1
|
Ghumman ASM, Shamsuddin R, Qomariyah L, Lim JW, Sami A, Ayoub M. Heavy metal sequestration from wastewater by metal-organic frameworks: a state-of-the-art review of recent progress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33317-7. [PMID: 38622423 DOI: 10.1007/s11356-024-33317-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Metal-organic frameworks (MOFs) have emerged as highly promising adsorbents for removing heavy metals from wastewater due to their tunable structures, high surface areas, and exceptional adsorption capacities. This review meticulously examines and summarizes recent advancements in producing and utilizing MOF-based adsorbents for sequestering heavy metal ions from water. It begins by outlining and contrasting commonly employed methods for synthesizing MOFs, such as solvothermal, microwave, electrochemical, ultrasonic, and mechanochemical. Rather than delving into the specifics of adsorption process parameters, the focus shifts to analyzing the adsorption capabilities and underlying mechanisms against critical metal(loid) ions like chromium, arsenic, lead, cadmium, and mercury under various environmental conditions. Additionally, this article discusses strategies to optimize MOF performance, scale-up production, and address environmental implications. The comprehensive review aims to enhance the understanding of MOF-based adsorption for heavy metal remediation and stimulate further research in this critical field. In brief, this review article presents a comprehensive overview of the contemporary information on MOFs as an effective adsorbent and the challenges being faced by these adsorbents for heavy metal mitigation (including stability, cost, environmental issues, and optimization), targeting to develop a vital reference for future MOF research.
Collapse
Affiliation(s)
- Ali Shaan Manzoor Ghumman
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Rashid Shamsuddin
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia.
- Department of Chemical Engineering, Faculty of Engineering, Islamic University of Madinah, 42311, Madinah, Kingdom of Saudi Arabia.
| | - Lailatul Qomariyah
- Department of Industrial Chemical Engineering, Institut Teknologi Sepuluh Nopember, 60111, Surabaya, Surabaya, Indonesia
| | - Jun Wei Lim
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 , Seri Iskandar, Perak Darul Ridzuan, Malaysia
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, 602105, Chennai, India
| | - Abdul Sami
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Muhammad Ayoub
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| |
Collapse
|
2
|
Shah SSA, Sohail M, Murtza G, Waseem A, Rehman AU, Hussain I, Bashir MS, Alarfaji SS, Hassan AM, Nazir MA, Javed MS, Najam T. Recent trends in wastewater treatment by using metal-organic frameworks (MOFs) and their composites: A critical view-point. CHEMOSPHERE 2024; 349:140729. [PMID: 37989439 DOI: 10.1016/j.chemosphere.2023.140729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/26/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023]
Abstract
Respecting the basic need of clean and safe water on earth for every individual, it is necessary to take auspicious steps for waste-water treatment. Recently, metal-organic frameworks (MOFs) are considered as promising material because of their intrinsic features including the porosity and high surface area. Further, structural tunability of MOFs by following the principles of reticular chemistry, the MOFs can be functionalized for the high adsorption performance as well as adsorptive removal of target materials. However, there are still some major concerns associated with MOFs limiting their commercialization as promising adsorbents for waste-water treatment. The cost, toxicity and regenerability are the major issues to be addressed for MOFs to get insightful results. In this article, we have concise the current strategies to enhance the adsorption capacity of MOFs during the water-treatment for the removal of toxic dyes, pharmaceuticals, and heavy metals. Further, we have also discussed the role of metallic nodes, linkers and associated functional groups for effective removal of toxic water pollutants. In addition to conformist overview, we have critically analyzed the MOFs as adsorbents in terms of toxicity, cost and regenerability. These factors are utmost important to address before commercialization of MOFs as adsorbents for water-treatment. Finally, some future perspectives are discussed to give directions for potential research.
Collapse
Affiliation(s)
- Syed Shoaib Ahmad Shah
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Manzar Sohail
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Ghulam Murtza
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Amir Waseem
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Aziz Ur Rehman
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Muhammad Sohail Bashir
- Institute of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
| | - Saleh S Alarfaji
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Ahmed M Hassan
- Faculty of Engineering and Technology, Future University in Egypt, New Cairo, 11835, Egypt
| | - Muhammad Altaf Nazir
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China.
| | - Tayyaba Najam
- College of Chemistry and Environmental Sciences, Shenzhen University, Shenzhen, 518060, Guangdong, China.
| |
Collapse
|
3
|
Li J, Lin G, Zhong Z, Wang Z, Wang S, Fu L, Hu T. A novel magnetic Ti-MOF/chitosan composite for efficient adsorption of Pb(II) from aqueous solutions: Synthesis and investigation. Int J Biol Macromol 2024; 258:129170. [PMID: 38171446 DOI: 10.1016/j.ijbiomac.2023.129170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/18/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
In this investigation, a composite material comprising Ti-MOF and chitosan, denoted as BD-MOF(Ti)@CS/Fe3O4, was successfully designed for the efficient adsorption of Pb(II) from aqueous solutions. A comprehensive array of characterization techniques, including SEM, XRD, BET, FT-IR, and XPS, were meticulously employed to scrutinize the structural attributes and morphological features of the Pb(II) adsorbent. Notably, the material exhibits adaptability to a broad pH range, with adsorption efficiency reaching 99 % between pH 3 and 6. Kinetic studies reveal that the adsorption process of Pb(II) by BD-MOF(Ti)@CS/Fe3O4 adheres closely to a pseudo-second-order kinetic model. Impressively, within a short duration of 40 min, the adsorption efficiency can reach 85 %. Furthermore, the adsorption isotherm aligns with the Hill isotherm model, signifying cooperative adsorption. This observation underscores the synergistic interplay among the functional groups on the surface of BD-MOF(Ti)@CS/Fe3O4 in capturing Pb(II). As per the Hill model, the theoretical maximum capacity was an impressive 944.9 mg/g. Thermodynamic assessments suggested that the adsorption process was spontaneous, entropy increasing and exothermic. Even in the presence of various interfering ions, BD-MOF(Ti)@CS/Fe3O4 exhibited robust adsorption performance, thereby affirming its utility in complex environments. Moreover, the material demonstrates noteworthy reusability, sustaining effective Pb(II) removal across five consecutive cycles in aqueous solutions.
Collapse
Affiliation(s)
- Jing Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Guo Lin
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China; The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, PR China.
| | - Zhen Zhong
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| | - Zeying Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| | - Shixing Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| | - Likang Fu
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| | - Tu Hu
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| |
Collapse
|
4
|
Bassareh H, Karamzadeh M, Movahedirad S. Synthesis and characterization of cost-effective and high-efficiency biochar for the adsorption of Pb 2+ from wastewater. Sci Rep 2023; 13:15608. [PMID: 37730745 PMCID: PMC10511742 DOI: 10.1038/s41598-023-42918-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023] Open
Abstract
This study aimed to investigate the adsorption mechanism of Pb2+ in wastewater using activated carbon derived from inexpensive materials, specifically avocado, bitter orange, and walnut leaves, through a single-step chemical activation process. The activated carbon was prepared using sulfuric acid as an activator, with a particle size of 1 mm. The pyrolysis reactor (slow-pyrolysis) operated at 600 °C for 90 min with a nitrogen flow rate of 5 L/min. Batch experiments were conducted under various conditions to determine the optimal dosage (1.5 g/L), equilibrium contact time (180 min), and pH (6.5). The study focused on employing cost-effective and highly efficient adsorbents, namely biochar produced from tree leaves, for the adsorption process. The results indicated that the pseudo-second-order kinetic model accurately described the adsorption process, while the Freundlich isotherm model best fit the experimental data. These findings suggest that tree leaves can serve as cost-effective and efficient adsorbents for a wide range of applications. Furthermore, multiple adsorption factors were evaluated in batch mode, including contact duration, pH, adsorbent dosage, concentration of the Pb2+ solution, and temperature. The maximum adsorption capacities for the activated carbon derived from avocado, bitter orange, and walnut leaves were found to be 60.46, 59.42, and 58.48 mg/g, respectively. Thus, this study highlights the effectiveness and economic feasibility of using pyrolysis-derived activated carbon from low-cost materials for the removal of Pb2+ from wastewater.
Collapse
Affiliation(s)
- Hatef Bassareh
- Department of Chemical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Masoud Karamzadeh
- Department of Chemical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Salman Movahedirad
- Department of Chemical Engineering, Iran University of Science and Technology, Tehran, Iran.
| |
Collapse
|
5
|
Rabiee N, Sharma R, Foorginezhad S, Jouyandeh M, Asadnia M, Rabiee M, Akhavan O, Lima EC, Formela K, Ashrafizadeh M, Fallah Z, Hassanpour M, Mohammadi A, Saeb MR. Green and Sustainable Membranes: A review. ENVIRONMENTAL RESEARCH 2023; 231:116133. [PMID: 37209981 DOI: 10.1016/j.envres.2023.116133] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/21/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
Membranes are ubiquitous tools for modern water treatment technology that critically eliminate hazardous materials such as organic, inorganic, heavy metals, and biomedical pollutants. Nowadays, nano-membranes are of particular interest for myriad applications such as water treatment, desalination, ion exchange, ion concentration control, and several kinds of biomedical applications. However, this state-of-the-art technology suffers from some drawbacks, e.g., toxicity and fouling of contaminants, which makes the synthesis of green and sustainable membranes indeed safety-threatening. Typically, sustainability, non-toxicity, performance optimization, and commercialization are concerns centered on manufacturing green synthesized membranes. Thus, critical issues related to toxicity, biosafety, and mechanistic aspects of green-synthesized nano-membranes have to be systematically and comprehensively reviewed and discussed. Herein we evaluate various aspects of green nano-membranes in terms of their synthesis, characterization, recycling, and commercialization aspects. Nanomaterials intended for nano-membrane development are classified in view of their chemistry/synthesis, advantages, and limitations. Indeed, attaining prominent adsorption capacity and selectivity in green-synthesized nano-membranes requires multi-objective optimization of a number of materials and manufacturing parameters. In addition, the efficacy and removal performance of green nano-membranes are analyzed theoretically and experimentally to provide researchers and manufacturers with a comprehensive image of green nano-membrane efficiency under real environmental conditions.
Collapse
Affiliation(s)
- Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, 6150, Australia; Department of Physics, Sharif University of Technology, Tehran, P.O. Box 11155-9161, Iran.
| | - Rajni Sharma
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Sahar Foorginezhad
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Lulea University of Technology, Department of Energy Science and Mathematics, Energy Science, 97187, Lulea, Sweden
| | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, University of Tehran, Tehran, Iran
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia.
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, Tehran, P.O. Box 11155-9161, Iran
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Krzysztof Formela
- Department of Polymer Technology, Faculty of Chemistry, Gdánsk University of Technology, G. Narutowicza 11/12, 80-233, Gdánsk, Poland
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zari Fallah
- Faculty of Chemistry, University of Mazandaran, P. O. Box 47416, 95447, Babolsar, Iran
| | - Mahnaz Hassanpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Abbas Mohammadi
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdánsk University of Technology, G. Narutowicza 11/12, 80-233, Gdánsk, Poland
| |
Collapse
|
6
|
Mannaa MA, Mlahi MR, AL Maofari A, Ahmed AI, Hassan SM. Synthesis of Highly Efficient and Recyclable Bimetallic Co x-Fe 1-x-MOF for the Synthesis of Xanthan and Removal of Toxic Pb 2+ and Cd 2+ Ions. ACS OMEGA 2023; 8:26379-26390. [PMID: 37521672 PMCID: PMC10372942 DOI: 10.1021/acsomega.3c02911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023]
Abstract
Mono-(Fe) and bimetallic Cox-Fe1-x-MOF with different Co and Fe contents was successfully synthesized by the solvothermal method. The structural properties of the prepared samples were characterized by X-ray diffraction, transmission electron microscopy (TEM), Brunauer-Emmett-Teller specific surface area, and Fourier transform infrared spectroscopy. The results revealed the successful formation of mono and mixed Cox-Fe1-x-MOF. Also, the results of TEM displayed that the particle structure of Cox-Fe1-x-MOF changed to octahedral after the addition of cobalt. The surface acidity results illustrated that the samples showed both Lewis and Brønsted acid sites, and Cox-Fe1-x-MOF possessed more surface acidity than Fe-MOF. The catalytic performance of the prepared samples was tested by synthesis of 14-phenyl-14H-dibenzo [a, j] xanthene (xanthene), and bimetallic Cox-Fe1-x-MOF showed higher activity compared to monometallic Fe-MOF. The sample with Co0.50-Fe0.50-MOF gave the highest yield of xanthene with 90.2%. In addition, the prepared samples were used for removal of Pb2+ and Cd2+ ions from the aqueous solution. The sample with Co0.50-Fe0.50-MOF showed the highest removal efficiency compared with mono- and other bimetallic samples. The results illustrated that the addition of Co to Fe enhanced the structural properties, acidity, and catalytic performance of the prepared samples due to the synergistic effect between Fe and Co ions. According to the obtained results, the prepared samples showed great potentials for the synthesis of pharmacologically active compounds and environmental protection.
Collapse
Affiliation(s)
- Mohammed A. Mannaa
- Chemistry
Department, Faculty of Applied Science, Sa’adah University, Sa’adah 37970, Yemen
| | - Mosaad R. Mlahi
- Chemistry
Department, Faculty of Applied Science, Sa’adah University, Sa’adah 37970, Yemen
| | - A. AL Maofari
- Chemistry
Department, Faculty of Applied Science, Sa’adah University, Sa’adah 37970, Yemen
| | - Awad I. Ahmed
- Chemistry
Department, Faculty of Science, Mansoura
University, Mansoura 8080, Egypt
| | - Shawky M. Hassan
- Chemistry
Department, Faculty of Science, Mansoura
University, Mansoura 8080, Egypt
| |
Collapse
|
7
|
Kaur H, Devi N, Siwal SS, Alsanie WF, Thakur MK, Thakur VK. Metal-Organic Framework-Based Materials for Wastewater Treatment: Superior Adsorbent Materials for the Removal of Hazardous Pollutants. ACS OMEGA 2023; 8:9004-9030. [PMID: 36936323 PMCID: PMC10018528 DOI: 10.1021/acsomega.2c07719] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
In previous years, different pollutants, for example, organic dyes, antibiotics, heavy metals, pharmaceuticals, and agricultural pollutants, have been of note to the water enterprise due to their insufficient reduction during standard water and wastewater processing methods. MOFs have been found to have potential toward wastewater management. This Review focused on the synthesis process (such as traditional, electrochemical, microwave, sonochemical, mechanochemical, and continuous-flow spray-drying method) of MOF materials. Moreover, the properties of the MOF materials have been discussed in detail. Further, MOF materials' applications for wastewater treatment (such as the removal of antibiotics, organic dyes, heavy metal ions, and agricultural waste) have been discussed. Additionally, we have compared the performances of some typical MOFs-based materials with those of other commonly used materials. Finally, the study's current challenges, future prospects, and outlook have been highlighted.
Collapse
Affiliation(s)
- Harjot Kaur
- Department
of Chemistry, M.M. Engineering College,
Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Nishu Devi
- Mechanics
and Energy Laboratory, Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Samarjeet Singh Siwal
- Department
of Chemistry, M.M. Engineering College,
Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Walaa F. Alsanie
- Department
of Clinical Laboratories Sciences, The Faculty of Applied Medical
Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Manju Kumari Thakur
- Department
of Chemistry, Government Degree College Sarkaghat, Himachal Pradesh University, Shimla 171005, India
| | - Vijay Kumar Thakur
- Biorefining
and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, United Kingdom
- School of
Engineering, University of Petroleum &
Energy Studies (UPES), Dehradun, Uttarakhand 248007, India
- Centre
for Research & Development, Chandigarh
University, Mohali, Punjab 140413, India
| |
Collapse
|
8
|
Gul Zaman H, Baloo L, Kutty SR, Aziz K, Altaf M, Ashraf A, Aziz F. Insight into microwave-assisted synthesis of the chitosan-MOF composite: Pb(II) adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:6216-6233. [PMID: 35989404 DOI: 10.1007/s11356-022-22438-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Heavy metal contamination has increased over the globe, causing significant environmental issues owing to direct and indirect releases into water bodies. As a result, metal removal from water entities must be addressed soon. Various adsorbents such as MOFs and chitosan have demonstrated promising results in water treatment. The present study prepared a composite material (chitosan-UiO-66-glycidyl methacrylate MOF) by a microwave-assisted method. The structure and morphology of the chitosan-MOF composite were studied using FE-SEM, EDX, XRD, BET, FT-IR, and TGA techniques. In addition, the adsorption of Pb(II) from aqueous solution onto the chitosan-MOF composite was analyzed in a batch study concerning pH, contact time, initial metal ion concentration, and adsorbent dosage. The composite has a large surface area of 867 m2/g with a total pore volume of 0.51 cm3/g and thermal stability of up to 400 [Formula: see text]. Following an analysis of the adsorption isotherms, kinetics, and thermodynamics, the Langmuir model showed an excellent fit with the adsorption data (R2 = 0.99) and chi-squared (X2 = 3.609). The adsorption process was a spontaneous exothermic reaction and the pseudo-second-order rate equation fitted the kinetic profile well. Moreover, the composite is recyclable, retaining 83.45% of its removal effectiveness after 5 consecutive cycles, demonstrating it as a sustainable adsorbent for metal recovery. This study introduces a novel synthesized composite with enhanced recyclability and a higher potential for eliminating pollutants from industrial wastewater.
Collapse
Affiliation(s)
- Humaira Gul Zaman
- Civil and Environmental Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Lavania Baloo
- Civil and Environmental Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia.
| | - Shamsul Rahman Kutty
- Civil and Environmental Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Khalid Aziz
- Laboratory of Biotechnology, Materials, and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Muhammad Altaf
- Civil and Environmental Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Aniqa Ashraf
- CAS Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Faissal Aziz
- Laboratory of Water, Biodiversity and Climate Change, Faculty of Science Semlalia of Marrakech, Cadi Ayyad University, Marrakech, Morocco
| |
Collapse
|
9
|
Aden M, Elmi A, Husson J, Idriss S, Filiatre C, Knorr M. Silica-Supported Alginates From Djiboutian Seaweed as Biomass-Derived Materials for Efficient Adsorption of Ni(II). CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00527-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Zhang Q, Yang H, Zhou T, Chen X, Li W, Pang H. Metal-Organic Frameworks and Their Composites for Environmental Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204141. [PMID: 36106360 PMCID: PMC9661848 DOI: 10.1002/advs.202204141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Indexed: 06/04/2023]
Abstract
From the point of view of the ecological environment, contaminants such as heavy metal ions or toxic gases have caused harmful impacts on the environment and human health, and overcoming these adverse effects remains a serious and important task. Very recent, highly crystalline porous metal-organic frameworks (MOFs), with tailorable chemistry and excellent chemical stability, have shown promising properties in the field of removing various hazardous pollutants. This review concentrates on the recent progress of MOFs and MOF-based materials and their exploit in environmental applications, mainly including water treatment and gas storage and separation. Finally, challenges and trends of MOFs and MOF-based materials for future developments are discussed and explored.
Collapse
Affiliation(s)
- Qian Zhang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Hui Yang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Ting Zhou
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Xudong Chen
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Wenting Li
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Huan Pang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| |
Collapse
|
11
|
Long W, Chen Z, Shi J, Yang S. Efficient Removal of Cr(VI) Ions in Petrochemical Wastewater Using Fe 3O 4@ Saccharomyces cerevisiae Magnetic Nanocomposite. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183250. [PMID: 36145038 PMCID: PMC9500928 DOI: 10.3390/nano12183250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 05/30/2023]
Abstract
Saccharomyces cerevisiae (SC) is a widely available biobased source for function material. In this work, a kind of new efficient magnetic composite adsorbent containing Fe3O4 and SC was prepared successfully and used for the removal of Cr(VI) ions in petrochemical wastewater. The morphology and structure of this magnetic adsorbent were characterized with FT-IR, TG, XRD, VSM, SEM and XPS. The effect of the different factors such as pH, adsorption time, initial Cr(VI) ions concentration and adsorption temperature on the adsorption behavior were investigated. The results showed that 10%-Fe3O4@SC exhibited high removal rate, reutilization and large removal capacity. The corresponding removal capacity and removal rate could reach 128.03 mg/g and 96.02% when the pH value was 2, adsorption time was 180 min, and initial Cr(VI) ions concentration were 80 mg/L at 298 K. The kinetics followed the pseudo-first-order, which indicated that the adsorption behavior of 10%-Fe3O4@SC for Cr(VI) ions belonged to the physical adsorption and chemical adsorption co-existence. The thermodynamic study showed that the adsorption process was spontaneous and exothermic. It still showed better adsorption performance and reutilization after the fifth adsorption-desorption experiment. The possible mechanism of Cr(VI) ions adsorption onto the 10%-Fe3O4@SC magnetic adsorbent has been discussed. Hence, this new adsorbent will be a candidate for industry-level applications in petrochemical wastewater containing Cr(VI) ions.
Collapse
Affiliation(s)
- Wei Long
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Guangdong University of Petrochemical Technology, Maoming 525000, China
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Zhilong Chen
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Jie Shi
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Shilin Yang
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, China
| |
Collapse
|
12
|
Bhuyan A, Ahmaruzzaman M. Metal-organic frameworks: A new generation potential material for aqueous environmental remediation. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
13
|
Ji Z, Zhang Y, Wang H, Li C. Research progress in the removal of heavy metals by modified chitosan. TENSIDE SURFACT DET 2022. [DOI: 10.1515/tsd-2021-2414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Abstract
Chitosan and its modifiers have been widely studied for their good biocompatibility and excellent adsorption properties for heavy metal ions. The synthesis and application of modified chitosan, the effects of process variables (such as pH, amount of adsorbent, temperature, contact time, etc.), adsorption kinetics, thermodynamics and the adsorption mechanism on the removal of heavy metal ions are reviewed. The purpose is to provide the latest information about chitosan as adsorbent and to promote the synthesis of modified chitosan and its application in the removal of heavy metals.
Collapse
Affiliation(s)
- Zheng Ji
- Department of Medicinal Chemistry , School of Pharmacy, Anhui University of Chinese Medicine , Hefei , China
| | - Yansong Zhang
- Department of Medicinal Chemistry , School of Pharmacy, Anhui University of Chinese Medicine , Hefei , China
| | - Huchuan Wang
- Department of Medicinal Chemistry , School of Pharmacy, Anhui University of Chinese Medicine , Hefei , China
| | - Chuanrun Li
- Department of Medicinal Chemistry , School of Pharmacy, Anhui University of Chinese Medicine , Hefei , China
| |
Collapse
|
14
|
Ghiasi F, Solaimany Nazar AR, Farhadian M, Tangestaninejad S, Emami N. Synthesis of aqueous media stable MIL101-OH/chitosan for diphenhydramine and metronidazole adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:24286-24297. [PMID: 34825335 DOI: 10.1007/s11356-021-17739-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
In this study, pristine MIL101(Cr) was modified to synthesize hydroxyl-functionalized (MIL101(Cr)-OH) and chitosan (CS)-coated (MIL101(Cr)-OH/CS) metal-organic frameworks (MOFs) to enhance adsorption capacity and reusability, respectively. The synthesized adsorbents were characterized by XRD, FTIR, and BET analyses. The kinetics behavior and the equilibrium adsorption of diphenhydramine (DPH) and metronidazole (MNZ) from aqueous solution on the synthesized adsorbents and a commercial activated carbon were compared at 25°C. The pH-dependent of the adsorption capacity and reusability of MIL101-OH/CS were investigated. The results showed that upon adding OH functional group and chitosan polymer, the adsorption capacity increased; the DPH adsorption capacity on MIL101-OH and MIL101-OH/CS was 634 and 573 mg/g, respectively. Also, the maximum adsorption capacity of MNZ on MIL101-OH/CS was 600 mg/g, which was twice the adsorption capacity of MIL101 and four times the adsorption capacity of the commercial activated carbon. The equilibrium and kinetics behavior results were in good agreement with Langmuir and the pseudo-second-order models, respectively. The DPH and MNZ adsorption mechanisms on MIL101-OH/CS were hydrogen bonding and electrostatic interactions, respectively.
Collapse
Affiliation(s)
- Fatemeh Ghiasi
- Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Ali Reza Solaimany Nazar
- Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran.
| | - Mehrdad Farhadian
- Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | | | - Nafiseh Emami
- Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| |
Collapse
|
15
|
Maslamani N, Bakhsh EM, Khan SB, Danish EY, Akhtar K, Fagieh TM, Su X, Asiri AM. Chitosan@Carboxymethylcellulose/CuO-Co 2O 3 Nanoadsorbent as a Super Catalyst for the Removal of Water Pollutants. Gels 2022; 8:91. [PMID: 35200472 PMCID: PMC8871360 DOI: 10.3390/gels8020091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
In this work, an efficient nanocatalyst was developed based on nanoadsorbent beads. Herein, carboxymethyl cellulose-copper oxide-cobalt oxide nanocomposite beads (CMC/CuO-Co2O3) crosslinked by using AlCl3 were successfully prepared. The beads were then coated with chitosan (Cs), Cs@CMC/CuO-Co2O3. The prepared beads, CMC/CuO-Co2O3 and Cs@CMC/CuO-Co2O3, were utilized as adsorbents for heavy metal ions (Ni, Fe, Ag and Zn). By using CMC/CuO-Co2O3 and Cs@CMC/CuO-Co2O3, the distribution coefficients (Kd) for Ni, Fe, Ag and Zn were (41.166 and 6173.6 mLg-1), (136.3 and 1500 mLg-1), (20,739.1 and 1941.1 mLg-1) and (86.9 and 2333.3 mLg-1), respectively. Thus, Ni was highly adsorbed by Cs@CMC/CuO-Co2O3 beads. The metal ion adsorbed on the beads were converted into nanoparticles by treating with reducing agent (NaBH4) and named Ni/Cs@CMC/CuO-Co2O3. Further, the prepared nanoparticles-decorated beads (Ni/Cs@CMC/CuO-Co2O3) were utilized as nanocatalysts for the reduction of organic and inorganic pollutants (4-nitophenol, MO, EY dyes and potassium ferricyanide K3[Fe(CN)6]) in the presence of NaBH4. Among all catalysts, Ni/Cs@CMC/CuO-Co2O3 had the highest catalytic activity toward MO, EY and K3[Fe(CN)6], removing up to 98% in 2.0 min, 90 % in 6.0 min and 91% in 6.0 min, respectively. The reduction rate constants of MO, EY, 4-NP and K3[Fe(CN)6] were 1.06 × 10-1, 4.58 × 10-3, 4.26 × 10-3 and 5.1 × 10-3 s-1, respectively. Additionally, the catalytic activity of the Ni/Cs@CMC/CuO-Co2O3 beads was effectively optimized. The stability and recyclability of the beads were tested up to five times for the catalytic reduction of MO, EY and K3[Fe(CN)6]. It was confirmed that the designed nanocomposite beads are ecofriendly and efficient with high strength and stability as catalysts for the reduction of organic and inorganic pollutants.
Collapse
Affiliation(s)
- Nujud Maslamani
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.M.); (E.Y.D.); (K.A.); (T.M.F.); (A.M.A.)
| | - Esraa M. Bakhsh
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.M.); (E.Y.D.); (K.A.); (T.M.F.); (A.M.A.)
| | - Sher Bahadar Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.M.); (E.Y.D.); (K.A.); (T.M.F.); (A.M.A.)
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ekram Y. Danish
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.M.); (E.Y.D.); (K.A.); (T.M.F.); (A.M.A.)
| | - Kalsoom Akhtar
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.M.); (E.Y.D.); (K.A.); (T.M.F.); (A.M.A.)
| | - Taghreed M. Fagieh
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.M.); (E.Y.D.); (K.A.); (T.M.F.); (A.M.A.)
| | - Xintai Su
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China;
| | - Abdullah M. Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.M.); (E.Y.D.); (K.A.); (T.M.F.); (A.M.A.)
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
16
|
Kalidason A, Saito K, Nanbu Y, Sasaki H, Ohsumi R, Kanazawa A, Kuroiwa T. Biodegradable Crosslinked Chitosan Gel Microbeads with Controlled Size, Prepared by Membrane Emulsification-External Gelation and Their Application as Reusable Adsorption Materials. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2022. [DOI: 10.1252/jcej.21we061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anchali Kalidason
- Department of Applied Chemistry, Faculty of Science and Engineering, Tokyo City University
| | - Kaori Saito
- Department of Applied Chemistry, Faculty of Science and Engineering, Tokyo City University
| | - Yuki Nanbu
- Department of Applied Chemistry, Faculty of Science and Engineering, Tokyo City University
| | - Hideki Sasaki
- Department of Applied Chemistry, Faculty of Science and Engineering, Tokyo City University
| | - Rina Ohsumi
- Department of Applied Chemistry, Faculty of Science and Engineering, Tokyo City University
| | - Akihiko Kanazawa
- Department of Applied Chemistry, Faculty of Science and Engineering, Tokyo City University
| | | |
Collapse
|
17
|
Adsorption of Chromium (VI) by Cu (I)-MOF in Water: Optimization, Kinetics, and Thermodynamics. J CHEM-NY 2021. [DOI: 10.1155/2021/4413095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To investigate the adsorption behavior of Cu (I)-MOF material for chromium (VI) in water, the parameters of influencing adsorption were optimized and found as follows: the optimal pH was 6 for the adsorption of Cr (VI) by the Cu (I)-MOF, the optimal amount of adsorbent was 0.45 g·L−1, and the adsorption saturation time was within 180 min. Subsequently, the kinetics results were fitted by four models such as pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion models. Among them, the adsorption of chromium (VI) was more inclined to the pseudo-first-order model (Radj2 = 0.9230). Then, the isotherm data were fitted by Langmuir and Freundlich models. The results indicated that Langmuir isotherm was the excellent match model (Radj2 = 0.9827). It belongs to a monolayer adsorption, and the maximum adsorption capacity was 95.92 mg·g−1. Subsequently, the thermodynamic parameters of the adsorption were calculated as follows: enthalpy change (ΔHθ) was −8.583 kJ·mol−1, entropy change (ΔSθ) was −8.243 J·mol−1 K−1, and the Gibbs function change (ΔGθ) was less than zero in the temperature range of 288–328 K, indicating that the reaction was spontaneous. Finally, both the spectra of infrared and XPS supported the adsorption mechanism that belonged the ion exchange. The spectra of XRD and SEM images shown that the structure of Cu (I)-MOF remained stable for at least 3 cycles. In conclusion, Cu (I)-MOF material has a high adsorption capacity, good water stability, low cost, and easy to prepare in large quantities in practical application. It will be a promising adsorbent for the removal of Cr (VI) from water.
Collapse
|
18
|
Ji Z, Zhang Y, Wang H, Li C. Polypropylene Glycol Modified Chitosan Composite as a Novel Adsorbent to Remove Cu(II) From Wastewater. TENSIDE SURFACT DET 2021. [DOI: 10.1515/tsd-2021-2388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Pollution by heavy metals has become a problem that needs to be solved urgently. Therefore, the development of new efficient adsorbents to treat this pollution is of great importance. Due to their excellent adsorption properties and good biodegradability, natural polymeric materials are potential problem solvers. This study reports on the production and application of polypropylene glycol modified chitosan composites (PMC). The PMC composite material has many functional groups (–OH and –NH2). Its maximum adsorption capacity for Cu(II) is 661.8 mg g–1. The corresponding adsorption studies, including the effects of pH, contact time and amount of adsorbent, showed that the PMC composite has potential application value.
Collapse
|
19
|
Preparation and characterization of magnetic bioadsorbent for adsorption of Cd(II) ions. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Jiamjirangkul P, Inprasit T, Intasanta V, Pangon A. Metal organic framework-integrated chitosan/poly(vinyl alcohol) (PVA) nanofibrous membrane hybrids from green process for selective CO2 capture and filtration. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115650] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Ma J, Chen K. Designing porous nickel architectures for adsorptive removal of Cr(VI) to achieve drinking water standard. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116705] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Moradi E, Rahimi R, Safarifard V. Porphyrinic zirconium-based MOF with exposed pyrrole Lewis base site as an efficient fluorescence sensing for Hg2+ ions, DMF small molecule, and adsorption of Hg2+ ions from water solution. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121277] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Capture of iodide from wastewater by effective adsorptive membrane synthesized from MIL-125-NH2 and cross-linked chitosan. Carbohydr Polym 2020; 231:115742. [DOI: 10.1016/j.carbpol.2019.115742] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/27/2019] [Accepted: 12/14/2019] [Indexed: 10/25/2022]
|
24
|
Covalently crosslinked zirconium-based metal-organic framework aerogel monolith with ultralow-density and highly efficient Pb(II) removal. J Colloid Interface Sci 2020; 561:211-219. [DOI: 10.1016/j.jcis.2019.11.074] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/28/2019] [Accepted: 11/16/2019] [Indexed: 12/13/2022]
|
25
|
Seyfi Hasankola Z, Rahimi R, Shayegan H, Moradi E, Safarifard V. Removal of Hg2+ heavy metal ion using a highly stable mesoporous porphyrinic zirconium metal-organic framework. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119264] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Shayegan H, Ali GAM, Safarifard V. Recent Progress in the Removal of Heavy Metal Ions from Water Using Metal‐Organic Frameworks. ChemistrySelect 2020. [DOI: 10.1002/slct.201904107] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hossein Shayegan
- Department of ChemistryIran University of Science and Technology Tehran 16846-13114 Iran
| | - Gomaa A. M. Ali
- Chemistry DepartmentFaculty of ScienceAl–Azhar University Assiut 71524 Egypt
| | - Vahid Safarifard
- Department of ChemistryIran University of Science and Technology Tehran 16846-13114 Iran
| |
Collapse
|
27
|
Performance of novel MgS doped cellulose nanofibres for Cd(II) removal from industrial effluent - mechanism and optimization. Sci Rep 2019; 9:12639. [PMID: 31477772 PMCID: PMC6718681 DOI: 10.1038/s41598-019-49076-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/19/2019] [Indexed: 11/08/2022] Open
Abstract
Green environment friendly and novel nano MgS decorated cellulose nanofibres (MgS@CNF) were prepared, characterized and evaluated towards the removal of heavy metal namely, cadmium from aqueous solutions. Cellulose nanofibres acted as a template for effective dispersion of MgS nanoparticles and also aid in the complexation of cadmium ions. In depth X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Fourier transform infra red spectroscopy (FTIR) studies revealed that doped MgS on mild acidification yields insitu production of H2S which effectively complexes cadmium ion to form cadmium sulfide. The reaction followed pseudo first order kinetics with regression coefficient in the order of 0.98. A very high Langmuir adsorption capacity in the order of 333.33 mg/g was obtained for MgS@CNF. Finally, MgS@CNF was applied towards the removal of cadmium from organic and TDS rich tannery waste water. MgS@CNF was effective in bringing down the concentration from ppm to ppb levels.
Collapse
|
28
|
Maitlo HA, Kim KH, Kumar V, Kim S, Park JW. Nanomaterials-based treatment options for chromium in aqueous environments. ENVIRONMENT INTERNATIONAL 2019; 130:104748. [PMID: 31252168 DOI: 10.1016/j.envint.2019.04.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/18/2019] [Accepted: 04/08/2019] [Indexed: 05/27/2023]
Abstract
Sustainable development and the restoration of ecosystems are the important goals for civilization. Currently, heavy metal contamination of aquatic environments has become a serious issue. Chromium (Cr) is simultaneously an essential metallic element and one of 20 chemicals posing a maximum threat to living beings. To mitigate that threat, various treatment methods have been developed, including adsorption, electrocoagulation, photoelectrocatalysis, fuel cells, bioremediation, chemical precipitation, ultrafiltration, ion exchange, and co-precipitation. However, selection of the most energy- and cost-efficient wastewater treatment option has proven challenging, as each approach is subject to shortcomings involving energy consumption, treatment capacity, and efficiency. This review describes the potential role of diverse functional nanomaterials (e.g., iron/iron oxide nanoparticles, carbon nanostructures, metal organic frameworks, and their commercial counterparts) in treatment of Cr in aqueous environments with respect to key figure of merits, such as, adsorption capacity, removal efficiency, and partition coefficient. In addition, their performance was compared with the most common treatment options. The results of this study will help determine the most effective and economical options for control of Cr in aquatic environments.
Collapse
Affiliation(s)
- Hubdar Ali Maitlo
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-Gu, Seoul 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-Gu, Seoul 04763, Republic of Korea.
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar 140306, Punjab, India.
| | - Sumin Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jae-Woo Park
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-Gu, Seoul 04763, Republic of Korea
| |
Collapse
|
29
|
Lv SW, Liu JM, Wang ZH, Ma H, Li CY, Zhao N, Wang S. Recent advances on porous organic frameworks for the adsorptive removal of hazardous materials. J Environ Sci (China) 2019; 80:169-185. [PMID: 30952335 DOI: 10.1016/j.jes.2018.12.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 05/24/2023]
Abstract
Environmental pollution is one of the most serious problems facing mankind today, and has attracted widespread attention worldwide. The burgeoning class of crystalline porous organic framework materials, metal-organic frameworks and covalent organic frameworks present promising application potential in areas related to pollution control due to their interesting surface properties. In this review, the literature of the past five years on the adsorptive removal of various hazardous materials, mainly including heavy metal ions, harmful gases, organic dyes, pharmaceutical and personal care products, and radionuclides from the environment by using COFs and MOFs, is summarized. The adsorption mechanisms are also discussed to help understand their adsorption performance and selectivity. Additionally, some insightful suggestions are given to enhance the performance of MOFs and COFs in the adsorptive removal of various hazardous materials.
Collapse
Affiliation(s)
- Shi-Wen Lv
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jing-Min Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Zhi-Hao Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Hui Ma
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Chun-Yang Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Ning Zhao
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
30
|
Huang G, Chen J, Tang X, Xiong D, Liu Z, Wu J, Sun WY, Lin B. Facile Method To Prepare a Novel Biological HKUST-1@CMCS with Macroscopic Shape Control for the Long-Acting and Sustained Release. ACS APPLIED MATERIALS & INTERFACES 2019; 11:10389-10398. [PMID: 30776891 DOI: 10.1021/acsami.8b21424] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We have developed a green and versatile method to prepare hierarchically porous Cu3(BTC)2@carboxymethyl chitosan (HKUST-1@CMCS) with a macroscopic shape control and designable performance via the cross-linking of Cu(II) ions with CMCS. Furthermore, atomic force microscopy, scanning electron microscopy, powder X-ray diffraction, Brunauer-Emmett-Teller, and X-ray photoelectron spectroscopy analyses showed that the morphology of HKUST-1 could be controlled and changed by tailoring the surface roughness ( Rq) of polymer matrix. For the ball-like, fiberlike, and membrane-like composites, the matrix Rq values were 887, 88.4, and 18.2 nm and the average sizes of HKUST-1 crystals were about 10.2, 5.9, and 1.7 μm, respectively. It was found that the larger the Rq of the polymer matrix, the higher the drug payload. The results of drug release showed that the release percentage of dimethyl fumarate from HKUST-1@CMCS was 66% in 326 h, whereas that of Cu@CMCS was only 12 h. Obviously, the HKUST-1@CMCS had a long-acting and sustained release property compared to that of Cu@CMCS due to its complementary advantages of metal-organic frameworks (MOFs) and polymers. Therefore, this study not only provided an interesting way to make up for the shortcomings of MOFs and natural polymer but also developed a long-acting delivery system for a huge potential application prospect.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei-Yin Sun
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210023 , P. R. China
| | | |
Collapse
|
31
|
A multi-responsive luminescent sensor based on flexible and ultrastable Zn-MOF@SWCNT hybrid nanocomposite film. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Quan X, Sun Z, Meng H, Han Y, Wu J, Xu J, Xu Y, Zhang X. Surface functionalization of MIL-101(Cr) by aminated mesoporous silica and improved adsorption selectivity toward special metal ions. Dalton Trans 2019; 48:5384-5396. [DOI: 10.1039/c9dt00501c] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Developing novel solid adsorbents with high efficiency and excellent selectivity is always an important target in the removal of toxic metal ions from waste water.
Collapse
Affiliation(s)
- Xueping Quan
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
- China
| | - Zhongqiao Sun
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
- China
| | - Hao Meng
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
- China
| | - Yide Han
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
- China
| | - Junbiao Wu
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
- China
| | - Junli Xu
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
- China
| | - Yan Xu
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
- China
| | - Xia Zhang
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
- China
| |
Collapse
|
33
|
Ramanayaka S, Vithanage M, Sarmah A, An T, Kim KH, Ok YS. Performance of metal–organic frameworks for the adsorptive removal of potentially toxic elements in a water system: a critical review. RSC Adv 2019; 9:34359-34376. [PMID: 35529979 PMCID: PMC9073907 DOI: 10.1039/c9ra06879a] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/11/2019] [Indexed: 12/13/2022] Open
Abstract
Elevated levels of potentially toxic elements (PTEs) in aqueous environments have drawn attention recently due to their presence and toxicity to living beings. There have been numerous attempts to remove PTEs from aqueous media. The potential of metal–organic frameworks (MOFs) in removing PTEs from aqueous media has been recognized due to their distinctive advantages (e.g., increased removal capability, large surface area, adjustable porosity, and recyclability). Because of the poor stability of MOFs in water, pre and post synthetic modification and functionalization of MOFs have also been developed for water treatment investigations. This review addresses the performance and mechanisms of PTE removal in various modified MOFs in detail. In order to compare the performance of MOFs, here we used partition coefficient (PC) instead of maximum adsorption capacity, which is sensitively influenced by initial loading concentrations. Therefore, the PC of each material was used to evaluate the adsorption performance of different MOFs and to compare with other sorbents. Furthermore, it discusses the scale-up issues and forthcoming pathway for the research and development needs of MOFs for effective PTE removal. This review further elucidates the main removal mechanisms of PTEs by MOFs. Commercial or domestic water treatment systems or water filters can utilize engineered MOFs to treat water by adsorptive removal. However, marketable products have yet to be investigated thoroughly due to limitations of the large-scale synthesis of MOFs. This review examines the performance of metal–organic frameworks based on partition coefficient data over the classic maximum adsorption capacities.![]()
Collapse
Affiliation(s)
- Sammani Ramanayaka
- Ecosphere Resilience Research Center
- Faculty of Applied Sciences
- University of Sri Jayewardenepura
- Nugegoda
- Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Center
- Faculty of Applied Sciences
- University of Sri Jayewardenepura
- Nugegoda
- Sri Lanka
| | - Ajit Sarmah
- Department of Civil & Environmental Engineering
- Faculty of Engineering
- The University of Auckland
- Auckland
- New Zealand
| | - Taicheng An
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control
- School of Environmental Science and Engineering
- Institute of Environmental Health and Pollution Control
- Guangdong University of Technology
| | - Ki-Hyun Kim
- Air Quality & Materials Application Lab
- Department of Civil & Environmental Engineering
- Hanyang University
- South Korea
| | - Yong Sik Ok
- Korea Biochar Research Center
- O-Jeong Eco-Resilience Institute (OJERI)
- Division of Environmental Science and Ecological Engineering
- Korea University
- South Korea
| |
Collapse
|
34
|
Wen J, Fang Y, Zeng G. Progress and prospect of adsorptive removal of heavy metal ions from aqueous solution using metal-organic frameworks: A review of studies from the last decade. CHEMOSPHERE 2018; 201:627-643. [PMID: 29544217 DOI: 10.1016/j.chemosphere.2018.03.047] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 02/27/2018] [Accepted: 03/05/2018] [Indexed: 05/27/2023]
Abstract
The efficient removal of heavy metals (HMs) from the environment has become an important issue from both biological and environmental perspectives. Recently, porous metal-organic frameworks (MOFs), combining central metals and organic ligands, have been proposed as promising materials in the capture of various toxic substances, including HMs, due to their unique characteristics. Here we review recent progress in the field of water remediation from the perspective of primary HMs (including divalent metals and variable-valent metals) in water pollution and the corresponding MOFs (including virgin and modified MOFs, magnetic MOFs composites and so on) that can remove these metals from water. The reported values of various MOFs for adsorption of heavy metal ions were 8.40-313 mg Pb(II) g-1, 0.65-2173 mg Hg(II) g-1, 3.63-145 mg Cd(II) g-1, 14.0-127 mg Cr(III) g-1, 15.4-145 mg Cr(VI) g-1, 49.5-123 mg As(III) g-1, and 12.3-303 mg As(V) g-1. The main adsorption mechanisms associated with these processes are chemical (including coordination interaction, chemical bonding and acid-base interactions) and physical (including electrostatic interaction, diffusion and van der Waals force) adsorption, which were discussed in detailed. Further efforts should be made towards expanding the repertoire of MOFs that effectively remove multiple targeted HMs, as well as exploring possible applications of MOFs in the removal of HMs from non-aqueous environments.
Collapse
Affiliation(s)
- Jia Wen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Ying Fang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
35
|
Kobielska PA, Howarth AJ, Farha OK, Nayak S. Metal–organic frameworks for heavy metal removal from water. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.12.010] [Citation(s) in RCA: 553] [Impact Index Per Article: 92.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Zhang X, Wang X, Chen Z. A Novel Nanocomposite as an Efficient Adsorbent for the Rapid Adsorption of Ni(II) from Aqueous Solution. MATERIALS 2017; 10:ma10101124. [PMID: 28937606 PMCID: PMC5666930 DOI: 10.3390/ma10101124] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/18/2017] [Accepted: 09/21/2017] [Indexed: 12/07/2022]
Abstract
A sulfhydryl-lignocellulose/montmorillonite (SLT) nanocomposite was prepared using a chemical intercalation reaction. The SLT nanocomposite was characterized by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Transmission Electron Microscopy (TEM), the results demonstrated that an intercalated-exfoliated nanostructure was formed in the SLT nanocomposite. Batch experiments were conducted to optimize parameters such as SLT nanocomposite dosage, the initial concentration of Ni(II), solution pH, temperature, and time. The results indicated that the attractive adsorption capacity reached 1134.08 mg/g with 0.05 g of SLT at an initial concentration of Ni(II) of 700 mg/L, solution pH of 5.5, adsorption temperature of 50 °C, and adsorption time of 40 min, meanwhile, the Ni(II) adsorption capacity significantly decreased with the increase in ionic strength. The pseudo-second order kinetic model could describe the whole adsorption process well, and the isotherm adsorption equilibrium conformed to the Freundlich model. The adsorption mechanism of SLT was also discussed by means of FTIR and Energy-Dispersive X-Ray (EDX). Dramatically, the introduction of sulfhydryl achieves the increased activated functional groups content of SLT nanocomposite, leading to remarkably higher adsorption amount on Ni(II). The desorption capacity of SLT was dependent on parameters such as HNO3 concentration, desorption temperature, and ultrasonic desorption time. The satisfactory desorption capacity and desorption efficiency of 458.21 mg/g and 40.40% were obtained at an HNO3 concentration, desorption temperature, and ultrasonic desorption time of 0.4 mol/L, 40 °C, and 30 min, respectively. The regeneration studies showed that the adsorption capacity of SLT was consistent for four cycles without any appreciable loss and confirmed that the SLT was reusable. Owing to such outstanding features, the novel SLT nanocomposite proved the great potential in adsorption for Ni(II) removal from aqueous solution, and exhibited an extremely significant amount of Ni(II), compared to pristine lignocellulose/montmorillonite and the conventional spent adsorbents.
Collapse
Affiliation(s)
- Xiaotao Zhang
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China.
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Ximing Wang
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Zhangjing Chen
- Department of Sustainable Biomaterials, Virginia Tech University, Blacksburg, VA 24061, USA.
| |
Collapse
|
37
|
Aden M, Ubol RN, Knorr M, Husson J, Euvrard M. Efficent removal of nickel(II) salts from aqueous solution using carboxymethylchitosan-coated silica particles as adsorbent. Carbohydr Polym 2017; 173:372-382. [PMID: 28732879 DOI: 10.1016/j.carbpol.2017.05.090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/09/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
Three types of organo-mineral composites have been probed as adsorbents for the removal of Ni(II) ions from aqueous solution. Native Aerosil 200 silica particles have been encapsulated with carboxymethylchitosan (CM-CS) providing SiO2+CM-CS, surface-silanized silica particles SiO2NH2+CM-CS were obtained by treatment with APTES and subsequent encapsulation by CM-CS. Alternatively, surface-carboxylated Aerosil 200 was coated by CM-CS affording SiO2CO2H+CM-CS. The materials have been characterized by various techniques. The effects of counter ions (Cl-, Br-, CH3COO-, NO3- and SO42-), pH and initial Ni(II) concentration on the adsorption capacities have been systematically investigated. The maximum adsorption capacity qm of CM-CS-coated silica was determined using the Langmuir adsorption isotherm. For SiO2CO2H+CM-CS, SiO2+CM-CS and SiO2NH2+CM-CS, they decrease at pH 7 in the order 256mg/g>140mg/g>105mg/g. The adsorption kinetic fits well with a pseudo-second order model. These carbohydrate-derived biosorbents are excellent adsorbents with capacities superior to most other adsorbents reported in the literature.
Collapse
Affiliation(s)
- Moumin Aden
- Institut UTINAM, UMR CNRS 6213, Matériaux et Surfaces Structurés, Université Bourgogne Franche-Comté, 16 Route de Gray, 25030 Besançon, France; Faculté des Sciences, Université de Djibouti, Avenue Djanaleh, 1904, Djibouti
| | - Rattiya Na Ubol
- Institut UTINAM, UMR CNRS 6213, Matériaux et Surfaces Structurés, Université Bourgogne Franche-Comté, 16 Route de Gray, 25030 Besançon, France; Division of Chemistry, School of Science, University of Phayao, 56000, Thailand
| | - Michael Knorr
- Institut UTINAM, UMR CNRS 6213, Matériaux et Surfaces Structurés, Université Bourgogne Franche-Comté, 16 Route de Gray, 25030 Besançon, France.
| | - Jérôme Husson
- Institut UTINAM, UMR CNRS 6213, Matériaux et Surfaces Structurés, Université Bourgogne Franche-Comté, 16 Route de Gray, 25030 Besançon, France
| | - Myriam Euvrard
- Institut UTINAM, UMR CNRS 6213, Matériaux et Surfaces Structurés, Université Bourgogne Franche-Comté, 16 Route de Gray, 25030 Besançon, France.
| |
Collapse
|