1
|
Chung TT, Piao Z, Lee SJ. Identification of ferroptosis-related signature predicting prognosis and therapeutic responses in pancreatic cancer. Sci Rep 2025; 15:75. [PMID: 39748113 PMCID: PMC11695983 DOI: 10.1038/s41598-024-84607-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025] Open
Abstract
Ferroptosis plays a role in tumorigenesis by affecting lipid peroxidation and metabolic pathways; however, its prognostic or therapeutic relevance in pancreatic adenocarcinoma (PAAD) remains poorly understood. In this study, we developed a prognostic ferroptosis-related gene (FRG)-based risk model using cohorts of The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC), proposing plausible therapeutics. Differentially expressed FRGs between tumors from TCGA-PAAD and normal pancreatic tissues from Genotype-Tissue Expression were analyzed to construct a prognostic risk model using univariate and multivariate Cox regression and LASSO analyses. A model incorporating AURKA, CAV1, and PML gene expression effectively distinguished survival differences between high- and low-risk groups among TCGA-PAAD patients, with validation in two ICGC cohorts. The high-risk group was enriched in gene sets involving mTOR, MAPK, and E2F signaling. The immune and stromal cells infiltration score did not differ between the groups. Analysis of PRISM datasets using our risk model to classify pancreatic cell lines suggested the dasatinib's efficacy in the high-risk group, which was experimentally confirmed in four cell lines with a high- or low-risk signature. In conclusion, this study proposed a robust FRG-based prognostic model that may help stratify PAAD patients with poor prognoses and select potential therapeutic avenues.
Collapse
Affiliation(s)
- Ting Ting Chung
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Zanyue Piao
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Seung Jin Lee
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
2
|
Kugiyama N, Nagaoka K, Yamada R, Watanabe T, Yamazaki H, Ushijima S, Otsuka F, Uramoto Y, Iwasaki H, Yoshinari M, Hashigo S, Hayashi H, Ishimoto T, Komohara Y, Tanaka Y. Serum Mac2-binding protein glycosylated isomer (M2BPGi) as a prognostic biomarker in pancreatic ductal adenocarcinoma: iCAFs-derived M2BPGi drives tumor invasion. J Gastroenterol 2024:10.1007/s00535-024-02195-8. [PMID: 39661112 DOI: 10.1007/s00535-024-02195-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a poor prognosis. Mac2-binding protein glycosylated isomer (M2BPGi), a known biomarker for liver fibrosis, is also elevated in other fibrotic tissues. However, its role in PDAC remains unexplored. This study investigates the potential of M2BPGi as a prognostic biomarker for PDAC and elucidates its role in cancer progression. METHODS We analyzed serum M2BPGi levels in 83 PDAC patients and 60 healthy controls, examining the relationship with clinical outcomes. Tissue immunostaining and in vitro experiments were conducted to investigate M2BPGi-secreting cells and its role. RESULTS Serum M2BPGi levels were significantly higher in PDAC patients than in controls (0.98 vs. 0.59, p < 0.0001). Notably, elevated serum M2BPGi was associated with worse progression-free survival (144 days vs. 260 days, p = 0.017) and overall survival (OS) (245 days vs. 541 days, p < 0.001) following chemotherapy. Multivariable Cox regression analysis further confirmed that a high serum M2BPGi level is an independent risk factor for OS (HR: 2.44, 95% CI 1.26-4.74, p = 0.008). Immunostaining revealed that M2BPGi is secreted by both cancer cells and cancer-associated fibroblasts (CAFs), with high M2BP expression in CAFs correlating with poor prognosis. Furthermore, M2BPGi-secreting CAFs exhibited characteristics of inflammatory CAFs. M2BPGi directly activated mTOR signaling and epithelial-mesenchymal transition in PDAC cells, enhancing their invasive and migratory capabilities. CONCLUSIONS Our findings identify M2BPGi as a promising prognostic biomarker for PDAC. Moreover, we demonstrate that inflammatory CAFs promote tumor invasion and contribute to poor outcomes by secreting M2BPGi, revealing a novel mechanism of PDAC progression.
Collapse
Affiliation(s)
- Naotaka Kugiyama
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, Kumamoto, 860-0811, Japan
| | - Katsuya Nagaoka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, Kumamoto, 860-0811, Japan
| | - Rin Yamada
- Department of Cell Pathology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takehisa Watanabe
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, Kumamoto, 860-0811, Japan
| | - Hajime Yamazaki
- Section of Clinical Epidemiology, Department of Community Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinya Ushijima
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, Kumamoto, 860-0811, Japan
| | - Fumiya Otsuka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, Kumamoto, 860-0811, Japan
| | - Yukiko Uramoto
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, Kumamoto, 860-0811, Japan
| | - Hajime Iwasaki
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, Kumamoto, 860-0811, Japan
| | - Motohiro Yoshinari
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, Kumamoto, 860-0811, Japan
| | - Shunpei Hashigo
- Department of Gastroenterology and Hepatology, Kumamoto City Hospital, Kumamoto, Japan
| | - Hiromitsu Hayashi
- Department of Gastroenterological Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takatsugu Ishimoto
- Department of Gastroenterological Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, Kumamoto, 860-0811, Japan.
| |
Collapse
|
3
|
Chen L, Ying X, Wang H, Xie J, Tang Q, Liu W. Identification and Validation of Senescence-Related Signature by Combining Single Cell and Bulk Transcriptome Data Analysis to Predict the Prognosis and Identify the Key Gene CAV1 in Pancreatic Cancer. J Inflamm Res 2024; 17:9391-9406. [PMID: 39600676 PMCID: PMC11590645 DOI: 10.2147/jir.s489985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Background The role of cellular senescence in the tumor microenvironment of pancreatic cancer (PC) remains unclear, particularly regarding its impact on prognosis and immunotherapy outcomes. Methods We utilized single-cell sequencing datasets (GSE155698 and GSE154778) for pancreatic cancer from the Gene Expression Omnibus (GEO) database and bulk RNA-seq data from the University of California, Santa Cruz (UCSC) and International Cancer Genome Consortium (ICGC) repositories, creating three patient cohorts: The Cancer Genome Atlas (TCGA) cohort, PAAD-AU cohort, and PAAD-CA cohort. Dimensionality reduction cluster analysis processed the single-cell data, while weighted gene co-expression network analysis (WGCNA) and differential expression gene analysis were applied to bulk RNA-seq data. Prognostic models were developed using Cox proportional hazards (COX) and least absolute shrinkage and selection operator (LASSO) regression, with validation through survival analysis, decision curve analysis, and principal component analysis (PCA). Tumor mutation data were analyzed using the "maftools" package, and the immune microenvironment was assessed with TIMER2 data. Results We developed a senescence-related (SENR) six-gene prognostic signature for PC, which stratifies patients by risk, with high-risk groups showing poorer prognoses. This model also offers predictive insights into tumor mutations and immune microenvironment characteristics. Caveolin-1 (CAV1) emerged as a significant prognostic biomarker, with functional validation showing its role in promoting cancer cell proliferation and migration, highlighting its potential as a therapeutic target. Conclusion This study provides a novel senescence-related prognostic tool for PC, enhancing patient stratification for prognosis and immunotherapy, and identifies CAV1 as a key gene with clinical significance for targeted interventions.
Collapse
Affiliation(s)
- Liang Chen
- Department of Hepatobiliary and Pancreatic Surgery, Conversion Therapy Center for Hepatobiliary and Pancreatic Tumors, First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
| | - Xiaomei Ying
- Department of General Surgery, Suzhou Hospital of Anhui Medical University, Suzhou, Anhui, People’s Republic of China
| | - Haohao Wang
- Department of Hepatobiliary and Pancreatic Surgery, Conversion Therapy Center for Hepatobiliary and Pancreatic Tumors, First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
| | - Jiaheng Xie
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, People’s Republic of China
| | - Qikai Tang
- Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People’s Republic of China
| | - Wen Liu
- Department of Hepatobiliary and Pancreatic Surgery, Conversion Therapy Center for Hepatobiliary and Pancreatic Tumors, First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
| |
Collapse
|
4
|
Hirose Y, Oba A, Takamatsu M, Hamada T, Takeda T, Suzuki T, Maekawa A, Kitano Y, Sato S, Kobayashi K, Omiya K, Ono Y, Sato T, Ito H, Sasaki T, Ozaka M, Takeuchi K, Sasahira N, Inoue Y, Wakai T, Takahashi Y. Caveolin-1 expression is a predictor of survival and recurrence patterns in resected pancreatic ductal adenocarcinoma. Pancreatology 2024; 24:1021-1030. [PMID: 39395872 DOI: 10.1016/j.pan.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND/OBJECTIVE Caveolin-1 (Cav1) expressed in cancer cells (cCav1) or cancer-associated fibroblasts (fCav1) exerts either pro- or anti-tumorigenic effects depending on the cancer type or stage of cancer. We aimed to clarify the impact of cCav1 or fCav1 on survival, recurrence patterns, and efficacy of neoadjuvant chemotherapy (NAC) in resected pancreatic ductal adenocarcinoma (PDAC). METHODS Tissue microarrays were constructed including 615 patients who underwent curative resection for PDAC. Cav1 expression was evaluated by immunohistochemistry. Patients were divided into two groups based on Cav1 expression in cancer cells (cCav1high vs. cCav1low) or cancer-associated fibroblasts (fCav1high vs. fCav1low). RESULTS Among all 615 patients, 40.7% were cCav1high and 72.7% were fCav1high. cCav1high was associated with worse overall survival (OS) (p = 0.001) and recurrence-free survival (RFS) (p = 0.001) than cCav1low, and was an independent prognostic factor in multivariate analysis of OS and RFS (OS: p = 0.001, hazard ratio [HR] 1.361; RFS: p = 0.001, HR 1.348). Among 596 patients with resectable/borderline resectable PDAC, cCav1high patients with NAC showed better OS than those without, while there was no significant difference between cCav1low patients with NAC and those without. cCav1high was associated with early recurrence (< 6 months) and liver metastasis after resection. Multivariate analysis revealed cCav1high as an independent predictor of liver metastasis. CONCLUSIONS cCav1high correlated with worse survival, early recurrence, and liver metastasis after resection for PDAC, while NAC improved survival in cCav1high patients. The Evaluation of cCav1 status could provide additional information contributing to the personalized management of PDAC.
Collapse
Affiliation(s)
- Yuki Hirose
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan; Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Atsushi Oba
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan.
| | - Manabu Takamatsu
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tsuyoshi Hamada
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tsuyoshi Takeda
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tatsunori Suzuki
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Aya Maekawa
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yuki Kitano
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Shoki Sato
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kosuke Kobayashi
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kojiro Omiya
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yoshihiro Ono
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takafumi Sato
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hiromichi Ito
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takashi Sasaki
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Masato Ozaka
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kengo Takeuchi
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan; Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan; Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Naoki Sasahira
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yosuke Inoue
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yu Takahashi
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan.
| |
Collapse
|
5
|
Zubiarrain-Laserna A, Martínez-Moreno D, López de Andrés J, de Lara-Peña L, Guaresti O, Zaldua AM, Jiménez G, Marchal JA. Beyond stiffness: deciphering the role of viscoelasticity in cancer evolution and treatment response. Biofabrication 2024; 16:042002. [PMID: 38862006 DOI: 10.1088/1758-5090/ad5705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
There is increasing evidence that cancer progression is linked to tissue viscoelasticity, which challenges the commonly accepted notion that stiffness is the main mechanical hallmark of cancer. However, this new insight has not reached widespread clinical use, as most clinical trials focus on the application of tissue elasticity and stiffness in diagnostic, therapeutic, and surgical planning. Therefore, there is a need to advance the fundamental understanding of the effect of viscoelasticity on cancer progression, to develop novel mechanical biomarkers of clinical significance. Tissue viscoelasticity is largely determined by the extracellular matrix (ECM), which can be simulatedin vitrousing hydrogel-based platforms. Since the mechanical properties of hydrogels can be easily adjusted by changing parameters such as molecular weight and crosslinking type, they provide a platform to systematically study the relationship between ECM viscoelasticity and cancer progression. This review begins with an overview of cancer viscoelasticity, describing how tumor cells interact with biophysical signals in their environment, how they contribute to tumor viscoelasticity, and how this translates into cancer progression. Next, an overview of clinical trials focused on measuring biomechanical properties of tumors is presented, highlighting the biomechanical properties utilized for cancer diagnosis and monitoring. Finally, this review examines the use of biofabricated tumor models for studying the impact of ECM viscoelasticity on cancer behavior and progression and it explores potential avenues for future research on the production of more sophisticated and biomimetic tumor models, as well as their mechanical evaluation.
Collapse
Affiliation(s)
- Ana Zubiarrain-Laserna
- Leartiker S. Coop., Xemein Etorbidea 12A, 48270 Markina-Xemein, Spain
- BioFab i3D- Biofabrication and 3D (bio)printing Laboratory, University of Granada, 18100 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, Granada, Spain
| | - Daniel Martínez-Moreno
- BioFab i3D- Biofabrication and 3D (bio)printing Laboratory, University of Granada, 18100 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Excellence Research Unit 'Modeling Nature' (MNat), University of Granada, Granada, Spain
| | - Julia López de Andrés
- BioFab i3D- Biofabrication and 3D (bio)printing Laboratory, University of Granada, 18100 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Excellence Research Unit 'Modeling Nature' (MNat), University of Granada, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Laura de Lara-Peña
- BioFab i3D- Biofabrication and 3D (bio)printing Laboratory, University of Granada, 18100 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Excellence Research Unit 'Modeling Nature' (MNat), University of Granada, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Olatz Guaresti
- Leartiker S. Coop., Xemein Etorbidea 12A, 48270 Markina-Xemein, Spain
| | - Ane Miren Zaldua
- Leartiker S. Coop., Xemein Etorbidea 12A, 48270 Markina-Xemein, Spain
| | - Gema Jiménez
- BioFab i3D- Biofabrication and 3D (bio)printing Laboratory, University of Granada, 18100 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Excellence Research Unit 'Modeling Nature' (MNat), University of Granada, Granada, Spain
- Department of Health Science, Faculty of Experimental Science, University of Jaen, 23071 Jaen, Spain
| | - Juan Antonio Marchal
- BioFab i3D- Biofabrication and 3D (bio)printing Laboratory, University of Granada, 18100 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Excellence Research Unit 'Modeling Nature' (MNat), University of Granada, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
| |
Collapse
|
6
|
Karabulut S, Afsar CU, Paksoy N, Ferhatoglu F, Dogan I, Tastekin D. Is there any diagnostic value of serum caveolin-1 levels on the determination of pancreatic adenocarcinoma? J Cancer Res Ther 2024:01363817-990000000-00067. [PMID: 38261434 DOI: 10.4103/jcrt.jcrt_469_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/04/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Caveolin-1 (CAV-1) is a vital component in cancer pathogenesis, as its expression determines the survival of patients with cancer. This study investigates CAV-1 serum levels in pancreatic adenocarcinoma (PA) patients and their role in tumor progression and prognostic factors. METHOD The trial included 33 patients with pathologically confirmed pancreatic cancer (PC). The enzyme-linked immunosorbent assay (ELISA) method was used to measure the concentrations of CAV-1 in the blood. The study also included 20 healthy subjects. The statistical analysis was two-sided, and a P value of ≤ 0.05 was determined as statistically significant. RESULTS The median age of the subjects was 59 years (32-84 years) at the time of diagnosis. There were 13 (39%) female participants. In 21 (63%) patients, the primary focus was the pancreatic head. In 23 stage IV patients, hepatic metastasis (n = 19, 83%) was observed. Only one patient (3%) was still alive at the end of the study period. Palliative chemotherapy (CTx) was provided, with 39% of the 23 patients responding to it. The overall survival (OS) rate in this cohort was 41.3 ± 8.3 weeks at a 95% confidence interval (CI), after 25-58 weeks. Serum baseline CAV-1 values among patients with PA were significantly higher compared with controls (p = 0.009). Patients with poor performance status, a pancreatic head tumor, lower albumin levels, higher serum carcinoembryonic antigen (CEA) levels, and higher CA 19.9 levels had significantly higher serum CAV-1 levels (p = 0.01, P = 0.05, P = 0.03, P = 0.02, and P = 0.04, respectively). However, CAV-1 did not show any prognostic value (p = 0.75). CONCLUSION Although serum CAV-1 is a useful diagnostic marker in PC patients, it is not a prognostic or predictive marker.
Collapse
Affiliation(s)
- Senem Karabulut
- Medical Oncology, Istanbul University Institute of Oncology, Istanbul, Turkey
| | - Cigdem U Afsar
- Medical Oncology, University of Health Sciences, Istanbul, Turkey
| | - Nail Paksoy
- Medical Oncology, Istanbul University Institute of Oncology, Istanbul, Turkey
| | - Ferhat Ferhatoglu
- Medical Oncology, Istanbul University Institute of Oncology, Istanbul, Turkey
| | - Izzet Dogan
- Medical Oncology, Istanbul University Institute of Oncology, Istanbul, Turkey
| | - Didem Tastekin
- Medical Oncology, Istanbul University Institute of Oncology, Istanbul, Turkey
| |
Collapse
|
7
|
Kamposioras K, Dinas PC, Barriuoso J, Trachana V, Dimas K. Caveolin-1 protein expression as a prognostic biomarker of gastrointestinal tumours: A systematic review and meta-analysis. Eur J Clin Invest 2023; 53:e14065. [PMID: 37497737 DOI: 10.1111/eci.14065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/02/2023] [Accepted: 07/08/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Gastrointestinal (GI) cancers remain a major threat worldwide, accounting for over 30% of cancer deaths. The identification of novel prognostic biomarkers remains a challenge despite significant advances in the field. The CAV1 gene, encoding the caveolin-1 protein, remains enigmatic in cancer and carcinogenesis, as it has been proposed to act as both a tumour promoter and a tumour suppressor. METHODS To analyse the differential role of caveolin-1 expression in both tumour cells and stroma in relation to prognosis in GI tumours, we performed a systematic review and meta-analysis according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines; PROSPERO registration number: CRD42022299148. RESULTS Our analysis showed that high levels of caveolin-1 in tumour cells were associated with poor prognosis and inferior overall survival (OS) in oesophageal and pancreatic cancer and hepatocellular carcinoma (HCC), but not in gastric and colorectal cancer. Importantly, our study showed that higher stromal caveolin-1 expression was associated with significantly longer OS and disease-free survival in colorectal cancer. Analysis of stromal caveolin-1 expression in the remaining tumours showed a similar trend, although it did not reach statistical significance. CONCLUSIONS The data suggest that caveolin-1 expression in the tumour cells of oesophageal, pancreatic cancer and HCC and in the stroma of colorectal cancer may be an important novel predictive biomarker for the clinical management of these diseases in a curative setting. However, the main conclusion of our analysis is that caveolin-1 expression should always be assessed separately in stroma and tumour cells.
Collapse
Affiliation(s)
| | - Petros C Dinas
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Volos, Greece
| | - Jorge Barriuoso
- The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Varvara Trachana
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Volos, Greece
| | - Konstantinos Dimas
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Volos, Greece
| |
Collapse
|
8
|
Zhang L, Zhou M, Gao X, Xie Y, Xiao J, Liu T, Zeng X. Estrogen-related genes for thyroid cancer prognosis, immune infiltration, staging, and drug sensitivity. BMC Cancer 2023; 23:1048. [PMID: 37907864 PMCID: PMC10619281 DOI: 10.1186/s12885-023-11556-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/22/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Thyroid cancer (THCA) has become increasingly common in recent decades, and women are three to four times more likely to develop it than men. Evidence shows that estrogen has a significant impact on THCA proliferation and growth. Nevertheless, the effects of estrogen-related genes (ERGs) on THCA stages, immunological infiltration, and treatment susceptibility have not been well explored. METHODS Clinicopathological and transcriptome data of patients with THCA from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) were cleaned before consensus clustering. Differential expression analysis was performed on the genes expressed between THCA and paraneoplastic tissues in TCGA, and Wayne analysis was performed on the ERGs obtained from the Gene Set Enrichment Analysis MsigDB and differentially expressed genes (DEGs). Univariate Cox and least absolute shrinkage and selection operator (LASSO) analyses were used to identify the set of estrogen-related differentially expressed genes (ERDEGs) associated with progression-free intervals (PFI) and to establish a prediction model. Receiver operating characteristic curves were plotted to calculate the risk scores and PFI status to validate the predictive effect of the model. Enrichment analyses and immune infiltration analyses were performed to analyze DEGs between the high- and low-risk groups, and a nomogram plot was used in the risk model to predict the PFI of THCA. RESULTS The expression of 120 ERDEGs differed significantly between the two groups (P < 0.05). Five (CD24, CAV1, TACC1, TIPARP, and HSD17B10) of the eight ERDEGs identified using univariate Cox and LASSO regression were validated via RT-qPCR and immunohistochemistry analysis of clinical tissue samples and were used for clinical staging and drug sensitivity analysis. Risk-DEGs were shown to be associated with immune modulation and tumor immune evasion, as well as defense systems, signal transduction, the tumor microenvironment, and immunoregulation. In 19 of the 28 immune cells, infiltration levels differed between the high- and low-risk groups. High-risk patients in the immunotherapy dataset had considerably shorter survival times than low-risk patients. CONCLUSION We identified and confirmed eight ERDEGs using a systematic analysis and screened sensitive drugs for ERDEGs. These results provide molecular evidence for the involvement of ERGs in controlling the immunological microenvironment and treatment response in THCA.
Collapse
Affiliation(s)
- Leiying Zhang
- Suzhou Medical College of Soochow University, Suzhou, China
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Man Zhou
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Xiaoni Gao
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yang Xie
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Thyroid Diseases, Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Thyroid Tumor, Ganzhou, China
| | - Junqi Xiao
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tao Liu
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Beijing Business University, Beijing, China
| | - Xiangtai Zeng
- Suzhou Medical College of Soochow University, Suzhou, China.
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China.
- Institute of Thyroid Diseases, Gannan Medical University, Ganzhou, China.
- Ganzhou Key Laboratory of Thyroid Tumor, Ganzhou, China.
| |
Collapse
|
9
|
Kitamura F, Semba T, Yasuda-Yoshihara N, Yamada K, Nishimura A, Yamasaki J, Nagano O, Yasuda T, Yonemura A, Tong Y, Wang H, Akiyama T, Matsumura K, Uemura N, Itoyama R, Bu L, Fu L, Hu X, Wei F, Mima K, Imai K, Hayashi H, Yamashita YI, Miyamoto Y, Baba H, Ishimoto T. Cancer-associated fibroblasts reuse cancer-derived lactate to maintain a fibrotic and immunosuppressive microenvironment in pancreatic cancer. JCI Insight 2023; 8:e163022. [PMID: 37733442 PMCID: PMC10619496 DOI: 10.1172/jci.insight.163022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
Glycolysis is highly enhanced in pancreatic ductal adenocarcinoma (PDAC) cells; thus, glucose restrictions are imposed on nontumor cells in the PDAC tumor microenvironment (TME). However, little is known about how such glucose competition alters metabolism and confers phenotypic changes in stromal cells in the TME. Here, we report that cancer-associated fibroblasts (CAFs) with restricted glucose availability utilize lactate from glycolysis-enhanced cancer cells as a fuel and exert immunosuppressive activity in the PDAC TME. The expression of lactate dehydrogenase A (LDHA), which regulates lactate production, was a poor prognostic factor for patients with PDAC, and LDHA depletion suppressed tumor growth in a CAF-rich murine PDAC model. Coculture of CAFs with PDAC cells revealed that most of the glucose was taken up by the tumor cells and that CAFs consumed lactate via monocarboxylate transporter 1 to enhance proliferation through the TCA cycle. Moreover, lactate-stimulated CAFs upregulated IL-6 expression and suppressed cytotoxic immune cell activity synergistically with lactate. Finally, the LDHA inhibitor FX11 reduced tumor growth and improved antitumor immunity in CAF-rich PDAC tumors. Our study provides insight regarding the crosstalk among tumor cells, CAFs, and immune cells mediated by lactate and offers therapeutic strategies for targeting LDHA enzymatic activity in PDAC cells.
Collapse
Affiliation(s)
- Fumimasa Kitamura
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, and
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takashi Semba
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Noriko Yasuda-Yoshihara
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, and
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kosuke Yamada
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, and
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akiho Nishimura
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Juntaro Yamasaki
- Cancer Center, Promotion Headquarters, Fujita Health University, Aichi, Japan
| | - Osamu Nagano
- Cancer Center, Promotion Headquarters, Fujita Health University, Aichi, Japan
| | - Tadahito Yasuda
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, and
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Atsuko Yonemura
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, and
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yilin Tong
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, and
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Huaitao Wang
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, and
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takahiko Akiyama
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, and
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuki Matsumura
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, and
| | - Norio Uemura
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, and
| | - Rumi Itoyama
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, and
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Luke Bu
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, and
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Lingfeng Fu
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, and
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Xichen Hu
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, and
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Feng Wei
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, and
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kosuke Mima
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, and
| | - Katsunori Imai
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, and
| | - Hiromitsu Hayashi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, and
| | - Yo-ichi Yamashita
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, and
| | - Yuji Miyamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, and
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, and
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takatsugu Ishimoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, and
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
10
|
Yang K, Li X, Xie K. Senescence program and its reprogramming in pancreatic premalignancy. Cell Death Dis 2023; 14:528. [PMID: 37591827 PMCID: PMC10435572 DOI: 10.1038/s41419-023-06040-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Abstract
Tumor is a representative of cell immortalization, while senescence irreversibly arrests cell proliferation. Although tumorigenesis and senescence seem contrary to each other, they have similar mechanisms in many aspects. Pancreatic ductal adenocarcinoma (PDA) is highly lethal disease, which occurs and progresses through a multi-step process. Senescence is prevalent in pancreatic premalignancy, as manifested by decreased cell proliferation and increased clearance of pre-malignant cells by immune system. However, the senescent microenvironment cooperates with multiple factors and significantly contributes to tumorigenesis. Evidently, PDA progression requires to evade the effects of cellular senescence. This review will focus on dual roles that senescence plays in PDA development and progression, the signaling effectors that critically regulate senescence in PDA, the identification and reactivation of molecular targets that control senescence program for the treatment of PDA.
Collapse
Affiliation(s)
- Kailing Yang
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, China
| | - Xiaojia Li
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, China.
- The South China University of Technology Comprehensive Cancer Center, Guangdong, China.
- The Second Affiliated Hospital and Guangzhou First People's Hospital, South China University of Technology School of Medicine, Guangdong, China.
| |
Collapse
|
11
|
Tan Y, Song Q. Research trends and hotspots on the links between caveolin and cancer: bibliometric and visual analysis from 2003 to 2022. Front Pharmacol 2023; 14:1237456. [PMID: 37576808 PMCID: PMC10416243 DOI: 10.3389/fphar.2023.1237456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/21/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction: Extensive studies indicated that caveolin is a key regulator in multiple cellular processes. Recently, growing evidence demonstrated that caveolin is critically involved in tumor progression. Since no relevant bibliometric study has been published, we performed a bibliometric and visual analysis to depict the knowledge framework of research related to the involvement of caveolin in cancer. Methods: Relevant studies published in English during 2003-2022 were obtained from the Web of Science Core Collection database. Three programs (VOSviewer, CiteSpace, and R-bibliometrix) and the website of bibliometrics (http://bibliometric.com/) were applied to construct networks based on the analysis of countries, institutions, authors, journals, references, and keywords. Results: A total of 2,463 documents were extracted and identified. The United States had the greatest number of publications and total citations, and Thomas Jefferson University was the most productive institution. Michael P. Lisanti was the most influential scholar in this research domain. Cell Cycle was the journal with the most publications on this subject. The most local-cited document was the article titled "Caveolin-1 in oncogenic transformation, cancer, and metastasis." A comprehensive analysis has been conducted based on keywords and cited references. Initially, the research frontiers were predominantly "signal transduction", "human breast cancer," "oncogenically transformed cells," "tumor suppressor gene," and "fibroblasts." While in recent years, the research emphasis has shifted to "tumor microenvironment," "epithelial mesenchymal transition," "nanoparticles," and "stem cells." Conclusion: Taken together, our bibliometric analysis shows that caveolin continues to be of interest in cancer research. The hotspots and research frontiers have evolved from the regulation of cancer signaling, to potential targets of cancer therapy and novel techniques. These results can provide a data-based reference for the guidance of future research.
Collapse
Affiliation(s)
- Yaqian Tan
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qi Song
- Department of Pharmacy, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
12
|
Zhao Z, Li T, Yuan Y, Zhu Y. What is new in cancer-associated fibroblast biomarkers? Cell Commun Signal 2023; 21:96. [PMID: 37143134 PMCID: PMC10158035 DOI: 10.1186/s12964-023-01125-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/05/2023] [Indexed: 05/06/2023] Open
Abstract
The tumor microenvironment is one of the important drivers of tumor development. Cancer-associated fibroblasts (CAFs) are a major component of the tumor stroma and actively participate in tumor development, invasion, metastasis, drug resistance, and other biological behaviors. CAFs are a highly heterogeneous group of cells, a reflection of the diversity of their origin, biomarkers, and functions. The diversity of CAF origin determines the complexity of CAF biomarkers, and CAF subpopulations expressing different biomarkers may play contrasting roles in tumor progression. In this review, we provide an overview of these emerging CAF biomarkers and the biological functions that they suggest, which may give a better understanding of the relationship between CAFs and tumor cells and be of great significance for breakthroughs in precision targeted therapy for tumors. Video Abstract.
Collapse
Affiliation(s)
- Zehua Zhao
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), No. 44 of Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Tianming Li
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), No. 44 of Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, No. 155 of Nanjing Road, Heping District, Shenyang, 110001, China.
| | - Yanmei Zhu
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), No. 44 of Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
| |
Collapse
|
13
|
Liang X, Lin X, Lin Z, Lin W, Peng Z, Wei S. Genes associated with cellular senescence favor melanoma prognosis by stimulating immune responses in tumor microenvironment. Comput Biol Med 2023; 158:106850. [PMID: 37031510 DOI: 10.1016/j.compbiomed.2023.106850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/25/2023] [Accepted: 03/30/2023] [Indexed: 04/11/2023]
Abstract
PURPOSE Skin cutaneous melanoma (SKCM), a malignant tumor from melanocytes, is the fifth most prevalent tumor. Immune checkpoint inhibitor (ICI) immunotherapy improves prognosis of SKCM, but immune response varies for different populations. Cellular senescence in the tumor microenvironment (TME) promotes antitumor immunity, mediated by dendritic cells (DC) and CD8+ T cells. Therefore, we sought to explore the role of cellular senescence in the TME of SKCM through bioinformatics and machine learning. METHODS First, we obtained 93 cellular senescence-prognosis genes (CSPGs) by univariate survival analysis. Thereafter, 23 optimal CSPGs were obtained by least absolute shrinkage and selection operator (lasso) analysis. Based on the riskscore obtained by lasso analysis and clinical information from multivariate cox, we obtained the nomogram of SKCM, which was validated in the validation cohort. Based on the riskscore, the patients were split into low- and high-risk groups. Functional differences between the two groups were analyzed using Metascape and GSEA, and immune infiltration differences were achieved by multiple algorithms. We obtained a risk prediction nomogram for the validated SKCM based on the lasso model by univariate and multivariate cox regression analysis. RESULTS In the low-risk group, immune responses were in an active state. NK, CD8+ T, DC, macrophages, and neutrophils were significantly upregulated, and ICI-relevant genes were notably upregulated. With the differentially expressed genes (DEGs) and optimal CSPGs, we obtained the hub genes: NOX4, NTN4, PROX1, and TRPM8. The hub genes were mainly expressed by cancer-associated fibroblasts (CAFs) and endothelial cells by single cell analysis, which were mainly associated with angiogenesis. CONCLUSION Genes associated with cellular senescence favor SKCM prognosis by stimulating immune responses in TME. Patients with high expression of cellular senescence associated genes in the TME might have better benefit from ICI immunotherapy. Cellular senescence functions as a pro-tumor agent in mesenchymal cells and needs further study.
Collapse
Affiliation(s)
- Xiaofeng Liang
- Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaobing Lin
- Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Zien Lin
- Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Weiyi Lin
- Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Zhishen Peng
- Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Shanshan Wei
- Department of Dermatology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
14
|
Rebelo R, Xavier CPR, Giovannetti E, Vasconcelos MH. Fibroblasts in pancreatic cancer: molecular and clinical perspectives. Trends Mol Med 2023; 29:439-453. [PMID: 37100646 DOI: 10.1016/j.molmed.2023.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 04/28/2023]
Abstract
Pancreatic stellate cells (PSCs) and cancer-associated fibroblasts (CAFs) are highly abundant cells in the pancreatic tumor microenvironment (TME) that modulate desmoplasia. The formation of a dense stroma leads to immunosuppression and therapy resistance that are major causes of treatment failure in pancreatic ductal adenocarcinoma (PDAC). Recent evidence suggests that several subpopulations of CAFs in the TME can interconvert, explaining the dual roles (antitumorigenic and protumorigenic) of CAFs in PDAC and the contradictory results of CAF-targeted therapies in clinical trials. This highlights the need to clarify CAF heterogeneity and their interactions with PDAC cells. This review focuses on the communication between activated PSCs/CAFs and PDAC cells, as well as on the mechanisms underlying this crosstalk. CAF-focused therapies and emerging biomarkers are also outlined.
Collapse
Affiliation(s)
- Rita Rebelo
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-135 Porto, Portugal; Department of Biological Sciences, Faculty of Pharmacy of the University of Porto (FFUP), Porto, Portugal
| | - Cristina P R Xavier
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-135 Porto, Portugal
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Fondazione Pisana per La Scienza, Pisa, Italy
| | - M Helena Vasconcelos
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-135 Porto, Portugal; Department of Biological Sciences, Faculty of Pharmacy of the University of Porto (FFUP), Porto, Portugal.
| |
Collapse
|
15
|
Starska-Kowarska K. The Role of Different Immunocompetent Cell Populations in the Pathogenesis of Head and Neck Cancer-Regulatory Mechanisms of Pro- and Anti-Cancer Activity and Their Impact on Immunotherapy. Cancers (Basel) 2023; 15:1642. [PMID: 36980527 PMCID: PMC10046400 DOI: 10.3390/cancers15061642] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most aggressive and heterogeneous groups of human neoplasms. HNSCC is characterized by high morbidity, accounting for 3% of all cancers, and high mortality with ~1.5% of all cancer deaths. It was the most common cancer worldwide in 2020, according to the latest GLOBOCAN data, representing the seventh most prevalent human malignancy. Despite great advances in surgical techniques and the application of modern combinations and cytotoxic therapies, HNSCC remains a leading cause of death worldwide with a low overall survival rate not exceeding 40-60% of the patient population. The most common causes of death in patients are its frequent nodal metastases and local neoplastic recurrences, as well as the relatively low response to treatment and severe drug resistance. Much evidence suggests that the tumour microenvironment (TME), tumour infiltrating lymphocytes (TILs) and circulating various subpopulations of immunocompetent cells, such regulatory T cells (CD4+CD25+Foxp3+Tregs), cytotoxic CD3+CD8+ T cells (CTLs) and CD3+CD4+ T helper type 1/2/9/17 (Th1/Th2/Th9/Th17) lymphocytes, T follicular helper cells (Tfh) and CD56dim/CD16bright activated natural killer cells (NK), carcinoma-associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs), tumour-associated neutrophils (N1/N2 TANs), as well as tumour-associated macrophages (M1/M2 phenotype TAMs) can affect initiation, progression and spread of HNSCC and determine the response to immunotherapy. Rapid advances in the field of immuno-oncology and the constantly growing knowledge of the immunosuppressive mechanisms and effects of tumour cancer have allowed for the use of effective and personalized immunotherapy as a first-line therapeutic procedure or an essential component of a combination therapy for primary, relapsed and metastatic HNSCC. This review presents the latest reports and molecular studies regarding the anti-tumour role of selected subpopulations of immunocompetent cells in the pathogenesis of HNSCC, including HPV+ve (HPV+) and HPV-ve (HPV-) tumours. The article focuses on the crucial regulatory mechanisms of pro- and anti-tumour activity, key genetic or epigenetic changes that favour tumour immune escape, and the strategies that the tumour employs to avoid recognition by immunocompetent cells, as well as resistance mechanisms to T and NK cell-based immunotherapy in HNSCC. The present review also provides an overview of the pre- and clinical early trials (I/II phase) and phase-III clinical trials published in this arena, which highlight the unprecedented effectiveness and limitations of immunotherapy in HNSCC, and the emerging issues facing the field of HNSCC immuno-oncology.
Collapse
Affiliation(s)
- Katarzyna Starska-Kowarska
- Department of Physiology, Pathophysiology and Clinical Immunology, Department of Clinical Physiology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; ; Tel.: +48-604-541-412
- Department of Otorhinolaryngology, EnelMed Center Expert, Drewnowska 58, 91-001 Lodz, Poland
| |
Collapse
|
16
|
Liu Y, Zhang Q, Ni W, Ji G, Xu H. A strategy for the treatment of gastrointestinal cancer: Targeting tumor senescent cells. Front Mol Biosci 2023; 10:1139840. [PMID: 36950520 PMCID: PMC10025555 DOI: 10.3389/fmolb.2023.1139840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
Gastrointestinal (GI) cancer includes a variety of cancers with high incidence that seriously threaten the lives of people worldwide. Although treatment strategies continue to improve, patient benefits are still very limited, and the ongoing search for new treatment strategies remains a priority. Cell senescence is closely related to the occurrence and development of tumors. For GI cancer, cell senescence may not only promote cancer but also bring new opportunities for treatment. Combined with relevant studies, we review the dual role of cell senescence in GI cancer, including the mechanism of inducing cell senescence, biomarkers of senescent cells, and potential of targeted senescence therapy for GI cancer.
Collapse
Affiliation(s)
- Yujing Liu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiang Zhang
- Department of Digestive Endoscopy, Jiangsu Province Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wenjing Ni
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, China
- *Correspondence: Guang Ji, ; Hanchen Xu,
| | - Hanchen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, China
- *Correspondence: Guang Ji, ; Hanchen Xu,
| |
Collapse
|
17
|
The microbiota and aging microenvironment in pancreatic cancer: Cell origin and fate. Biochim Biophys Acta Rev Cancer 2022; 1877:188826. [DOI: 10.1016/j.bbcan.2022.188826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/30/2022]
|
18
|
Vasudevan J, Jiang K, Fernandez J, Lim CT. Extracellular matrix mechanobiology in cancer cell migration. Acta Biomater 2022; 163:351-364. [PMID: 36243367 DOI: 10.1016/j.actbio.2022.10.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/11/2022] [Accepted: 10/06/2022] [Indexed: 11/01/2022]
Abstract
The extracellular matrix (ECM) is pivotal in modulating tumor progression. Besides chemically stimulating tumor cells, it also offers physical support that orchestrates the sequence of events in the metastatic cascade upon dynamically modulating cell mechanosensation. Understanding this translation between matrix biophysical cues and intracellular signaling has led to rapid growth in the interdisciplinary field of cancer mechanobiology in the last decade. Substantial efforts have been made to develop novel in vitro tumor mimicking platforms to visualize and quantify the mechanical forces within the tissue that dictate tumor cell invasion and metastatic growth. This review highlights recent findings on tumor matrix biophysical cues such as fibrillar arrangement, crosslinking density, confinement, rigidity, topography, and non-linear mechanics and their implications on tumor cell behavior. We also emphasize how perturbations in these cues alter cellular mechanisms of mechanotransduction, consequently enhancing malignancy. Finally, we elucidate engineering techniques to individually emulate the mechanical properties of tumors that could help serve as toolkits for developing and testing ECM-targeted therapeutics on novel bioengineered tumor platforms. STATEMENT OF SIGNIFICANCE: Disrupted ECM mechanics is a driving force for transitioning incipient cells to life-threatening malignant variants. Understanding these ECM changes can be crucial as they may aid in developing several efficacious drugs that not only focus on inducing cytotoxic effects but also target specific matrix mechanical cues that support and enhance tumor invasiveness. Designing and implementing an optimal tumor mimic can allow us to predictively map biophysical cue-modulated cell behaviors and facilitate the design of improved lab-grown tumor models with accurately controlled structural features. This review focuses on the abnormal changes within the ECM during tumorigenesis and its implications on tumor cell-matrix mechanoreciprocity. Additionally, it accentuates engineering approaches to produce ECM features of varying levels of complexity which is critical for improving the efficiency of current engineered tumor tissue models.
Collapse
|
19
|
Wu C, Gu J, Gu H, Zhang X, Zhang X, Ji R. The recent advances of cancer associated fibroblasts in cancer progression and therapy. Front Oncol 2022; 12:1008843. [PMID: 36185262 PMCID: PMC9516766 DOI: 10.3389/fonc.2022.1008843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
As an abundant component of tumor microenvironment, cancer-associated fibroblasts (CAFs) are heterogeneous cell populations that play important roles in tumor development, progression and therapeutic resistance. Multiple sources of cells can be recruited and educated to become CAFs, such as fibroblasts, mesenchymal stem cells and adipocytes, which may explain the phenotypic and functional heterogeneity of CAFs. It is widely believed that CAFs regulate tumor progression by remodeling extracellular matrix, promoting angiogenesis, and releasing soluble cytokines, making them a promising cancer therapy target. In this review, we discussed about the origin, subpopulation, and functional heterogeneity of CAFs, with particular attention to recent research advances and clinical therapeutic potential of CAFs in cancer.
Collapse
Affiliation(s)
- Chenxi Wu
- Department of Clinical Laboratory Medicine, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jianmei Gu
- Department of Clinical Laboratory Medicine, Nantong Tumor Hospital, Nantong, China
| | - Hongbing Gu
- Department of Clinical Laboratory Medicine, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - XiaoXin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Runbi Ji
- Department of Clinical Laboratory Medicine, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
- *Correspondence: Runbi Ji,
| |
Collapse
|
20
|
Takikawa T, Hamada S, Matsumoto R, Tanaka Y, Kataoka F, Sasaki A, Masamune A. Senescent Human Pancreatic Stellate Cells Secrete CXCR2 Agonist CXCLs to Promote Proliferation and Migration of Human Pancreatic Cancer AsPC-1 and MIAPaCa-2 Cell Lines. Int J Mol Sci 2022; 23:ijms23169275. [PMID: 36012531 PMCID: PMC9409091 DOI: 10.3390/ijms23169275] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Interactions between pancreatic cancer cells and pancreatic stellate cells (PSCs) play an important role in the progression of pancreatic cancer. Recent studies have shown that cellular senescence and senescence-associated secretory phenotype factors play roles in the progression of cancer. This study aimed to clarify the effects of senescence-induced PSCs on pancreatic cancer cells. Senescence was induced in primary-cultured human PSCs (hPSCs) through treatment with hydrogen peroxide or gemcitabine. Microarray and Gene Ontology analyses showed the alterations in genes and pathways related to cellular senescence and senescence-associated secretory phenotype factors, including the upregulation of C-X-C motif chemokine ligand (CXCL)-1, CXCL2, and CXCL3 through the induction of senescence in hPSCs. Conditioned media of senescent hPSCs increased the proliferation—as found in an assessment with a BrdU incorporation assay—and migration—as found in an assessment with wound-healing and two-chamber assays—of pancreatic cancer AsPC-1 and MIAPaca-2 cell lines. SB225002, a selective CXCR2 antagonist, and SCH-527123, a CXCR1/CXCR2 antagonist, attenuated the effects of conditioned media of senescent hPSCs on the proliferation and migration of pancreatic cancer cells. These results suggest a role of CXCLs as senescence-associated secretory phenotype factors in the interaction between senescent hPSCs and pancreatic cancer cells. Senescent PSCs might be novel therapeutic targets for pancreatic cancer.
Collapse
|
21
|
Peng H, Zhu E, Zhang Y. Advances of cancer-associated fibroblasts in liver cancer. Biomark Res 2022; 10:59. [PMID: 35971182 PMCID: PMC9380339 DOI: 10.1186/s40364-022-00406-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
Liver cancer is one of the most common malignant tumors worldwide, it is ranked sixth in incidence and fourth in mortality. According to the distinct origin of malignant tumor cells, liver cancer is mainly divided into hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA). Since most cases are diagnosed at an advanced stage, the prognosis of liver cancer is poor. Tumor growth depends on the dynamic interaction of various cellular components in the tumor microenvironment (TME). As the most abundant components of tumor stroma, cancer-associated fibroblasts (CAFs) have been involved in the progression of liver cancer. The interplay between CAFs and tumor cells, immune cells, or vascular endothelial cells in the TME through direct cell-to-cell contact or indirect paracrine interaction, affects the initiation and development of tumors. Additionally, CAFs are not a homogeneous cell population in liver cancer. Recently, single-cell sequencing technology has been used to help better understand the diversity of CAFs in liver cancer. In this review, we mainly update the knowledge of CAFs both in HCC and CCA, including their cell origins, chemoresistance, tumor stemness induction, tumor immune microenvironment formation, and the role of tumor cells on CAFs. Understanding the context-dependent role of different CAFs subsets provides new strategies for precise liver cancer treatment.
Collapse
Affiliation(s)
- Hao Peng
- Medical School, Southeast University, Nanjing, 210009, China
| | - Erwei Zhu
- The Second People's Hospital of Lianyungang (The Oncology Hospital of Lianyungang), Lianyungang, 222006, China
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China.
| |
Collapse
|
22
|
Bu L, Yonemura A, Yasuda-Yoshihara N, Uchihara T, Ismagulov G, Takasugi S, Yasuda T, Okamoto Y, Kitamura F, Akiyama T, Arima K, Itoyama R, Zhang J, Fu L, Hu X, Wei F, Arima Y, Moroishi T, Nishiyama K, Sheng G, Mukunoki T, Otani J, Baba H, Ishimoto T. Tumor microenvironmental 15-PGDH depletion promotes fibrotic tumor formation and angiogenesis in pancreatic cancer. Cancer Sci 2022; 113:3579-3592. [PMID: 35848891 PMCID: PMC9530869 DOI: 10.1111/cas.15495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/08/2022] [Accepted: 06/29/2022] [Indexed: 12/24/2022] Open
Abstract
The arachidonic acid cascade is a major inflammatory pathway that produces prostaglandin E2 (PGE2). Although inhibition of 15‐hydroxyprostaglandin dehydrogenase (15‐PGDH) is reported to lead to PGE2 accumulation, the role of 15‐PGDH expression in the tumor microenvironment remains unclear. We utilized Panc02 murine pancreatic cancer cells for orthotopic transplantation into wild‐type and 15‐pgdh+/− mice and found that 15‐pgdh depletion in the tumor microenvironment leads to enhanced tumorigenesis accompanied by an increase in cancer‐associated fibroblasts (CAFs) and the promotion of fibrosis. The fibrotic tumor microenvironment is widely considered to be hypovascular; however, we found that the angiogenesis level is maintained in 15‐pgdh+/− mice, and these changes were also observed in a genetically engineered PDAC mouse model. Further confirmation revealed that fibroblast growth factor 1 (FGF1) is secreted by pancreatic cancer cells after PGE2 stimulation, consequently promoting CAF proliferation and vascular endothelial growth factor A (VEGFA) expression in the tumor microenvironment. Finally, in 15‐pgdh+/−Acta2‐TK mice, depletion of fibroblasts inhibited angiogenesis and cancer cell viability in orthotopically transplanted tumors. These findings highlighted the role of 15‐pgdh downregulation in enhancing PGE2 accumulation in the pancreatic tumor microenvironment and in subsequently maintaining the angiogenesis level in fibrotic tumors along with CAF expansion.
Collapse
Affiliation(s)
- Luke Bu
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Atsuko Yonemura
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - N Yasuda-Yoshihara
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Tomoyuki Uchihara
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Galym Ismagulov
- Developmental Morphogenesis, IRCMS, Kumamoto University, Kumamoto, Japan
| | - Sanae Takasugi
- Application Department, X-ray Division, Bruker Japan K.K., Kanagawa, Japan
| | - Tadahito Yasuda
- Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Yuya Okamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Fumimasa Kitamura
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Takahiko Akiyama
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Kota Arima
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Rumi Itoyama
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jun Zhang
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Lingfeng Fu
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Xichen Hu
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Feng Wei
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Yuichiro Arima
- Developmental Cardiology, IRCMS, Kumamoto University, Kumamoto, Japan
| | - Toshiro Moroishi
- Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Japan.,Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Koichi Nishiyama
- Laboratory of Vascular and Cellular Dynamics, Department of Medical Sciences, University of Miyazaki, Miyazaki City, Japan
| | - Guojun Sheng
- Developmental Morphogenesis, IRCMS, Kumamoto University, Kumamoto, Japan
| | - Toshifumi Mukunoki
- X-Earth Center, Faculty of Advanced Science and Technology Kumamoto University, Japan
| | - Jun Otani
- X-Earth Center, Faculty of Advanced Science and Technology Kumamoto University, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takatsugu Ishimoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| |
Collapse
|
23
|
Hu C, Xia R, Zhang X, Li T, Ye Y, Li G, He R, Li Z, Lin Q, Zheng S, Chen R. circFARP1 enables cancer-associated fibroblasts to promote gemcitabine resistance in pancreatic cancer via the LIF/STAT3 axis. Mol Cancer 2022; 21:24. [PMID: 35045883 PMCID: PMC8767726 DOI: 10.1186/s12943-022-01501-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/02/2022] [Indexed: 02/08/2023] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) are critically involved in gemcitabine (GEM) resistance in pancreatic ductal adenocarcinoma (PDAC). However, the underlying mechanism by which CAFs promote chemotherapy resistance remains unexplored. Here, we explored the role of circRNAs in CAF-induced GEM resistance in PDAC. Methods circRNA sequencing and quantitative real-time PCR (qRT–PCR) were utilized to screen CAF-specific circRNAs. The effects of CAF circFARP1 expression on GEM resistance in tumor cells were assessed in vitro and in vivo. RNA-seq, RNA pulldown, RNA immunoprecipitation, and luciferase reporter assays were used to screen the downstream target and underlying mechanism of circFARP1. Results circFARP1 (hsa_circ_0002557), a CAF-specific circRNA, was positively correlated with GEM chemoresistance and poor survival in an advanced PDAC cohort. Silencing or overexpressing circFARP1 in CAFs altered the ability of CAFs to induce tumor cell stemness and GEM resistance via leukemia inhibitory factor (LIF). Mechanistically, we found that circFARP1 directly binds with caveolin 1 (CAV1) and blocks the interaction of CAV1 and the E3 ubiquitin-protein ligase zinc and ring finger 1 (ZNRF1) to inhibit CAV1 degradation, which enhances LIF secretion. In addition, circFARP1 upregulated LIF expression by sponging miR-660-3p. Moreover, high circFARP1 levels were positively correlated with elevated serum LIF levels in PDAC and poor patient survival. Decreasing circFARP1 levels and neutralizing LIF significantly suppressed PDAC growth and GEM resistance in patient-derived xenograft models. Conclusions The circFARP1/CAV1/miR-660-3p/LIF axis is critical for CAF-induced GEM resistance in PDAC. Hence, circFARP1 may be a potential therapeutic target for PDAC. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01501-3.
Collapse
Affiliation(s)
- Chonghui Hu
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China.,Guangdong cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Renpeng Xia
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China.,Department of Neonatal/General Surgery, Hunan Children's Hospital, Changsha, Hunan, 410007, People's Republic of China
| | - Xiang Zhang
- Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Tingting Li
- School of medicine, South China University of Technology, Guangzhou, Guangdong Province, 510006, People's Republic of China
| | - Yuancheng Ye
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Guolin Li
- Department of Hepatobiliary, Pancreatic and Splenic surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, People's Republic of China
| | - Rihua He
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Zhihua Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.,Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Qing Lin
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Shangyou Zheng
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Rufu Chen
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China. .,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China. .,School of medicine, South China University of Technology, Guangzhou, Guangdong Province, 510006, People's Republic of China.
| |
Collapse
|
24
|
Zhang P, Cheng S, Sheng X, Dai H, He K, Du Y. The role of autophagy in regulating metabolism in the tumor microenvironment. Genes Dis 2021; 10:447-456. [DOI: 10.1016/j.gendis.2021.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/23/2021] [Accepted: 10/24/2021] [Indexed: 10/19/2022] Open
|
25
|
Kamposioras K, Vassilakopoulou M, Anthoney A, Bariuoso J, Mauri D, Mansoor W, Papadopoulos V, Dimas K. Prognostic significance and therapeutic implications of Caveolin-1 in gastrointestinal tract malignancies. Pharmacol Ther 2021; 233:108028. [PMID: 34755606 DOI: 10.1016/j.pharmthera.2021.108028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 02/07/2023]
Abstract
Caveolin-1 (CAV1) is expressed in several solid tumors both in cancerous cells as well as in tumor stroma and is reported to be related to cancer progression, metastasis, therapy resistance and clinical outcomes. Many studies report contrasting functions of this protein depending on the tumor cell model, the tumor type, or the stage of cancer studied. This protein is reported to function both as tumor suppressor and as tumor promoter. In this review, we aim to summarize translational and clinical studies that provide evidence of the role of CAV1 in tumor progression and survival outcome focusing on tumors of the gastrointestinal (GI) tract. Towards this aim, a detailed search has been performed for studies on the expression and the role of CAV1 in oesophageal, gastric, colorectal, pancreatic cancer and cholangiocarcinoma prognosis. We also review and discuss the implication of CAV1 in the outcome of pharmacological interventions. We conclude that CAV1 has the potential to become an important prognostic, and possibly predictive, biomarker in GI malignancies. It may also become a novel target towards the development of improved cancer therapies. However, it is obvious that there remains a lack of consensus on important issues such as the methodologies and cut-off levels in caveolin assessment. This ultimately result in many studies being contradictory not only in terms of the role of CAV1 as a tumor-promoting or suppressing gene but also in terms of the tumor compartment in which the levels of this protein may be of clinical significance. Addressing these important technical issues, in conjunction with a further elucidation of the role of CAV1 in tumor formation and progression, will delineate the importance of CAV1 in prognostic and therapeutic perspectives.
Collapse
Affiliation(s)
| | - Maria Vassilakopoulou
- Department of Medical Oncology, School of Medicine, University of Crete, Heraklion, Greece
| | - Alan Anthoney
- Leeds Institute of Medical Research at St James' Hospital, University of Leeds, Leeds, UK
| | - Jorge Bariuoso
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK; Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK; Manchester Cancer Research Centre, UK
| | - Davide Mauri
- Department of Medical Oncology, University Hospital of Ioannina, Ioannina, Greece
| | - Was Mansoor
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Vassilios Papadopoulos
- Department of Medical Oncology, University Hospital of Larissa, University of Thessaly, Greece
| | | |
Collapse
|
26
|
Cancer-associated fibroblast senescence and its relation with tumour-infiltrating lymphocytes and PD-L1 expressions in intrahepatic cholangiocarcinoma. Br J Cancer 2021; 126:219-227. [PMID: 34616011 DOI: 10.1038/s41416-021-01569-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/04/2021] [Accepted: 09/27/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Caveolin-1 (CAV1) in cancer-associated fibroblasts (CAFs) has pro- or anti-tumourigenic effect depending on the cancer type. However, its effect in intrahepatic carcinoma (ICC) remains unknown. Therefore, this study aimed to investigate the relationship between CAV1 in CAFs and tumour-infiltrating lymphocyte (TIL) numbers or PD-L1 levels in ICC patients. METHODS Consecutive ICC patients (n = 158) were enrolled in this study. The levels of CAV1 in CAFs, CD8 + TILs, Foxp3+ TILs and PD-L1 in cancer cells were analysed using immunohistochemistry. Their association with the clinicopathological factors and prognosis were evaluated. The correlation between these factors was evaluated. RESULTS CAV1 upregulation in CAFs was associated with a poor overall survival (OS) (P < 0.001) and recurrence-free survival (P = 0.008). Clinicopathological factors were associated with high CA19-9 levels (P < 0.001), advanced tumour stage (P = 0.046) and lymph node metastasis (P = 0.004). CAV1 level was positively correlated with Foxp3+ TIL numbers (P = 0.01). There were no significant correlations between CAV1 levels and CD8 + TIL numbers (P = 0.80) and PD-L1 levels (P = 0.97). An increased CD8 + TIL number and decreased Foxp3+ TIL number were associated with an increased OS. In multivariate analysis, positive CAV1 expression in CAFs (P = 0.013) and decreased CD8 + TIL numbers (P = 0.021) were independent poor prognostic factors. CONCLUSION Cellular senescence, represented by CAV1 levels, may be a marker of CAFs and a prognostic indicator of ICC through Foxp3+ TIL regulation. CAV1 expression in CAFs can be a therapeutic target for ICC.
Collapse
|
27
|
Cancer-associated fibroblasts: overview, progress, challenges, and directions. Cancer Gene Ther 2021; 28:984-999. [PMID: 33712707 DOI: 10.1038/s41417-021-00318-4] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/12/2021] [Accepted: 02/25/2021] [Indexed: 01/30/2023]
Abstract
Tumors are one of the main causes of death in humans. The development of safe and effective methods for early diagnosis and treatment of tumors is a difficult problem that needs to be solved urgently. It is well established that the occurrence of tumors involves complex biological mechanisms, and the tumor microenvironment (TME) plays an important role in regulating the biological behavior of tumors. Cancer-associated fibroblasts (CAFs) are a group of activated fibroblasts with significant heterogeneity and plasticity in the tumor microenvironment. They secrete a variety of active factors to regulate tumor occurrence, development, metastasis, and therapeutic resistance. Although most studies suggest that CAFs have significant tumor-promoting functions, some evidence indicates that they may have certain tumor-suppressive functions in the early stage of tumors. Current research on CAFs continues to face many challenges, and the heterogeneity of their origin, phenotype, and function is a major difficulty and hot spot. To provide new perspectives for the research on CAFs and tumor diagnosis and treatment, this review summarizes the definition, origin, biomarkers, generation mechanism, functions, heterogeneity, plasticity, subpopulations, pre-metastasis niches (PMN), immune microenvironment, and targeted therapy of CAFs, describes the research progress and challenges, and proposes possible future research directions based on existing reports.
Collapse
|
28
|
Ilkhani K, Bastami M, Delgir S, Safi A, Talebian S, Alivand MR. The Engaged Role of Tumor Microenvironment in Cancer Metabolism: Focusing on Cancer-Associated Fibroblast and Exosome Mediators. Anticancer Agents Med Chem 2021; 21:254-266. [PMID: 32914721 DOI: 10.2174/1871520620666200910123428] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/25/2020] [Accepted: 07/31/2020] [Indexed: 11/22/2022]
Abstract
Metabolic reprogramming is a significant property of various cancer cells, which most commonly arises from the Tumor Microenvironment (TME). The events of metabolic pathways include the Warburg effect, shifting in Krebs cycle metabolites, and the rate of oxidative phosphorylation, potentially providing energy and structural requirements for the development and invasiveness of cancer cells. TME and tumor metabolism shifting have a close relationship through bidirectional signaling pathways between stromal and tumor cells. Cancer- Associated Fibroblasts (CAFs), as the most dominant cells of TME, play a crucial role in the aberrant metabolism of cancer. Furthermore, the stated relationship can affect survival, progression, and metastasis in cancer development. Recently, exosomes are considered one of the most prominent factors in cellular communications considering effective content and bidirectional mediatory effect between tumor and stromal cells. In this regard, CAF-Derived Exosomes (CDE) exhibit an efficient obligation to induce metabolic reprogramming for promoting growth and metastasis of cancer cells. The understanding of cancer metabolism, including factors related to TME, could lead to the discovery of a potential biomarker for diagnostic and therapeutic approaches in cancer management. This review focuses on the association between metabolic reprogramming and engaged microenvironmental, factors such as CAFs, and the associated derived exosomes.
Collapse
Affiliation(s)
- Khandan Ilkhani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Bastami
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Delgir
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asma Safi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahrzad Talebian
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad-Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
29
|
Wu F, Yang J, Liu J, Wang Y, Mu J, Zeng Q, Deng S, Zhou H. Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduct Target Ther 2021; 6:218. [PMID: 34108441 PMCID: PMC8190181 DOI: 10.1038/s41392-021-00641-0] [Citation(s) in RCA: 324] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/20/2021] [Accepted: 05/06/2021] [Indexed: 02/05/2023] Open
Abstract
To flourish, cancers greatly depend on their surrounding tumor microenvironment (TME), and cancer-associated fibroblasts (CAFs) in TME are critical for cancer occurrence and progression because of their versatile roles in extracellular matrix remodeling, maintenance of stemness, blood vessel formation, modulation of tumor metabolism, immune response, and promotion of cancer cell proliferation, migration, invasion, and therapeutic resistance. CAFs are highly heterogeneous stromal cells and their crosstalk with cancer cells is mediated by a complex and intricate signaling network consisting of transforming growth factor-beta, phosphoinositide 3-kinase/AKT/mammalian target of rapamycin, mitogen-activated protein kinase, Wnt, Janus kinase/signal transducers and activators of transcription, epidermal growth factor receptor, Hippo, and nuclear factor kappa-light-chain-enhancer of activated B cells, etc., signaling pathways. These signals in CAFs exhibit their own special characteristics during the cancer progression and have the potential to be targeted for anticancer therapy. Therefore, a comprehensive understanding of these signaling cascades in interactions between cancer cells and CAFs is necessary to fully realize the pivotal roles of CAFs in cancers. Herein, in this review, we will summarize the enormous amounts of findings on the signals mediating crosstalk of CAFs with cancer cells and its related targets or trials. Further, we hypothesize three potential targeting strategies, including, namely, epithelial-mesenchymal common targets, sequential target perturbation, and crosstalk-directed signaling targets, paving the way for CAF-directed or host cell-directed antitumor therapy.
Collapse
Affiliation(s)
- Fanglong Wu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jin Yang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Junjiang Liu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ye Wang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jingtian Mu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Qingxiang Zeng
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Shuzhi Deng
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
30
|
Huang C, Iovanna J, Santofimia-Castaño P. Targeting Fibrosis: The Bridge That Connects Pancreatitis and Pancreatic Cancer. Int J Mol Sci 2021; 22:4970. [PMID: 34067040 PMCID: PMC8124541 DOI: 10.3390/ijms22094970] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic fibrosis is caused by the excessive deposits of extracellular matrix (ECM) and collagen fibers during repeated necrosis to repair damaged pancreatic tissue. Pancreatic fibrosis is frequently present in chronic pancreatitis (CP) and pancreatic cancer (PC). Clinically, pancreatic fibrosis is a pathological feature of pancreatitis and pancreatic cancer. However, many new studies have found that pancreatic fibrosis is involved in the transformation from pancreatitis to pancreatic cancer. Thus, the role of fibrosis in the crosstalk between pancreatitis and pancreatic cancer is critical and still elusive; therefore, it deserves more attention. Here, we review the development of pancreatic fibrosis in inflammation and cancer, and we discuss the therapeutic strategies for alleviating pancreatic fibrosis. We further propose that cellular stress response might be a key driver that links fibrosis to cancer initiation and progression. Therefore, targeting stress proteins, such as nuclear protein 1 (NUPR1), could be an interesting strategy for pancreatic fibrosis and PC treatment.
Collapse
Affiliation(s)
| | | | - Patricia Santofimia-Castaño
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13288 Marseille, France; (C.H.); (J.I.)
| |
Collapse
|
31
|
Freund E, Miebach L, Stope MB, Bekeschus S. Hypochlorous acid selectively promotes toxicity and the expression of danger signals in human abdominal cancer cells. Oncol Rep 2021; 45:71. [PMID: 33760187 PMCID: PMC8020206 DOI: 10.3892/or.2021.8022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/18/2021] [Indexed: 12/26/2022] Open
Abstract
Tumors of the abdominal cavity, such as colorectal, pancreatic and ovarian cancer, frequently metastasize into the peritoneum. Large numbers of metastatic nodules hinder curative surgical resection, necessitating lavage with hyperthermic intraperitoneal chemotherapy (HIPEC). However, HIPEC not only causes severe side effects but also has limited therapeutic efficacy in various instances. At the same time, the age of immunotherapies such as biological agents, checkpoint‑ inhibitors or immune‑cell therapies, increasingly emphasizes the critical role of anticancer immunity in targeting malignancies. The present study investigated the ability of three types of long‑lived reactive species (oxidants) to inactivate cancer cells and potentially complement current HIPEC regimens, as well as to increase tumor cell expression of danger signals that stimulate innate immunity. The human abdominal cancer cell lines HT‑29, Panc‑01 and SK‑OV‑3 were exposed to different concentrations of hydrogen peroxide (H2O2), hypochlorous acid (HOCl) and peroxynitrite (ONOO‑). Metabolic activity was measured, as well as determination of cell death and danger signal expression levels via flow cytometry and detection of intracellular oxidation via high‑content microscopy. Oxidation of tumor decreased intracellular levels of the antioxidant glutathione and induced oxidation in mitochondria, accompanied by a decrease in metabolic activity and an increase in regulated cell death. At similar concentrations, HOCl showed the most potent effects. Non‑malignant HaCaT keratinocytes were less affected, suggesting the approach to be selective to some extent. Pro‑immunogenic danger molecules were investigated by assessing the expression levels of calreticulin (CRT), and heat‑shock protein (HSP)70 and HSP90. CRT expression was greatest following HOCl and ONOO‑ treatment, whereas HOCl and H2O2 resulted in the greatest increase in HSP70 and HSP90 expression levels. These results suggested that HOCl may be a promising agent to complement current HIPEC regimens targeting peritoneal carcinomatosis.
Collapse
Affiliation(s)
- Eric Freund
- Centre for Innovation Competence (ZIK) Plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), D-17489 Greifswald, Germany
- Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, D-17475 Greifswald, Germany
| | - Lea Miebach
- Centre for Innovation Competence (ZIK) Plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), D-17489 Greifswald, Germany
- Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, D-17475 Greifswald, Germany
| | - Matthias B. Stope
- Department of Gynecology and Gynecological Oncology, Bonn University Medical Center, D-53217 Bonn, Germany
| | - Sander Bekeschus
- Centre for Innovation Competence (ZIK) Plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), D-17489 Greifswald, Germany
| |
Collapse
|
32
|
Kaya S, Wiesmann N, Goldschmitt J, Krüger M, Al-Nawas B, Heider J. Differences in the expression of caveolin-1 isoforms in cancer-associated and normal fibroblasts of patients with oral squamous cell carcinoma. Clin Oral Investig 2021; 25:5823-5831. [PMID: 33774714 PMCID: PMC8443514 DOI: 10.1007/s00784-021-03887-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/12/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES For many years, tumor development has been viewed as a cell-autonomous process; however, today we know that the tumor microenvironment (TME) and especially cancer-associated fibroblasts (CAFs) significantly contribute to tumor progression. Caveolin-1 (Cav-1) is a scaffolding protein which is involved in several cancer-associated processes as important component of the caveolae. Our goal was to shed light on the expression of the two different isoforms of Cav-1 in normal fibroblasts (NFs) and CAFs of patients with oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS Fibroblasts from normal mucosa and CAFs were isolated and propagated in vitro. Gene expression of the different Cav-1 isoforms was assessed via quantitative real-time PCR (qPCR) and supplemented by protein expression analysis. RESULTS We could show that the Cav-1β isoform is more highly expressed in NFs and CAFs compared to Cav-1α. Furthermore, the different Cav-1 isoforms tended to be differently expressed in different tumor stages. However, this trend could not be seen consistently, which is in line with the ambiguous role of Cav-1 in tumor progression described in literature. Western blotting furthermore revealed that NFs and CAFs might differ in the oligomerization profile of the Cav-1 protein. CONCLUSION These differences in expression of Cav-1 between NFs and CAFs of patients with OSCC confirm that the protein might play a role in tumor progression and is of interest for further analyses. CLINICAL RELEVANCE Our findings support a possible role of the two isoforms of Cav-1 in the malignant transformation of OSCC.
Collapse
Affiliation(s)
- S Kaya
- Department of Oral and Maxillofacial Surgery Plastic Surgery, University Medical Center of the Johannes Gutenberg-University of Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - Nadine Wiesmann
- Department of Oral and Maxillofacial Surgery Plastic Surgery, University Medical Center of the Johannes Gutenberg-University of Mainz, Augustusplatz 2, 55131, Mainz, Germany. .,Molecular Tumor Biology, Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany.
| | - J Goldschmitt
- Department of Oral and Maxillofacial Surgery Plastic Surgery, University Medical Center of the Johannes Gutenberg-University of Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - M Krüger
- Department of Oral and Maxillofacial Surgery Plastic Surgery, University Medical Center of the Johannes Gutenberg-University of Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - B Al-Nawas
- Department of Oral and Maxillofacial Surgery Plastic Surgery, University Medical Center of the Johannes Gutenberg-University of Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - J Heider
- Department of Oral and Maxillofacial Surgery Plastic Surgery, University Medical Center of the Johannes Gutenberg-University of Mainz, Augustusplatz 2, 55131, Mainz, Germany
| |
Collapse
|
33
|
Abstract
Cellular senescence is a feature of most somatic cells. It is characterized by an irreversible cell cycle arrest and by the ability to secrete a plethora of mediators of inflammation and growth factors, which can alter the senescent cell's microenvironment. Senescent cells accumulate in tissues over time and contribute to both aging and the development of age-associated diseases. Senescent cells have antagonistic pleiotropic roles in cancer. Given the inability of senescent cells to proliferate, cellular senescence is a powerful tumor suppressor mechanism in young individuals. However, accumulation of senescent stromal cells during aging can fuel cancer cell growth in virtue of their capacity to release factors that stimulate cell proliferation. Caveolin-1 is a structural protein component of caveolae, invaginations of the plasma membrane involved in a variety of cellular processes, including signal transduction. Mounting evidence over the last 10-15 years has demonstrated a central role of caveolin-1 in the development of a senescent phenotype and the regulation of both the anti-tumorigenic and pro-tumorigenic properties of cellular senescence. In this review, we discuss the cellular mechanisms and functions of caveolin-1 in the context of cellular senescence and their relevance to the biology of cancer.
Collapse
|
34
|
Huang W, Weng W, Wu B, Ye T, Lin Z, Zhang Z, Shi K. Development and validation of the trans-omics model for pancreatic adenocarcinoma. Epigenomics 2021; 13:15-30. [PMID: 33356543 DOI: 10.2217/epi-2020-0184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aim: To develop a trans-omics-based molecular clinicopathological algorithm for predicting pancreatic adenocarcinoma prognosis, we performed a comprehensive analysis of the expression levels of mRNA, DNA methylation and DNA copy number in The Cancer Genome Atlas dataset. Materials & methods: Based on the least absolute shrinkage and selection operator method - COX regression analysis, a trans-omics-based classifier was established to predict overall survival. Nomogram was constructed by combining the classifier band clinical pathological characterization. Results: Based on trans-omics, we developed a 10-gene-based classifier and a molecular-clinicopathologic nomogram for predicting overall survival with satisfactory accuracy. Conclusion: Trans-omics-based classifier and molecule-clinicopathological nomogram based on the classifier can accurately predict the prognosis of pancreatic adenocarcinoma patients.
Collapse
Affiliation(s)
- Weiguo Huang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang Province, PR China
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang Province, PR China
| | - Wanqing Weng
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang Province, PR China
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang Province, PR China
| | - Boda Wu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang Province, PR China
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang Province, PR China
| | - Tingbo Ye
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang Province, PR China
| | - Zhuo Lin
- Department of Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China
| | - Zhongjing Zhang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang Province, PR China
| | - Keqing Shi
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang Province, PR China
| |
Collapse
|
35
|
Walcher L, Kistenmacher AK, Suo H, Kitte R, Dluczek S, Strauß A, Blaudszun AR, Yevsa T, Fricke S, Kossatz-Boehlert U. Cancer Stem Cells-Origins and Biomarkers: Perspectives for Targeted Personalized Therapies. Front Immunol 2020; 11:1280. [PMID: 32849491 PMCID: PMC7426526 DOI: 10.3389/fimmu.2020.01280] [Citation(s) in RCA: 520] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
The use of biomarkers in diagnosis, therapy and prognosis has gained increasing interest over the last decades. In particular, the analysis of biomarkers in cancer patients within the pre- and post-therapeutic period is required to identify several types of cells, which carry a risk for a disease progression and subsequent post-therapeutic relapse. Cancer stem cells (CSCs) are a subpopulation of tumor cells that can drive tumor initiation and can cause relapses. At the time point of tumor initiation, CSCs originate from either differentiated cells or adult tissue resident stem cells. Due to their importance, several biomarkers that characterize CSCs have been identified and correlated to diagnosis, therapy and prognosis. However, CSCs have been shown to display a high plasticity, which changes their phenotypic and functional appearance. Such changes are induced by chemo- and radiotherapeutics as well as senescent tumor cells, which cause alterations in the tumor microenvironment. Induction of senescence causes tumor shrinkage by modulating an anti-tumorigenic environment in which tumor cells undergo growth arrest and immune cells are attracted. Besides these positive effects after therapy, senescence can also have negative effects displayed post-therapeutically. These unfavorable effects can directly promote cancer stemness by increasing CSC plasticity phenotypes, by activating stemness pathways in non-CSCs, as well as by promoting senescence escape and subsequent activation of stemness pathways. At the end, all these effects can lead to tumor relapse and metastasis. This review provides an overview of the most frequently used CSC markers and their implementation as biomarkers by focussing on deadliest solid (lung, stomach, liver, breast and colorectal cancers) and hematological (acute myeloid leukemia, chronic myeloid leukemia) cancers. Furthermore, it gives examples on how the CSC markers might be influenced by therapeutics, such as chemo- and radiotherapy, and the tumor microenvironment. It points out, that it is crucial to identify and monitor residual CSCs, senescent tumor cells, and the pro-tumorigenic senescence-associated secretory phenotype in a therapy follow-up using specific biomarkers. As a future perspective, a targeted immune-mediated strategy using chimeric antigen receptor based approaches for the removal of remaining chemotherapy-resistant cells as well as CSCs in a personalized therapeutic approach are discussed.
Collapse
Affiliation(s)
- Lia Walcher
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Ann-Kathrin Kistenmacher
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Huizhen Suo
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Reni Kitte
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Sarah Dluczek
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Alexander Strauß
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - André-René Blaudszun
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Tetyana Yevsa
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Stephan Fricke
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Uta Kossatz-Boehlert
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| |
Collapse
|
36
|
Egger AN, Rajabi‐Estarabadi A, Williams NM, Resnik SR, Fox JD, Wong LL, Jozic I. The importance of caveolins and caveolae to dermatology: Lessons from the caves and beyond. Exp Dermatol 2020; 29:136-148. [PMID: 31845391 PMCID: PMC7028117 DOI: 10.1111/exd.14068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/15/2022]
Abstract
Caveolae are flask-shaped invaginations of the cell membrane rich in cholesterol and sphingomyelin, with caveolin proteins acting as their primary structural components that allow compartmentalization and orchestration of various signalling molecules. In this review, we discuss how pleiotropic functions of caveolin-1 (Cav1) and its intricate roles in numerous cellular functions including lipid trafficking, signalling, cell migration and proliferation, as well as cellular senescence, infection and inflammation, are integral for normal development and functioning of skin and its appendages. We then examine how disruption of the homeostatic levels of Cav1 can lead to development of various cutaneous pathophysiologies including skin cancers, cutaneous fibroses, psoriasis, alopecia, age-related changes in skin and aberrant wound healing and propose how levels of Cav1 may have theragnostic value in skin physiology/pathophysiology.
Collapse
Affiliation(s)
- Andjela N. Egger
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Ali Rajabi‐Estarabadi
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Natalie M. Williams
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Sydney R. Resnik
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Joshua D. Fox
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Lulu L. Wong
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Ivan Jozic
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| |
Collapse
|
37
|
Wang J, Wang Z, Wang H, Wanyan Z, Pan Y, Zhu F, Tao Q, Zhai Z. Stress-Induced Premature Senescence Promotes Proliferation by Activating the SENEX and p16 INK4a/Retinoblastoma (Rb) Pathway in Diffuse Large B-Cell Lymphoma. Turk J Haematol 2019; 36:247-254. [PMID: 31327185 PMCID: PMC6863019 DOI: 10.4274/tjh.galenos.2019.2019.0117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objective Cellular senescence has been thought to be an important barrier to tumor formation. Recent studies have shown that stress-induced premature senescence (SIPS) can promote partial tumor invasion, but how SIPS affects diffuse large B-cell lymphoma (DLBCL) remains inconclusive. This study aimed to address that issue. Materials and Methods The immunophenotype of the LY8 cell line was measured with flow cytometry. SIPS induced by tert-butyl hydroperoxide (tBHP) was detected by senescence β-galactosidase staining. Cell proliferation was analyzed with CCK8 and expression levels of ARHGAP18 (SENEX gene-encoding protein), p16/p21, and
Rb/pRb were measured with western blot. LY8 cells were transfected with SENEX-SiRNA/NC and verified by western blot. Results Our results suggested that the immunophenotype of the LY8 cell line is CD19-, CD20-, and CD10-positive and the immunoglobulin light chain is the kappa type. The cellular senescence model of DLBCL could be successfully induced by 30 μM tBHP. ARHGAP18, p21, p16, and Rb protein levels were significantly increased but the level of pRb expression was decreased in the SIPS group compared with other groups. Meanwhile, the proliferation rate was increased in the SIPS group more than other tBHP groups. Furthermore, the expressions of p21 and p16 were significantly decreased in the SENEX-SiRNA group compared with the negative control group. Conclusion SIPS formation activates ARHGAP18 and the p16/Rb pathway and promotes DLBCL cell proliferation. Furthermore, SENEX activates the p16 pathway in DLBCL. SIPS promotes proliferation by activating SENEX and the p16/Rb pathway in DLBCL. SENEX-related SIPS may serve as an important target for relapsed/refractory DLBCL therapy.
Collapse
Affiliation(s)
- Jiyu Wang
- The Second Affiliated Hospital of Anhui Medical University, Department of Hematology, Hefei, Anhui, P.R. China
| | - Zhitao Wang
- The Second Affiliated Hospital of Anhui Medical University, Department of Hematology, Hefei, Anhui, P.R. China
| | - Huiping Wang
- The Second Affiliated Hospital of Anhui Medical University, Department of Hematology, Hefei, Anhui, P.R. China
| | - Zhixiang Wanyan
- The Second Affiliated Hospital of Anhui Medical University, Department of Hematology, Hefei, Anhui, P.R. China
| | - Ying Pan
- The Second Affiliated Hospital of Anhui Medical University, Department of Hematology, Hefei, Anhui, P.R. China
| | - Fengfeng Zhu
- The Second Affiliated Hospital of Anhui Medical University, Department of Hematology, Hefei, Anhui, P.R. China
| | - Qianshan Tao
- The Second Affiliated Hospital of Anhui Medical University, Department of Hematology, Hefei, Anhui, P.R. China
| | - Zhimin Zhai
- The Second Affiliated Hospital of Anhui Medical University, Department of Hematology, Hefei, Anhui, P.R. China
| |
Collapse
|