1
|
Quinn G, Maggiore G, Li B. Genomic investigation of innate sensing pathways in the tumor microenvironment. BMC Cancer 2024; 24:1157. [PMID: 39289651 PMCID: PMC11409789 DOI: 10.1186/s12885-024-12944-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024] Open
Abstract
The innate immune system is the first responder to infectious agents, cellular debris, and cancerous growths. This system plays critical roles in the antitumor immune responses by boosting and priming T cell-mediated cytotoxicity but is understudied due to the complexity and redundancy of its various downstream signaling cascades. We utilized a mathematical tool to holistically quantify innate immune signaling cascades and immunophenotype over 8,000 tumors from The Cancer Genome Atlas (TCGA). We found that innate immune activation was predictive of patient mortality in a subset of cancers. Further analysis identified PHF genes as transcripts that were associated with genomic stability and innate activation. Knockdown of PHF gene transcripts in vitro led to an increase in cell death and IFNB1 expression in a cGAS-dependent manner, validating PHF genes as potential anti-tumor targets. We also found an association between innate immune activation and both tumor immunogenicity and intratumor microbes, which highlights the versatility of this model. In conclusion, interrogating activation of innate immune signaling cascades demonstrated the importance of studying innate signaling in cancer and broadened the search for new therapeutic adjuvants.
Collapse
Affiliation(s)
- Gabriella Quinn
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Gianna Maggiore
- Children's Research Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bo Li
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA.
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA.
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA.
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
2
|
Tong D, Tang Y, Zhong P. The emerging roles of histone demethylases in cancers. Cancer Metastasis Rev 2024; 43:795-821. [PMID: 38227150 DOI: 10.1007/s10555-023-10160-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 12/05/2023] [Indexed: 01/17/2024]
Abstract
Modulation of histone methylation status is regarded as an important mechanism of epigenetic regulation and has substantial clinical potential for the therapy of diseases, including cancer and other disorders. The present study aimed to provide a comprehensive introduction to the enzymology of histone demethylases, as well as their cancerous roles, molecular mechanisms, therapeutic possibilities, and challenges for targeting them, in order to advance drug design for clinical therapy and highlight new insight into the mechanisms of these enzymes in cancer. A series of clinical trials have been performed to explore potential roles of histone demethylases in several cancer types. Numerous targeted inhibitors associated with immunotherapy, chemotherapy, radiotherapy, and targeted therapy have been used to exert anticancer functions. Future studies should evaluate the dynamic transformation of histone demethylases leading to carcinogenesis and explore individual therapy.
Collapse
Affiliation(s)
- Dali Tong
- Department of Urological Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China.
| | - Ying Tang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China.
| | - Peng Zhong
- Department of Pathology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China.
| |
Collapse
|
3
|
Dutta P, Pal D, Sultana F, Mandal RK, Roy A, Panda CK. Down-regulation of FA-BRCA Pathway in Cervical Carcinoma Gradually Reversed During the Development of Chemo-tolerance: Clinical Implications. Reprod Sci 2024; 31:1122-1138. [PMID: 38012520 DOI: 10.1007/s43032-023-01378-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/29/2023] [Indexed: 11/29/2023]
Abstract
Cervical cancer is one of the leading causes of cancer death among females, worldwide. The contributory role of different cellular pathways in the process of carcinogenesis is still poorly understood. Our study was focused here to understand the functional evaluation of key regulatory genes of FA-BRCA pathway in the development of CACX and their role in chemo-tolerance of the disease by analyzing the molecular profile of the genes both in normal and tumour tissue of our sample pool, also validated in in silico datasets. Later on, prognostic importance of the genes was further evaluated in plasma DNA and cisplatin-treated in vitro system. We found that expression profile of FA-BRCA pathway genes was gradually reduced from undifferentiated basal-parabasal layers of normal tissue towards the progression of the disease. Further analysis revealed that frequent promoter methylation [32-55%] and deletion [34-52%] events were the plausible reasons for their reduced expression in CACX. Noticeably, invasion of promoter methylation of the genes [11-17%] in plasma CTCs of CACX patients was positively correlated [p < 0.001] with poor prognosis among patients. On the other hand, functional upregulation of these genes at higher concentrations [IC50-70] of cisplatin was a predictor for the development of drug tolerance, as evaluated in our in vitro study. This finding was supported further by low prevalence of γ-H2X foci formation and reduced expression of DNMT1 at higher concentrations of cisplatin. In totality, we discovered that the FA-BRCA pathway must be inactivated for cancer formation. In contrast, elevated gene expression played a substantial role in building of chemo-tolerance and might be associated with developing increased risk of disease recurrence among patients.
Collapse
Affiliation(s)
- Priyanka Dutta
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700026, West Bengal, India
| | - Debolina Pal
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700026, West Bengal, India
| | - Farhin Sultana
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700026, West Bengal, India
| | - Ranajit Kumar Mandal
- Department of Gynaecologic Oncology, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700026, West Bengal, India
| | - Anup Roy
- Department of Pathology, Nil Ratan Sircar Medical College and Hospital, Kolkata, 700014, India
| | - Chinmay Kumar Panda
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700026, West Bengal, India.
| |
Collapse
|
4
|
Jeong DW, Park JW, Kim KS, Kim J, Huh J, Seo J, Kim YL, Cho JY, Lee KW, Fukuda J, Chun YS. Palmitoylation-driven PHF2 ubiquitination remodels lipid metabolism through the SREBP1c axis in hepatocellular carcinoma. Nat Commun 2023; 14:6370. [PMID: 37828054 PMCID: PMC10570296 DOI: 10.1038/s41467-023-42170-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
Palmitic acid (PA) is the most common fatty acid in humans and mediates palmitoylation through its conversion into palmitoyl coenzyme A. Although palmitoylation affects many proteins, its pathophysiological functions are only partially understood. Here we demonstrate that PA acts as a molecular checkpoint of lipid reprogramming in HepG2 and Hep3B cells. The zinc finger DHHC-type palmitoyltransferase 23 (ZDHHC23) mediates the palmitoylation of plant homeodomain finger protein 2 (PHF2), subsequently enhancing ubiquitin-dependent degradation of PHF2. This study also reveals that PHF2 functions as a tumor suppressor by acting as an E3 ubiquitin ligase of sterol regulatory element-binding protein 1c (SREBP1c), a master transcription factor of lipogenesis. PHF2 directly destabilizes SREBP1c and reduces SREBP1c-dependent lipogenesis. Notably, SREBP1c increases free fatty acids in hepatocellular carcinoma (HCC) cells, and the consequent PA induction triggers the PHF2/SREBP1c axis. Since PA seems central to activating this axis, we suggest that levels of dietary PA should be carefully monitored in patients with HCC.
Collapse
Affiliation(s)
- Do-Won Jeong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Jong-Wan Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Kyeong Seog Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, 03080, Korea
| | - Jiyoung Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - June Huh
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Korea
| | - Jieun Seo
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Faculty of Engineering, Yokohama National University, Yokohama, 240-8501, Japan
| | - Ye Lee Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Joo-Youn Cho
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, 03080, Korea
| | - Kwang-Woong Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Junji Fukuda
- Faculty of Engineering, Yokohama National University, Yokohama, 240-8501, Japan
| | - Yang-Sook Chun
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.
| |
Collapse
|
5
|
Paul A, Dutta P, Basu K. Assessment and clinicopathological correlation of p16 expression in cervical squamous cell carcinoma of Indian population: Diagnostic implications. J Cancer Res Ther 2023; 19:2012-2017. [PMID: 38376311 DOI: 10.4103/jcrt.jcrt_753_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/22/2022] [Indexed: 02/21/2024]
Abstract
BACKGROUND Our aim was to assess the p16 expression in normal cervical epithelium and cervical lesions and how it correlated with HPV oncoprotein E7 and other etiological parameters of cervical cancer. METHODS For this purpose, we analyzed protein expression of p16 and E7 oncoprotein in total 20 normal cervical epithelium tissue (as control) and 62 cervical lesions. Next, the result was correlated with different clinico-pathological parameters. RESULTS Out of 62 cases of cervical lesions, we found around 75%-100% of the cervical lesion samples exhibited E7 nuclear protein expression, whereas around 33.33%-75% samples were p16 positive. On the other hand, p16 expression showed strong association with E7 oncoprotein and other clinico-pathological parameters (like high parity, early age of sextual debut) in the same set of samples of our study. CONCLUSION We concluded that overexpression of p16 is very practical and can be readily implemented in most diagnostic pathology laboratories.
Collapse
Affiliation(s)
- Arkadip Paul
- Department of Pathology, Murshidabad Medical College and Hospital (MSDMCH), Berhampore, West Bengal, India
| | - Priyanka Dutta
- Department of Oncogene Regulation Unit, Chittaranjan National Cancer Institute (CNCI), Kolkata, West Bengal, India
| | - Keya Basu
- Department of Pathology, KPC Medical College, Kolkata, West Bengal, India
| |
Collapse
|
6
|
Wang TM, Xiao RW, He YQ, Zhang WL, Diao H, Tang M, Mai ZM, Xue WQ, Yang DW, Deng CM, Liao Y, Zhou T, Li DH, Wu YX, Chen XY, Zhang J, Li XZ, Zhang PF, Zheng XH, Zhang SD, Hu YZ, Cai Y, Zheng Y, Zhang Z, Zhou Y, Jin G, Bei J, Mai HQ, Sun Y, Ma J, Hu Z, Liu J, Lung ML, Adami HO, Ye W, Lam TH, Shen H, Jia WH. High-throughput identification of regulatory elements and functional assays to uncover susceptibility genes for nasopharyngeal carcinoma. Am J Hum Genet 2023:S0002-9297(23)00204-5. [PMID: 37352861 DOI: 10.1016/j.ajhg.2023.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/25/2023] Open
Abstract
Large-scale genetic association studies have identified multiple susceptibility loci for nasopharyngeal carcinoma (NPC), but the underlying biological mechanisms remain to be explored. To gain insights into the genetic etiology of NPC, we conducted a follow-up study encompassing 6,907 cases and 10,472 controls and identified two additional NPC susceptibility loci, 9q22.33 (rs1867277; OR = 0.74, 95% CI = 0.68-0.81, p = 3.08 × 10-11) and 17q12 (rs226241; OR = 1.42, 95% CI = 1.26-1.60, p = 1.62 × 10-8). The two additional loci, together with two previously reported genome-wide significant loci, 5p15.33 and 9p21.3, were investigated by high-throughput sequencing for chromatin accessibility, histone modification, and promoter capture Hi-C (PCHi-C) profiling. Using luciferase reporter assays and CRISPR interference (CRISPRi) to validate the functional profiling, we identified PHF2 at locus 9q22.33 as a susceptibility gene. PHF2 encodes a histone demethylase and acts as a tumor suppressor. The risk alleles of the functional SNPs reduced the expression of the target gene PHF2 by inhibiting the enhancer activity of its long-range (4.3 Mb) cis-regulatory element, which promoted proliferation of NPC cells. In addition, we identified CDKN2B-AS1 as a susceptibility gene at locus 9p21.3, and the NPC risk allele of the functional SNP rs2069418 promoted the expression of CDKN2B-AS1 by increasing its enhancer activity. The overexpression of CDKN2B-AS1 facilitated proliferation of NPC cells. In summary, we identified functional SNPs and NPC susceptibility genes, which provides additional explanations for the genetic association signals and helps to uncover the underlying genetic etiology of NPC development.
Collapse
Affiliation(s)
- Tong-Min Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ruo-Wen Xiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Medical Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yong-Qiao He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wen-Li Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hua Diao
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Minzhong Tang
- Wuzhou Red Cross Hospital, Wuzhou, Guangxi, China; Wuzhou Cancer Center, Wuzhou, Guangxi, China
| | - Zhi-Ming Mai
- School of Public Health, The University of Hong Kong, Hong Kong S.A.R., China; Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wen-Qiong Xue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Da-Wei Yang
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Chang-Mi Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ting Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dan-Hua Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan-Xia Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xue-Yin Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiangbo Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xi-Zhao Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Pei-Fen Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Hui Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shao-Dan Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ye-Zhu Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yonglin Cai
- Wuzhou Red Cross Hospital, Wuzhou, Guangxi, China
| | - Yuming Zheng
- Wuzhou Red Cross Hospital, Wuzhou, Guangxi, China; Wuzhou Cancer Center, Wuzhou, Guangxi, China
| | - Zhe Zhang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yifeng Zhou
- Department of Genetics, Medical College of Soochow University, Suzhou, China
| | - Guangfu Jin
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Jinxin Bei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hai-Qiang Mai
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying Sun
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Jun Ma
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Zhibin Hu
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Jianjun Liu
- Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Maria Li Lung
- Department of Clinical Oncology, School of Clinical Medicine, University of Hong Kong, Hong Kong S.A.R., China
| | - Hans-Olov Adami
- Clinical Effectiveness Group, Institute of Health and Society, University of Oslo, Oslo, Norway; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Weimin Ye
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Department of Epidemiology and Health Statistics & Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Tai-Hing Lam
- School of Public Health, The University of Hong Kong, Hong Kong S.A.R., China
| | - Hongbing Shen
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
7
|
Dong Y, Hu H, Zhang X, Zhang Y, Sun X, Wang H, Kan W, Tan MJ, Shi H, Zang Y, Li J. Phosphorylation of PHF2 by AMPK releases the repressive H3K9me2 and inhibits cancer metastasis. Signal Transduct Target Ther 2023; 8:95. [PMID: 36872368 PMCID: PMC9986243 DOI: 10.1038/s41392-022-01302-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 12/04/2022] [Accepted: 12/19/2022] [Indexed: 03/07/2023] Open
Abstract
Epithelial to mesenchymal transition (EMT) plays a crucial role in cancer metastasis, accompanied with vast epigenetic changes. AMP-activated protein kinase (AMPK), a cellular energy sensor, plays regulatory roles in multiple biological processes. Although a few studies have shed light on AMPK regulating cancer metastasis, the inside epigenetic mechanisms remain unknown. Herein we show that AMPK activation by metformin relieves the repressive H3K9me2-mediated silencing of epithelial genes (e.g., CDH1) during EMT processes and inhibits lung cancer metastasis. PHF2, a H3K9me2 demethylase, was identified to interact with AMPKα2. Genetic deletion of PHF2 aggravates lung cancer metastasis and abolishes the H3K9me2 downregulation and anti-metastasis effect of metformin. Mechanistically, AMPK phosphorylates PHF2 at S655 site, enhancing PHF2 demethylation activity and triggering the transcription of CDH1. Furthermore, the PHF2-S655E mutant that mimics AMPK-mediated phosphorylation status further reduces H3K9me2 and suppresses lung cancer metastasis, while PHF2-S655A mutant presents opposite phenotype and reverses the anti-metastasis effect of metformin. PHF2-S655 phosphorylation strikingly reduces in lung cancer patients and the higher phosphorylation level predicts better survival. Altogether, we reveal the mechanism of AMPK inhibiting lung cancer metastasis via PHF2 mediated H3K9me2 demethylation, thereby promoting the clinical application of metformin and highlighting PHF2 as the potential epigenetic target in cancer metastasis.
Collapse
Affiliation(s)
- Ying Dong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xuan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunkai Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Hanlin Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,Department of Pharmacology, Fudan University, Shanghai, 201203, China
| | - Weijuan Kan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Min-Jia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Shi
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| | - Yi Zang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,Lingang laboratory, Shanghai, 201203, China. .,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China. .,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China. .,Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Aoshanwei, Jimo, Qingdao, 266237, China.
| |
Collapse
|
8
|
Shao P, Liu Q, Qi HH. KDM7 Demethylases: Regulation, Function and Therapeutic Targeting. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1433:167-184. [PMID: 37751140 DOI: 10.1007/978-3-031-38176-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
It was more than a decade ago that PHF8, KDM7A/JHDM1D and PHF2 were first proposed to be a histone demethylase family and were named as KDM7 (lysine demethylase) family. Since then, knowledge of their demethylation activities, roles as co-regulators of transcription and roles in development and diseases such as cancer has been steadily growing. The demethylation activities of PHF8 and KDM7A toward various methylated histones including H3K9me2/1, H3K27me2 and H4K20me1 have been identified and proven in various cell types. In contrast, PHF2, due to a mutation of a key residue in an iron-binding domain, demethylates H3K9me2 upon PKA-mediated phosphorylation. Interestingly, it was reported that PHF2 possesses an unusual H4K20me3 demethylation activity, which was not observed for PHF8 and KDM7A. PHF8 has been most extensively studied with respect to its roles in development and oncogenesis, revealing that it contributes to regulation of the cell cycle, cell viability and cell migration. Moreover, accumulating lines of evidence demonstrated that the KDM7 family members are subjected to post-transcriptional and post-translational regulations, leading to a higher horizon for evaluating their actual protein expression and functions in development and cancer. This chapter provides a general view of the current understanding of the regulation and functions of the KDM7 family and discusses their potential as therapeutic targets in cancer as well as perspectives for further studies.
Collapse
Affiliation(s)
- Peng Shao
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, IA, 52242, USA
| | - Qi Liu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, IA, 52242, USA
| | - Hank Heng Qi
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, IA, 52242, USA.
| |
Collapse
|
9
|
Schanne DH, Koch A, Elicin O, Giger R, Medová M, Zimmer Y, Aebersold DM. Prognostic and Predictive Biomarkers in Head and Neck Squamous Cell Carcinoma Treated with Radiotherapy-A Systematic Review. Biomedicines 2022; 10:biomedicines10123288. [PMID: 36552043 PMCID: PMC9775486 DOI: 10.3390/biomedicines10123288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Background: Radiotherapy is a mainstay in head and neck squamous cell carcinoma (HNSCC) treatment but is mostly applied without stratification by molecular diagnostics. Development of reliable biomarkers may have the potential to improve radiotherapy (RT) efficacy and reduce toxicity. We conducted a systematic review to summarize the field of biomarkers in HNSCC treated by RT. Methods: Pubmed and EMBASE were searched independently by two researchers following pre-defined inclusion and exclusion criteria. Z curves were generated to investigate publication bias. OncoKB was used for identification of druggable targets. Results: 134 manuscripts remained for data extraction. 12% of tumors were AJCC/UICC stage I-II and 82% were stage III-IV. The most common biomarkers were proteins (39%), DNA (14%) and mRNA (9%). Limiting analysis to prospective data and statistically significant results, we found three potentially druggable targets: ERCC2, PTCH1 and EGFR. Regarding data quality, AJCC/UICC stage was missing in 32% of manuscripts. 73% of studies were retrospective and only 7% were based on prospective randomized trials. Z-curves indicated the presence of publication bias. Conclusion: An abundance of potential biomarkers in HNSCC is available but data quality is limited by retrospective collection, lack of validation and publication bias. Improved study design and reporting quality might accelerate successful development of personalized treatments in HNSCC.
Collapse
Affiliation(s)
- Daniel H. Schanne
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Freiburgstrasse 18, 3010 Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland
- Department for BioMedical Research, University of Bern, Murtenstrasse 28, 3008 Bern, Switzerland
- Correspondence:
| | - Alexander Koch
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Freiburgstrasse 18, 3010 Bern, Switzerland
- Department for BioMedical Research, University of Bern, Murtenstrasse 28, 3008 Bern, Switzerland
| | - Olgun Elicin
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Freiburgstrasse 18, 3010 Bern, Switzerland
| | - Roland Giger
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital and University of Bern, Freiburgstrasse 18, 3010 Bern, Switzerland
| | - Michaela Medová
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Freiburgstrasse 18, 3010 Bern, Switzerland
- Department for BioMedical Research, University of Bern, Murtenstrasse 28, 3008 Bern, Switzerland
| | - Yitzhak Zimmer
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Freiburgstrasse 18, 3010 Bern, Switzerland
- Department for BioMedical Research, University of Bern, Murtenstrasse 28, 3008 Bern, Switzerland
| | - Daniel M. Aebersold
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Freiburgstrasse 18, 3010 Bern, Switzerland
| |
Collapse
|
10
|
Luo P, Zhang YD, He F, Tong CJ, Liu K, Liu H, Zhu SZ, Luo JZ, Yuan B. HIF-1α-mediated augmentation of miRNA-18b-5p facilitates proliferation and metastasis in osteosarcoma through attenuation PHF2. Sci Rep 2022; 12:10398. [PMID: 35729160 PMCID: PMC9213540 DOI: 10.1038/s41598-022-13660-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/29/2022] [Indexed: 11/09/2022] Open
Abstract
Extensive evidence has explored the involvement of microRNAs (miRNAs) in osteosarcoma (OS). Limitedly, the concrete function of microRNA-18b-5p (miR-18b-5p) in OS remains unexplored and largely elusive. Here, we validated that miR-18b-5p significantly elevated in OS via analyzing the data from GEO database. The results showed that miR-18b-5p was overexpressed in human OS tissues and cell lines. The clinical evidence suggested that high level of miR-18b-5p was negatively correlated with the poor prognosis of OS. Meanwhile, miR-18b-5p upregulation facilitated the proliferation and metastasis of OS cells in vitro and in vivo. The mechanism exploration demonstrated that miR-18b-5p acted as a potential inhibitor of PHF2, a tumor suppressor gene, at post-transcriptional level. Moreover, hypoxia induced gene expression of miR-18b-5p was clarified to be transcriptionally mediated by HIF-1α. The clinicopathological analysis in samples of OS patients further supported that miR-18b-5p had a positive correlation with HIF-1α expression, and negative correlation with PHF2. Collectively, the present study uncovered a new molecular mechanism of OS tumorigenesis and development and miR-18b-5p might be a prognostic biomarker and potential therapeutic target for OS treatment.
Collapse
Affiliation(s)
- Peng Luo
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000, China
| | | | - Feng He
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000, China
| | - Chang-Jun Tong
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000, China
| | - Kai Liu
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - He Liu
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000, China
| | - Shi-Zhuang Zhu
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000, China
| | - Jian-Zhou Luo
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000, China
| | - Bing Yuan
- Department of Orthopedics, The Fifth Hospital of Wuhan/The Second Affiliated Hospital of Jianghan University, Wuhan, 430050, China.
| |
Collapse
|
11
|
Differential promoter usages of PTCH1 and down regulation of HHIP are associated with HNSCC progression. Pathol Res Pract 2022; 232:153827. [DOI: 10.1016/j.prp.2022.153827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/20/2022] [Accepted: 02/24/2022] [Indexed: 01/10/2023]
|
12
|
Zhang X, Tian S, Beese-Sims SE, Chen J, Shin N, Colaiácovo MP, Kim HM. Histone demethylase AMX-1 is necessary for proper sensitivity to interstrand crosslink DNA damage. PLoS Genet 2021; 17:e1009715. [PMID: 34329293 PMCID: PMC8357103 DOI: 10.1371/journal.pgen.1009715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 08/11/2021] [Accepted: 07/14/2021] [Indexed: 01/02/2023] Open
Abstract
Histone methylation is dynamically regulated to shape the epigenome and adjust central nuclear processes including transcription, cell cycle control and DNA repair. Lysine-specific histone demethylase 2 (LSD2) has been implicated in multiple types of human cancers. However, its functions remain poorly understood. This study investigated the histone demethylase LSD2 homolog AMX-1 in C. elegans and uncovered a potential link between H3K4me2 modulation and DNA interstrand crosslink (ICL) repair. AMX-1 is a histone demethylase and mainly localizes to embryonic cells, the mitotic gut and sheath cells. Lack of AMX-1 expression resulted in embryonic lethality, a decreased brood size and disorganized premeiotic tip germline nuclei. Expression of AMX-1 and of the histone H3K4 demethylase SPR-5 is reciprocally up-regulated upon lack of each other and the mutants show increased H3K4me2 levels in the germline, indicating that AMX-1 and SPR-5 regulate H3K4me2 demethylation. Loss of AMX-1 function activates the CHK-1 kinase acting downstream of ATR and leads to the accumulation of RAD-51 foci and increased DNA damage-dependent apoptosis in the germline. AMX-1 is required for the proper expression of mismatch repair component MutL/MLH-1 and sensitivity against ICLs. Interestingly, formation of ICLs lead to ubiquitination-dependent subcellular relocalization of AMX-1. Taken together, our data suggest that AMX-1 functions in ICL repair in the germline.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Sisi Tian
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Sara E. Beese-Sims
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jingjie Chen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Nara Shin
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Monica P. Colaiácovo
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hyun-Min Kim
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
13
|
PHF2 histone demethylase prevents DNA damage and genome instability by controlling cell cycle progression of neural progenitors. Proc Natl Acad Sci U S A 2019; 116:19464-19473. [PMID: 31488723 DOI: 10.1073/pnas.1903188116] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Histone H3 lysine 9 methylation (H3K9me) is essential for cellular homeostasis; however, its contribution to development is not well established. Here, we demonstrate that the H3K9me2 demethylase PHF2 is essential for neural progenitor proliferation in vitro and for early neurogenesis in the chicken spinal cord. Using genome-wide analyses and biochemical assays we show that PHF2 controls the expression of critical cell cycle progression genes, particularly those related to DNA replication, by keeping low levels of H3K9me3 at promoters. Accordingly, PHF2 depletion induces R-loop accumulation that leads to extensive DNA damage and cell cycle arrest. These data reveal a role of PHF2 as a guarantor of genome stability that allows proper expansion of neural progenitors during development.
Collapse
|
14
|
Chaturvedi SS, Ramanan R, Waheed SO, Karabencheva-Christova TG, Christov CZ. Structure-function relationships in KDM7 histone demethylases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 117:113-125. [DOI: 10.1016/bs.apcsb.2019.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Zhang L, Hui TL, Wei YX, Cao ZM, Feng F, Ren GS, Li F. The expression and biological function of the PHF2 gene in breast cancer. RSC Adv 2018; 8:39520-39528. [PMID: 35558021 PMCID: PMC9090935 DOI: 10.1039/c8ra06017g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/12/2018] [Indexed: 01/10/2023] Open
Abstract
PHD Finger Protein 2 (PHF2), as a protein code and a transcription regulatory gene, is a member of the Jumonji-C domain (JmjC). PHF2 is located at human chromosome 9q22.31 and is frequently decreased in various malignancies. However, the definite role of PHF2 in breast cancer remains unclear. To detect the expression and function of PHF2 in breast cancer, a q-PCR assay was used to detect the mRNA expression of PHF2 in breast cancer cell lines and paired breast cancer tissues, and immunohistochemistry was used to test the protein expression in breast cancer tissues and adjacent tissues. In addition, an adenovirus vector system was utilized to upregulate the expression of PHF2 in breast cancer cells. In our study, we found that PHF2 was down-expressed in breast cancer on both the mRNA and protein levels and the low expression of PHF2 was significantly associated with lymph node metastasis, Ki67 positive rate, ER negative expression and poor prognosis in breast cancer patients. The ectopic expression of PHF2 obviously inhibited the proliferation of breast cancer cell lines and the growth of xenograft tumors. Due to the tumor suppressor signature of PHF2 in breast cancer, we have reasons to believe that it could be a promoting marker and target for the prognosis and therapy of breast cancer.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Oncology, Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University China
| | - Tian-Li Hui
- Department of Oncology, Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University China
| | - Yu-Xian Wei
- Department of Endocrine Surgery and Breast Cancer Center, The First Affiliated Hospital of Chongqing Medical University #1 YouYi Road, YuZhong District Chongqing 400016 China
| | - Zhu-Min Cao
- Department of Oncology, The Seventh People's Hospital of Chongqing 400016 China
| | - Fan Feng
- Department of Breast Surgery, Hangzhou Women's Hospital Zhejiang 310000 China
| | - Guo-Sheng Ren
- Department of Oncology, Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University China
- Department of Endocrine Surgery and Breast Cancer Center, The First Affiliated Hospital of Chongqing Medical University #1 YouYi Road, YuZhong District Chongqing 400016 China
| | - Fan Li
- Department of Endocrine Surgery and Breast Cancer Center, The First Affiliated Hospital of Chongqing Medical University #1 YouYi Road, YuZhong District Chongqing 400016 China
| |
Collapse
|
16
|
Gao D, Herman JG, Guo M. The clinical value of aberrant epigenetic changes of DNA damage repair genes in human cancer. Oncotarget 2018; 7:37331-37346. [PMID: 26967246 PMCID: PMC5095080 DOI: 10.18632/oncotarget.7949] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/20/2016] [Indexed: 12/22/2022] Open
Abstract
The stability and integrity of the human genome are maintained by the DNA damage repair (DDR) system. Unrepaired DNA damage is a major source of potentially mutagenic lesions that drive carcinogenesis. In addition to gene mutation, DNA methylation occurs more frequently in DDR genes in human cancer. Thus, DNA methylation may play more important roles in DNA damage repair genes to drive carcinogenesis. Aberrant methylation patterns in DNA damage repair genes may serve as predictive, diagnostic, prognostic and chemosensitive markers of human cancer. MGMT methylation is a marker for poor prognosis in human glioma, while, MGMT methylation is a sensitive marker of glioma cells to alkylating agents. Aberrant epigenetic changes in DNA damage repair genes may serve as therapeutic targets. Treatment of MLH1-methylated colon cancer cell lines with the demethylating agent 5′-aza-2′-deoxycytidine induces the expression of MLH1 and sensitizes cancer cells to 5-fluorouracil. Synthetic lethality is a more exciting approach in patients with DDR defects. PARP inhibitors are the most effective anticancer reagents in BRCA-deficient cancer cells.
Collapse
Affiliation(s)
- Dan Gao
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, China.,Medical College of NanKai University, Tianjin, China
| | - James G Herman
- The Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Mingzhou Guo
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
17
|
Hosseini A, Minucci S. Alterations of Histone Modifications in Cancer. EPIGENETICS IN HUMAN DISEASE 2018:141-217. [DOI: 10.1016/b978-0-12-812215-0.00006-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
18
|
Ge Z, Gu Y, Han Q, Sloane J, Ge Q, Gao G, Ma J, Song H, Hu J, Chen B, Dovat S, Song C. Plant homeodomain finger protein 2 as a novel IKAROS target in acute lymphoblastic leukemia. Epigenomics 2017; 10:59-69. [PMID: 28994305 DOI: 10.2217/epi-2017-0092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIM Clinical significance of plant homeodomain finger 2 (PHF2) expressions is explored in acute lymphoblastic leukemia (ALL) patients. METHODS mRNA level was examined by qPCR. The retroviral gene expression, shRNA knockdown and chromatin-immunoprecipitation are used to observe IKAROS regulation on PHF2 transcription. RESULTS PHF2 expression is significantly reduced in subsets of ALL patients, and PHF2 low expression correlates with leukemia cell proliferation and an elevation of several poor prognostic markers in B-cell ALL. IKAROS directly promotes PHF2 expression and patients with IKAROS deletion have significantly lower PHF2 expression. Casein kinase II (CK2) inhibitor significantly promotes PHF2 expression in an IKAROS-dependent manner, and casein kinase II inhibitor treatment also results in an increase of PHF2 expression and enrichment of IKAROS and H3K4me3 at PHF2 promoter in primary cells. CONCLUSION Our results demonstrate that the IKAROS promotes PHF2 expression, and suggest that PHF2 low expression works with the IKAROS gene deletion to drive oncogenesis of ALL.
Collapse
Affiliation(s)
- Zheng Ge
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Southeast University Institute of Hematology, Nanjing 210009, China.,International Cooperative Leukemia Group & International Cooperative Laboratory of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Yan Gu
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Southeast University Institute of Hematology, Nanjing 210009, China
| | - Qi Han
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Justin Sloane
- Department of Obstetrics & Gynecology, Abington Jefferson-Health, Abington, PA 19001, USA.,Department of Pediatrics, Pennsylvania State University Medical College, Hershey, PA 17033, USA
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Goufeng Gao
- Department of Pathology & Laboratory Medicine, University of California-Davis Medical Center, Sacramento, CA 95817, USA
| | - Jinlong Ma
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Southeast University Institute of Hematology, Nanjing 210009, China.,International Cooperative Leukemia Group & International Cooperative Laboratory of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Huihui Song
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Southeast University Institute of Hematology, Nanjing 210009, China
| | - Jiaojiao Hu
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Southeast University Institute of Hematology, Nanjing 210009, China.,International Cooperative Leukemia Group & International Cooperative Laboratory of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Baoan Chen
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Southeast University Institute of Hematology, Nanjing 210009, China.,International Cooperative Leukemia Group & International Cooperative Laboratory of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Sinisa Dovat
- International Cooperative Leukemia Group & International Cooperative Laboratory of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China.,Department of Pediatrics, Pennsylvania State University Medical College, Hershey, PA 17033, USA
| | - Chunhua Song
- International Cooperative Leukemia Group & International Cooperative Laboratory of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China.,Department of Pediatrics, Pennsylvania State University Medical College, Hershey, PA 17033, USA
| |
Collapse
|
19
|
Christmann M, Kaina B. Epigenetic regulation of DNA repair genes and implications for tumor therapy. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 780:15-28. [PMID: 31395346 DOI: 10.1016/j.mrrev.2017.10.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 12/31/2022]
Abstract
DNA repair represents the first barrier against genotoxic stress causing metabolic changes, inflammation and cancer. Besides its role in preventing cancer, DNA repair needs also to be considered during cancer treatment with radiation and DNA damaging drugs as it impacts therapy outcome. The DNA repair capacity is mainly governed by the expression level of repair genes. Alterations in the expression of repair genes can occur due to mutations in their coding or promoter region, changes in the expression of transcription factors activating or repressing these genes, and/or epigenetic factors changing histone modifications and CpG promoter methylation or demethylation levels. In this review we provide an overview on the epigenetic regulation of DNA repair genes. We summarize the mechanisms underlying CpG methylation and demethylation, with de novo methyltransferases and DNA repair involved in gain and loss of CpG methylation, respectively. We discuss the role of components of the DNA damage response, p53, PARP-1 and GADD45a on the regulation of the DNA (cytosine-5)-methyltransferase DNMT1, the key enzyme responsible for gene silencing. We stress the relevance of epigenetic silencing of DNA repair genes for tumor formation and tumor therapy. A paradigmatic example is provided by the DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT), which is silenced in up to 40% of various cancers through CpG promoter methylation. The CpG methylation status of the MGMT promoter strongly correlates with clinical outcome and, therefore, is used as prognostic marker during glioblastoma therapy. Mismatch repair genes are also subject of epigenetic silencing, which was shown to correlate with colorectal cancer formation. For many other repair genes shown to be epigenetically regulated the clinical outcome is not yet clear. We also address the question of whether genotoxic stress itself can lead to epigenetic alterations of genes encoding proteins involved in the defense against genotoxic stress.
Collapse
Affiliation(s)
- Markus Christmann
- Department of Toxicology, University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| | - Bernd Kaina
- Department of Toxicology, University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| |
Collapse
|
20
|
Hosseini A, Minucci S. A comprehensive review of lysine-specific demethylase 1 and its roles in cancer. Epigenomics 2017; 9:1123-1142. [PMID: 28699367 DOI: 10.2217/epi-2017-0022] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Histone methylation plays a key role in the regulation of chromatin structure, and its dynamics regulates important cellular processes. The investigation of the role of alterations in histone methylation in cancer has led to the identification of histone methyltransferases and demethylases as promising novel targets for therapy. Lysine-specific demethylase 1(LSD1, also known as KDM1A) is the first discovered histone lysine demethylase, with the ability to demethylase H3K4me1/2 and H3K9me1/2 at target loci in a context-dependent manner. LSD1 regulates the balance between self-renewal and differentiation of stem cells, and is highly expressed in various cancers, playing an important role in differentiation and self-renewal of tumor cells. In this review, we summarize recent studies about the LSD1, its role in normal and tumor cells, and the potential use of small molecule LSD1 inhibitors in therapy.
Collapse
Affiliation(s)
- Amir Hosseini
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Saverio Minucci
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy.,Department of Biosciences, University of Milan, Milan, Italy
| |
Collapse
|
21
|
Dasgupta H, Mukherjee N, Islam S, Bhattacharya R, Alam N, Roy A, Roychoudhury S, Biswas J, Panda CK. Frequent alterations of homologous recombination repair pathway in primary and chemotolerant breast carcinomas: clinical importance. Future Oncol 2017; 13:159-174. [PMID: 27646721 DOI: 10.2217/fon-2016-0289] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aim: To understand the importance of homologous recombination repair pathway in development of breast carcinoma (BC), alterations of some key regulatory genes like BRCA1, BRCA2, FANCC and FANCD2 were analyzed in pretherapeutic/neoadjuvant chemotherapy (NACT)-treated BC samples. Materials & methods: Alterations (deletion/methylation/expression) of the genes were analyzed in 118 pretherapeutic and 41 NACT-treated BC samples. Results: High deletion/methylation (29–68%) and 64–78% overall alterations of the genes were found in the samples. Concordance was evident between alteration and protein expression of the genes. Estrogen/progesterone receptor-negative tumors showed significantly high alterations even in NACT-treated samples having low CD44 and proliferating cell nuclear antigen expression. Pretherapeutic patients with alterations showed poor prognosis. Conclusion: Alterations of homologous recombination repair pathway genes are needed for the development of BC.
Collapse
Affiliation(s)
- Hemantika Dasgupta
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, SP Mukherjee Road, Kolkata, West Bengal 700026, India
| | - Nupur Mukherjee
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, SP Mukherjee Road, Kolkata, West Bengal 700026, India
| | - Saimul Islam
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, SP Mukherjee Road, Kolkata, West Bengal 700026, India
| | - Rittwika Bhattacharya
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, SP Mukherjee Road, Kolkata, West Bengal 700026, India
| | - Neyaz Alam
- Department of Surgical Oncology, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Anup Roy
- Department of Pathology, North Bengal Medical College & Hospital, West Bengal, India
| | - Susanta Roychoudhury
- Saroj Gupta Cancer Center & Research Institute, MG Road, Thakurpukur, Kolkata, West Bengal, India
| | - Jaydip Biswas
- Department of Surgical Oncology, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Chinmay Kumar Panda
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, SP Mukherjee Road, Kolkata, West Bengal 700026, India
| |
Collapse
|
22
|
Histone Demethylase Gene PHF2 Is Mutated in Gastric and Colorectal Cancers. Pathol Oncol Res 2016; 23:471-476. [PMID: 27744626 DOI: 10.1007/s12253-016-0130-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/12/2016] [Indexed: 12/14/2022]
Abstract
Alterations of genes involved in histone modification are common in cancers. A histone demethylase-encoding gene PHF2 is considered a putative tumor suppressor gene (TSG). PHF2 is essential for p53-mediated TSG functions such as chemotherapy-mediated cancer cell killing. However, inactivating mutations of PHF2 that could inactivate its functions are not reported in cancers. In a genome database, we observed that the PHF2 gene possessed mononucleotide repeats, which could be mutated in cancers with high microsatellite instability (MSI-H). For this, we analyzed 124 colorectal cancers (CRCs) and 79 gastric (GCs) cancers for the mutations and their intratumoral heterogeneity (ITH). Twenty-two of 79 CRCs (27.8 %) and 7 of 34 GCs (20.6 %) harboring MSI-H exhibited frameshift mutations. However, we found no such mutations in microsatellite stable/low MSI (MSS/MSI-L) cancers. Also, we studied ITH for the detected frameshift mutations in 16 cases of CRCs and detected ITH in two (12.5 %) cases. Our data reveal that TSG gene PHF2 harbors mutational ITH as well as the frameshift mutations in CRC and GC with MSI-H. Based on this, it is suggested that frameshift mutations of PHF2 may play a role in tumorigenesis through its TSG inactivation in CRC and GC.
Collapse
|
23
|
Paluszczak J, Wiśniewska D, Kostrzewska-Poczekaj M, Kiwerska K, Grénman R, Mielcarek-Kuchta D, Jarmuż-Szymczak M. Prognostic significance of the methylation of Wnt pathway antagonists-CXXC4, DACT2, and the inhibitors of sonic hedgehog signaling-ZIC1, ZIC4, and HHIP in head and neck squamous cell carcinomas. Clin Oral Investig 2016; 21:1777-1788. [PMID: 27553089 PMCID: PMC5442212 DOI: 10.1007/s00784-016-1946-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/16/2016] [Indexed: 12/18/2022]
Abstract
Objectives Aberrations in Wnt and Shh signaling pathways are related to the pathogenesis of head and neck carcinomas, and their activation frequently results from epigenetic alterations. This study aimed to assess the frequency of methylation of negative regulators of Wnt signaling: CXXC4, DACT2, HDPR1, and FBXW11 and Shh signaling: HHIP, PTCH1, SUFU, ZIC1, and ZIC4 and correlate it with clinicopathological features in this group of patients. Materials and methods Methylation-specific PCR was used to detect gene promoter methylation, and real-time PCR was used to assess gene expression level. Results The analysis of the occurrence of gene promoter methylation in head and neck carcinoma cell lines indicated that CXXC4, DACT2, HHIP, ZIC1, and ZIC4 are methylated in these tumors. These genes were further analyzed in tumor sections from oral and laryngeal cancer patients. Gene methylation rate was higher in laryngeal tumors. The methylation index in tumor samples correlated with the overall survival in a subgroup of oral cancer patients who died of the disease. Moreover, ZIC4 methylation correlated with lymph node involvement in oral cancer patients. Conclusions Our findings corroborate that the activation of Wnt signaling in head and neck squamous cell carcinoma (HNSCC) is related to epigenetic silencing of its negative regulators. Moreover, the results indicate that the same mechanism of activation may operate in the case of Shh signaling. Clinical relevance The methylation of ZIC4 may be considered a new prognostic marker in oral cavity and oropharyngeal tumors. Further investigations should determine the diagnostic significance of methylation of ZIC4, HHIP, and DACT2 in head and neck carcinomas.
Collapse
Affiliation(s)
- Jarosław Paluszczak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, ul. Święcickiego 4, 60-781, Poznań, Poland.
| | - Dorota Wiśniewska
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, ul. Święcickiego 4, 60-781, Poznań, Poland
| | | | - Katarzyna Kiwerska
- Department of Cancer Genetics, Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Reidar Grénman
- Department of Otorhinolaryngology, Head and Neck Surgery and Department of Medical Biochemistry, Turku University Central Hospital and Turku University, Turku, Finland
| | - Daniela Mielcarek-Kuchta
- Department of Otolaryngology and Laryngological Oncology, Poznan University of Medical Sciences, Poznań, Poland
| | | |
Collapse
|
24
|
Park SY, Park JW, Chun YS. Jumonji histone demethylases as emerging therapeutic targets. Pharmacol Res 2016; 105:146-51. [PMID: 26816087 DOI: 10.1016/j.phrs.2016.01.026] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 01/21/2016] [Indexed: 11/28/2022]
Abstract
The methylation status of lysine residues in histones determines the transcription of surrounding genes by modulating the chromatin architecture. Jumonji domain-containing histone-lysine demethylases (Jmj-KDMs) remove the methyl moiety from lysine residues in histones by utilizing Fe(2+) and α-ketoglutarate. Since genetic alterations in Jmj-KDMs occur in various human cancers, the roles of Jmj-KDMs in cancer development and progression have been investigated, but still controversial. The KDM7 subfamily, which belongs to the Jmj-KDM family, is an emerging class of transcriptional coactivators because its members erase the repressive marks H3K9me2/1, H3K27me2/1, and H4K20 me1. Recently, KDM7C (alternatively named PHF2) was discovered as a new KDM7 member and identified to play a tumor-suppressive role through the reinforcement of p53-driven growth arrest and apoptosis. In this article, we generally reviewed the roles of Jmj-KDMs in human cancers and more discussed the molecular functions and the clinical significances of KDM7C.
Collapse
Affiliation(s)
- Sung Yeon Park
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Jong-Wan Park
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Yang-Sook Chun
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; Department of Physiology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea.
| |
Collapse
|
25
|
Shridhar K, Walia GK, Aggarwal A, Gulati S, Geetha AV, Prabhakaran D, Dhillon PK, Rajaraman P. DNA methylation markers for oral pre-cancer progression: A critical review. Oral Oncol 2015; 53:1-9. [PMID: 26690652 PMCID: PMC4788701 DOI: 10.1016/j.oraloncology.2015.11.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/10/2015] [Accepted: 11/14/2015] [Indexed: 02/07/2023]
Abstract
Although oral cancers are generally preceded by a well-established pre-cancerous stage, there is a lack of well-defined clinical and morphological criteria to detect and signal progression from pre-cancer to malignant tumours. We conducted a critical review to summarize the evidence regarding aberrant DNA methylation patterns as a potential diagnostic biomarker predicting progression. We identified all relevant human studies published in English prior to 30th April 2015 that examined DNA methylation (%) in oral pre-cancer by searching PubMed, Web-of-Science and Embase databases using combined key-searches. Twenty-one studies (18-cross-sectional; 3-longitudinal) were eligible for inclusion in the review, with sample sizes ranging from 4 to 156 affected cases. Eligible studies examined promoter region hyper-methylation of tumour suppressor genes in pathways including cell-cycle-control (n=15), DNA-repair (n=7), cell-cycle-signalling (n=4) and apoptosis (n=3). Hyper-methylated loci reported in three or more studies included p16, p14, MGMT and DAPK. Two longitudinal studies reported greater p16 hyper-methylation in pre-cancerous lesions transformed to malignancy compared to lesions that regressed (57-63.6% versus 8-32.1%; p<0.01). The one study that explored epigenome-wide methylation patterns reported three novel hyper-methylated loci (TRHDE; ZNF454; KCNAB3). The majority of reviewed studies were small, cross-sectional studies with poorly defined control groups and lacking validation. Whilst limitations in sample size and study design preclude definitive conclusions, current evidence suggests a potential utility of DNA methylation patterns as a diagnostic biomarker for oral pre-cancer progression. Robust studies such as large epigenome-wide methylation explorations of oral pre-cancer with longitudinal tracking are needed to validate the currently reported signals and identify new risk-loci and the biological pathways of disease progression.
Collapse
Affiliation(s)
- Krithiga Shridhar
- Centre for Chronic Conditions and Injuries, Public Health Foundation of India, Gurgaon, Haryana, India.
| | - Gagandeep Kaur Walia
- Centre for Chronic Conditions and Injuries, Public Health Foundation of India, Gurgaon, Haryana, India
| | - Aastha Aggarwal
- Centre for Chronic Conditions and Injuries, Public Health Foundation of India, Gurgaon, Haryana, India
| | - Smriti Gulati
- Centre for Chronic Conditions and Injuries, Public Health Foundation of India, Gurgaon, Haryana, India
| | - A V Geetha
- Centre for Chronic Conditions and Injuries, Public Health Foundation of India, Gurgaon, Haryana, India
| | - Dorairaj Prabhakaran
- Centre for Chronic Conditions and Injuries, Public Health Foundation of India, Gurgaon, Haryana, India; Centre for Chronic Disease Control, Gurgaon, Haryana, India; London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Preet K Dhillon
- Centre for Chronic Conditions and Injuries, Public Health Foundation of India, Gurgaon, Haryana, India
| | - Preetha Rajaraman
- Center for Global Health, National Cancer Institute, NIH, DHHS, Bethesda, Maryland, USA
| |
Collapse
|
26
|
Liu GB, Chen J, Wu ZH, Zhao KN. Association of human papillomavirus with Fanconi anemia promotes carcinogenesis in Fanconi anemia patients. Rev Med Virol 2015; 25:345-53. [PMID: 25776992 DOI: 10.1002/rmv.1834] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 12/22/2022]
Abstract
Fanconi anemia (FA) is a rare recessive disorder associated with chromosomal fragility. FA patients are at very high risk of cancers, especially head and neck squamous cell carcinomas and squamous cell carcinomas caused by infection of human papillomaviruses (HPVs). By integrating into the host genome, HPV oncogenes E6 and E7 drive the genomic instability to promote DNA damage and gene mutations necessary for carcinogenesis in FA patients. Furthermore, E6 and E7 oncoproteins not only inhibit p53 and retinoblastoma but also impair the FANC/BRCA signaling pathway to prevent DNA damage repair and alter multiple signals including cell-cycle checkpoints, telomere function, cell proliferation, and interference of the host immune system leading to cancer development in FA patients. In this review, we summarize recent advances in unraveling the molecular mechanisms of FA susceptibility to HPV-induced cancers, which facilitate rational preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Guang Bin Liu
- School of Health and Wellbeing, Faculty of Health, Engineering and Sciences, The University of Southern Queensland, Toowoomba, Australia
| | - Jiezhong Chen
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia.,Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia
| | - Zhan He Wu
- Western Sydney Genomic Diagnosis, The Children's Hospital at Westmead, Sydney, Australia
| | - Kong-Nan Zhao
- Institute of Molecular Virology and Immunology, Department of Medical Microbiology and Immunology, Wenzhou Medical University, Wenzhou, China.,Centre for Kidney Disease Research-Venomics Research, The University of Queensland School of Medicine, Translational Research Institute, Brisbane, Australia
| |
Collapse
|
27
|
Lee KH, Ju UI, Song JY, Chun YS. The histone demethylase PHF2 promotes fat cell differentiation as an epigenetic activator of both C/EBPα and C/EBPδ. Mol Cells 2014; 37:734-41. [PMID: 25266703 PMCID: PMC4213764 DOI: 10.14348/molcells.2014.0180] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/20/2014] [Accepted: 08/25/2014] [Indexed: 01/12/2023] Open
Abstract
Histone modifications on major transcription factor target genes are one of the major regulatory mechanisms controlling adipogenesis. Plant homeodomain finger 2 (PHF2) is a Jumonji domain-containing protein and is known to demethylate the histone H3K9, a repressive gene marker. To better understand the function of PHF2 in adipocyte differentiation, we constructed stable PHF2 knock-down cells by using the mouse pre-adipocyte cell line 3T3-L1. When induced with adipogenic media, PHF2 knock-down cells showed reduced lipid accumulation compared to control cells. Differential expression using a cDNA microarray revealed significant reduction of metabolic pathway genes in the PHF2 knock-down cell line after differentiation. The reduced expression of major transcription factors and adipokines was confirmed with reverse transcription- quantitative polymerase chain reaction and Western blotting. We further performed co-immunoprecipitation analysis of PHF2 with four major adipogenic transcription factors, and we found that CCATT/enhancer binding protein (C/EBP)α and C/EBPδ physically interact with PHF2. In addition, PHF2 binding to target gene promoters was confirmed with a chromatin immunoprecipitation experiment. Finally, histone H3K9 methylation markers on the PHF2-binding sequences were increased in PHF2 knock-down cells after differentiation. Together, these results demonstrate that PHF2 histone demethylase controls adipogenic gene expression during differentiation.
Collapse
Affiliation(s)
- Kyoung-Hwa Lee
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Uk-Il Ju
- Departments of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Jung-Yup Song
- Departments of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Yang-Sook Chun
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 110-799,
Korea
- Departments of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799,
Korea
- Departments of Physiology, Seoul National University College of Medicine, Seoul 110-799,
Korea
| |
Collapse
|
28
|
Chakraborty C, Dutta S, Mukherjee N, Samadder S, Roychowdhury A, Roy A, Mondal RK, Basu P, Roychoudhury S, Panda CK. Inactivation of PTCH1 is associated with the development of cervical carcinoma: clinical and prognostic implication. Tumour Biol 2014; 36:1143-54. [PMID: 25330948 DOI: 10.1007/s13277-014-2707-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 10/01/2014] [Indexed: 01/20/2023] Open
Abstract
The aim of this study was to analyze the alterations of PTCH1 (deletion/promoter methylation/mutation/expression) during the development of cervical cancer (CACX). For this purpose, deletion/methylation of PTCH1 were analyzed in HPV16 positive exfoliated asymptomatic cervical swabs (n = 74), cervical intraepithelial neoplasia (CIN) (n = 32), CACX (n = 174) samples, and two CACX cell lines. The deletion of PTCH1 increased significantly from CIN (11.5%) to stage I/II (42%) and comparable in stage III/IV (46%). Low frequency (14-16%) of PTCH1 methylation was seen in the asymptomatic exfoliated cervical cells and in the normal epithelium adjacent to the tumor followed by a significant increase in CIN (31%) to stage I/II (57%) and comparable in stage III/IV (58%). The overall alterations (deletion/methylation) of PTCH1 significantly increased from CIN (34%) to stage I/II (70%) and comparable in stage III/IV (69%). Interestingly, in the normal epithelium, methylation of PTCH1 was high in basal/parabasal layers (83%), followed by decrease in the spinous layer (33 %), and showed significant inverse correlation with its expression. Reduced expression of PTCH1 seen in tumors showed a significant association with its alterations (deletion/methylation). The expression pattern of PTCH1 showed an inverse correlation with the nuclear expression of GLI1 in the normal epithelium as well as in the tumors. High nuclear expression of HPV16, E6, and E7 were seen in basal/parabasal layers of the normal epithelium and also in tumors. The PTCH1 alterations (deletion and/or methylation) in tumors and its methylation in adjacent normal epithelium were associated with poor prognosis of patients. Thus, our data suggests that activation of the Hedgehog pathway due to PTCH1 inactivation along with HPV infection is important in CACX development.
Collapse
Affiliation(s)
- Chandraditya Chakraborty
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700026, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lee KH, Park JW, Sung HS, Choi YJ, Kim WH, Lee HS, Chung HJ, Shin HW, Cho CH, Kim TY, Li SH, Youn HD, Kim SJ, Chun YS. PHF2 histone demethylase acts as a tumor suppressor in association with p53 in cancer. Oncogene 2014; 34:2897-909. [PMID: 25043306 DOI: 10.1038/onc.2014.219] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/05/2014] [Accepted: 06/15/2014] [Indexed: 12/14/2022]
Abstract
Plant homeodomain finger 2 (PHF2) has a role in epigenetic regulation of gene expression by demethylating H3K9-Me2. Several genome-wide studies have demonstrated that the chromosomal region including the PHF2 gene is often deleted in some cancers including colorectal cancer, and this finding encouraged us to investigate the tumor suppressive role of PHF2. As p53 is a critical tumor suppressor in colon cancer, we tested the possibility that PHF2 is an epigenetic regulator of p53. PHF2 was associated with p53, and thereby, promoted p53-driven gene expression in cancer cells under genotoxic stress. PHF2 converted the chromatin that is favorable for transcription by demethylating the repressive H3K9-Me2 mark. In an HCT116 xenograft model, PHF2 was found to be required for the anticancer effects of oxaliplatin and doxorubicin. In PHF2-deficient xenografts, p53 expression was profoundly induced by both drugs, but its downstream product p21 was not, suggesting that p53 cannot be activated in the absence of PHF2. To find clinical evidence about the role of PHF2, we analyzed the expressions of PHF2, p53 and p21 in human colon cancer tissues and adjacent normal tissues from patients. PHF2 was downregulated in cancer tissues and PHF2 correlated with p21 in cancers expressing functional p53. Colon and stomach cancer tissue arrays showed a positive correlation between PHF2 and p21 expressions. Informatics analyses using the Oncomine database also supported our notion that PHF2 is downregulated in colon and stomach cancers. On the basis of these findings, we propose that PHF2 acts as a tumor suppressor in association with p53 in cancer development and ensures p53-mediated cell death in response to chemotherapy.
Collapse
Affiliation(s)
- K-H Lee
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - J-W Park
- 1] Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea [2] Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - H-S Sung
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Y-J Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - W H Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - H S Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - H-J Chung
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - H-W Shin
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - C-H Cho
- 1] Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea [2] Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - T-Y Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - S-H Li
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - H-D Youn
- 1] Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea [2] Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - S J Kim
- 1] Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea [2] Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea [3] Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Y-S Chun
- 1] Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea [2] Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea [3] Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
30
|
Sklavos MM, Giri N, Stratton P, Alter BP, Pinto LA. Anti-Müllerian hormone deficiency in females with Fanconi anemia. J Clin Endocrinol Metab 2014; 99:1608-14. [PMID: 24438373 PMCID: PMC4010699 DOI: 10.1210/jc.2013-3559] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 01/09/2014] [Indexed: 02/04/2023]
Abstract
CONTEXT In females with Fanconi anemia (FA), infertility is often accompanied by diminished ovarian reserve and hypergonadotropic amenorrhea before the age of 30 years, suggesting primary ovarian insufficiency (POI). POI is typically diagnosed only after perimenopausal symptoms are observed. OBJECTIVE The objective of the study was to assess whether serum anti-Müllerian hormone (AMH) levels can serve as a cycle-independent marker for the diagnosis of POI in patients with FA. DESIGN AND SETTING This observational study used the National Cancer Institute's inherited bone marrow failure syndrome cohort at the National Institutes of Health Clinical Center. PARTICIPANTS The study included 22 females with FA, 20 unaffected female relatives of patients with FA, and 21 unrelated healthy females under 41 years of age. MAIN OUTCOME MEASURE Serum AMH, a marker of ovarian reserve, was measured in all participants. RESULTS Females with FA had very low AMH levels (median 0.05 ng/mL; range 0-2.32 ng/mL; P < .001) when compared with unaffected relatives (median 2.10 ng/mL; range 0.04-4.73 ng/mL) and unrelated healthy females (median 1.92 ng/mL; range 0.31-6.64 ng/mL). All patients with FA older than 25 years of age were diagnosed with POI and had undetectable AMH levels. CONCLUSIONS AMH deficiency appears to be a shared trait across this heterogeneous FA cohort. Substantially reduced AMH levels in females with FA suggest a primary ovarian defect associated with reduced fertility. Measurement of AMH at the time of FA diagnosis and subsequent monitoring of AMH levels at regular intervals may be useful for the timely management of complications related to POI such as subfertility/infertility, osteoporosis, and menopausal symptoms.
Collapse
Affiliation(s)
- Martha M Sklavos
- Human Papillomavirus Immunology Laboratory (M.M.S., L.A.P.), Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702; Clinical Genetics Branch (N.G., B.P.A.), Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892; and Program in Reproductive and Adult Endocrinology (P.S.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland 20814
| | | | | | | | | |
Collapse
|
31
|
Arantes LMRB, de Carvalho AC, Melendez ME, Carvalho AL, Goloni-Bertollo EM. Methylation as a biomarker for head and neck cancer. Oral Oncol 2014; 50:587-92. [PMID: 24656975 DOI: 10.1016/j.oraloncology.2014.02.015] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/13/2014] [Accepted: 02/20/2014] [Indexed: 02/08/2023]
Abstract
Head and neck cancer is a collective term that describes malignant tumors of the oral cavity, pharynx, and larynx characterized by high incidence and mortality rates. Although most HNSCC originate from the mucosal surface of the upper aerodigestive tract, where they can be easily detected during a routine clinical examination. Often the definitive diagnosis is delayed because of the difficulty in differentiating from other similar lesions. Activation of proto-oncogenes and inactivation of tumor suppressor genes are the major molecular alterations involved in carcinogenesis. In addition, epigenetic changes can alter the expression of critical genes important in the development of a variety of cancers. The detection of aberrant gene promoter methylation as a tool for the detection of tumors or its use as prognostic marker have been described for many different cancers including HNSCC. The search for biomarkers has as its main aim the evaluation and measurement of the status of normal and pathological biological processes as well as pharmacological responses to certain treatments. The tracking of these biomarkers is an important part for the identification of individuals in the early stages of head and neck cancer for its diagnostic and prognostic relevance reflecting in high survival rates, better quality of life and less cost to the healthcare system. Therefore, assuming that cancer results from genetic and epigenetic changes, analyzes based on gene methylation profile in combination with the pathological diagnosis would be useful in predicting the behavior of these head and neck tumors.
Collapse
Affiliation(s)
- L M R B Arantes
- Department of Molecular Biology, São José do Rio Preto Medical School (FAMERP), São José do Rio Preto - SP, Brazil; Center for Research in Molecular Oncology, Barretos Cancer Hospital - Pio XII, Barretos - SP, Brazil
| | - A C de Carvalho
- Center for Research in Molecular Oncology, Barretos Cancer Hospital - Pio XII, Barretos - SP, Brazil
| | - M E Melendez
- Center for Research in Molecular Oncology, Barretos Cancer Hospital - Pio XII, Barretos - SP, Brazil
| | - A L Carvalho
- Center for Research in Molecular Oncology, Barretos Cancer Hospital - Pio XII, Barretos - SP, Brazil
| | - E M Goloni-Bertollo
- Department of Molecular Biology, São José do Rio Preto Medical School (FAMERP), São José do Rio Preto - SP, Brazil.
| |
Collapse
|
32
|
Olthof NC, Speel EJM, Kolligs J, Haesevoets A, Henfling M, Ramaekers FCS, Preuss SF, Drebber U, Wieland U, Silling S, Lam WL, Vucic EA, Kremer B, Klussmann JP, Huebbers CU. Comprehensive analysis of HPV16 integration in OSCC reveals no significant impact of physical status on viral oncogene and virally disrupted human gene expression. PLoS One 2014; 9:e88718. [PMID: 24586376 PMCID: PMC3933331 DOI: 10.1371/journal.pone.0088718] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 01/10/2014] [Indexed: 12/21/2022] Open
Abstract
Infection with high-risk human papillomavirus (HPV) type 16 is an independent risk factor for the development of oropharyngeal squamous cell carcinomas (OSCC). However, it is unclear whether viral integration is an essential hallmark in the carcinogenic process of OSCC and whether HPV integration correlates with the level of viral gene transcription and influences the expression of disrupted host genes. We analyzed 75 patients with OSCC. HPV16-positivity was proven by p16(INK4A) immunohistochemistry, PCR and FISH. Viral integration was examined using DIPS- as well as APOT-PCR. Viral E2, E6 and E7 gene expression levels were quantified by quantitative reverse transcriptase (RT-q)PCR. Expression levels of 7 human genes disrupted by the virus were extracted from mRNA expression profiling data of 32 OSCCs. Viral copy numbers were assessed by qPCR in 73 tumors. We identified 37 HPV16-human fusion products indicating viral integration in 29 (39%) OSCC. In the remaining tumors (61%) only episome-derived PCR products were detected. When comparing OSCC with or without an integration-derived fusion product, we did not find significant differences in the mean RNA expression of viral genes E2, E6 and E7 or the viral copy numbers per cell, nor did the RNA expression of the HPV-disrupted genes differ from either group of OSCC. In conclusion, our data do not support the hypothesis that integration affects the levels of viral and/or HPV-disrupted human gene transcripts. Thus constitutive, rather than a high level, of expression of oncogene transcripts appears to be required in HPV-related OSCC.
Collapse
Affiliation(s)
- Nadine C. Olthof
- Department of Otorhinolaryngology and Head and Neck Surgery, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
- Department of Molecular Cell Biology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Ernst-Jan M. Speel
- Department of Molecular Cell Biology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
- Department of Pathology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Jutta Kolligs
- Jean-Uhrmacher-Institute for Otorhinolaryngological Research, University of Cologne, Cologne, Germany
| | - Annick Haesevoets
- Department of Molecular Cell Biology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Mieke Henfling
- Department of Molecular Cell Biology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Frans C. S. Ramaekers
- Department of Molecular Cell Biology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Simon F. Preuss
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital of Cologne, Cologne, Germany
| | - Uta Drebber
- Institute for Pathology, University Hospital of Cologne, Cologne, Germany
| | - Ulrike Wieland
- Institute of Virology, National Reference Centre for Papilloma- and Polyomaviruses, University Hospital of Cologne, Cologne, Germany
| | - Steffi Silling
- Institute of Virology, National Reference Centre for Papilloma- and Polyomaviruses, University Hospital of Cologne, Cologne, Germany
| | - Wan L. Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, Canada
| | - Emily A. Vucic
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, Canada
| | - Bernd Kremer
- Department of Otorhinolaryngology and Head and Neck Surgery, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Jens-P. Klussmann
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital of Giessen, Giessen, Germany
| | - Christian U. Huebbers
- Jean-Uhrmacher-Institute for Otorhinolaryngological Research, University of Cologne, Cologne, Germany
| |
Collapse
|
33
|
Abstract
It has recently been demonstrated that the genes controlling the epigenetic programmes that are required for maintaining chromatin structure and cell identity include genes that drive human cancer. This observation has led to an increased awareness of chromatin-associated proteins as potentially interesting drug targets. The successful introduction of DNA methylation and histone deacetylase (HDAC) inhibitors for the treatment of specific subtypes of cancer has paved the way for the use of epigenetic therapy. Here, we highlight key biological findings demonstrating the roles of members of the histone lysine demethylase class of enzymes in the development of cancers, discuss the potential and challenges of therapeutically targeting them, and highlight emerging small-molecule inhibitors of these enzymes.
Collapse
|
34
|
Genome stability pathways in head and neck cancers. Int J Genomics 2013; 2013:464720. [PMID: 24364026 PMCID: PMC3834617 DOI: 10.1155/2013/464720] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 09/19/2013] [Accepted: 09/20/2013] [Indexed: 12/12/2022] Open
Abstract
Genomic instability underlies the transformation of host cells toward malignancy, promotes development of invasion and metastasis and shapes the response of established cancer to treatment. In this review, we discuss recent advances in our understanding of genomic stability in squamous cell carcinoma of the head and neck (HNSCC), with an emphasis on DNA repair pathways. HNSCC is characterized by distinct profiles in genome stability between similarly staged cancers that are reflected in risk, treatment response and outcomes. Defective DNA repair generates chromosomal derangement that can cause subsequent alterations in gene expression, and is a hallmark of progression toward carcinoma. Variable functionality of an increasing spectrum of repair gene polymorphisms is associated with increased cancer risk, while aetiological factors such as human papillomavirus, tobacco and alcohol induce significantly different behaviour in induced malignancy, underpinned by differences in genomic stability. Targeted inhibition of signalling receptors has proven to be a clinically-validated therapy, and protein expression of other DNA repair and signalling molecules associated with cancer behaviour could potentially provide a more refined clinical model for prognosis and treatment prediction. Development and expansion of current genomic stability models is furthering our understanding of HNSCC pathophysiology and uncovering new, promising treatment strategies.
Collapse
|
35
|
Musani V, Sabol M, Car D, Ozretić P, Kalafatić D, Maurac I, Orešković S, Levanat S. PTCH1 gene polymorphisms in ovarian tumors: potential protective role of c.3944T allele. Gene 2013; 517:55-9. [PMID: 23313819 DOI: 10.1016/j.gene.2012.12.089] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/31/2012] [Accepted: 12/20/2012] [Indexed: 02/08/2023]
Abstract
In this study we investigated the types and role of different genetic changes of PTCH1 gene in three different types of ovarian tumors: carcinomas, fibromas and dermoids. LOH of the PTCH1 region was detected in 27.3% ovarian carcinoma samples, 18.18% ovarian fibroma samples and 55.56% ovarian dermoid samples. No point mutations were detected in any of the three types of ovarian tumors. SNP c.3944C>T showed significant differences between ovarian carcinoma and control samples with the minor T allele being significantly higher in controls compared to ovarian carcinomas. Interestingly, a new polymorphism c.-1184G>A was found only in tumor samples and further analyses should be performed in order to elucidate its potential role in ovarian tumors.
Collapse
Affiliation(s)
- Vesna Musani
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka cesta 54, 10002 Zagreb, Croatia
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Kooistra SM, Helin K. Molecular mechanisms and potential functions of histone demethylases. Nat Rev Mol Cell Biol 2012; 13:297-311. [PMID: 22473470 DOI: 10.1038/nrm3327] [Citation(s) in RCA: 626] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Histone modifications are thought to regulate chromatin structure, transcription and other nuclear processes. Histone methylation was originally believed to be an irreversible modification that could only be removed by histone eviction or by dilution during DNA replication. However, the isolation of two families of enzymes that can demethylate histones has changed this notion. The biochemical activities of these histone demethylases towards specific Lys residues on histones, and in some cases non-histone substrates, have highlighted their importance in developmental control, cell-fate decisions and disease. Their ability to be regulated through protein-targeting complexes and post-translational modifications is also beginning to shed light on how they provide dynamic control during transcription.
Collapse
Affiliation(s)
- Susanne Marije Kooistra
- Biotech Research and Innovation Centre and Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | | |
Collapse
|