1
|
Zhang Y, Bi L, Li Q, Yao L, Wang X, Liu H, Shi J. Design of an In Vitro Model for Epithelial-to-Mesenchymal Transition in Gastric Cancer. Biochem Genet 2024:10.1007/s10528-024-10668-x. [PMID: 38509423 DOI: 10.1007/s10528-024-10668-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/02/2024] [Indexed: 03/22/2024]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a developmental program that plays a vital role in gastric cancer, including aspects of tumor progression, the metastatic process, and resistance to treatment. Here, we have designed an in vitro model that mimics the features of EMT as observed in gastric cancer. The results showed that both migration and invasion were enhanced in gastric cancer cells with Brachyury overexpression. Additionally, the expression of IL-8 increased, while IL-8RA and IL-8RB levels significantly decreased in the in vitro model. Overall, the in vitro model offers an opportunity to study these phenomena relevant to EMT as they may occur in vivo in gastric cancer, as well as potential drug interactions that could interfere with these processes.
Collapse
Affiliation(s)
- Yuanhui Zhang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Ling Bi
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Quanyao Li
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Liqiu Yao
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xiao Wang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Hui Liu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Jun Shi
- Department of Traditional Chinese Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University of Medicine, Shanghai, 200434, China.
| |
Collapse
|
2
|
Yamaki H, Kono M, Wakisaka R, Komatsuda H, Kumai T, Hayashi R, Sato R, Nagato T, Ohkuri T, Kosaka A, Ohara K, Kishibe K, Takahara M, Hayashi T, Kobayashi H, Katada A. Brachyury-targeted immunotherapy combined with gemcitabine against head and neck cancer. Cancer Immunol Immunother 2023:10.1007/s00262-023-03460-0. [PMID: 37173455 DOI: 10.1007/s00262-023-03460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Brachyury is a transcription factor belonging to the T-box gene family and is involved in the posterior formation of the mesoderm and differentiation of chordates. As the overexpression of Brachyury is a poor prognostic factor in a variety of cancers, the establishment of Brachyury-targeted therapy would be beneficial for the treatment of aggressive tumors. Because transcription factors are difficult to treat with a therapeutic antibody, peptide vaccines are a feasible approach for targeting Brachyury. In this study, we identified Brachyury-derived epitopes that elicit antigen-specific and tumor-reactive CD4+ T cells that directly kill tumors. T cells recognizing Brachyury epitopes were present in patients with head and neck squamous cell carcinoma. Next, we focused on gemcitabine (GEM) as an immunoadjuvant to augment the efficacy of antitumor responses by T cells. Interestingly, GEM upregulated HLA class I and HLA-DR expression in tumor, followed by the upregulation of anti-tumor T cell responses. As tumoral PD-L1 expression was also augmented by GEM, PD-1/PD-L1 blockade and GEM synergistically enhanced the tumor-reactivity of Brachyury-reactive T cells. The synergy between the PD-1/PD-L1 blockade and GEM was also confirmed in a mouse model of head and neck squamous cell carcinoma. These results suggest that the combined treatment of Brachyury peptide with GEM and immune checkpoint blockade could be a promising immunotherapy against head and neck cancer.
Collapse
Affiliation(s)
- Hidekiyo Yamaki
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Michihisa Kono
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Risa Wakisaka
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Hiroki Komatsuda
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Takumi Kumai
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, 078-8510, Japan.
- Department of Innovative Head and Neck Cancer Research and Treatment, Asahikawa Medical University, Asahikawa, Japan.
| | - Ryusuke Hayashi
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Ryosuke Sato
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Toshihiro Nagato
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Takayuki Ohkuri
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Akemi Kosaka
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Kenzo Ohara
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Kan Kishibe
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Miki Takahara
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
- Department of Innovative Head and Neck Cancer Research and Treatment, Asahikawa Medical University, Asahikawa, Japan
| | - Tatsuya Hayashi
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Akihiro Katada
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| |
Collapse
|
3
|
Chen M, Liu J, Liang X, Huang Y, Yang Z, Lu P, Shen J, Shi K, Qu H. Knockdown of Brachyury Suppresses Breast Cancer Cell Proliferation and Migration via Targeting E2F3. JOURNAL OF ONCOLOGY 2022; 2022:7913067. [PMID: 36457717 PMCID: PMC9708336 DOI: 10.1155/2022/7913067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/08/2022] [Accepted: 10/16/2022] [Indexed: 10/26/2023]
Abstract
Breast cancer is one of the most frequently diagnosed cancer in women and is the major cause of most cancer-related deaths. We previously reported that Brachyury, as a sensitive and specific marker, has been verified to involve in the process of carcinogenesis and progression of breast cancer, but the mechanism by which Brachyury promotes breast cancer cells proliferation and migration still remains less clear. In this study, we identified that Brachyury was markedly increased in breast cancer compared with the adjacent tissues. We have also shown that Brachyury knockdown could decrease the proliferation and migration capability in breast cancer cells both in vitro and in vivo. Finally, we found an important transcriptional factor, E2F3, which is a direct downstream target gene of Brachyury by chromatin immunoprecipitation (ChIP) analysis. Knockdown of E2F3 also decreased breast cancer cell proliferation and migration. Taken together, we reported that Brachyury may act as an oncogenic role in the progression of breast cancer by positively-regulating E2F3 expression.
Collapse
Affiliation(s)
- Ming Chen
- Department of Orthopedic Surgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, China
| | - Jinyan Liu
- Department of Breast and Thyroid Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu 215002, China
| | - Xiao Liang
- Department of Anesthesiology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, China
| | - Ying Huang
- Department of Ultrasonography, The Fifth People's Hospital of Suzhou, Suzhou, Jiangsu 215002, China
| | - Zhengjie Yang
- Department of Orthopedic Surgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, China
| | - Pei Lu
- Department of Orthopedic Surgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, China
| | - Jun Shen
- Department of Orthopeadic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu 215002, China
| | - Keqin Shi
- Department of Orthopedic Surgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, China
| | - Huiheng Qu
- Department of General Surgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, China
| |
Collapse
|
4
|
Hu Y, Lu Y, Xing F, Hsu W. FGFR1/MAPK-directed brachyury activation drives PD-L1-mediated immune evasion to promote lung cancer progression. Cancer Lett 2022; 547:215867. [PMID: 35985510 DOI: 10.1016/j.canlet.2022.215867] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/02/2022]
Abstract
Immune checkpoint inhibitors provide promising benefits for patients with cancer. However, efficacy has been encumbered by high resistance rates. It is critical to understand the basic mechanisms of tumor-mediated resistance to this treatment modality. Previous studies have found that the transcription factor brachyury is highly expressed in lung cancer. Here, we show that brachyury activation induces the upregulation of PD-L1 leading to inactivation of T cell proliferation in vitro and inhibited infiltration of CD8+ and CD3+ T cells into tumor in an immunocompetent mouse model. We further demonstrate that FGFR1/MAPK activation regulates brachyury and PD-L1 expressions and promotes immunosuppression. Blocking FGFR1/MAPK suppresses brachyury and PD-L1 expressions, revives immune activity, and reverses the resistance to anti-PD-1 treatment to produce a durable therapeutic response. We also find that lung cancer patients with high activation of the FGFR1-MAPK-brachyury-PD-L1 signature and low expression of CD8A, CD3D, or PDCD1 have worse survival outcomes. These findings elucidate a novel mechanism of immune escape from immune checkpoint therapy and provide an opportunity to enhance its therapeutic efficacy in the treatment of a subset of FGFR1/MAPK/brachyury/PD-L1-driven lung cancer.
Collapse
Affiliation(s)
- Yunping Hu
- Department of Neurological Surgery, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
| | - Yong Lu
- The Methodist Hospital Research Institute, 6670 Bertner Avenue, Houston, Houston, TX, 77030, USA
| | - Fei Xing
- Department of Cancer Biology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Wesley Hsu
- Department of Neurological Surgery, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
5
|
Niu G, Hao J, Sheng S, Wen F. Role of T-box genes in cancer, epithelial-mesenchymal transition, and cancer stem cells. J Cell Biochem 2021; 123:215-230. [PMID: 34897787 DOI: 10.1002/jcb.30188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022]
Abstract
Sharing a common DNA binding motif called T-box, transcription factor T-box gene family controls embryonic development and is also involved in cancer progression and metastasis. Cancer metastasis shows therapy resistance and involves complex processes. Among them, epithelial-mesenchymal transition (EMT) triggers cancer cell invasiveness and the acquisition of stemness of cancer cells, called cancer stem cells (CSCs). CSCs are a small fraction of tumor bulk and are capable of self-renewal and tumorsphere formation. Recent progress has highlighted the critical roles of T-box genes in cancer progression, EMT, and CSC function, and such regulatory functions of T-box genes have emerged as potential therapeutic candidates for cancer. Herein we summarize the current understanding of the regulatory mechanisms of T-box genes in cancer, EMT, and CSCs, and discuss the implications of targeting T-box genes as anticancer therapeutics.
Collapse
Affiliation(s)
- Gengle Niu
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Jin Hao
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Surui Sheng
- Department of Oral and Maxillofacial-Head Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangyuan Wen
- Department of Outpatient, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
6
|
Abrahao-Machado LF, Pinto F, Antunes B, Volc S, Boldrini E, Camargo OPD, Reis RM. Clinical impact of brachyury expression in Ewing sarcoma patients. Adv Med Sci 2021; 66:321-325. [PMID: 34273746 DOI: 10.1016/j.advms.2021.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 05/21/2021] [Accepted: 06/25/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE The T-box transcription factor brachyury has been demonstrated as a prognostic factor in a variety of cancer types and considered a novel oncotarget in solid tumors. Brachyury acts as a regulator of the epithelial-mesenchymal transition (EMT) process, leading to more aggressive behavior and poorer prognosis. However, recent literature evidence suggests a tumor suppressor role in other neoplasms. In the present study, we aimed to study brachyury expression and its prognostic impact in Ewing sarcoma, an aggressive neoplasm of young individuals. METHODS We analyzed the expression of brachyury by immunohistochemistry in a series of 96 Ewing sarcomas in a tissue microarray and investigated the association of the protein expression with the clinical parameters and overall survival. RESULTS More than half of the cases (51%, n = 49) depicted positive nuclear brachyury expression, while a lack of expression was observed in 49% (n = 47) of cases. Nuclear brachyury staining was significantly associated with non-white ethnicity (p = 0.04) and axial localization (p = 0.025). Importantly, lack of brachyury expression was significantly associated with lower overall survival in multivariate analyses (hazard ratio - HR: 2.227, p = 0.008). CONCLUSIONS Our findings indicate, that brachyury is an independent prognostic biomarker in Ewing sarcoma, which might suggest a tumor suppressor role and which yet to be fully elucidated.
Collapse
|
7
|
Bilusic M, McMahon S, Madan RA, Karzai F, Tsai YT, Donahue RN, Palena C, Jochems C, Marté JL, Floudas C, Strauss J, Redman J, Abdul Sater H, Rabizadeh S, Soon-Shiong P, Schlom J, Gulley JL. Phase I study of a multitargeted recombinant Ad5 PSA/MUC-1/brachyury-based immunotherapy vaccine in patients with metastatic castration-resistant prostate cancer (mCRPC). J Immunother Cancer 2021; 9:jitc-2021-002374. [PMID: 33762322 PMCID: PMC7993215 DOI: 10.1136/jitc-2021-002374] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2021] [Indexed: 02/07/2023] Open
Abstract
Background Antitumor vaccines targeting tumor-associated antigens (TAAs) can generate antitumor immune response. A novel vaccine platform using adenovirus 5 (Ad5) vectors [E1–, E2b–] targeting three TAAs—prostate-specific antigen (PSA), brachyury, and MUC-1—has been developed. Both brachyury and the C-terminus of MUC-1 are overexpressed in metastatic castration-resistant prostate cancer (mCRPC) and have been shown to play an important role in resistance to chemotherapy, epithelial–mesenchymal transition, and metastasis. The transgenes for PSA, brachyury, and MUC-1 all contain epitope modifications for the expression of CD8+ T-cell enhancer agonist epitopes. We report here the first-in-human trial of this vaccine platform. Methods Patients with mCRPC were given concurrently three vaccines targeting PSA, brachyury, and MUC-1 at 5×1011 viral particles (VP) each, subcutaneously every 3 weeks for a maximum of three doses (dose de-escalation cohort), followed by a booster vaccine every 8 weeks for 1 year (dose-expansion cohort only). The primary objective was to determine the safety and the recommended phase II dose. Immune assays and clinical responses were evaluated. Results Eighteen patients with mCRPC were enrolled between July 2018 and September 2019 and received at least one vaccination. Median PSA was 25.58 ng/mL (range, 0.65–1006 ng/mL). The vaccine was tolerable and safe, and no grade >3 treatment-related adverse events or dose-limiting toxicities (DLTs) were observed. One patient had a partial response, while five patients had confirmed PSA decline and five had stable disease for >6 months. Median progression-free survival was 22 weeks (95% CI: 19.1 to 34). Seventeen (100%) of 17 patients mounted T-cell responses to at least one TAA, whereras 8 (47%) of 17 patients mounted immune responses to all three TAAs. Multifunctional T-cell responses to PSA, MUC-1, and brachyury were also detected after vaccination in the majority of the patients. Conclusions Ad5 PSA/MUC-1/brachyury vaccine is well tolerated. The primary end points were met and there were no DLTs. The recommended phase II dose is 5×1011 VP. The vaccine demonstrated clinical activity, including one partial response and confirmed PSA responses in five patients. Three patients with prolonged PSA responses received palliative radiation therapy. Further research is needed to evaluate the clinical benefit and immunogenicity of this vaccine in combination with other immuno-oncology agents and/or palliative radiation therapy. Trial registration number NCT03481816.
Collapse
Affiliation(s)
- Marijo Bilusic
- Genitourinary Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Sheri McMahon
- Genitourinary Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Ravi A Madan
- Genitourinary Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Fatima Karzai
- Genitourinary Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Yo-Ting Tsai
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, Maryland, USA
| | - Renee N Donahue
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, Maryland, USA
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, Maryland, USA
| | - Caroline Jochems
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, Maryland, USA
| | - Jennifer L Marté
- Genitourinary Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Charalampos Floudas
- Genitourinary Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Julius Strauss
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, Maryland, USA
| | - Jason Redman
- Genitourinary Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Houssein Abdul Sater
- Genitourinary Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | | | | | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, Maryland, USA
| | - James L Gulley
- Genitourinary Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Pinto F, Costa ÂM, Andrade RP, Reis RM. Brachyury Is Associated with Glioma Differentiation and Response to Temozolomide. Neurotherapeutics 2020; 17:2015-2027. [PMID: 32785847 PMCID: PMC7851232 DOI: 10.1007/s13311-020-00911-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glioblastomas (GBMs) are the most aggressive tumor type of the central nervous system, mainly due to their high invasiveness and innate resistance to radiotherapy and chemotherapy, with temozolomide (TMZ) being the current standard therapy. Recently, brachyury was described as a novel tumor suppressor gene in gliomas, and its loss was associated with increased gliomagenesis. Here, we aimed to explore the role of brachyury as a suppressor of glioma invasion, stem cell features, and resistance to TMZ. Using gene-edited glioma cells to overexpress brachyury, we found that brachyury-positive cells exhibit reduced invasive and migratory capabilities and stem cell features. Importantly, these brachyury-expressing cells have increased expression of differentiation markers, which corroborates the results from human glioma samples and in vivo tumors. Glioma cells treated with retinoic acid increased the differentiation status with concomitant increased expression of brachyury. We then selected TMZ-resistant (SNB-19) and TMZ-responsive (A172 and U373) cell lines to evaluate the role of brachyury in the response to TMZ treatment. We observed that both exogenous and endogenous brachyury activation, through overexpression and retinoic acid treatment, are associated with TMZ sensitization in glioma-resistant cell lines. In this study, we demonstrate that brachyury expression can impair aggressive glioma features associated with treatment resistance. Finally, we provide the first evidence that brachyury can be a potential therapeutic target in GBM patients who do not respond to conventional chemotherapeutic drugs.
Collapse
Affiliation(s)
- Filipe Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, 4710-057, Braga, Portugal
- I3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto - IPATIMUP, 4200-135, Porto, Portugal
| | - Ângela M Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, 4710-057, Braga, Portugal
- I3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135, Porto, Portugal
- INEB-Institute of Biomedical Engineering, University of Porto, 4200-135, Porto, Portugal
| | - Raquel P Andrade
- Centre for Biomedical Research - CBMR, University of Algarve, 8005-139, Faro, Portugal
- Algarve Biomedical Center, Campus Gambelas, Edificio 2. Ala Norte, 8005-139, Faro, Portugal
- Department of Medicine and Biomedical Sciences, University of Algarve, 8005-139, Faro, Portugal
| | - Rui Manuel Reis
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, 4710-057, Braga, Portugal.
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, 14784-400, Brazil.
| |
Collapse
|
9
|
Xu J, Chen M, Wu Y, Zhang H, Zhou J, Wang D, Zou T, Shen J. The Role of Transcriptional Factor Brachyury on Cell Cycle Regulation in Non-small Cell Lung Cancer. Front Oncol 2020; 10:1078. [PMID: 32719747 PMCID: PMC7348045 DOI: 10.3389/fonc.2020.01078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/29/2020] [Indexed: 12/30/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related death, and non-small cell lung cancer (NSCLC) accounts for almost 80-85% of all lung cancer cases. The transcriptional factor brachyury has been verified to promote tumor cells migrate, invade, and metastasis in various types of tumors, whereas divergent roles of brachyury on cell proliferation have been reported in several types of tumor cells. In this study, we attempted to explore the effect of brachyury on the cell cycle progression and proliferation capability of NSCLC cells. Firstly, we performed RNA-sequence and ChIP-sequence to explore underlying downstream pathways regulated by brachyury. Cell proliferation and colony formation assays were utilized to detect the effect of brachyury on the proliferation ability of two types of lung NSCLC cells: H460 and Calu-1, which represent different brachyury expression levels. Following cell cycle and cell apoptosis assays were used to investigate the mechanism by which brachyury promotes NSCLC grow and progression. RNA-sequence and ChIP-sequence (ChIP-seq) showed that one of the vital downstream pathways regulated by brachyury involves in cell cycle progression. Through cell proliferation assays and colony formation assays, we found that inhibition of brachyury could decrease the capability of proliferation in H460 cells. We also found that brachyury overexpression could prevent the transition from G0/G1 to S phase in Calu-1 cells, and brachyury knockdown could decrease the transition of G2/M phase in H460 cells. The cell apoptosis assays showed that inhibition of brachyury could promote apoptosis in H460 cells. In this study we demonstrate that brachyury and downstream target genes together involve in tumor cell cycle regulation by inducing accelerated transition through G2/M, promote tumor cell proliferation and inhibit apoptosis in lung NSCLC H460 cells. Targeting brachyury expression could be developed into a promising avenue for the prevention of lung cancer progression.
Collapse
Affiliation(s)
- Jingyi Xu
- Department of Orthopeadic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Ming Chen
- Department of Orthopeadic Surgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Yinghui Wu
- Department of Orthopeadic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Hong Zhang
- Department of Orthopeadic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Jundong Zhou
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Donglai Wang
- Department of Orthopeadic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Tianming Zou
- Department of Orthopeadic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Jun Shen
- Department of Orthopeadic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| |
Collapse
|
10
|
Chen M, Wu Y, Zhang H, Li S, Zhou J, Shen J. The Roles of Embryonic Transcription Factor BRACHYURY in Tumorigenesis and Progression. Front Oncol 2020; 10:961. [PMID: 32695672 PMCID: PMC7338565 DOI: 10.3389/fonc.2020.00961] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/15/2020] [Indexed: 12/16/2022] Open
Abstract
Transcription factor brachyury, with a DNA-binding T-domain, regulates posterior mesoderm formation and notochord development through binding with highly conserved palindromic consensus sequence in a variety of organisms. The absence of brachyury expression in majority of adult normal tissues and exclusive tumor-specific expression provides the potential to be developed into a novel and promising diagnostic and therapeutic target in cancer. As a sensitive and specific marker in the diagnosis of chordoma, brachyury protein has been verified to involve in the process of carcinogenesis and progression of chordoma and several epithelial carcinomas in various studies, but the mechanism by which brachyury promotes tumor cells migrate, invade and metastasis still remains less clear. To this end, we attempt to summarize the literature on the upstream regulatory pathway of brachyury transcription and downstream controlling network by brachyury activation, all of which involve in both the embryonic development and tumor progression. We present the respective correlation of brachyury expression with tumor progression, distant metastasis, survival rate and prognosis in several types of tumor samples (including chordoma, lung cancer, breast carcinoma, and prostate cancer), and various brachyury gain-of-function and loss-of-function experiments are summarized to explore its specific role in respective tumor cell line in vitro. In addition, we also discuss another two programs relating to brachyury function: epithelial-to-mesenchymal transition (EMT) and cell cycle control, both of which implicate in the regulation of brachyury on biological behavior of tumor cells. This review will provide an overview of the function of master transcriptional factor brachyury, compare the similarities and differences of its role between embryonic development and carcinogenesis, and list the evidence on which brachyury-target therapies have the potential to help control advanced cancer populations.
Collapse
Affiliation(s)
- Ming Chen
- Department of Orthopeadic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- Department of Orthopeadic Surgery, Wuxi No. 2 People's Hospital, Nanjing Medical University, Wuxi, China
| | - Yinghui Wu
- Department of Orthopeadic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- Suzhou Municipal Hospital, Suzhou, China
| | - Hong Zhang
- Department of Orthopeadic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- Suzhou Municipal Hospital, Suzhou, China
| | - Suoyuan Li
- Department of Orthopeadic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- Suzhou Municipal Hospital, Suzhou, China
| | - Jundong Zhou
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jun Shen
- Department of Orthopeadic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- Suzhou Municipal Hospital, Suzhou, China
| |
Collapse
|
11
|
Pinto F, Costa ÂM, Santos GC, Matsushita MM, Costa S, Silva VA, Miranda-Gonçalves V, Lopes CM, Clara CA, Becker AP, Neder L, Hajj GN, da Cunha IW, Jones C, Andrade RP, Reis RM. The T-box transcription factor brachyury behaves as a tumor suppressor in gliomas. J Pathol 2020; 251:87-99. [PMID: 32154590 DOI: 10.1002/path.5419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 02/11/2020] [Accepted: 03/02/2020] [Indexed: 12/19/2022]
Abstract
The oncogene brachyury (TBXT) is a T-box transcription factor that is overexpressed in multiple solid tumors and is associated with tumor aggressiveness and poor patient prognosis. Gliomas comprise the most common and aggressive group of brain tumors, and at the present time the functional and clinical impact of brachyury expression has not been investigated previously in these neoplasms. Brachyury expression (mRNA and protein) was assessed in normal brain (n = 67), glioma tissues (n = 716) and cell lines (n = 42), and further in silico studies were undertaken using genomic databases totaling 3115 samples. Our glioma samples were analyzed for copy number (n = 372), promoter methylation status (n = 170), and mutation status (n = 1569 tissues and n = 52 cell lines) of the brachyury gene. The prognostic impact of brachyury expression was studied in 1524 glioma patient tumors. The functional impact of brachyury on glioma proliferation, viability, and cell death was evaluated both in vitro and in vivo. Brachyury was expressed in the normal brain, and significantly downregulated in glioma tissues. Loss of brachyury was associated with tumor aggressiveness and poor survival in glioma patients. Downregulation of brachyury was not associated with gene deletion, promoter methylation, or inactivating point mutations. Brachyury re-expression in glioma cells was found to decrease glioma tumorigenesis by induction of autophagy. These data strongly suggest that brachyury behaves as a tumor suppressor gene in gliomas by modulating autophagy. It is important to note that brachyury constitutes an independent positive biomarker of patient prognosis. Our findings indicate that the role of brachyury in tumorigenesis may be tissue-dependent and demands additional investigation to guide rational interventions. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Filipe Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal.,I3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto - IPATIMUP, Porto, Portugal
| | - Ângela M Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal.,I3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| | - Gisele C Santos
- Department of Pathology, Barretos Cancer Hospital, São Paulo, Brazil
| | | | - Sandra Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Viviane Ao Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
| | - Vera Miranda-Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Celeste M Lopes
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Carlos A Clara
- Neurosurgery Department, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Aline P Becker
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
| | - Luciano Neder
- Department of Pathology and Forensic Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), São Paulo, Brazil
| | - Glaucia Nm Hajj
- International Research Center, AC Camargo Cancer Center, São Paulo, Brazil
| | - Isabela W da Cunha
- Department of Molecular Diagnosis, Anatomic Pathology Department, AC Camargo Cancer Center, São Paulo, Brazil
| | - Chris Jones
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research (ICR), Sutton, UK
| | - Raquel P Andrade
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal.,Regenerative Medicine Program; Department of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal.,CBMR, Centre for Biomedical Research, Universidade do Algarve, Faro, Portugal
| | - Rui M Reis
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal.,Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
| |
Collapse
|
12
|
Collins JM, Donahue RN, Tsai YT, Manu M, Palena C, Gatti-Mays ME, Marté JL, Madan RA, Karzai F, Heery CR, Strauss J, Abdul-Sater H, Cordes L, Schlom J, Gulley JL, Bilusic M. Phase I Trial of a Modified Vaccinia Ankara Priming Vaccine Followed by a Fowlpox Virus Boosting Vaccine Modified to Express Brachyury and Costimulatory Molecules in Advanced Solid Tumors. Oncologist 2019; 25:560-e1006. [PMID: 31876334 DOI: 10.1634/theoncologist.2019-0932] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/02/2019] [Indexed: 01/27/2023] Open
Abstract
LESSONS LEARNED Modified vaccinia Ankara-Bavarian Nordic (MVA-BN)-Brachyury followed by fowlpox virus-BN-Brachyury was well tolerated upon administration to patients with advanced cancer. Sixty-three percent of patients developed CD4+ and/or CD8+ T-cell responses to brachyury after vaccination. BN-Brachyury vaccine also induced T-cell responses against CEA and MUC1, which are cascade antigens, that is, antigens not encoded in the vaccines. BACKGROUND Brachyury, a transcription factor, plays an integral role in the epithelial-mesenchymal transition, metastasis, and tumor resistance to chemotherapy. It is expressed in many tumor types, and rarely in normal tissues, making it an ideal immunologic target. Bavarian Nordic (BN)-Brachyury consists of vaccination with modified vaccinia Ankara (MVA) priming followed by fowlpox virus (FPV) boosting, each encoding transgenes for brachyury and costimulatory molecules. METHODS Patients with metastatic solid tumors were treated with two monthly doses of MVA-brachyury s.c., 8 × 108 infectious units (IU), followed by FPV-brachyury s.c., 1 × 109 IU, for six monthly doses and then every 3 months for up to 2 years. The primary objective was to determine safety and tolerability. RESULTS Eleven patients were enrolled from March 2018 to July 2018 (one patient was nonevaluable). No dose-limiting toxicities were observed. The most common treatment-related adverse event was grade 1/2 injection-site reaction observed in all patients. Best overall response was stable disease in six patients, and the 6-month progression-free survival rate was 50%. T cells against brachyury and cascade antigens CEA and MUC1 were detected in the majority of patients. CONCLUSION BN-Brachyury vaccine is well tolerated and induces immune responses to brachyury and cascade antigens and demonstrates some evidence of clinical benefit.
Collapse
Affiliation(s)
- Julie M Collins
- Medical Oncology Service, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Renee N Donahue
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yo-Ting Tsai
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Michell Manu
- Genitourinary Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Margaret E Gatti-Mays
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jennifer L Marté
- Genitourinary Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ravi A Madan
- Genitourinary Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Fatima Karzai
- Genitourinary Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Julius Strauss
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Houssein Abdul-Sater
- Genitourinary Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Lisa Cordes
- Genitourinary Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - James L Gulley
- Genitourinary Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Marijo Bilusic
- Genitourinary Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
13
|
Shah SR, David JM, Tippens ND, Mohyeldin A, Martinez-Gutierrez JC, Ganaha S, Schiapparelli P, Hamilton DH, Palena C, Levchenko A, Quiñones-Hinojosa A. Brachyury-YAP Regulatory Axis Drives Stemness and Growth in Cancer. Cell Rep 2018; 21:495-507. [PMID: 29020634 DOI: 10.1016/j.celrep.2017.09.057] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 07/19/2017] [Accepted: 09/15/2017] [Indexed: 12/16/2022] Open
Abstract
Molecular factors that define stem cell identity have recently emerged as oncogenic drivers. For instance, brachyury, a key developmental transcriptional factor, is also implicated in carcinogenesis, most notably of chordoma, through mechanisms that remain elusive. Here, we show that brachyury is a crucial regulator of stemness in chordoma and in more common aggressive cancers. Furthermore, this effect of brachyury is mediated by control of synthesis and stability of Yes-associated protein (YAP), a key regulator of tissue growth and homeostasis, providing an unexpected mechanism of control of YAP expression. We further demonstrate that the brachyury-YAP regulatory pathway is associated with tumor aggressiveness. These results elucidate a mechanism of controlling both tumor stemness and aggressiveness through regulatory coupling of two developmental factors.
Collapse
Affiliation(s)
- Sagar R Shah
- Department of Neurologic Surgery, The Mayo Clinic, Jacksonville, FL, USA; Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Justin M David
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Nathaniel D Tippens
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, USA
| | - Ahmed Mohyeldin
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | - Sara Ganaha
- Department of Neurologic Surgery, The Mayo Clinic, Jacksonville, FL, USA
| | | | - Duane H Hamilton
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Andre Levchenko
- Department of Biomedical Engineering and Systems Biology Institute, Yale University, New Haven, CT, USA.
| | | |
Collapse
|
14
|
Pinto F, Cárcano FM, da Silva ECA, Vidal DO, Scapulatempo-Neto C, Lopes LF, Reis RM. Brachyury oncogene is a prognostic factor in high-risk testicular germ cell tumors. Andrology 2018; 6:597-604. [PMID: 29749711 DOI: 10.1111/andr.12495] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/06/2018] [Accepted: 03/27/2018] [Indexed: 02/06/2023]
Abstract
The T-box transcription factor Brachyury has been considered a cancer-specific marker and a novel oncotarget in solid tumors. Brachyury overexpression has been described in various cancers, being associated with epithelial-mesenchymal transition, metastasis, and poor prognosis. However, its clinical association with testicular germ cell tumor is unknown. We analyzed the expression of Brachyury by immunohistochemistry in a series of well-characterized testicular germ cell tumor samples and at transcript level by in silico analysis. Additionally, we aimed to investigate the clinical significance of Brachyury in testicular germ cell tumor. Brachyury cytoplasm immunostaining was present in 89.6% (86/96) of cases with nuclear staining observed in 24% (23/96) of testicular germ cell tumor. Bioinformatics microarray expression analysis of two independent cohorts of testicular germ cell tumors showed similar results with increased levels of Brachyury in testicular germ cell tumors and metastasis compared with normal testis. Clinically, Brachyury nuclear staining was statistically associated with lower event-free survival (p = 0.04) and overall survival (p = 0.01) in intermediate/high-risk testicular germ cell tumors. Univariate analysis showed that Brachyury nuclear subcellular localization was a predictor of poor prognosis (p = 0.02), while a tendency was observed by multivariate analysis (HR: 3.56, p = 0.06). In conclusion, these results indicate that Brachyury plays an oncogenic role in testicular germ cell tumors and its subcellular localization in the nucleus may constitute a novel biomarker of poor prognosis and a putative oncotarget for intermediate/high-risk testicular germ cell tumor patients.
Collapse
Affiliation(s)
- F Pinto
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,I3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto - IPATIMUP, Porto, Portugal
| | - F M Cárcano
- Department of Clinical Oncology, Barretos Cancer Hospital, Barretos, Sao Paulo, Brazil.,Barretos School of Health Sciences, Dr. Paulo Prata-FACISB, Barretos, Sao Paulo, Brazil.,Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Sao Paulo, Brazil
| | - E C A da Silva
- Department of Pathology, Barretos Cancer Hospital, Barretos, Sao Paulo, Brazil
| | - D O Vidal
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Sao Paulo, Brazil.,Children's Cancer Hospital, Barretos Cancer Hospital, Barretos, Sao Paulo, Brazil
| | - C Scapulatempo-Neto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Sao Paulo, Brazil
| | - L F Lopes
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Sao Paulo, Brazil.,Children's Cancer Hospital, Barretos Cancer Hospital, Barretos, Sao Paulo, Brazil
| | - R M Reis
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Sao Paulo, Brazil
| |
Collapse
|
15
|
Hamilton DH, McCampbell KK, Palena C. Loss of the Cyclin-Dependent Kinase Inhibitor 1 in the Context of Brachyury-Mediated Phenotypic Plasticity Drives Tumor Resistance to Immune Attack. Front Oncol 2018; 8:143. [PMID: 29774202 PMCID: PMC5943507 DOI: 10.3389/fonc.2018.00143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/19/2018] [Indexed: 12/12/2022] Open
Abstract
The acquisition of mesenchymal features by carcinoma cells is now recognized as a driver of metastasis and tumor resistance to a range of anticancer therapeutics, including chemotherapy, radiation, and certain small-molecule targeted therapies. With the recent successful implementation of immunotherapies for the treatment of various types of cancer, there is growing interest in understanding whether an immunological approach could be effective at eradicating carcinoma cells bearing mesenchymal features. Recent studies, however, demonstrated that carcinoma cells that have acquired mesenchymal features may also exhibit decreased susceptibility to lysis mediated by immune effector cells, including antigen-specific CD8+ T cells, innate natural killer (NK), and lymphokine-activated killer (LAK) cells. Here, we investigated the mechanism involved in the immune resistance of carcinoma cells that express very high levels of the transcription factor brachyury, a molecule previously shown to drive the acquisition of mesenchymal features by carcinoma cells. Our results demonstrate that very high levels of brachyury expression drive the loss of the cyclin-dependent kinase inhibitor 1 (p21CIP1, p21), an event that results in decreased tumor susceptibility to immune-mediated lysis. We show here that reconstitution of p21 expression markedly increases the lysis of brachyury-high tumor cells mediated by antigen-specific CD8+ T cells, NK, and LAK cells, TNF-related apoptosis-inducing ligand, and chemotherapy. Several reports have now demonstrated a role for p21 loss in cancer as an inducer of the epithelial–mesenchymal transition. The results from the present study situate p21 as a central player in many of the aspects of the phenomenon of brachyury-mediated mesenchymalization of carcinomas, including resistance to chemotherapy and immune-mediated cytotoxicity. We also demonstrate here that the defects in tumor cell death described in association with very high levels of brachyury could be alleviated via the use of a WEE1 inhibitor. Several vaccine platforms targeting brachyury have been developed and are undergoing clinical evaluation. These studies provide further rationale for the use of WEE1 inhibition in combination with brachyury-based immunotherapeutic approaches.
Collapse
Affiliation(s)
- Duane H Hamilton
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Kristen K McCampbell
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
16
|
Hu Y, Feng X, Mintz A, Petty WJ, Hsu W. Regulation of brachyury by fibroblast growth factor receptor 1 in lung cancer. Oncotarget 2018; 7:87124-87135. [PMID: 27893433 PMCID: PMC5349976 DOI: 10.18632/oncotarget.13547] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/06/2016] [Indexed: 12/11/2022] Open
Abstract
Recent evidence suggests that T-box transcription factor brachyury plays an important role in lung cancer development and progression. However, the mechanisms underlying brachyury-driven cellular processes remain unclear. Here we found that fibroblast growth factor receptor 1/mitogen-activated protein kinase (FGFR1/MAPK) signaling regulated brachyury in lung cancer. Analysis of FGFR1-4 and brachyury expression in human lung tumor tissue and cell lines found that only expression of FGFR1 was positively correlated with brachyury expression. Specific knockdown of FGFR1 by siRNA suppressed brachyury expression and epithelial-mesenchymal transition (EMT) (upregulation of E-cadherin and β-catenin and downregulation of Snail and fibronectin), whereas forced overexpression of FGFR1 induced brachyury expression and promoted EMT in lung cancer cells. Activation of fibroblast growth factor (FGF)/FGFR1 signaling promoted phosphorylated MAPK extracellular signal-regulated kinase (ERK) 1/2 translocation from cytoplasm to nucleus, upregulated brachyury expression, and increased cell growth and invasion. In addition, human lung cancer cells with higher brachyury expression were more sensitive to inhibitors targeting FGFR1/MAPK pathway. These findings suggest that FGFR1/MAPK may be important for brachyury activation in lung cancer, and this pathway may be an appealing therapeutic target for a subset of brachyury-driven lung cancer.
Collapse
Affiliation(s)
- Yunping Hu
- Department of Neurosurgery, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Xin Feng
- Department of Otolaryngology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Akiva Mintz
- Department of Radiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - W Jeffrey Petty
- Department of Hematology and Oncology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Wesley Hsu
- Department of Neurosurgery, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| |
Collapse
|
17
|
Heery CR, Palena C, McMahon S, Donahue RN, Lepone LM, Grenga I, Dirmeier U, Cordes L, Marté J, Dahut W, Singh H, Madan RA, Fernando RI, Hamilton DH, Schlom J, Gulley JL. Phase I Study of a Poxviral TRICOM-Based Vaccine Directed Against the Transcription Factor Brachyury. Clin Cancer Res 2017; 23:6833-6845. [PMID: 28855356 DOI: 10.1158/1078-0432.ccr-17-1087] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 06/11/2017] [Accepted: 08/24/2017] [Indexed: 12/18/2022]
Abstract
Purpose: The transcription factor brachyury has been shown in preclinical studies to be a driver of the epithelial-to-mesenchymal transition (EMT) and resistance to therapy of human tumor cells. This study describes the characterization of a Modified Vaccinia Ankara (MVA) vector-based vaccine expressing the transgenes for brachyury and three human costimulatory molecules (B7.1, ICAM-1, and LFA-3, designated TRICOM) and a phase I study with this vaccine.Experimental Design: Human dendritic cells (DC) were infected with MVA-brachyury-TRICOM to define their ability to activate brachyury-specific T cells. A dose-escalation phase I study (NCT02179515) was conducted in advanced cancer patients (n = 38) to define safety and to identify brachyury-specific T-cell responses.Results: MVA-brachyury-TRICOM-infected human DCs activated CD8+ and CD4+ T cells specific against the self-antigen brachyury in vitro No dose-limiting toxicities were observed due to vaccine in cancer patients at any of the three dose levels. One transient grade 3 adverse event (AE) possibly related to vaccine (diarrhea) resolved without intervention and did not recur with subsequent vaccine. All other AEs related to vaccine were transient and ≤grade 2. Brachyury-specific T-cell responses were observed at all dose levels and in most patients.Conclusions: The MVA-brachyury-TRICOM vaccine directed against a transcription factor known to mediate EMT can be administered safely in patients with advanced cancer and can activate brachyury-specific T cells in vitro and in patients. Further studies of this vaccine in combination therapies are warranted and planned. Clin Cancer Res; 23(22); 6833-45. ©2017 AACR.
Collapse
Affiliation(s)
- Christopher R Heery
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sheri McMahon
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Renee N Donahue
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Lauren M Lepone
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Italia Grenga
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Lisa Cordes
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jenn Marté
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - William Dahut
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Harpreet Singh
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ravi A Madan
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Romaine I Fernando
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Duane H Hamilton
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - James L Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
18
|
Zhao Z, Wang S, Lin Y, Miao Y, Zeng Y, Nie Y, Guo P, Jiang G, Wu J. Epithelial-mesenchymal transition in cancer: Role of the IL-8/IL-8R axis. Oncol Lett 2017; 13:4577-4584. [PMID: 28599458 DOI: 10.3892/ol.2017.6034] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 01/19/2017] [Indexed: 12/26/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a biological process that is associated with cancer metastasis and invasion. In cancer, EMT promotes cell motility, invasion and distant metastasis. Interleukin (IL)-8 is highly expressed in tumors and may induce EMT. The IL-8/IL-8R axis has a vital role in EMT in carcinoma, which is regulated by several signaling pathways, including the transforming growth factor β-spleen associated tyrosine kinase/Src-AKT/extracellular signal-regulated kinase, p38/Jun N-terminal kinase-activating transcription factor-2, phosphoinositide 3-kinase/AKT, nuclear factor-κB and Wnt signaling pathways. Blocking the IL-8/IL-8R signaling pathway may be a novel strategy to reduce metastasis and improve patient survival rates. This review will cover IL-8-IL-8R signaling pathway in tumor epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Zhiwei Zhao
- West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shichao Wang
- West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,School of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Yingbo Lin
- Department of Oncology and Pathology, Karolinska Institute, Cancer Centre Karolinska, SE-171 76 Stockholm, Sweden
| | - Yali Miao
- West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ye Zeng
- West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yongmei Nie
- School of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Peng Guo
- West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Guangyao Jiang
- Outpatient Building, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jiang Wu
- West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,School of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| |
Collapse
|
19
|
Hamilton DH, David JM, Dominguez C, Palena C. Development of Cancer Vaccines Targeting Brachyury, a Transcription Factor Associated with Tumor Epithelial-Mesenchymal Transition. Cells Tissues Organs 2017; 203:128-138. [PMID: 28214895 DOI: 10.1159/000446495] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2016] [Indexed: 01/03/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is recognized as a relevant process during the progression of carcinomas towards metastatic disease. Epithelial cancer cells undergoing an EMT program may acquire mesenchymal features, motility, invasiveness, and resistance to a variety of anticancer therapeutics. Preventing or reverting the EMT process in carcinomas has the potential to minimize tumor dissemination and the emergence of therapeutic resistance. One of the strategies currently under investigation to target tumor cells undergoing EMT is the generation of a sustained immune response directed against an essential molecular driver of the process. This review focuses on the current development of immune-mediated anticancer interventions aimed at targeting a transcription factor, brachyury, associated with human tumor EMT. Also presented here is a summary of recent studies demonstrating a role for EMT in tumor resistance to immune effector cytotoxicity, and the study of novel strategies aimed at reverting the EMT to be used in combination with immune-mediated anticancer interventions.
Collapse
Affiliation(s)
- Duane H Hamilton
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
20
|
David JM, Dominguez C, Palena C. Pharmacological and immunological targeting of tumor mesenchymalization. Pharmacol Ther 2016; 170:212-225. [PMID: 27916651 DOI: 10.1016/j.pharmthera.2016.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Controlling the spread of carcinoma cells to distant organs is the foremost challenge in cancer treatment, as metastatic disease is generally resistant to therapy and is ultimately incurable for the majority of patients. The plasticity of tumor cell phenotype, in which the behaviors and functions of individual tumor cells differ markedly depending upon intrinsic and extrinsic factors, is now known to be a central mechanism in cancer progression. Our expanding knowledge of epithelial and mesenchymal phenotypic states in tumor cells, and the dynamic nature of the transitions between these phenotypes has created new opportunities to intervene to better control the behavior of tumor cells. There are now a variety of innovative pharmacological approaches to preferentially target tumor cells that have acquired mesenchymal features, including cytotoxic agents that directly kill these cells, and inhibitors that block or revert the process of mesenchymalization. Furthermore, novel immunological strategies have been developed to engage the immune system in seeking out and destroying mesenchymalized tumor cells. This review highlights the relevance of phenotypic plasticity in tumor biology, and discusses recently developed pharmacological and immunological means of targeting this phenomenon.
Collapse
Affiliation(s)
- Justin M David
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Charli Dominguez
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
21
|
Hamilton DH, Roselli M, Ferroni P, Costarelli L, Cavaliere F, Taffuri M, Palena C, Guadagni F. Brachyury, a vaccine target, is overexpressed in triple-negative breast cancer. Endocr Relat Cancer 2016; 23:783-796. [PMID: 27580659 PMCID: PMC5010091 DOI: 10.1530/erc-16-0037] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 08/09/2016] [Indexed: 02/06/2023]
Abstract
Patients diagnosed with triple-negative breast cancer (TNBC) have a high rate of tumor metastasis and a poor prognosis. The treatment option for these patients is currently chemotherapy, which results in very low response rates. Strategies that exploit the immune system for the treatment of cancer have now shown the ability to improve survival in several tumor types. Identifying potential targets for immune therapeutic interventions is an important step in developing novel treatments for TNBC. In this study, in silico analysis of publicly available datasets and immunohistochemical analysis of primary and metastatic tumor biopsies from TNBC patients were conducted to evaluate the expression of the transcription factor brachyury, which is a driver of tumor metastasis and resistance and a target for cancer vaccine approaches. Analysis of breast cancer datasets demonstrated a predominant expression of brachyury mRNA in TNBC and in basal vs luminal or HER2 molecular breast cancer subtypes. At the protein level, variable levels of brachyury expression were detected both in primary and metastatic TNBC lesions. A strong association was observed between nuclear brachyury protein expression and the stage of disease, with nuclear brachyury being more predominant in metastatic vs primary tumors. Survival analysis also demonstrated an association between high levels of brachyury in the primary tumor and poor prognosis. Two brachyury-targeting cancer vaccines are currently undergoing clinical evaluation; the data presented here provide rationale for using brachyury-targeting immunotherapy approaches for the treatment of TNBC.
Collapse
Affiliation(s)
- Duane H. Hamilton
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Mario Roselli
- Department of Systems Medicine, Medical Oncology, Tor Vergata Clinical Center, Tor Vergata University of Rome, Rome, Italy
| | | | | | | | | | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
- Corresponding Author: Claudia Palena, Ph.D., Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892. Telephone: (301) 496-1528; fax: (301) 496-2756;
| | - Fiorella Guadagni
- San Raffaele Roma Open University, Rome, Italy
- Interinstitutional Multidisciplinary Biobank (BioBIM), IRCCS San Raffaele Pisana, Rome, Italy
| |
Collapse
|
22
|
Short-term EGFR blockade enhances immune-mediated cytotoxicity of EGFR mutant lung cancer cells: rationale for combination therapies. Cell Death Dis 2016; 7:e2380. [PMID: 27685624 PMCID: PMC5059888 DOI: 10.1038/cddis.2016.297] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 12/19/2022]
Abstract
The epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) erlotinib has been approved for years as a first-line therapy for patients harboring EGFR-sensitizing mutations. With the promising implementation of immunotherapeutic strategies for the treatment of lung cancer, there is a growing interest in developing combinatorial therapies that could utilize immune approaches in the context of conventional or targeted therapies. Tumor cells are known to evade immune attack by multiple strategies, including undergoing phenotypic plasticity via a process designated as the epithelial–mesenchymal transition (EMT). As signaling through EGFR is a major inducer of EMT in epithelial cells, we have investigated the effect of EGFR inhibition with erlotinib on tumor phenotype and susceptibility to immune attack. Our data shows that short-term exposure of tumor cells to low-dose erlotinib modulates tumor plasticity and immune-mediated cytotoxicity in lung cancer cells harboring a sensitizing EGFR mutation, leading to a remarkable enhancement of tumor lysis mediated by innate NK cells and antigen-specific T cells. This effect positively correlated with the ability of short-term EGFR blockade to modulate tumor phenotype towards a more epithelial one, as well as to increase susceptibility to caspase-mediated apoptosis. The effect, however, was lost when erlotinib was utilized for long periods of time in vitro or in vivo, which resulted in gain of mesenchymal features and decreased (rather than increased) tumor lysis in response to immune effector mechanisms. Our data provides rationale for potential combinations of erlotinib and immunotherapies for the treatment of lung carcinomas in the early setting, before the establishment of tumor relapse with long-term EGFR inhibition.
Collapse
|
23
|
Li K, Ying M, Feng D, Du J, Chen S, Dan B, Wang C, Wang Y. Brachyury promotes tamoxifen resistance in breast cancer by targeting SIRT1. Biomed Pharmacother 2016; 84:28-33. [PMID: 27621036 DOI: 10.1016/j.biopha.2016.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/21/2016] [Accepted: 09/06/2016] [Indexed: 12/01/2022] Open
Abstract
Tamoxifen is effective for treating estrogen receptor-alpha (ERα)-positive breast cancers. However, few molecular mediators of tamoxifen resistance have been elucidated. In the present study, we determine the underlying roles of Brachyury in tamoxifen resistance. Loss- and gain-of-function assay are utilized to confirm the oncogenic roles of Brachyury in breast cancer. Compared with the normal MCF10A cells, Brachyury is commonly overexpressed in breast cancer cell lines. Knockdown of Brachyury inhibits tamoxifen resistance, whereas overexpression of Brachyury enhances tamoxifen resistance as demonstrated increased cell viability and reduced cell apoptosis. Mechanistically, we demonstrate for the first time that Brachyury mediates tamoxifen resistance by regulating Sirtuin-1 (SIRT1). Collectively, our data, as a proof of principle, indicate that Brachyury is a candidate marker for predicting the clinical efficacy of tamoxifen and targeting SIRT1 could overcome resistance to tamoxifen in breast cancer cells.
Collapse
Affiliation(s)
- Kaichun Li
- Department of Oncology, Changhai Hospital Affiliated to The Second Military Medical University, Shanghai 200433, PR China
| | - Mingzhen Ying
- Department of Oncology, Changhai Hospital Affiliated to The Second Military Medical University, Shanghai 200433, PR China
| | - Dan Feng
- Department of Oncology, Changhai Hospital Affiliated to The Second Military Medical University, Shanghai 200433, PR China
| | - Jie Du
- Department of Oncology, Tianyou Hospital Affiliated to Tongji University, Shanghai 200331, PR China
| | - Shiyu Chen
- Department of Oncology, Tianyou Hospital Affiliated to Tongji University, Shanghai 200331, PR China
| | - Bing Dan
- Department of Oncology, Tianyou Hospital Affiliated to Tongji University, Shanghai 200331, PR China
| | - Cuihua Wang
- Department of Oncology, Tianyou Hospital Affiliated to Tongji University, Shanghai 200331, PR China
| | - Yajie Wang
- Department of Oncology, Changhai Hospital Affiliated to The Second Military Medical University, Shanghai 200433, PR China.
| |
Collapse
|
24
|
Shimamatsu S, Okamoto T, Haro A, Kitahara H, Kohno M, Morodomi Y, Tagawa T, Okano S, Oda Y, Maehara Y. Prognostic Significance of Expression of the Epithelial-Mesenchymal Transition-Related Factor Brachyury in Intrathoracic Lymphatic Spread of Non-Small Cell Lung Cancer. Ann Surg Oncol 2016; 23:1012-1020. [PMID: 27600618 DOI: 10.1245/s10434-016-5530-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Indexed: 11/18/2022]
Abstract
BACKGROUND Brachyury is a transcriptional regulator that plays important roles in epithelial mesenchymal transition (EMT) during development and has been reported to be essential for mesoderm formation in the early human embryo. We investigated Brachyury protein expression in hilar and mediastinal metastatic lymph nodes of non-small cell lung cancer patients and the prognostic significance of Brachyury expression at metastatic sites. METHODS Expression of Brachyury in 115 surgically resected primary lung cancer and corresponding metastatic lymph node samples was evaluated by immunohistochemical staining. The relationships between Brachyury protein expression and the patient's clinicopathological factors and prognosis were analyzed. RESULTS Brachyury expression in metastatic lymph nodes was significantly higher than that in the primary tumor (p = 0.012). Patients with high Brachyury expression in the metastatic lymph nodes had significantly poor prognoses (p = 0.0236) compared with patients with low expression. In addition, patients with larger differences in Brachyury expression between metastatic lymph nodes and the primary tumor had significantly poorer prognoses compared with patients with smaller differences (p = 0.0146). The Brachyury protein expression level in metastatic lymph nodes was significantly associated with the protein expression levels of other EMT-related factors (E-cadherin [inverse association], p = 0.0265; Slug, p = 0.029; and interleukin-8, p = 0.0135). CONCLUSIONS High expression of Brachyury protein in metastatic carcinoma cells in the intrathoracic lymph nodes was associated with poor prognosis of lung cancer patients. Increased Brachyury expression during the metastatic process may confer further potential for invasion and metastasis of cancer cells.
Collapse
Affiliation(s)
- Shinichiro Shimamatsu
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuro Okamoto
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Akira Haro
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hirokazu Kitahara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mikihiro Kohno
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yosuke Morodomi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuzo Tagawa
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinji Okano
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
25
|
Gabitzsch ES, Tsang KY, Palena C, David JM, Fantini M, Kwilas A, Rice AE, Latchman Y, Hodge JW, Gulley JL, Madan RA, Heery CR, Balint JP, Jones FR, Schlom J. The generation and analyses of a novel combination of recombinant adenovirus vaccines targeting three tumor antigens as an immunotherapeutic. Oncotarget 2016; 6:31344-59. [PMID: 26374823 PMCID: PMC4741610 DOI: 10.18632/oncotarget.5181] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/24/2015] [Indexed: 12/11/2022] Open
Abstract
Phenotypic heterogeneity of human carcinoma lesions, including heterogeneity in expression of tumor-associated antigens (TAAs), is a well-established phenomenon. Carcinoembryonic antigen (CEA), MUC1, and brachyury are diverse TAAs, each of which is expressed on a wide range of human tumors. We have previously reported on a novel adenovirus serotype 5 (Ad5) vector gene delivery platform (Ad5 [E1-, E2b-]) in which regions of the early 1 (E1), early 2 (E2b), and early 3 (E3) genes have been deleted. The unique deletions in this platform result in a dramatic decrease in late gene expression, leading to a marked reduction in host immune response to the vector. Ad5 [E1-, E2b-]-CEA vaccine (ETBX-011) has been employed in clinical studies as an active vaccine to induce immune responses to CEA in metastatic colorectal cancer patients. We report here the development of novel recombinant Ad5 [E1-, E2b-]-brachyury and-MUC1 vaccine constructs, each capable of activating antigen-specific human T cells in vitro and inducing antigen-specific CD4+ and CD8+ T cells in vaccinated mice. We also describe the use of a combination of the three vaccines (designated Tri-Ad5) of Ad5 [E1-, E2b-]-CEA, Ad5 [E1-, E2b-]-brachyury and Ad5 [E1-, E2b-]-MUC1, and demonstrate that there is minimal to no “antigenic competition” in in vitro studies of human dendritic cells, or in murine vaccination studies. The studies reported herein support the rationale for the application of Tri-Ad5 as a therapeutic modality to induce immune responses to a diverse range of human TAAs for potential clinical studies.
Collapse
Affiliation(s)
| | - Kwong Yok Tsang
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Justin M David
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Massimo Fantini
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anna Kwilas
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | - James W Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James L Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ravi A Madan
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher R Heery
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
26
|
A poxviral-based cancer vaccine the transcription factor twist inhibits primary tumor growth and metastases in a model of metastatic breast cancer and improves survival in a spontaneous prostate cancer model. Oncotarget 2016; 6:28194-210. [PMID: 26317648 PMCID: PMC4695054 DOI: 10.18632/oncotarget.4442] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 06/23/2015] [Indexed: 01/11/2023] Open
Abstract
Several transcription factors play a role in the alteration of gene expression that occurs during cancer metastasis. Twist expression has been shown to be associated with the hallmarks of the metastatic process, as well as poor prognosis and drug resistance in many tumor types. However, primarily due to their location within the cell and the lack of a hydrophobic groove required for drug attachment, transcription factors such as Twist are difficult to target with conventional therapies. An alternative therapeutic strategy is a vaccine comprised of a Modified vaccinia Ankara (MVA), incorporating the Twist transgene and a TRIad of COstimulatory Molecules (B7-1, ICAM-1, LFA-3; TRICOM). Here we characterize an MVA-TWIST/TRICOM vaccine that induced both CD4+ and CD8+ Twist-specific T-cell responses in vivo. In addition, administration of this vaccine reduced both the primary tumor growth and metastasis in the 4T1 model of metastatic breast cancer. In the TRAMP transgenic model of spontaneous prostate cancer, MVA-TWIST/TRICOM alone significantly improved survival, and when combined with the androgen receptor antagonist enzalutamide, the vaccine further improved survival. These studies thus provide a rationale for the use of active immunotherapy targeting transcription factors involved in the metastatic process and for the combination of cancer vaccines with androgen deprivation.
Collapse
|
27
|
Wan Z, Jiang D, Chen S, Jiao J, Ji L, Shah AS, Wei H, Yang X, Li X, Wang Y, Xiao J. T-box transcription factor brachyury promotes tumor cell invasion and metastasis in non-small cell lung cancer via upregulation of matrix metalloproteinase 12. Oncol Rep 2016; 36:306-14. [PMID: 27176766 DOI: 10.3892/or.2016.4792] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/17/2015] [Indexed: 11/06/2022] Open
Abstract
T-box transcription factor brachyury and matrix metalloproteinases (MMPs) play important roles in non-small cell lung cancer (NSCLC) cell invasion and metastasis. However, the association between Brachyury and the MMP family has not yet been fully investigated. The present study aimed to assess the influence of Brachyury on the expression of 23 MMP members and to further explore the mechanisms involved in the promotion of NSCLC cell invasion by Brachyury and MMPs in the H460 and H1299 stable cell lines. The protein expression levels and correlations between the brachyury transcription factor and the targeted MMPs were also validated in 52 NSCLC patient tissue samples. We observed that brachyury significantly upregulated MMP12 expression to promote NSCLC cell invasion. We also found a potential binding site for the brachyury transcription factor in the MMP12 promoter.
Collapse
Affiliation(s)
- Zongmiao Wan
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Dongjie Jiang
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Su Chen
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Jian Jiao
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Lei Ji
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, P.R. China
| | - Abdus Saboor Shah
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, P.R. China
| | - Haifeng Wei
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Xinghai Yang
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Xiaotao Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, P.R. China
| | - Ying Wang
- The Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, P.R. China
| | - Jianru Xiao
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
28
|
Hamilton DH, Fernando RI, Schlom J, Palena C. Aberrant expression of the embryonic transcription factor brachyury in human tumors detected with a novel rabbit monoclonal antibody. Oncotarget 2016; 6:4853-62. [PMID: 25605015 PMCID: PMC4467120 DOI: 10.18632/oncotarget.3086] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/17/2014] [Indexed: 01/05/2023] Open
Abstract
The embryonic transcription factor brachyury is overexpressed in a variety of human tumors, including lung, breast, colon and prostate carcinomas, chordomas and hemangioblastomas. In human carcinoma cells, overexpression of brachyury associates with the occurrence of the phenomenon of epithelial-mesenchymal transition (EMT), acquisition of metastatic propensity and resistance to a variety of anti-cancer therapeutics. Brachyury is preferentially expressed in human tumors vs. normal adult tissues, and high levels of this molecule associate with poor prognosis in patients with lung, colon and prostate carcinomas, and in breast cancer patients treated with adjuvant tamoxifen. Brachyury is immunogenic in humans and vaccines against this novel oncotarget are currently undergoing clinical investigation. While our group and others have employed various anti-brachyury antibodies to interrogate the above findings, we report here on the development and thorough characterization of a novel rabbit monoclonal antibody (MAb 54-1) that reacts with distinct high affinity and specificity with human brachyury. MAb 54-1 was successfully used in ELISA, western blot, immunofluorescence and immunohistochemistry assays to evaluate expression of brachyury in various human tumor cell lines and tissues. We propose the use of this antibody to assist in research studies of EMT and in prognostic studies for a range of human tumors.
Collapse
Affiliation(s)
- Duane H Hamilton
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Romaine I Fernando
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
29
|
David JM, Hamilton DH, Palena C. MUC1 upregulation promotes immune resistance in tumor cells undergoing brachyury-mediated epithelial-mesenchymal transition. Oncoimmunology 2016; 5:e1117738. [PMID: 27141403 PMCID: PMC4839328 DOI: 10.1080/2162402x.2015.1117738] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 01/05/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a molecular and cellular program in which epithelial cells lose their well-differentiated phenotype and adopt mesenchymal characteristics. This process, which occurs naturally during embryogenesis, has also been shown to be associated with cancer progression and with tumor recurrence following conventional therapies. Brachyury is a transcription factor that mediates EMT during development, and is aberrantly expressed in various human cancers where it promotes tumor cell EMT, metastatic dissemination, and resistance to conventional therapies. We have recently shown that very high expression of brachyury can protect tumor cells against immune cell-mediated cytotoxicity. In seeking to elucidate mechanisms of immunotherapy resistance, we have discovered a novel positive association between brachyury and mucin-1 (MUC1). MUC1 is overexpressed in the majority of carcinomas, and it has been shown to mediate oncogenic signaling and confer resistance to genotoxic agents. We found that MUC1 is concomitantly upregulated in tumor cell lines that highly express brachyury due to an enhancement of MUC1 mRNA stability. Analysis of patient lung tumor tissues also identified a positive association between these two proteins in the majority of samples. Inhibition of MUC1 by siRNA-based gene silencing markedly enhanced the susceptibility of brachyury-expressing cancer cells to killing by tumor necrosis-related apoptosis-inducing ligand (TRAIL) and to perforin/granzyme-dependent lysis by immune cytotoxic cells. These studies confirm a protective role for MUC1 in brachyury-expressing cancer cells, and suggest that inhibition of MUC1 can restore the susceptibility of mesenchymal-like cancer cells to immune attack.
Collapse
Affiliation(s)
- Justin M David
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | - Duane H Hamilton
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| |
Collapse
|
30
|
Nuclear Brachyury Expression Is Consistent in Chordoma, Common in Germ Cell Tumors and Small Cell Carcinomas, and Rare in Other Carcinomas and Sarcomas: An Immunohistochemical Study of 5229 Cases. Am J Surg Pathol 2015; 39:1305-12. [PMID: 26099010 DOI: 10.1097/pas.0000000000000462] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Brachyury is a transcription factor of the T-box family typically expressed in notochord and chordoma. Some studies report brachyury as highly specific for chordoma, whereas others have concluded that brachyury is expressed in many types of common carcinomas by reverse transcription polymerase chain reaction and immunohistochemistry and could be involved in the epithelial-mesenchymal transition and metastatic process. In this study, we immunohistochemically evaluated 5229 different tumors for nuclear brachyury expression using a new rabbit monoclonal antibody and automated immunostaining (Leica Bond Max). Only nuclear labeling was scored, and antibody dilution of 1:2000 was used. In normal tissues, only rare cells in seminiferous tubules were labeled; all other organs were negative. All chordomas (75/76), except a sarcomatous one, were positive, whereas chondrosarcomas were negative. Among epithelial tumors, positivity was often detected in embryonal carcinoma (74%) and seminoma (45%). Pulmonary small cell carcinoma was often positive (41%), whereas pulmonary and pancreatic adenocarcinomas only rarely showed nuclear brachyury positivity (3% to 4%). Common carcinomas such as ductal carcinomas of the breast or adenocarcinomas of the prostate only exceptionally showed nuclear positivity (<1%). No colorectal, hepatocellular, renal cell, squamous cell, thyroid or urothelial carcinoma, or mesothelioma showed nuclear brachyury positivity. Among mesenchymal and neuroectodermal tumors, only isolated cases of melanoma, malignant peripheral nerve sheath tumor, rhabdomyosarcoma, synovial sarcoma, and follicular lymphoma showed nuclear expression. However, as shown previously with lung carcinoma, experiments with lower antibody dilutions (1:200 to 1:500) showed weak cytoplasmic and nuclear labeling in breast cancers. In addition to chordoma, we show here for the first time that nuclear brachyury expression is prevalent in embryonal carcinoma, seminoma, and small cell carcinoma of the lung but very rare in common carcinomas, sarcomas, and melanoma. With these reservations, we have demonstrated the presence of nuclear brachyury immunoreactivity to be a sensitive and fairly specific marker for chordoma.
Collapse
|
31
|
Heery CR, Singh BH, Rauckhorst M, Marté JL, Donahue RN, Grenga I, Rodell TC, Dahut W, Arlen PM, Madan RA, Schlom J, Gulley JL. Phase I Trial of a Yeast-Based Therapeutic Cancer Vaccine (GI-6301) Targeting the Transcription Factor Brachyury. Cancer Immunol Res 2015; 3:1248-56. [PMID: 26130065 DOI: 10.1158/2326-6066.cir-15-0119] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/18/2015] [Indexed: 12/21/2022]
Abstract
The nuclear transcription factor brachyury has previously been shown to be a strong mediator of the epithelial-to-mesenchymal transition (EMT) in human carcinoma cells and a strong negative prognostic factor in several tumor types. Brachyury is overexpressed in a range of human carcinomas as well as in chordoma, a rare tumor for which there is no standard systemic therapy. Preclinical studies have shown that a recombinant Saccharomyces cerevisiae (yeast) vaccine encoding brachyury (GI-6301) can activate human T cells in vitro. A phase I dose-escalation (3+3 design) trial enrolled 34 patients at 4 dose levels [3, 3, 16, and 11 patients, respectively, at 4, 16, 40, and 80 yeast units (YU)]. Expansion cohorts were enrolled at 40- and 80-YU dose levels for analysis of immune response and clinical activity. We observed brachyury-specific T-cell immune responses in the majority of evaluable patients despite most having been heavily pretreated. No evidence of autoimmunity or other serious adverse events was observed. Two chordoma patients showed evidence of disease control (one mixed response and one partial response). A patient with colorectal carcinoma, who enrolled on study with a large progressing pelvic mass and rising carcinoembryonic antigen (CEA), remains on study for greater than 1 year with stable disease, evidence of decreased tumor density, and decreased serum CEA. This is the first-in-human study to demonstrate the safety and immunogenicity of this therapeutic cancer vaccine and provides the rationale for exploration in phase II studies. A randomized phase II chordoma study is now enrolling patients.
Collapse
Affiliation(s)
- Christopher R Heery
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - B Harpreet Singh
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Myrna Rauckhorst
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jennifer L Marté
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Renee N Donahue
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Italia Grenga
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | - William Dahut
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Philip M Arlen
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ravi A Madan
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - James L Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
32
|
Palena C, Hamilton DH. Immune Targeting of Tumor Epithelial-Mesenchymal Transition via Brachyury-Based Vaccines. Adv Cancer Res 2015. [PMID: 26216630 DOI: 10.1016/bs.acr.2015.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
As a manifestation of their inherent plasticity, carcinoma cells undergo profound phenotypic changes during progression toward metastasis. One such phenotypic modulation is the epithelial-mesenchymal transition (EMT), an embryonically relevant process that can be reinstated by tumor cells, resulting in the acquisition of metastatic propensity, stem-like cell properties, and resistance to a variety of anticancer therapies, including chemotherapy, radiation, and some small-molecule targeted therapies. Targeting of the EMT is emerging as a novel intervention against tumor progression. This review focuses on the potential use of cancer vaccine strategies targeting tumor cells that exhibit mesenchymal-like features, with an emphasis on the current status of development of vaccine platforms directed against the T-box transcription factor brachyury, a novel cancer target involved in tumor EMT, stemness, and resistance to therapies. Also presented is a summary of potential mechanisms of resistance to immune-mediated attack driven by EMT and the development of novel combinatorial strategies based on the use of agents that alleviate tumor EMT for an optimized targeting of plastic tumor cells that are responsible for tumor recurrence and the establishment of therapeutic refractoriness.
Collapse
Affiliation(s)
- Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | - Duane H Hamilton
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
33
|
Jezkova J, Williams JS, Jones-Hutchins F, Sammut SJ, Gollins S, Cree I, Coupland S, McFarlane RJ, Wakeman JA. Brachyury regulates proliferation of cancer cells via a p27Kip1-dependent pathway. Oncotarget 2015; 5:3813-22. [PMID: 25003467 PMCID: PMC4116522 DOI: 10.18632/oncotarget.1999] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The T-box transcription factor Brachyury is expressed in a number of tumour types and has been demonstrated to have cancer inducing properties. To date, it has been linked to cancer associated induction of epithelial to mesenchymal transition, tumour metastasis and expression of markers for cancer stem-like cells. Taken together, these findings indicate that Brachyury plays an important role in the progression of cancer, although the mechanism through which it functions is poorly understood. Here we show that Brachyury regulates the potential of Brachyury-positive colorectal cancer cells to proliferate and reduced levels of Brachyury result in inhibition of proliferation, with features consistent with the cells entering a quiescent-like state. This inhibition of proliferation is dependent upon p27Kip1 demonstrating that Brachyury acts to modulate cellular proliferative fate in colorectal cancer cells in a p27Kip1-dependent manner. Analysis of patient derived colorectal tumours reveals a heterogeneous localisation of Brachyury (in the nucleolus, nucleus and cytoplasm) indicating the potential complexity of the regulatory role of Brachyury in solid colorectal tumours.
Collapse
Affiliation(s)
- Jana Jezkova
- North West Cancer Research Institute, College of Natural Sciences, Bangor, Gwynedd, UK
| | | | | | | | | | | | | | - Ramsay J McFarlane
- North West Cancer Research Institute, College of Natural Sciences, Bangor, Gwynedd, UK; NISCHR Cancer Genetics Biomedical Research Unit, Welsh Government, Cathays Park, Cardiff, UK
| | - Jane A Wakeman
- North West Cancer Research Institute, College of Natural Sciences, Bangor, Gwynedd, UK
| |
Collapse
|
34
|
T-box transcription factor Brachyury in lung cancer cells inhibits macrophage infiltration by suppressing CCL2 and CCL4 chemokines. Tumour Biol 2015; 36:5881-90. [PMID: 25744730 DOI: 10.1007/s13277-015-3260-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/13/2015] [Indexed: 01/25/2023] Open
Abstract
Both intra-tumor macrophage and T-box transcription factor Brachyury (T) have been proved to play important roles in tumor progression and metastasis. However, it is still unknown whether T could regulate the infiltration of macrophages. Here, we report that the Brachyury expression in human lung tumors was inversely correlated with the infiltration of macrophages. Brachyury suppressed the capability of human lung cancer cells to attract macrophages. Using PCR array, we found that Brachyury inhibited expression of several chemokines, including CCL2, CCL4, and CXCL10. Accordingly, knockdown of CCL2 and CCL4 in lung cancer cells suppressed macrophage invasion under coculture conditions. Furthermore, we found that Brachyury expression was inversely correlated with CCL2 and CCL4 expression in human lung tumors. Taken together, our findings shed light on the novel role of Brachyury in regulation of macrophage infiltration.
Collapse
|
35
|
Xu K, Liu B, Liu Y. Impact of Brachyury on epithelial-mesenchymal transitions and chemosensitivity in non-small cell lung cancer. Mol Med Rep 2015; 12:995-1001. [PMID: 25683840 PMCID: PMC4438917 DOI: 10.3892/mmr.2015.3348] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 01/23/2015] [Indexed: 01/06/2023] Open
Abstract
The objective of the current study was to investigate the impact of Brachyury on epithelial-mesenchymal transitions and chemosensitivity in non-small cell lung cancer (NSCLC). In 115 archived NSCLC tissue samples, the expression of Brachyury was observed to be significantly higher than that in adjacent normal lung tissues. In addition, the current study demonstrated that the expression of Brachyury is closely associated with TNM staging, lymph node metastasis and the prognosis of NSCLC, although not with patient age, gender or tumor differentiation. Brachyury expression is also accompanied by the downregulation of E-cadherin and the upregulation of N-cadherin. Brachyury may promote lung cancer through induction of epithelial-mesenchymal transition, which leads to metastasis and consequent poor prognosis in patients with lung cancer. Furthermore, the present study observed that interfering with Brachyury increases the sensitivity of cells to chemotherapeutic treatment with cisplatin. These results, in combination with those of additional studies, suggest that Brachyury may be used as a novel target for the prevention and treatment of lung cancer.
Collapse
Affiliation(s)
- Ke Xu
- Department of Thoracic Surgery, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Bin Liu
- Department of Medical Oncology, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Yongyu Liu
- Department of Thoracic Surgery, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| |
Collapse
|
36
|
Du R, Wu S, Lv X, Fang H, Wu S, Kang J. Overexpression of brachyury contributes to tumor metastasis by inducing epithelial-mesenchymal transition in hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:105. [PMID: 25499255 PMCID: PMC4279691 DOI: 10.1186/s13046-014-0105-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/24/2014] [Indexed: 01/27/2023]
Abstract
Aims Brachyury overexpression has been reported in various human malignant neoplasms, but its expression and function in hepatocellular carcinoma progression and metastasis remains unknown. The present study aimed to evaluate the critical role of Brachyury in HCC metastasis. Methods The expression of Brachyury in human HCC (SMMC7721, HepG2, FHCC98, and Hep3B) and control cell lines was analyzed using quantitative reverse-transcriptase polymerase chain reaction and immunoflourence methods. Cancerous tissues collected from patients with HCC (n = 112) were analyzed using immunohistochemical method; a microarray analysis of HCC tissues was performed to explore the clinicopathological variables of HCC. The migratory and invasive capacities of Brachyury-SMMC7721 and Brachyury-HepG2 transfected cells were evaluated using in vitro scratch wound healing and Matrigel invasion assays, respectively. Further, six-week-old male BALB/c nude mice (n = 10) model was used in vivo assay. Results Elevated expression of Brachyury was detected in HCCs (62.5%) compared with that in adjacent nontumorous tissues. Clinicopathological analysis revealed a close correlation of Brachyury expression with distant metastasis and poor prognosis of HCC. Overexpression of Brachyury promoted epithelial-mesenchymal transition (EMT) and metastasis of HCC cells in vitro and in vivo. Brachyury overexpression enhanced Akt activation by inhibiting phosphatase and tensin homolog (PTEN), which led to subsequent stabilization of Snail, a critical EMT mediator. Conclusion The study findings suggest that elevated Brachyury facilitates HCC metastasis by promoting EMT via PTEN/Akt/Snail-dependent pathway. Brachyury plays a pivotal role in HCC metastasis and may serve as a novel prognostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Rui Du
- Department of Radiation Oncology and Integrative Oncology, Navy General Hospital, 6# Fu Cheng Road, Beijing, 100037, People's Republic of China.
| | - Shanshan Wu
- Department of Radiation Oncology and Integrative Oncology, Navy General Hospital, 6# Fu Cheng Road, Beijing, 100037, People's Republic of China.
| | - Xiaoning Lv
- Department of Aviation and Diving, Navy General Hospital, Beijing, People's Republic of China.
| | - Henghu Fang
- Department of Radiation Oncology and Integrative Oncology, Navy General Hospital, 6# Fu Cheng Road, Beijing, 100037, People's Republic of China.
| | - Sudong Wu
- Department of Radiation Oncology and Integrative Oncology, Navy General Hospital, 6# Fu Cheng Road, Beijing, 100037, People's Republic of China.
| | - Jingbo Kang
- Department of Radiation Oncology and Integrative Oncology, Navy General Hospital, 6# Fu Cheng Road, Beijing, 100037, People's Republic of China.
| |
Collapse
|
37
|
Tucker JA, Jochems C, Boyerinas B, Fallon J, Greiner JW, Palena C, Rodell TC, Schlom J, Tsang KY. Identification and characterization of a cytotoxic T-lymphocyte agonist epitope of brachyury, a transcription factor involved in epithelial to mesenchymal transition and metastasis. Cancer Immunol Immunother 2014; 63:1307-17. [PMID: 25186612 DOI: 10.1007/s00262-014-1603-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/12/2014] [Indexed: 12/31/2022]
Abstract
The transcription factor brachyury is a major driver of epithelial to mesenchymal transition in human carcinoma cells. It is overexpressed in several human tumor types versus normal adult tissues, except for testes and thyroid. Overexpression is associated with drug resistance and poor prognosis. Previous studies identified a brachyury HLA-A2 cytotoxic T-lymphocyte epitope. The studies reported here describe an enhancer epitope of brachyury. Compared to the native epitope, the agonist epitope: (a) has enhanced binding to MHC class I, (b) increased the IFN-γ production from brachyury-specific T cells, (c) generated brachyury-specific T cells with greater levels of perforin and increased proliferation, (d) generated T cells more proficient at lysing human carcinoma cells endogenously expressing the native epitope, and (e) achieved greater brachyury-specific T-cell responses in vivo in HLA-A2 transgenic mice. These studies also report the generation of a heat-killed recombinant Saccharomyces cerevisiae (yeast) vector expressing the full-length brachyury gene encoding the agonist epitope. Compared to yeast-brachyury (native) devoid of the agonist epitope, the yeast-brachyury (agonist) enhanced the activation of brachyury-specific T cells, which efficiently lysed human carcinoma cells. In addition to providing the rationale for the recombinant yeast-brachyury (agonist) as a potential vaccine in cancer therapy, these studies also provide the rationale for the use of the agonist in (a) dendritic cell (DC) vaccines, (b) adjuvant or liposomal vaccines, (c) recombinant viral and/or bacterial vaccines, (d) protein/polypeptide vaccines, (e) activation of T cells ex vivo in adoptive therapy protocols, and (f) generation of genetically engineered targeted T cells.
Collapse
Affiliation(s)
- Jo A Tucker
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room 8B09, MSC 1750, Bethesda, MD, 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Immunological targeting of tumor cells undergoing an epithelial-mesenchymal transition via a recombinant brachyury-yeast vaccine. Oncotarget 2014; 4:1777-90. [PMID: 24125763 PMCID: PMC3858563 DOI: 10.18632/oncotarget.1295] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The embryonic T-box transcription factor brachyury is aberrantly expressed in a range of human tumors. Previous studies have demonstrated that brachyury is a driver of the epithelial-mesenchymal transition (EMT), a process associated with cancer progression. Brachyury expression in human tumor cells enhances tumor invasiveness in vitro and metastasis in vivo, and induces resistance to various conventional therapeutics including chemotherapy and radiation. These characteristics, and the selective expression of brachyury for a range of human tumor types vs. normal adult tissues, make brachyury an attractive tumor target. Due to its intracellular localization and the “undruggable” character of transcription factors, available options to target brachyury are currently limited. Here we report on the development and characterization of an immunological platform for the efficient targeting of brachyury-positive tumors consisting of a heat-killed, recombinant Saccharomyces cerevisiae (yeast)–brachyury vector-based vaccine (designated as GI-6301) that expresses the full-length human brachyury protein. We demonstrate that human dendritic cells treated with recombinant yeast-brachyury can activate and expand brachyury-specific CD4+ and CD8+ T cells in vitro that, in turn, can effectively lyse human tumor cells expressing the brachyury protein. Vaccination of mice with recombinant yeast-brachyury is also shown here to elicit brachyury-specific CD4+ and CD8+ T-cell responses, and to induce anti-tumor immunity in the absence of toxicity. Based on these results, a Phase I clinical trial of GI-6301 is currently ongoing in patients with advanced tumors; to our knowledge, this is the first vaccine platform aimed at targeting a driver of tumor EMT that has successfully reached the clinical stage.
Collapse
|
39
|
Pinto F, Pértega-Gomes N, Pereira MS, Vizcaíno JR, Monteiro P, Henrique RM, Baltazar F, Andrade RP, Reis RM. T-box transcription factor brachyury is associated with prostate cancer progression and aggressiveness. Clin Cancer Res 2014; 20:4949-61. [PMID: 25009296 DOI: 10.1158/1078-0432.ccr-14-0421] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Successful therapy of patients with prostate cancer is highly dependent on reliable diagnostic and prognostic biomarkers. Brachyury is considered a negative prognostic factor in colon and lung cancer; however, there are no reports on Brachyury's expression in prostate cancer. EXPERIMENTAL DESIGN In this study, we aimed to assess the impact of Brachyury expression in prostate tumorigenesis using a large series of human prostate samples comprising benign tissue, prostate intraepithelial neoplasia (PIN) lesions, localized tumor, and metastatic tissues. The results obtained were compared with what can be inferred from the Oncomine database. In addition, multiple in vitro models of prostate cancer were used to dissect the biologic role of Brachyury in prostate cancer progression. RESULTS We found that Brachyury is significantly overexpressed in prostate cancer and metastatic tumors when compared with normal tissues, both at protein and at mRNA levels. Brachyury expression in the cytoplasm correlates with highly aggressive tumors, whereas the presence of Brachyury in the nucleus is correlated with tumor invasion. We found that Brachyury-positive cells present higher viability, proliferation, migration, and invasion rates than Brachyury-negative cells. Microarray analysis further showed that genes co-expressed with Brachyury are clustered in oncogenic-related pathways, namely cell motility, cell-cycle regulation, and cell metabolism. CONCLUSIONS Collectively, the present study suggests that Brachyury plays an important role in prostate cancer aggressiveness and points, for the first time, to Brachyury as a significant predictor of poor prostate cancer prognosis. Our work paves the way for future studies assessing Brachyury as a possible prostate cancer therapeutic target.
Collapse
Affiliation(s)
- Filipe Pinto
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal. ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nelma Pértega-Gomes
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal. ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Márcia S Pereira
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal. ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - José R Vizcaíno
- Department of Pathology, Centro Hospitalar do Porto, Portugal
| | | | - Rui M Henrique
- Cancer Epigenetics Group - Research Center, Portuguese Oncology Institute-Porto, Porto, Portugal. Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences, University of Porto, Porto, Portugal. Department of Pathology, Portuguese Oncology Institute - Porto, Porto, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal. ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Raquel P Andrade
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal. ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui M Reis
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal. ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal. Molecular Oncology Research Center, Barretos Cancer Hospital, S. Paulo, Brazil.
| |
Collapse
|