Both effects were dose-dependent within ED(50) approximately 1 microM and were blocked by the 5-HT antagonist methysergide. These observations support the role of serotonin as a neurotransmitter or neuromodulator in the CPR of the two species of crayfish Procambarus clarkii and Cherax quadricarinatus.
Collapse
Affiliation(s)
- Leonardo Rodríguez-Sosa
- División de Estudios de Posgrado e Investigación, Facultad de Medicina. Universidad Nacional Autónoma de México. C.U. 04510, México, D.F. México.
| | - Gabina Calderón-Rosete
- División de Estudios de Posgrado e Investigación, Facultad de Medicina. Universidad Nacional Autónoma de México. C.U. 04510, México, D.F. México
| | - Mercedes Graciela Porras Villalobos
- División de Estudios de Posgrado e Investigación, Facultad de Medicina. Universidad Nacional Autónoma de México. C.U. 04510, México, D.F. México
| | - Elena Mendoza Zamora
- División de Estudios de Posgrado e Investigación, Facultad de Medicina. Universidad Nacional Autónoma de México. C.U. 04510, México, D.F. México
| | - Víctor Anaya González
- División de Estudios de Posgrado e Investigación, Facultad de Medicina. Universidad Nacional Autónoma de México. C.U. 04510, México, D.F. México
| |
Collapse
|
17
|
Fanjul-Moles ML. Biochemical and functional aspects of crustacean hyperglycemic hormone in decapod crustaceans: review and update. Comp Biochem Physiol C Toxicol Pharmacol 2006; 142:390-400. [PMID: 16403679 DOI: 10.1016/j.cbpc.2005.11.021] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 11/24/2005] [Accepted: 11/25/2005] [Indexed: 11/22/2022]
Abstract
In crustaceans, neuroendocrine centers are located in different structures of the nervous system. One of these structures, the X-organ-sinus gland complex of the eyestalk, produces several neuropeptides that belong to the two main functionally different families: firstly, the chromatophorotropins, and secondly, a large family comprising various closely related peptides, commonly named CHH/MIH/GIH family. This review updates some aspects of the structural, biochemical and functional properties of the main hyperglycemic neuropeptide of this family, the crustacean hyperglycemic hormone (CHH). The first part of this work is a survey of the neuroendocrine system that produces the neurohormones of the CHH/MIH/GIH family, focusing on recent reports that propose new possible neuroendocrine loci of CHH production, secondly we revise general aspects of the CHH biochemical, and structural characteristics and thirdly, we present a review of the role of CHH in the regulation of several physiological processes of crustaceans as well as new reports on the ontogenetic aspects of CHH. The review is centered only on one group of malacostracan crustaceans, the Decapoda.
Collapse
Affiliation(s)
- María Luisa Fanjul-Moles
- Lab. Neurofisiología Comparada, Departamento de Ecología Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, México D.F., Mexico.
| |
Collapse
|
18
|
Granato FC, Tironi TS, Maciel FE, Rosa CE, Vargas MA, Nery LEM. Circadian rhythm of pigment migration induced by chromatrophorotropins in melanophores of the crab Chasmagnathus granulata. Comp Biochem Physiol A Mol Integr Physiol 2005; 138:313-9. [PMID: 15313485 DOI: 10.1016/j.cbpb.2004.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Revised: 04/22/2004] [Accepted: 04/25/2004] [Indexed: 11/20/2022]
Abstract
The circadian rhythm of black pigment migration of melanophores of the crab Chasmagnathus granulata and the variation in responsiveness of these cells to pigment-dispersing hormone (beta-PDH), crustacean cardioactive peptide (CCAP), and red pigment-concentrating hormone (RPCH) were investigated. Melanophores of C. granulata possess an endogenous circadian rhythm of pigment migration, with black pigments staying more dispersed during the day period and more aggregated during the night period. This rhythm seems to be largely dependent on an endogenous release of neurohormones from eyestalks, and to a lesser extent on a primary response to illumination. beta-PDH was the most potent PDH isoform to induce pigment dispersion in both in vivo (EC50 = 0.4 pmol/animal) and in vitro (EC50 = 0.18 microM) assays. CCAP also induced pigment dispersion in vivo and in vitro assays (EC50 = 12 microM), but it was less potent than beta-PDH. In vivo, RPCH induced a low and nondose-dependent pigment aggregation, while in vitro, it had no effect on pigment migration. The responsiveness of melanophores of C. granulata to beta-PDH was significantly higher during the day period when compared to the night period in both assays, in vitro and in vivo. These results suggest that the endogenous circadian rhythm of black pigment migration is dependent on both endogenous circadian rhythm of beta-PDH synthesis and/or release from eyestalks and on an endogenous rhythm of responsiveness of melanophores to beta-PDH.
Collapse
Affiliation(s)
- Flavia Cristina Granato
- Programa de Pós-Graduação em Fisiologia Animal Comparada, Departamento de Ciências Fisiológicas, Fundação Universidade Federal do Rio Grande, Av. Itália, Km 8, Rio Grande, RS, 96201-900 Brazil
| | | | | | | | | | | |
Collapse
|
19
|
Spitzer N, Antonsen BL, Edwards DH. Immunocytochemical mapping and quantification of expression of a putative type 1 serotonin receptor in the crayfish nervous system. J Comp Neurol 2005; 484:261-82. [PMID: 15739232 DOI: 10.1002/cne.20456] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Serotonin is an important neurotransmitter that is involved in modulation of sensory, motor, and higher functions in many species. In the crayfish, which has been developed as a model for nervous system function for over a century, serotonin modulates several identified circuits. Although the cellular and circuit effects of serotonin have been extensively studied, little is known about the receptors that mediate these signals. Physiological data indicate that identified crustacean cells and circuits are modulated via several different serotonin receptors. We describe the detailed immunocytochemical localization of the crustacean type 1 serotonin receptor, 5-HT1crust, throughout the crayfish nerve cord and on abdominal superficial flexor muscles. 5-HT1crust is widely distributed in somata, including those of several identified neurons, and neuropil, suggesting both synaptic and neurohormonal roles. Individual animals show very different levels of 5-HT1crust immunoreactivity (5-HT(1crust)ir) ranging from preparations with hundreds of labeled cells per ganglion to some containing only a handful of 5-HT(1crust)ir cells in the entire nerve cord. The interanimal variability in 5-HT(1crust)ir is great, but individual nerve cords show a consistent level of labeling between ganglia. Quantitative RT-PCR shows that 5-HT1crust mRNA levels between animals are also variable but do not directly correlate with 5-HT(1crust)ir levels. Although there is no correlation of 5-HT1crust expression with gender, social status, molting or feeding, dominant animals show significantly greater variability than subordinates. Functional analysis of 5-HT1crust in combination with this immunocytochemical map will aid further understanding of this receptor's role in the actions of serotonin on identified circuits and cells.
Collapse
Affiliation(s)
- Nadja Spitzer
- Department of Biology and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30302-4010, USA
| | | | | |
Collapse
|
20
|
Wildt M, Goergen EM, Benton JL, Sandeman DC, Beltz BS. Regulation of serotonin levels by multiple light-entrainable endogenous rhythms. J Exp Biol 2004; 207:3765-74. [PMID: 15371484 DOI: 10.1242/jeb.01205] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
This study examined whether serotonin levels in the brain of the American lobster, Homarus americanus, are under circadian control. Using high-performance liquid chromatography and semi-quantitative immunocytochemical methods, we measured serotonin levels in the brains of lobsters at six time points during a 24-h period. Lobsters were maintained for 2 weeks on a 12 h:12 h light:dark cycle followed by 3 days of constant darkness. Under these conditions, brain serotonin levels varied rhythmically,with a peak before subjective dusk and a trough before subjective dawn. This persistent circadian rhythm in constant darkness indicates that serotonin levels are controlled by an endogenous clock. Animals exposed to a shifted light cycle for >10 days, followed by 3 days in constant darkness,demonstrate that this rhythm is light entrainable. Separate analyses of two pairs of large deutocerebral neuropils, the accessory and olfactory lobes,show that serotonin levels in these functionally distinct areas also exhibit circadian rhythms but that these rhythms are out of phase with one another. The olfactory and accessory lobe rhythms are also endogenous and light entrainable, suggesting the presence of multiple clock mechanisms regulating serotonin levels in different brain regions.
Collapse
Affiliation(s)
- M Wildt
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481, USA
| | | | | | | | | |
Collapse
|
21
|
Fanjul-Moles ML, Escamilla-Chimal EG, Gloria-Soria A, Hernández-Herrera G. The crayfish Procambarus clarkii CRY shows daily and circadian variation. J Exp Biol 2004; 207:1453-60. [PMID: 15037639 DOI: 10.1242/jeb.00900] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The circadian rhythms of crayfish are entrained by blue light, through putative extra retinal photoreceptors. We investigated the presence and daily variation of CRY, a protein photosensitive to blue light spectra and ubiquitous in animals and plants, in the putative pacemakers of Procambarus clarkii, namely the eyestalk and brain, at different times of the 24 h light:dark cycles. Using different experimental light protocols and by means of qualitative/quantitative immunofluorescence anatomical and biochemical methods, we identified CRY immunoreactivity in cells located in the medulla-terminalis-hemiellipsoidal complex (MT-HB) and the anterior margin of the median protocerebrum (PR). The immunoreaction varied with the time of day and the two neural structures showed a semi-mirror image. The results of the biochemical analysis matched these variations. Western blotting demonstrated statistically significant circadian rhythms in brain CRY abundance, but no daily circadian CRY abundance oscillations in the eyestalk. These immunocytochemical and biochemical results link a specific photoreceptor molecule to circadian rhythmicity. We propose that CRY may be linked to the photoreception of the clock and to the generation of circadian rhythmicity.
Collapse
Affiliation(s)
- María Luisa Fanjul-Moles
- Laboratorio de Neurofisiología Comparada, Departamento de Biología, Facultad de Ciencias, Universidad Nacional Autónoma de México, México DF 11000.
| | | | | | | |
Collapse
|
22
|
Fanjul-Moles ML, Prieto-Sagredo J. The circadian system of crayfish: a developmental approach. Microsc Res Tech 2003; 60:291-301. [PMID: 12539159 DOI: 10.1002/jemt.10268] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Adult crayfish exhibit a variety of overt circadian rhythms. However, the physiological mechanisms underlying the overt rhythms are controversial. Research has centered on two overt rhythms: the motor activity and the retinal sensitivity rhythms of the genus Procambarus. The present work reviews various studies undertaken to localize pacemakers and mechanisms of entrainment responsible for these two rhythms in adult organisms of this crustacean decapod. It also describes an ontogenetic approach to the problem by means of behavioral, electrophysiological, and neurochemical experiments. The results of this approach confirm previous models proposed for adult crayfish, based on a number of circadian pacemakers distributed in the central nervous system. However, the coupling of rhythmicity between these independent oscillators might be complex and dependent on the interaction between serotonin (5-HT), light, and the crustacean hyperglycemic hormone (CHH). The latter compound has, up until now, not been considered as an agent in the genesis and synchronization of the retinal sensitivity rhythm.
Collapse
Affiliation(s)
- María Luisa Fanjul-Moles
- Departamento de Biología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| | | |
Collapse
|
23
|
Saigusa M. Hatching controlled by the circatidal clock, and the roleof the medulla terminalis in the optic peduncle of the eyestalk, in an estuarine crabSesarma haematocheir. J Exp Biol 2002; 205:3487-504. [PMID: 12364401 DOI: 10.1242/jeb.205.22.3487] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYEmbryos attached to the female crab Sesarma haematocheir hatch synchronously within 1 h. Hatching is also synchronized near the time of the expected nocturnal high tide. These events are governed by a single circatidal clock (or pacemaker) in the female crab. The present study examined the role of the optic peduncle of the eyestalk on hatching and hatching synchrony. Surgery was performed either from the tip of the eyestalk [to remove the region of the optic peduncle from the compound eye—retina complex to the medulla interna (MI)] or from a small triangle `window' opened on the eyestalk exoskeleton [to create lesions on the medulla terminalis (MT) of the optic peduncle]. Neither hatching nor hatching synchrony was affected by removal of the region of the optic peduncle from the compound eye—retina complex to the MI: the circatidal rhythm also remained. Removal of the MI probably caused damage to the sinus gland and the bundle of axons running from the sinus gland to the X organ. Nevertheless, maintenance of highly synchronized hatching indicates that the X organ—sinus gland system is not related to hatching. Hatching and hatching synchrony were not affected by dorsal-half cuts of the MT: the timing of hatching was not affected either. By contrast,transverse and ventral-half cuts of the MT caused severe damage to most females; hatching of many females was suppressed, while hatching of some females was either periodic, at intervals of approximately 24 h, or arrhythmic for a few days. The bundle of neuronal axons is tangled in the MT, and the axons inducing hatching pass through the ventral half of the MT. Complete incision of these axon bundles may have suppressed hatching. Incomplete incision of the axon bundle or partial damage to the neurons may have caused periodic or arrhythmic patterns of hatching. There are two possible roles for MT in hatching. One possibility is that neurons in the MT only induce hatching under the control of the circatidal pacemaker located in a site somewhere other than the optic peduncle. Another possibility is that the circatidal pacemaker is actually present in the MT. The second possibility seems more plausible. Each embryo has a special 48-49.5 h developmental program for hatching. This program could be initiated by the circatidal pacemaker in the female, and hatching synchrony may also be enhanced by the same pacemaker.
Collapse
Affiliation(s)
- Masayuki Saigusa
- Laboratory of Behavior and Evolution, Graduate School of Natural Science and Technology, Okayama University, Tsushima 3-1-1, Okayama 700-8530, Japan.
| |
Collapse
|
24
|
Goergen EM, Bagay LA, Rehm K, Benton JL, Beltz BS. Circadian control of neurogenesis. JOURNAL OF NEUROBIOLOGY 2002; 53:90-5. [PMID: 12360586 DOI: 10.1002/neu.10095] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The life-long addition of new neurons has been documented in many regions of the vertebrate and invertebrate brain, including the hippocampus of mammals (Altman and Das, 1965; Eriksson et al., 1998; Jacobs et al., 2000), song control nuclei of birds (Alvarez-Buylla et al., 1990), and olfactory pathway of rodents (Lois and Alvarez-Buylla, 1994), insects (Cayre et al., 1996) and crustaceans (Harzsch and Dawirs, 1996; Sandeman et al., 1998; Harzsch et al., 1999; Schmidt, 2001). The possibility of persistent neurogenesis in the neocortex of primates is also being widely discussed (Gould et al., 1999; Kornack and Rakic, 2001). In these systems, an effort is underway to understand the regulatory mechanisms that control the timing and rate of neurogenesis. Hormonal cycles (Rasika et al., 1994; Harrison et al., 2001), serotonin (Gould, 1999; Brezun and Daszuta, 2000; Beltz et al., 2001), physical activity (Van Praag et al., 1999) and living conditions (Kemperman and Gage, 1999; Sandeman and Sandeman, 2000) influence the rate of neuronal proliferation and survival in a variety of organisms, suggesting that mechanisms controlling life-long neurogenesis are conserved across a range of vertebrate and invertebrate species. The present article extends these findings by demonstrating circadian control of neurogenesis. Data show a diurnal rhythm of neurogenesis among the olfactory projection neurons in the crustacean brain, with peak proliferation during the hours surrounding dusk, the most active period for lobsters. These data raise the possibility that light-controlled rhythms are a primary regulator of neuronal proliferation, and that previously-demonstrated hormonal and activity-driven influences over neurogenesis may be secondary events in a complex circadian control pathway.
Collapse
Affiliation(s)
- Erin M Goergen
- Department of Biological Sciences, Wellesley College, Wellesley, Massacusetts 02481, USA
| | | | | | | | | |
Collapse
|
25
|
Durán-Lizarraga ME, Prieto-Sagredo J, Gonsebatt ME, Fanjul-Moles ML. Crayfish Procambarus clarkii shows circadian variations in different parameters of the GSH cycle. Photochem Photobiol 2001; 74:350-5. [PMID: 11547576 DOI: 10.1562/0031-8655(2001)074<0350:cpcscv>2.0.co;2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The present study investigated the rhythmic changes in glutathione status in midgut gland and hemolymph as well as in glutathione reductase (GR) activity in the crayfish Procambarus clarkii. In order to determine the circadian nature of these rhythms different groups of crayfish were submitted to constant-darkness conditions for 24 or 72 h after they had spent 15 days under light-dark 12:12 cycles. The animals of the different batches were killed at 6 h intervals during a 24 h cycle. Reduced glutathione (GSH) and oxidized glutathione (GSSG) in hemolymph and midgut as well as midgut GR activity were determined in midgut gland and hemolymph by fluorometric and spectrophotometric method. Data analysis by chronogram and single Cosinor revealed circadian rhythmicity for GSH and GSSG concentration in both tissues as well as midgut GR activity. The rhythm parameters revealed oxidative stress induced by light. The possible correlation between the glutathione rhythm and other metabolic and behavioral rhythms of crayfish as well as the importance of the glutathione circadian temporal order in the adaptation of crayfish are discussed.
Collapse
|
26
|
Escamilla-Chimal EG, Van Herp F, Fanjul-Moles ML. Daily variations in crustacean hyperglycaemic hormone and serotonin immunoreactivity during the development of crayfish. J Exp Biol 2001; 204:1073-81. [PMID: 11222126 DOI: 10.1242/jeb.204.6.1073] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present study investigated changes in crustacean hyperglycaemic hormone (CHH) and serotonin (5-hydroxytryptamine, 5-HT) immunoreactivity in the retina and the X-organ/sinus gland complex (XO-SG) of the crayfish Procambarus clarkii at two developmental stages, post-embryonic stage two (PO2) and the juvenile stage, at three different times of day, under a photoperiod cycle of 12 h:12 h L:D, using qualitative and quantitative immunohistochemical methods. In the retina, CHH immunoreactivity is located in the tapetal cells, while 5-HT immunoreactivity is found in the retinular cells. In the XO-SG, CHH-immunoreactivity is localized to the CHH-producing cell perikarya and in their axons and endings in the sinus gland, while 5-HT immunoreactivity is restricted to axon endings branching into the perikarya of the CHH-producing cells. A stereological analysis demonstrates that the PO2 and juvenile stages show significant differences in the amount of the immunoreactive CHH and 5-HT material at the three selected time points, indicating daily and related changes in the levels of CHH and 5-HT in the XO-SG and the retina. Our findings therefore support the idea that daily rhythms in the secretory activity of the XO-SG complex affect the circadian sensitivity of the eye. Furthermore, the differences found between the PO2 and juvenile stages suggest that both CHH and 5-HT are key factors in the development of the circadian rhythm of retinal sensitivity.
Collapse
Affiliation(s)
- E G Escamilla-Chimal
- Laboratorio de Neurofisiología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ap. Postal 41-630, CP 11000 México DF, México
| | | | | |
Collapse
|