1
|
Kawashima K, Lu X, Kuninobu Y, Mori T. Mechanistic insights into the role of cyclodextrin in the regioselective radical CH trifluoromethylation of aromatic compounds. J Comput Chem 2024; 45:2112-2118. [PMID: 38760972 DOI: 10.1002/jcc.27430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/11/2024] [Accepted: 04/29/2024] [Indexed: 05/20/2024]
Abstract
The regioselective radical CH trifluoromethylation of aromatic compounds have been shown to proceed in good yield and high regioselectivity when cyclodextrin (CD) is present. Yet, the reaction mechanism and the role of CD during the reaction have remained obscure. To this end, here we performed density functional theory (DFT) calculations to the conformations obtained by semiempirical quantum mechanical molecular dynamics calculations to reveal the reaction mechanism and the role of CD in controlling regioselectivity. The results show that metal salt increases the yield but do not affect the regioselectivity, which we further confirmed by an experiment. In contrast, multiple CD-substrate complex conformations and reaction pathways were obtained, and CD was shown to contribute to improving the regioselectivity by stabilizing the intermediate state via encapsulation. The present study indicates that CDs can increase the regioselectivity by stabilizing the intermediate and product states while only marginally affecting the transition state.
Collapse
Affiliation(s)
- Kyohei Kawashima
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan
| | - Xu Lu
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoichiro Kuninobu
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka, Japan
| | - Toshifumi Mori
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
2
|
Li Y, Hou J, Zhang P, Dai P, Gu YC, Xia Q, Zhang W. Electron Donor-Acceptor Complex Driven Photocatalyst-Free Trifluoromethylation of Heterocycles. Chemistry 2024; 30:e202400237. [PMID: 38556465 DOI: 10.1002/chem.202400237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/16/2024] [Accepted: 03/30/2024] [Indexed: 04/02/2024]
Abstract
Heterocyclic trifluoromethylation is efficiently initiated through a photochemical reaction utilizing an electron donor-acceptor (EDA) complex, proceeding smoothly without the use of photocatalysts, transition-metal catalysts, or additional oxidants. This method has been optimized through extensive experimentation, demonstrating its versatility and efficacy across various substrates, including quinoxalinones, coumarins, and indolones. Notably, this approach enables the practical synthesis of trifluoromethylated quinoxalinones on a gram scale. Mechanistic investigations that incorporate radical trapping and ultraviolet/visible spectroscopy, confirmed the formation of the an EDA complex and elucidated the reaction pathways. This study highlights the crucial role of EDA photoactivation in trifluoromethylation, significantly expanding the application scope of EDA complexes in chemical synthesis.
Collapse
Affiliation(s)
- Yufei Li
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Hou
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pei Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peng Dai
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre, RG42 6EY, Bracknell, United Kingdom (UK
| | - Qing Xia
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weihua Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
3
|
Tsuruta T, Spinnato D, Moon HW, Leutzsch M, Cornella J. Bi-Catalyzed Trifluoromethylation of C(sp 2)-H Bonds under Light. J Am Chem Soc 2023; 145:25538-25544. [PMID: 37963280 PMCID: PMC10690797 DOI: 10.1021/jacs.3c10333] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/16/2023]
Abstract
We disclose a Bi-catalyzed C-H trifluoromethylation of (hetero)arenes using CF3SO2Cl under light irradiation. The catalytic method permits the direct functionalization of various heterocycles bearing distinct functional groups. The structural and computational studies suggest that the process occurs through an open-shell redox manifold at bismuth, comprising three unusual elementary steps for a main group element. The catalytic cycle starts with rapid oxidative addition of CF3SO2Cl to a low-valent Bi(I) catalyst, followed by a light-induced homolysis of Bi(III)-O bond to generate a trifluoromethyl radical upon extrusion of SO2, and is closed with a hydrogen-atom transfer to a Bi(II) radical intermediate.
Collapse
Affiliation(s)
- Takuya Tsuruta
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an
der Ruhr, 45470, Germany
| | - Davide Spinnato
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an
der Ruhr, 45470, Germany
| | - Hye Won Moon
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an
der Ruhr, 45470, Germany
| | - Markus Leutzsch
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an
der Ruhr, 45470, Germany
| | - Josep Cornella
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an
der Ruhr, 45470, Germany
| |
Collapse
|
4
|
Kuninobu Y. Regioselective C-H Trifluoromethylation and Its Related Reactions of (Hetero)aromatic Compounds. CHEM REC 2023; 23:e202300003. [PMID: 36899485 DOI: 10.1002/tcr.202300003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/04/2023] [Indexed: 03/12/2023]
Abstract
Fluorinated functional groups, including trifluoromethyl group, play important roles in the development of drugs, agrochemicals, and organic functional materials. Therefore, the development of highly effective and practical reactions to introduce fluorinated functional groups into (hetero)aromatic compounds is highly desirable. We have achieved several regioselective C-H trifluoromethylation and related reactions by electrophilic and nucleophilic activation of six-membered heteroaromatic compounds and steric protection of aromatic compounds. These reactions proceed in good to excellent yields, even on a gram scale, with high functional group tolerance, and are applicable to the regioselective trifluoromethylation of drug molecules. In this personal account, the background of the introduction reactions of fluorinated functional groups, our reaction designs to achieve regioselective C-H trifluoromethylation and the related reactions of (hetero)aromatic compounds are explained.
Collapse
Affiliation(s)
- Yoichiro Kuninobu
- Institute for Materials Chemistry and Engineering, Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| |
Collapse
|
5
|
Mkrtchyan S, Shkoor M, Sarfaraz S, Ayub K, Iaroshenko VO. Mechanochemical arylative detrifluoromethylation of trifluoromethylarenes. Org Biomol Chem 2023; 21:6549-6555. [PMID: 37523214 DOI: 10.1039/d3ob00787a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
The stoichiometric defluorinative functionalization of ArCF3 is a conceptually appealing research target. It enables the challenging late-stage functionalization of CF3-containing aromatic molecules and contributes to the remedy of environmental risks resulting from the accumulation of relatively inert ArCF3-containing molecules. Similarly, Ar-CN bond features limit their utilization in cross-coupling reactions. Thus, the employment of benzonitriles in decyanative Suzuki-Miyaura type coupling remains in high demand in the field of C-C bond formation. Herein, we report mechanochemically induced and ytterbium oxide (Yb2O3)-mediated defluorinative cyanation of trifluoromethylarenes. In addition, we describe a facile mechanochemically facilitated and nickel-catalyzed decyanative arylation of benzonitriles to access biphenyls. Combining both processes in a one-pot multicomponent protocol to achieve a concise direct arylative detrifluoromethylation of ArCF3 is described herein. This work is the first hitherto realization of C-C coupling with CF3 as a formal leaving group.
Collapse
Affiliation(s)
- Satenik Mkrtchyan
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 97401, Banska Bystrica, Slovakia.
| | - Mohanad Shkoor
- Department of Chemistry and Earth Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Sehrish Sarfaraz
- Department of Chemistry, COMSATS University, Abbottabad Campus, Abbottabad, KPK, 22060, Pakistan
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University, Abbottabad Campus, Abbottabad, KPK, 22060, Pakistan
| | - Viktor O Iaroshenko
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 97401, Banska Bystrica, Slovakia.
| |
Collapse
|
6
|
K
2
S
2
O
8
‐Glucose‐Mediated Metal‐Free Oxidative Trifluoromethylation of Indoles with Langlois’ Reagent on the C2 Position. ChemistrySelect 2023. [DOI: 10.1002/slct.202203939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
7
|
Muta R, Torigoe T, Kuninobu Y. 3-Position-Selective C–H Trifluoromethylation of Pyridine Rings Based on Nucleophilic Activation. Org Lett 2022; 24:8218-8222. [DOI: 10.1021/acs.orglett.2c03327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Ryuhei Muta
- Department of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| | - Takeru Torigoe
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
- Department of Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| | - Yoichiro Kuninobu
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
- Department of Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| |
Collapse
|
8
|
Azimi SB, Asnaashariisfahani M, Azizi B, Mohammadi E, Ghaffar Ebadi A, Vessally E. Hydro-trifluoromethyl(thiol)ation of alkenes: a review*. J Sulphur Chem 2022. [DOI: 10.1080/17415993.2022.2072687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Seyedeh Bahareh Azimi
- Assessment and Environment Risks Department, Research Center of Envirnment and Sustainable Development (RCESD), Tehran, Iran
| | | | - Bayan Azizi
- Medical Laboratory Sciences Department, College of Health Sciences, University of Human Development, Sulaymaniyah, Iraq
| | | | - Abdol Ghaffar Ebadi
- Department of Agriculture, Jouybar Branch, Islamic Azad University, Jouybar, Iran
| | - Esmail Vessally
- Department of Chemistry, Payame Noor University, Tehran, Iran
| |
Collapse
|
9
|
Jang J, Kim DY. Synthesis of trifluoromethylated 4H‐1‐benzopyran derivatives via photocatalytic trifluoromethylation/oxidation/conjugate addition, and cyclization sequences of vinyl phenols. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jihoon Jang
- Soonchunhyang University Department of Chemistry and Department of ICT Environmental Health System KOREA, REPUBLIC OF
| | - Dae Young Kim
- Soonchunhyang University Department of Chemistry and Department of ICT Environmental Health Syntem Asan 336745 Chungnam KOREA, REPUBLIC OF
| |
Collapse
|
10
|
Xiao F, Lin JH, Hao F, Zheng X, Guo Y, Xiao JC. Visible light mediated C-H trifluoromethylation of (hetero)arenes. Org Chem Front 2022. [DOI: 10.1039/d2qo00067a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A protocol on visible light mediated C-H trifluoromethylation of unactivated (hetero)arenes under blue LED irradiation has been developed. The reaction enables the rapid construction of a range of CF3-containing (hetero)arenes...
Collapse
|
11
|
Miyashita K, Fujisaka A, Aomatsu D, Kakutani Y, Terai R, Sakaguchi K, Ikejiri M. Synthesis of Trifluoromethyl Derivatives of Quinoline and Isoquinoline. HETEROCYCLES 2022. [DOI: 10.3987/com-21-14598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Kawamoto T, Kawabata T, Noguchi K, Kamimura A. Vicinal Difunctionalization of Alkenes Using Vinyl Triflates Leading to γ-Trifluoromethylated Ketones. Org Lett 2021; 24:324-327. [PMID: 34918932 DOI: 10.1021/acs.orglett.1c03988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a new methodology for the synthesis of γ-trifluoromethylated ketones from alkenes and vinyl triflate bifunctional reagents. The reaction proceeds via the addition of a β-trifluoromethyl alkyl radical to a vinyl triflate, followed by β-cleavage. We also demonstrate a one-pot version of the reaction for the vicinal functionalization of alkenes from alkynes.
Collapse
Affiliation(s)
- Takuji Kawamoto
- Department of Applied Chemistry, Yamaguchi University, Ube, Yamaguchi 755-8611, Japan
| | - Takahiro Kawabata
- Department of Applied Chemistry, Yamaguchi University, Ube, Yamaguchi 755-8611, Japan
| | - Kohki Noguchi
- Department of Applied Chemistry, Yamaguchi University, Ube, Yamaguchi 755-8611, Japan
| | - Akio Kamimura
- Department of Applied Chemistry, Yamaguchi University, Ube, Yamaguchi 755-8611, Japan
| |
Collapse
|
13
|
Baguia H, Evano G. Copper-Catalyzed Direct Perfluoroalkylation of Heteroarenes. Chemistry 2021; 28:e202103599. [PMID: 34842313 DOI: 10.1002/chem.202103599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Indexed: 02/04/2023]
Abstract
An efficient and broadly applicable process is reported for the copper-catalyzed direct perfluoroalkylation of C-H bonds in heteroarenes with commercially available perfluoroalkyl iodides. This reaction is based on a simple combination of copper(I) iodide and 1,10-phenanthroline enabling the easy reduction of perfluoroalkyl iodides to the corresponding radical species that add to a wide range of heteroarenes including benzofurans, benzothiophenes, (aza)indoles, furans and pyrroles. High levels of regioselectivity were obtained in all cases and the efficiency and robustness of this process was highlighted by the direct perfluoroalkylation of furan-containing peptides.
Collapse
Affiliation(s)
- Hajar Baguia
- Laboratoire de Chimie Organique Service de Chimie et Physic Chimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06 1050, Brussels, Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique Service de Chimie et Physic Chimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06 1050, Brussels, Belgium
| |
Collapse
|
14
|
Muralirajan K, Kancherla R, Bau JA, Taksande MR, Qureshi M, Takanabe K, Rueping M. Exploring the Structure and Performance of Cd–Chalcogenide Photocatalysts in Selective Trifluoromethylation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Krishnamoorthy Muralirajan
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Rajesh Kancherla
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jeremy A. Bau
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mayur Rahul Taksande
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Muhammad Qureshi
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Kazuhiro Takanabe
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
15
|
Tagami T, Aoki Y, Kawamura S, Sodeoka M. 1,2-Bis-perfluoroalkylations of alkenes and alkynes with perfluorocarboxylic anhydrides via the formation of perfluoroalkylcopper intermediates. Org Biomol Chem 2021; 19:9148-9153. [PMID: 34523640 DOI: 10.1039/d1ob01529j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel, Cu-mediated protocol toward the 1,2-bis-perfluoroalkyaltion of alkenes/alkynes was developed. The method proceeded with perfluorocarboxylic anhydrides as inexpensive and readily available perfluoroalkyl sources. Diacyl peroxide was generated in situ from the perfluorocarboxylic anhydrides and H2O2. The key step in this reaction is the formation of a stable perfluoroalkylcopper intermediate that is achieved with the aid of a bipyridyl ligand. Subsequent reaction of the intermediate with perfluoroalkyl-containing alkyl or vinyl radicals affords the desired products.
Collapse
Affiliation(s)
- Takuma Tagami
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Yuma Aoki
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Shintaro Kawamura
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. .,Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mikiko Sodeoka
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. .,Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
16
|
Jana R, Begam HM, Dinda E. The emergence of the C-H functionalization strategy in medicinal chemistry and drug discovery. Chem Commun (Camb) 2021; 57:10842-10866. [PMID: 34596175 DOI: 10.1039/d1cc04083a] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Owing to the market competitiveness and urgent societal need, an optimum speed of drug discovery is an important criterion for successful implementation. Despite the rapid ascent of artificial intelligence and computational and bioanalytical techniques to accelerate drug discovery in big pharma, organic synthesis of privileged scaffolds predicted in silico for in vitro and in vivo studies is still considered as the rate-limiting step. C-H activation is the latest technology added into an organic chemist's toolbox for the rapid construction and late-stage modification of functional molecules to achieve the desired chemical and physical properties. Particularly, elimination of prefunctionalization steps, exceptional functional group tolerance, complexity-to-diversity oriented synthesis, and late-stage functionalization of privileged medicinal scaffolds expand the chemical space. It has immense potential for the rapid synthesis of a library of molecules, structural modification to achieve the required pharmacological properties such as absorption, distribution, metabolism, excretion, toxicology (ADMET) and attachment of chemical reporters for proteome profiling, metabolite synthesis, etc. for preclinical studies. Although heterocycle synthesis, late-stage drug modification, 18F labelling, methylation, etc. via C-H functionalization have been reviewed from the synthetic standpoint, a general overview of these protocols from medicinal and drug discovery aspects has not been reviewed. In this feature article, we will discuss the recent trends of C-H activation methodologies such as synthesis of medicinal scaffolds through C-H activation/annulation cascade; C-H arylation for sp2-sp2 and sp2-sp3 cross-coupling; C-H borylation/silylation to introduce a functional linchpin for further manipulation; C-H amination for N-heterocycles and hydrogen bond acceptors; C-H fluorination/fluoroalkylation to tune polarity and lipophilicity; C-H methylation: methyl magic in drug discovery; peptide modification and macrocyclization for therapeutics and biologics; fluorescent labelling and radiolabelling for bioimaging; bioconjugation for chemical biology studies; drug-metabolite synthesis for biodistribution and excretion studies; late-stage diversification of drug-molecules to increase efficacy and safety; cutting-edge DNA encoded library synthesis and improved synthesis of drug molecules via C-H activation in medicinal chemistry and drug discovery.
Collapse
Affiliation(s)
- Ranjan Jana
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata-700032, India.
| | - Hasina Mamataj Begam
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata-700032, India.
| | - Enakshi Dinda
- Department of Chemistry and Environment, Heritage Institute of Technology, Kolkata-700107, India
| |
Collapse
|