1
|
Kanganavaree C, Kantarod K, Worakul T, Soorukram D, Kuhakarn C, Chakarawet K, Wattanathana W, Surawatanawong P, Reutrakul V, Leowanawat P. Palladium-Catalyzed Double Decarboxylative [3 + 2] Annulation of Naphthalic Anhydrides with Internal Alkynes. J Org Chem 2024; 89:15083-15090. [PMID: 39369427 DOI: 10.1021/acs.joc.4c01747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
A palladium-catalyzed [3 + 2] annulation of naphthalic anhydrides with internal alkynes has been developed. The present protocol offers an efficient and convenient route to access a series of 1,2-disubstituted acenaphthylenes with excellent functional group compatibility. The reaction is proposed to proceed through a double decarboxylation sequence. The reported synthetic protocols can be extended to napthalene- and perylenedicarboximide-containing substrates. The molecular structures, photophysical properties, and frontier molecular orbitals of the obtained adducts were investigated by X-ray crystallography, UV-vis and fluorescence spectroscopy, and DFT calculations.
Collapse
Affiliation(s)
- Chaipot Kanganavaree
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand
| | - Kritchasorn Kantarod
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand
| | - Thanapat Worakul
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand
| | - Darunee Soorukram
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Chutima Kuhakarn
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Khetpakorn Chakarawet
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand
| | - Worawat Wattanathana
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
| | - Panida Surawatanawong
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Vichai Reutrakul
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Pawaret Leowanawat
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| |
Collapse
|
2
|
Luo H, Liu J. Non-Alternant Nanographenes Bearing N-Doped Non-Hexagonal Pairs: Synthesis, Structural Analysis and Photophysical Properties. Angew Chem Int Ed Engl 2024; 63:e202410759. [PMID: 39032012 DOI: 10.1002/anie.202410759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 07/22/2024]
Abstract
Introduction of non-hexagons and/or heteroatoms allows for finely tuning the physicochemical properties of nanographenes. Heteroatoms doping have dominated the modulation of nanographenes with tunable band gap, rich electrochemical activities and so on. The pair of non-hexagons, for instance, pentagon-heptagon pairs, have furnished nanographenes with aromatic and/or antiaromatic characteristics, open-shell properties and so on. In order to meet the growing demand for versatile nanographenes in materials science, research on novel nanographenes with heteroatom doped non-hexagonal pairs has been aroused in recent years. In this review, we focus on nanographenes with nitrogen-doped non-hexagonal paris including the synthesis, structure analysis, photophysical properties, and potential applications in organic devices.
Collapse
Affiliation(s)
- Huan Luo
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, P.R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, P.R. China
| | - Junzhi Liu
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, P.R. China
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, 518005, P.R. China
| |
Collapse
|
3
|
Merkhatuly N, Iskanderov A, Abeuova S, Iskanderov A, Zhokizhanova S. Introduction of Electron Donor Groups into the Azulene Structure: The Appearance of Intense Absorption and Emission in the Visible Region. Molecules 2024; 29:3354. [PMID: 39064932 PMCID: PMC11279626 DOI: 10.3390/molecules29143354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
In this work, through the Suzuki-Miyaura cross-coupling reaction with high yields, new π-conjugated azulene compounds containing diphenylaniline groups at positions 2 and 6 of azulene were synthesized. The obtained diphenylaniline-azulenes have intensely visible-light absorbing and emitting (in the wavelength range from 400 to 600 nm) properties. It has been shown that such unique optical properties, in particular fluorescent emission in the region of blue and green photoluminescence (λem at 495 and 525 nm), which were absent in the original azulene, are the result of the electron donor effect of diphenylaniline groups, which significantly changes the electronic structure of azulene and leads to the allowed HOMO → LUMO electron transition.
Collapse
Affiliation(s)
- Nurlan Merkhatuly
- Department of Inorganic and Technical Chemistry, Karaganda Buketov University, Karaganda 100028, Kazakhstan;
| | - Ablaykhan Iskanderov
- Department of Inorganic and Technical Chemistry, Karaganda Buketov University, Karaganda 100028, Kazakhstan;
| | - Saltanat Abeuova
- Graduate School of Science, Astana International University, Astana 020000, Kazakhstan;
| | - Amantay Iskanderov
- Department of Inorganic and Technical Chemistry, Karaganda Buketov University, Karaganda 100028, Kazakhstan;
| | - Saltanat Zhokizhanova
- Department of Physics and Chemistry, Saken Seifullin Kazakh Agro Technical Research University, Astana 010000, Kazakhstan;
| |
Collapse
|
4
|
Eshagh Saatlo R, Oczlon J, Wunsch JF, Rudolph M, Rominger F, Oeser T, Shiri F, Ariafard A, Hashmi ASK. Gold(I)-Catalyzed Intramolecular 7-endo-dig Cyclization of Triene-Yne Systems: New Access towards Azulenothiophenes. Angew Chem Int Ed Engl 2024; 63:e202402481. [PMID: 38529673 DOI: 10.1002/anie.202402481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/27/2024]
Abstract
We report the direct synthesis of new azulene derivatives through gold-catalyzed cyclization reactions. A five-membered ring as backbone in the applied triene-yne substrates turned out to be crucial to induce the 7-endo-dig cyclization mode necessary to trigger azulene formation. The obtained targets are of high interest due to their potential applications in different fields, like organic materials, medicine or cosmetics. UV/Vis spectra and cyclic voltammetry were measured, based on these the electronic properties were determined. Short two or three step sequences towards the applied starting materials make this approach synthetically highly attractive.
Collapse
Affiliation(s)
- Rebeka Eshagh Saatlo
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Julian Oczlon
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Jonas F Wunsch
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Matthias Rudolph
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Thomas Oeser
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Farshad Shiri
- Department of Chemistry, Islamic Azad University, Central Tehran Branch, Poonak, Tehran, Iran
| | - Alireza Ariafard
- Department of Chemistry, Islamic Azad University, Central Tehran Branch, Poonak, Tehran, Iran
- Research School of Chemistry, Australian National University, Building 137, Sullivans Creek Road, Canberra, ACT 2601, Australia
| | - A Stephen K Hashmi
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
5
|
Pino-Rios R, Báez-Grez R, Szczepanik DW, Solá M. Designing potentially singlet fission materials with an anti-Kasha behaviour. Phys Chem Chem Phys 2024; 26:15386-15392. [PMID: 38747026 DOI: 10.1039/d4cp01284d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Singlet fission (SF) compounds offer a promising avenue for improving the performance of solar cells. Using TD-DFT methods, anti-Kasha azulene derivatives that could carry out SF have been designed. For this purpose, substituted azulenes with a donor (-OH) and/or an acceptor group (-CN) have been systematically studied using the S2 ≥ 2T1 formula. We have found that -CN (-OH) substituents on electrophilic (nucleophilic) carbons result in improved SF properties when compared to azulene.
Collapse
Affiliation(s)
- Ricardo Pino-Rios
- Centro de Investigación Medicina de Altura - CEIMA, Universidad Arturo Prat. Casilla 121, Iquique 1100000, Chile.
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique 1100000, Chile
| | - Rodrigo Báez-Grez
- Facultad de Ciencias, Universidad Arturo Prat, Casilla 121, Iquique 1100000, Chile
| | - Dariusz W Szczepanik
- K. Guminski Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, Poland
| | - Miquel Solá
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
| |
Collapse
|
6
|
Meiszter E, Gazdag T, Mayer PJ, Kunfi A, Holczbauer T, Sulyok-Eiler M, London G. Revisiting Hafner's Azapentalenes: The Chemistry of 1,3-Bis(dimethylamino)-2-azapentalene. J Org Chem 2024; 89:5941-5951. [PMID: 38630009 PMCID: PMC11077492 DOI: 10.1021/acs.joc.3c02564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 05/04/2024]
Abstract
Stable azaheterocyclic derivatives of pentalene have been reported by the group of Hafner in the 1970s. However, these structures remained of low interest until recently, when they started to be investigated in the context of organic light-emitting diodes' (OLEDs') development. Herein, we revisit the synthesis of stable azapentalene derivative 1,3-bis(dimethylamino)-2-azapentalene and further explore its properties both computationally and experimentally. Beyond the reproduction and optimization of some previously reported transformations, such as formylation and amine substitution, the available scope of reactions was expanded with azo-coupling, selective halogenations, and cross-coupling reactions.
Collapse
Affiliation(s)
- Enikő Meiszter
- MTA
TTK Lendület Functional Organic Materials Research Group, Institute
of Organic Chemistry, HUN-REN Research Centre
for Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
- Department
of Organic Chemistry and Technology, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Tamás Gazdag
- MTA
TTK Lendület Functional Organic Materials Research Group, Institute
of Organic Chemistry, HUN-REN Research Centre
for Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
- Hevesy
György PhD School of Chemistry, Eötvös
Loránd University, Pázmány Péter Sétány 1/a, 1117 Budapest, Hungary
| | - Péter J. Mayer
- MTA
TTK Lendület Functional Organic Materials Research Group, Institute
of Organic Chemistry, HUN-REN Research Centre
for Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
| | - Attila Kunfi
- MTA
TTK Lendület Functional Organic Materials Research Group, Institute
of Organic Chemistry, HUN-REN Research Centre
for Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
| | - Tamás Holczbauer
- Chemical
Crystallography Research Laboratory and Stereochemistry Research Group,
Institute for Organic Chemistry, HUN-REN
Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
| | - Máté Sulyok-Eiler
- Hevesy
György PhD School of Chemistry, Eötvös
Loránd University, Pázmány Péter Sétány 1/a, 1117 Budapest, Hungary
- Laboratory
of Structural Chemistry and Biology, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter
Sétány 1/a, 1117 Budapest, Hungary
| | - Gábor London
- MTA
TTK Lendület Functional Organic Materials Research Group, Institute
of Organic Chemistry, HUN-REN Research Centre
for Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
| |
Collapse
|
7
|
Hatakenaka R, Nishikawa N, Mikata Y, Aoyama H, Yamashita K, Shiota Y, Yoshizawa K, Kawasaki Y, Tomooka K, Kamijo S, Tani F, Murafuji T. Efficient Synthesis and Structural Analysis of Chiral 4,4'-Biazulene. Chemistry 2024; 30:e202400098. [PMID: 38376431 DOI: 10.1002/chem.202400098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 02/21/2024]
Abstract
4,4'-Biazulene is a potentially attractive key component of an axially chiral biaryl compound, however, its structure and properties have not been clarified owing to the lack of its efficient synthesis. We report a breakthrough in the reliable synthesis of 4,4'-biazulene, which is achieved by the access to azulen-4-ylboronic acid pinacol ester and 4-iodoazulene as novel key synthetic intermediates for the Suzuki-Miyaura cross-coupling reaction. The X-ray crystallographic analysis of 4,4'-biazulene confirmed its axial chirality. The enantiomers of 4,4'-biazulene were successfully resolved by HPLC on the chiral stationary phase column. The kinetic experiments and DFT calculations indicate that the racemization energy barrier of 4,4'-biazulene is comparable to that of 1,1'-binaphthyl.
Collapse
Affiliation(s)
- Ryoji Hatakenaka
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8512, Japan
| | - Nanami Nishikawa
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8512, Japan
| | - Yuji Mikata
- Laboratory for Molecular & Functional Design, Department of Engineering, Nara Women's University, Nara, 630-8506, Japan
| | - Hiroki Aoyama
- Graduate School of Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Kohsuke Yamashita
- Graduate School of Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yuuya Kawasaki
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka, 816-8580, Japan
| | - Katsuhiko Tomooka
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka, 816-8580, Japan
| | - Shin Kamijo
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8512, Japan
| | - Fumito Tani
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Toshihiro Murafuji
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8512, Japan
| |
Collapse
|
8
|
Türkmen YE. Recent advances in the synthesis and applications of fluoranthenes. Org Biomol Chem 2024; 22:2719-2733. [PMID: 38470856 DOI: 10.1039/d4ob00083h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
As an important subclass of polycyclic aromatic hydrocarbons (PAHs), fluoranthenes continue to attract significant attention in synthetic organic chemistry and materials science. In this article, an overview of recent advances in the synthesis of fluoranthene derivatives along with selected applications is provided. First, methods for fluoranthene synthesis with a classification based on strategic bond disconnections are discussed. Then, the total syntheses of natural products featuring the benzo[j]fluoranthene skeleton are covered. Finally, examples of important applications of a variety of fluoranthenes are summarized.
Collapse
Affiliation(s)
- Yunus Emre Türkmen
- Department of Chemistry, Faculty of Science, Bilkent University, Ankara 06800, Türkiye.
- UNAM - National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Türkiye
| |
Collapse
|
9
|
Gazdag T, Meiszter E, Mayer PJ, Holczbauer T, Ottosson H, Maurer AB, Abrahamsson M, London G. An Exploration of Substituent Effects on the Photophysical Properties of Monobenzopentalenes. Chemphyschem 2024; 25:e202300737. [PMID: 38284145 DOI: 10.1002/cphc.202300737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/18/2023] [Accepted: 01/26/2024] [Indexed: 01/30/2024]
Abstract
Monobenzopentalenes have received moderate attention compared to dibenzopentalenes, yet their accessibility as stable, non-symmetric structures with diverse substituents could be interesting for materials applications, including molecular photonics. Recently, monobenzopentalene was considered computationally as a potential chromophore for singlet fission (SF) photovoltaics. To advance this compound class towards photonics applications, the excited state energetics must be characterized, computationally and experimentally. In this report we synthesized a series of stable substituted monobenzopentalenes and provided the first experimental exploration of their photophysical properties. Structural and opto-electronic characterization revealed that all derivatives showed 1H NMR shifts in the olefinic region, bond length alternation in the pentalene unit, low-intensity absorptions reflecting the ground-state antiaromatic character and in turn the symmetry forbidden HOMO-to-LUMO transitions of ~2 eV and redox amphotericity. This was also supported by computed aromaticity indices (NICS, ACID, HOMA). Accordingly, substituents did not affect the fulfilment of the energetic criterion of SF, as the computed excited-state energy levels satisfied the required E(S1)/E(T1)>2 relationship. Further spectroscopic measurements revealed a concentration dependent quenching of the excited state and population of the S2 state on the nanosecond timescale, providing initial evidence for unusual photophysics and an alternative entry point for singlet fission with monobenzopentalenes.
Collapse
Affiliation(s)
- Tamás Gazdag
- MTA TTK Lendület Functional Organic Materials Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, 1117, Budapest, Magyar tudósok krt. 2, Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/a, Budapest, 1117, Hungary
| | - Enikő Meiszter
- MTA TTK Lendület Functional Organic Materials Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, 1117, Budapest, Magyar tudósok krt. 2, Hungary
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111, Budapest, Hungary
| | - Péter J Mayer
- MTA TTK Lendület Functional Organic Materials Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, 1117, Budapest, Magyar tudósok krt. 2, Hungary
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, Uppsala, 751 20, Sweden
| | - Tamás Holczbauer
- Chemical Crystallography Research Laboratory and Stereochemistry Research Group, Institute for Organic Chemistry, HUN-REN Research Centre for Natural Sciences, 1117, Budapest, Magyar tudósok krt. 2, Hungary
| | - Henrik Ottosson
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, Uppsala, 751 20, Sweden
| | - Andrew B Maurer
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, 41296, Sweden
| | - Maria Abrahamsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, 41296, Sweden
| | - Gábor London
- MTA TTK Lendület Functional Organic Materials Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, 1117, Budapest, Magyar tudósok krt. 2, Hungary
| |
Collapse
|
10
|
Yamada KE, Stepek IA, Matsuoka W, Ito H, Itami K. Synthesis of Heptagon-Containing Polyarenes by Catalytic C-H Activation. Angew Chem Int Ed Engl 2023:e202311770. [PMID: 37902441 DOI: 10.1002/anie.202311770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/13/2023] [Accepted: 10/30/2023] [Indexed: 10/31/2023]
Abstract
Nanocarbons incorporating non-hexagonal aromatic rings - such as five-, seven-, and eight-membered rings - have various intriguing physical properties such as curved structures, unique one-dimensional packing, and promising magnetic, optical, and conductivity properties. Herein, we report an efficient synthetic approach to polycyclic aromatics containing seven-membered rings via a palladium-catalyzed intramolecular Ar-H/Ar-Br coupling. In addition to all-hydrocarbon scaffolds, heteroatom-embedded heptagon-containing polyarenes can be efficiently constructed with this method. Rhodium- and palladium-catalyzed sequential six- and seven-membered ring formations also afford complex heptagon-containing molecular nanocarbons from readily available arylacetylenes and biphenyl boronic acids. Detailed mechanistic analysis by DFT calculations showed the feasibility of seven-membered ring formation by a concerted metalation-deprotonation mechanism. This reaction can serve as a template for the synthesis of a wide range of seven-membered ring-containing molecular nanocarbons.
Collapse
Affiliation(s)
- Keigo E Yamada
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Iain A Stepek
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Wataru Matsuoka
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Hideto Ito
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Kenichiro Itami
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
11
|
Spengler J, Zhu C, Shoyama K, Würthner F. π-Extended benzo[1,2:4,5]di[7]annulene bis(dicarboximide)s - a new class of non-alternant polycyclic aromatic dicarboximides. Chem Sci 2023; 14:10861-10866. [PMID: 37829012 PMCID: PMC10566470 DOI: 10.1039/d3sc04015a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Abstract
Aromatic dicarboximides are a class of molecules represented by the well-known rylene bis(dicarboximide)s, in particular perylene or naphthalene bis(dicarboximide)s, which show pronounced optoelectronic properties and are applied as color pigments, fluorescent dyes and organic semiconductors. Herein we extend the family of aromatic bis(dicarboximide)s and report the synthesis of the first series of non-alternant aromatic dicarboximides by twofold Pd-catalyzed [5 + 2] annulation. Characterization by UV/vis spectroscopy and cyclic voltammetry (CV) measurements give insight into the optoelectronic characteristics of the hitherto unexplored substance class of heptagon-containing imides. Theoretical studies by nucleus independent chemical shift (NICS) XY-scans and anisotropy of the induced current density (ACID) plots demonstrate the influence of both the non-alternant carbon framework and the imide moieties on aromaticity of the synthesized bisimides.
Collapse
Affiliation(s)
- Jonas Spengler
- Universität Würzburg, Institut für Organische Chemie and Center for Nanosystems Chemistry Am Hubland 97074 Würzburg Germany
| | - Chongwei Zhu
- Universität Würzburg, Institut für Organische Chemie and Center for Nanosystems Chemistry Am Hubland 97074 Würzburg Germany
| | - Kazutaka Shoyama
- Universität Würzburg, Institut für Organische Chemie and Center for Nanosystems Chemistry Am Hubland 97074 Würzburg Germany
| | - Frank Würthner
- Universität Würzburg, Institut für Organische Chemie and Center for Nanosystems Chemistry Am Hubland 97074 Würzburg Germany
| |
Collapse
|
12
|
Garner MH, Blaskovits JT, Corminboeuf C. Double-bond delocalization in non-alternant hydrocarbons induces inverted singlet-triplet gaps. Chem Sci 2023; 14:10458-10466. [PMID: 37800005 PMCID: PMC10548509 DOI: 10.1039/d3sc03409g] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/06/2023] [Indexed: 10/07/2023] Open
Abstract
Molecules where the first excited singlet state is lower in energy than the first excited triplet state have the potential to revolutionize OLEDs. This inverted singlet-triplet gap violates Hund's rule and currently there are only a few molecules which are known to have this property. Here, we screen the complete set of non-alternant hydrocarbons consisting of 5-, 6-, 7-membered rings fused into two-, three- and four-ring polycyclic systems. We identify several molecules where the symmetry of the ground-state structure is broken due to bond-length alternation. Through symmetry-constrained optimizations we identify several molecular cores where the singlet-triplet gap is inverted when the structure is in a higher symmetry, pentalene being a known example. We uncover a strategy to stabilize the molecular cores into their higher-symmetry structures with electron donors or acceptors. We design several substituted pentalenes, s-indacenes, and indeno[1,2,3-ef]heptalenes with inverted gaps, among which there are several synthetically known examples. In contrast to known inverted gap emitters, we identify the double-bond delocalized structure of their conjugated cores as the necessary condition to achieve the inverted gap. This strategy enables chemical tuning and paves the way for the rational design of polycyclic hydrocarbons with inverted singlet-triplet gaps. These molecules are prospective emitters if their properties can be optimized for use in OLEDs.
Collapse
Affiliation(s)
- Marc H Garner
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, École Polytechnique Fedéralé de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - J Terence Blaskovits
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, École Polytechnique Fedéralé de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Clémence Corminboeuf
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, École Polytechnique Fedéralé de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
13
|
Mizuno Y, Nogata A, Suzuki M, Nakayama KI, Hisaki I, Kishi R, Konishi A, Yasuda M. Synthesis and Characterization of Dibenzothieno[ a, f]pentalenes Enabling Large Antiaromaticity and Moderate Open-Shell Character through a Small Energy Barrier for Bond-Shift Valence Tautomerization. J Am Chem Soc 2023; 145:20595-20609. [PMID: 37695346 DOI: 10.1021/jacs.3c07356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Experimental and theoretical rationalization of bond-shift valence tautomerization, characterized by double-well potential surfaces, is one of the most challenging topics of study among the rich electronic properties of antiaromatic molecules. Although the pseudo-Jahn-Teller effect (PJTE) is an essential effect to provide attractive characteristics of 4nπ systems, an understanding of the structure-property relationship derived from the PJTE for planar 4nπ electron systems is still in its infancy. Herein, we describe the synthesis and characterization of two regioisomers of the thiophene-fused diareno[a,f]pentalenes 6 and 7. The magnetic and optoelectronic properties characterize these sulfur-doped diareno[a,f]pentalenes as open-shell antiaromatic molecules, in sharp contrast to the closed-shell antiaromatic systems of 3 and 5, in which these main cores consist of the same number of π electrons as 6 and 7. Notably, thiophene-fused 6b and 7b showed pronounced antiaromaticity, the strongest among the previous systems, as well as moderate open-shell characteristics. Our experimental and theoretical investigations concluded that these properties of 6b and 7b are derived from the small energy barrier Ea‡ for the bond-shift valence tautomerization. The energy profile of the single crystal of 6b showed the temperature-dependent structural variations assigned to the dynamic mutual exchange between the two Cs-symmetric structures, which was also supported by changes in the chemical shifts of variable-temperature 1H NMR spectra in the solution phase. Both experimental and computational results revealed the importance of introducing heteroaromatic rings into 4nπ systems for controlling the PJTE and manifesting the antiaromatic and open-shell natures originating from the high-symmetric structure. The findings of this study advance the understanding of antiaromaticity characterized by the PJTE by controlling the energy barrier for bond-shift valence tautomerizations, potentially leading to the rational design of optoelectronic devices based on novel antiaromatic molecules possessing the strong contributions of their high-symmetric geometries.
Collapse
Affiliation(s)
- Yusuke Mizuno
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akira Nogata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mitsuharu Suzuki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ken-Ichi Nakayama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ichiro Hisaki
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Ryohei Kishi
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
- Center for Quantum Information and Quantum Biology (QIQB), Osaka University, Toyonaka, Osaka 560-8531, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Akihito Konishi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Makoto Yasuda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
14
|
Wu F, Barragán A, Gallardo A, Yang L, Biswas K, Écija D, Mendieta-Moreno JI, Urgel JI, Ma J, Feng X. Structural Expansion of Cyclohepta[def]fluorene towards Azulene-Embedded Non-Benzenoid Nanographenes. Chemistry 2023; 29:e202301739. [PMID: 37339368 DOI: 10.1002/chem.202301739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023]
Abstract
Non-benzenoid non-alternant nanographenes (NGs) have attracted increasing attention on account of their distinct electronic and structural features in comparison to their isomeric benzenoid counterparts. In this work, we present a series of unprecedented azulene-embedded NGs on Au(111) during the attempted synthesis of cyclohepta[def]fluorene-based high-spin non-Kekulé structure. Comprehensive scanning tunneling microscopy (STM) and non-contact atomic force microscopy (nc-AFM) evidence the structures and conformations of these unexpected products. The dynamics of the precursor bearing 9-(2,6-dimethylphenyl)anthracene and dihydro-dibenzo-cyclohepta[def]fluorene units and its reaction products on the surface are analyzed by density functional theory (DFT) and molecular dynamics (MD) simulations. Our study sheds light on the fundamental understanding of precursor design for the fabrication of π-extended non-benzenoid NGs on a metal surface.
Collapse
Affiliation(s)
- Fupeng Wu
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
- Center for Advancing Electronics Dresden (cfaed) &, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Ana Barragán
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Aurelio Gallardo
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Lin Yang
- Center for Advancing Electronics Dresden (cfaed) &, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Kalyan Biswas
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - David Écija
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Jesús I Mendieta-Moreno
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - José I Urgel
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Ji Ma
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
- Center for Advancing Electronics Dresden (cfaed) &, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Xinliang Feng
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
- Center for Advancing Electronics Dresden (cfaed) &, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| |
Collapse
|
15
|
Fu L, Liu P, Xue R, Tang XY, Cao J, Yao ZF, Liu Y, Yan S, Wang XY. Unravelling the Superiority of Nonbenzenoid Acepleiadylene as a Building Block for Organic Semiconducting Materials. Angew Chem Int Ed Engl 2023; 62:e202306509. [PMID: 37417837 DOI: 10.1002/anie.202306509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/08/2023]
Abstract
Acepleiadylene (APD), a nonbenzenoid isomer of pyrene, exhibits a unique charge-separated character with a large molecular dipole and a small optical gap. However, APD has never been explored in optoelectronic materials to take advantage of these appealing properties. Here, we employ APD as a building block in organic semiconducting materials for the first time, and unravel the superiority of nonbenzenoid APD in electronic applications. We have synthesized an APD derivative (APD-IID) with APD as the terminal donor moieties and isoindigo (IID) as the acceptor core. Theoretical and experimental investigations reveal that APD-IID has an obvious charge-separated structure and enhanced intermolecular interactions as compared with its pyrene-based isomers. As a result, APD-IID displays significantly higher hole mobilities than those of the pyrene-based counterparts. These results imply the advantages of employing APD in semiconducting materials and great potential of nonbenzenoid polycyclic arenes for optoelectronic applications.
Collapse
Affiliation(s)
- Lin Fu
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Pengcai Liu
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Rui Xue
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Xiao-Yu Tang
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Jiawen Cao
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Ze-Fan Yao
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, CA, 92697, USA
| | - Yuchao Liu
- Key Laboratory of Rubber-Plastics (Ministry of Education), Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Shouke Yan
- Key Laboratory of Rubber-Plastics (Ministry of Education), Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xiao-Ye Wang
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, China
| |
Collapse
|
16
|
Tsuchiya T, Hamano T, Inoue M, Nakamura T, Wakamiya A, Mazaki Y. Intense absorption of azulene realized by molecular orbital inversion. Chem Commun (Camb) 2023; 59:10604-10607. [PMID: 37528776 DOI: 10.1039/d3cc02311g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The introduction of diarylamino groups at the 2- and 6-positions of azulene was found to invert the order of the orbital energy levels and allowed the HOMO-LUMO transition, resulting in a substantial increase in absorbance in the visible region. In addition, the stability of their one-electron oxidised species was improved by introducing bromine or methoxy groups at the 1- and 3-positions.
Collapse
Affiliation(s)
- Takahiro Tsuchiya
- Department of Chemistry, Kitasato University Kitasato 1-15-1, Sagamihara, Kanagawa 252-0373, Japan.
| | - Tomohiro Hamano
- Department of Chemistry, Kitasato University Kitasato 1-15-1, Sagamihara, Kanagawa 252-0373, Japan.
| | - Masahiro Inoue
- Department of Chemistry, Kitasato University Kitasato 1-15-1, Sagamihara, Kanagawa 252-0373, Japan.
| | - Tomoya Nakamura
- Institute for Chemical Research, Kyoto University Uji, Kyoto 611-0011, Japan
| | - Atsushi Wakamiya
- Institute for Chemical Research, Kyoto University Uji, Kyoto 611-0011, Japan
| | - Yasuhiro Mazaki
- Department of Chemistry, Kitasato University Kitasato 1-15-1, Sagamihara, Kanagawa 252-0373, Japan.
| |
Collapse
|
17
|
Wang C, Deng Z, Phillips DL, Liu J. Extension of Non-alternant Nanographenes Containing Nitrogen-Doped Stone-Thrower-Wales Defects. Angew Chem Int Ed Engl 2023; 62:e202306890. [PMID: 37421410 DOI: 10.1002/anie.202306890] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/10/2023]
Abstract
Non-alternant topologies have attracted considerable attention due to their unique physiochemical characteristics in recent years. Here, three novel topological nanographenes molecular models of nitrogen-doped Stone-Thrower-Wales (S-T-W) defects were achieved through intramolecular direct arylation. Their chemical structures were unambiguously elucidated by single-crystal analysis. Among them, threefold intramolecular direct arylation compound (C42 H21 N) is the largest nanographene bearing a N-doped non-alternant topology to date, in which the non-benzenoid rings account for 83 % of the total molecular skeleton. The absorption maxima of this compound was located in the near-infrared region with a long tail up to 900 nm, which was much longer than those reported for similarly sized N-doped nanographene with six-membered rings (C40 H15 N). In addition, the electronic energy gaps of these series compounds clearly decreased with the introduction of non-alternant topologies (from 2.27 eV to 1.50 eV). It is noteworthy that C42 H21 N possesses such a low energy gap (Eg opt =1.40 eV; Eg cv =1.50 eV), yet is highly stable under ambient conditions. Our work reported herein demonstrates that the non-alternant topology could significantly influence the electronic configurations of nanocarbons, where the introduction of a non-alternanting topology may be an effective way to narrow the energy gap without extending the molecular π-conjugation.
Collapse
Affiliation(s)
- Chang Wang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China
| | - Ziqi Deng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - David Lee Phillips
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Junzhi Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| |
Collapse
|
18
|
Nishimura Y, Harimoto T, Suzuki T, Ishigaki Y. One-Pot Synthesis of Helical Azaheptalene and Chiroptical Switching of an Isolable Radical Cation. Chemistry 2023; 29:e202301759. [PMID: 37280181 DOI: 10.1002/chem.202301759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/08/2023]
Abstract
A nitrogen-centered heptalene, azaheptalene, was designed as a representative of a new class of redox-responsive molecules with a large steric strain that originates from the adjacent seven-membered rings. The pentabenzo derivative of azaheptalene was efficiently synthesized by a palladium-catalyzed one-pot reaction of commercially available reagents. Bromination led to mono- and dibrominated derivatives, the latter of which is interconvertible with isolable radical cation species exhibiting near-infrared absorption. Since the azaheptalene skeleton shows configurationally stable helicity with a large torsion angle, enantiomers could be successfully separated. Thus, optically pure azaheptalenes with P- or M-helicity showed strong chiroptical properties (|gabs |≥0.01), which could be changed by an electric potential.
Collapse
Affiliation(s)
- Yuta Nishimura
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, 060-0810, Sapporo, Japan
| | - Takashi Harimoto
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, 060-0810, Sapporo, Japan
| | - Takanori Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, 060-0810, Sapporo, Japan
| | - Yusuke Ishigaki
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, 060-0810, Sapporo, Japan
| |
Collapse
|
19
|
Luo H, Wan Q, Choi W, Tsutsui Y, Dmitrieva E, Du L, Phillips DL, Seki S, Liu J. Two-Step Synthesis of B 2 N 2 -Doped Polycyclic Aromatic Hydrocarbon Containing Pentagonal and Heptagonal Rings with Long-Lived Delayed Fluorescence. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301769. [PMID: 37093207 DOI: 10.1002/smll.202301769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Indexed: 05/03/2023]
Abstract
Pentagon-heptagon embedded polycyclic aromatic hydrocarbons (PAHs) have aroused increasing attention in recent years due to their unique physicochemical properties. Here, for the first time, this report demonstrates a facile method for the synthesis of a novel B2 N2 -doped PAH (BN-2) containing two pairs of pentagonal and heptagonal rings in only two steps. In the solid state of BN-2, two different conformations, including saddle-shaped and up-down geometries, are observed. Through a combined spectroscopic and calculation study, the excited-state dynamics of BN-2 is well-investigated in this current work. The resultant pentagon-heptagon embedded B2 N2 -doped BN-2 displays both prompt fluorescence and long-lived delayed fluorescence components at room temperature, with the triplet excited-state lifetime in the microsecond time region (τ = 19 µs). The triplet-triplet annihilation is assigned as the mechanism for the observed long-lived delayed fluorescence. Computational analyses attributed this observation to the small energy separation between the singlet and triplet excited states, facilitating the intersystem crossing (ISC) process which is further validated by the ultrafast spectroscopic measurements.
Collapse
Affiliation(s)
- Huan Luo
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China
| | - Qingyun Wan
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Wookjin Choi
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yusuke Tsutsui
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Evgenia Dmitrieva
- Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Helmholtzstr. 20, 01069, Dresden, Germany
| | - Lili Du
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - David Lee Phillips
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Junzhi Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| |
Collapse
|
20
|
Adachi Y, Hasegawa T, Ohshita J. Highly luminescent antiaromatic diborinines with fused thiophene rings. Dalton Trans 2023. [PMID: 37357987 DOI: 10.1039/d3dt01841e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Tricoordinate boron-incorporated π-conjugated systems are widely investigated as optoelectronic materials because of their unique p-π* orbital interactions and high Lewis acidity. Among them, thiophene-fused diborinines are characterized by moderate antiaromaticity and extended conjugation. In this work, we have developed two new dithienodiborinines with C2h and C2v symmetries, which exhibited completely different optical properties. The thiophene-fused diborinines synthesized in this study showed excellent fluorescence properties both in solution and in the solid state, with quantum yields of up to 95%. The high antiaromaticity enhanced the Lewis acidity of the boron centers, as proven by the large association constants with fluoride ion estimated from titration experiments. The high Lewis acidity and the superior luminescence property have enabled their application as fluorescent sensor materials for the detection of ammonia vapor.
Collapse
Affiliation(s)
- Yohei Adachi
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan.
| | - Takumi Hasegawa
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan.
| | - Joji Ohshita
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan.
- Digital Monozukuri (Manufacturing) Education and Research Center, Hiroshima University, Higashi-Hiroshima 739-0046, Japan.
| |
Collapse
|
21
|
Diaz-Andres A, Marín-Beloqui J, Wang J, Liu J, Casado J, Casanova D. Rational design of anti-Kasha photoemission from a biazulene core embedded in an antiaromatic/aromatic hybrid. Chem Sci 2023; 14:6420-6429. [PMID: 37325150 PMCID: PMC10266467 DOI: 10.1039/d3sc00405h] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
The violation of the Kasha photoemission rule in organic molecules has intrigued chemists since their discovery, being always of relevance given its connection with unique electronic properties of molecules. However, an understanding of the molecular structure-anti-Kasha property relationship in organic materials has not been well-established, possibly because of the few existing cases available, limiting their prospective exploration and ad hoc design. Here we introduce a novel strategy to design organic emitters from high excited states combining intramolecular J-coupling of anti-Kasha chromophores with the hindering of vibrationally-induced non-radiative decay channels by enforcing molecular rigidity. We apply our approach to the integration of two antiparallel azulene units bridged with one heptalene all inserted into a polycyclic conjugated hydrocarbon (PCH). With the help of quantum chemistry calculations, we identify a suitable PCH embedding structure and predict its anti-Kasha emission from the third high energy excited singlet state. Finally, steady fluorescence and transient absorption spectroscopy studies corroborate the photophysical properties in a recently synthesized chemical derivative with this pre-designed structure.
Collapse
Affiliation(s)
- Aitor Diaz-Andres
- Donostia International Physics Center (DIPC) 20018 Donostia Euskadi Spain
| | - Jose Marín-Beloqui
- Department of Physical Chemistry, University of Malaga Campus de Teatinos s/n 29071 Malaga Spain
| | - Junting Wang
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
| | - Junzhi Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
| | - Juan Casado
- Department of Physical Chemistry, University of Malaga Campus de Teatinos s/n 29071 Malaga Spain
| | - David Casanova
- Donostia International Physics Center (DIPC) 20018 Donostia Euskadi Spain
- IKERBASQUE - Basque Foundation for Science 48009 Bilbao Euskadi Spain
| |
Collapse
|
22
|
Shetty S, Baig N, Bargakshatriya R, Pramanik SK, Alameddine B. High Uptake of the Carcinogenic Pararosaniline Hydrochloride Dye from Water Using Carbazole-Containing Conjugated Copolymers Synthesized from a One-Pot Cyclopentannulation Reaction. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37257132 DOI: 10.1021/acsami.3c05639] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Three conjugated copolymers CAP1-3 were synthesized in one-step via a typical [3+2] cyclopentannulation reaction using a specially designed diethynyl carbazole synthon with various dibrominated polycondensed aromatic hydrocarbons (PAHs). The desired copolymers CAP1-3 were obtained in excellent yields, and their structures were confirmed by 1H- and 13C- nuclear magnetic spectroscopy (NMR), whereas gel permeation chromatography revealed weight-average molar masses (Mw) up to 19.9 kDa with a polydispersity index (PDI) in the range of 2.2-2.6. Interestingly, CAP1-3 exhibits an outstanding capacity to adsorb the carcinogenic pararosaniline hydrochloride dye (Basic Red 9, BR9) from aqueous solutions. Isothermal adsorption studies were carried out following the linear models of Langmuir and Freundlich, divulging an adsorption capacity maximum (qm) toward BR9 of 483.09 mg g-1. Investigation of the dye uptake mechanism on CAP1-3 revealed a pseudo-second-order kinetic model for the target copolymer that showed the highest uptake capacity. Recyclability tests disclosed an excellent adsorption efficiency of BR 9 reaching 93% after six cycles.
Collapse
Affiliation(s)
- Suchetha Shetty
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, 40006 Hawally, Kuwait
- Functional Materials Group, Gulf University for Science and Technology, 40006 Hawally, Kuwait
| | - Noorullah Baig
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, 40006 Hawally, Kuwait
- Functional Materials Group, Gulf University for Science and Technology, 40006 Hawally, Kuwait
| | - Rupa Bargakshatriya
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
| | - Sumit Kumar Pramanik
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
| | - Bassam Alameddine
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, 40006 Hawally, Kuwait
- Functional Materials Group, Gulf University for Science and Technology, 40006 Hawally, Kuwait
| |
Collapse
|
23
|
Zahra FT, Saeed A, Mumtaz K, Albericio F. Tropylium Ion, an Intriguing Moiety in Organic Chemistry. Molecules 2023; 28:4095. [PMID: 37241836 PMCID: PMC10224505 DOI: 10.3390/molecules28104095] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The tropylium ion is a non-benzenoid aromatic species that works as a catalyst. This chemical entity brings about a large number of organic transformations, such as hydroboration reactions, ring contraction, the trapping of enolates, oxidative functionalization, metathesis, insertion, acetalization, and trans-acetalization reactions. The tropylium ion also functions as a coupling reagent in synthetic reactions. This cation's versatility can be seen in its role in the synthesis of macrocyclic compounds and cage structures. Bearing a charge, the tropylium ion is more prone to nucleophilic/electrophilic reactions than neutral benzenoid equivalents. This ability enables it to assist in a variety of chemical reactions. The primary purpose of using tropylium ions in organic reactions is to replace transition metals in catalysis chemistry. It outperforms transition-metal catalysts in terms of its yield, moderate conditions, non-toxic byproducts, functional group tolerance, selectivity, and ease of handling. Furthermore, the tropylium ion is simple to synthesize in the laboratory. The current review incorporates the literature reported from 1950 to 2021; however, the last two decades have witnessed a phenomenal upsurge in the utilization of the tropylium ion in the facilitation of organic conversions. The importance of the tropylium ion as an environmentally safe catalyst in synthesis and a comprehensive summary of some important reactions catalyzed via tropylium cations are described.
Collapse
Affiliation(s)
- Fatima Tuz Zahra
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan; (F.T.Z.); (K.M.)
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan; (F.T.Z.); (K.M.)
| | - Khansa Mumtaz
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan; (F.T.Z.); (K.M.)
| | - Fernando Albericio
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
24
|
Sharma PK, Babbar A, Mallick D, Das S. Constructing 1-Ethoxyphenanthro[9,10- e]acephenanthrylene for the Synthesis of a Polyaromatic Hydrocarbon Containing a Formal Azulene Unit. J Org Chem 2023; 88:5473-5482. [PMID: 37040656 DOI: 10.1021/acs.joc.2c03103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
peri-Acenoacenes are attractive synthetic targets, but their non-benzenoid isomeric counterparts were unnoticed. 1-Ethoxyphenanthro[9,10-e]acephenanthrylene 8 was synthesized and converted to azulene-embedded 9, which is a tribenzo-fused non-alternant isomeric motif of peri-anthracenoanthracene. Aromaticity and single-crystal analyses suggested a formal azulene core for 9, which showed a smaller highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy gap with a charge-transfer absorption band and brighter fluorescence than 8 (quantum yield (Φ): 9 = 41.8%, 8 = 8.9%). The reduction potentials of 8 and 9 were nearly identical, and the observations were further supported by density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Priyank Kumar Sharma
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Akanksha Babbar
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Dibyendu Mallick
- Department of Chemistry, Presidency University, Kolkata 700073, India
| | - Soumyajit Das
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| |
Collapse
|
25
|
Fujishiro K, Morinaka Y, Ono Y, Tanaka T, Scott LT, Ito H, Itami K. Lithium-Mediated Mechanochemical Cyclodehydrogenation. J Am Chem Soc 2023; 145:8163-8175. [PMID: 37011146 DOI: 10.1021/jacs.3c01185] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Cyclodehydrogenation is an essential synthetic method for the preparation of polycyclic aromatic hydrocarbons, polycyclic heteroaromatic compounds, and nanographenes. Among the many examples, anionic cyclodehydrogenation using potassium(0) has attracted synthetic chemists because of its irreplaceable reactivity and utility in obtaining rylene structures from binaphthyl derivatives. However, existing methods are difficult to use in terms of practicality, pyrophoricity, and lack of scalability and applicability. Herein, we report the development of a lithium(0)-mediated mechanochemical anionic cyclodehydrogenation reaction for the first time. This reaction could be easily performed using a conventional and easy-to-handle lithium(0) wire at room temperature, even under air, and the reaction of 1,1'-binaphthyl is complete within 30 min to afford perylene in 94% yield. Using this novel and user-friendly protocol, we investigated substrate scope, reaction mechanism, and gram-scale synthesis. As a result, remarkable applicability and practicality over previous methods, as well as limitations, were comprehensively studied by computational studies and nuclear magnetic resonance analysis. Furthermore, we demonstrated two-, three-, and five-fold cyclodehydrogenations for the synthesis of novel nanographenes. In particular, quinterrylene ([5]rylene or pentarylene), the longest nonsubstituted molecular rylene, was synthesized for the first time.
Collapse
Affiliation(s)
- Kanna Fujishiro
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Yuta Morinaka
- Tokyo Research Center, Organic Materials Research Laboratory, Tosoh Corporation, 2743-1 Hayakawa, Ayase, Kanagawa 252-1123, Japan
| | - Yohei Ono
- Tokyo Research Center, Organic Materials Research Laboratory, Tosoh Corporation, 2743-1 Hayakawa, Ayase, Kanagawa 252-1123, Japan
| | - Tsuyoshi Tanaka
- Tosoh Corporation, 3-8-2 Shiba, Minato-ku, Tokyo 105-8623, Japan
| | - Lawrence T Scott
- Department of Chemistry, University of Nevada, Reno, Nevada 89557-0216, United States
| | - Hideto Ito
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Kenichiro Itami
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
26
|
Mathey P, Lirette F, Fernández I, Renn L, Weitz RT, Morin JF. Annulated Azuleno[2,1,8-ija]azulenes: Synthesis and Properties. Angew Chem Int Ed Engl 2023; 62:e202216281. [PMID: 36645326 DOI: 10.1002/anie.202216281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/17/2023]
Abstract
Non-alternant non-benzenoid hydrocarbons exhibit very different optical and electronic properties than their well-studied benzenoid analogues. However, preparing such structures with extended conjugation length, remains challenging. Herein, we report the synthesis and properties of azuleno[2,1,8-ija]azulene derivatives using a two-step sequence involving a four-fold aldol condensation between aromatic dialdehydes and readily available tetrahydropentalene-2,5-(1H,3H)-dione. Molecules with band gap values ranging from 1.69 to 2.14 eV and molar extinction coefficients (ϵ) of nearly 3×105 M-1 cm-1 have been prepared. These annulene-like structures exhibit significant diatropic ring currents (aromatic), as supported by 1 H NMR spectroscopy and DFT calculations. Field-effect transistors (OFETs) using azuleno[2,1,8-ija]azulene derivatives as semiconductors exhibit charge mobility values of up to 0.05 cm2 V-1 s-1 .
Collapse
Affiliation(s)
- Pierre Mathey
- Department of Chemistry and Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, 1045 Ave de la Medecine, Québec, QC, G1V0A6, Canada
| | - Frédéric Lirette
- Department of Chemistry and Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, 1045 Ave de la Medecine, Québec, QC, G1V0A6, Canada
| | - Israel Fernández
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Lukas Renn
- 1st Institute of Physics, Faculty of Physics, Georg-August-University, Göttingen, Germany
- International Center for Advanced Studies of Energy Conversion (ICASEC), University of Göttingen, Göttingen, Germany
| | - R Thomas Weitz
- 1st Institute of Physics, Faculty of Physics, Georg-August-University, Göttingen, Germany
- International Center for Advanced Studies of Energy Conversion (ICASEC), University of Göttingen, Göttingen, Germany
| | - Jean-François Morin
- Department of Chemistry and Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, 1045 Ave de la Medecine, Québec, QC, G1V0A6, Canada
| |
Collapse
|
27
|
Jhang SJ, Pandidurai J, Chu CP, Miyoshi H, Takahara Y, Miki M, Sotome H, Miyasaka H, Chatterjee S, Ozawa R, Ie Y, Hisaki I, Tsai CL, Cheng YJ, Tobe Y. s-Indacene Revisited: Modular Synthesis and Modulation of Structures and Molecular Orbitals of Hexaaryl Derivatives. J Am Chem Soc 2023; 145:4716-4729. [PMID: 36796008 DOI: 10.1021/jacs.2c13159] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Though s-indacene is an intriguing antiaromatic hydrocarbon of 12 π-electrons, it has been underrepresented due to the lack of efficient and versatile methods to prepare stable derivatives. Herein we report a concise and modular synthetic method for hexaaryl-s-indacene derivatives bearing electron-donating/-accepting groups at specific positions to furnish C2h-, D2h-, and C2v-symmetric substitution patterns. We also report the effects of substituents on their molecular structures, frontier molecular orbital (MO) levels, and magnetically induced ring current tropicities. Both theoretical calculations and X-ray structure analyses indicate that the derivatives of the C2h-substitution pattern adopt different C2h structures with significant bond length alternation depending on the electronic property of the substituents. Due to the nonuniform distribution of the frontier MOs, their energy levels are selectively modulated by the electron-donating substituents. This leads to the inversion of the HOMO and HOMO-1 sequences with respect to those of the intrinsic s-indacene as theoretically predicted and experimentally proven by the absorption spectra at visible and near-infrared regions. The NICS values and the 1H NMR chemical shifts of the s-indacene derivatives indicate their weak antiaromaticity. The different tropicities are explained by the modulation of the HOMO and HOMO-1 levels. In addition, for the hexaxylyl derivative, weak fluorescence from the S2 excited state was detected due to the large energy gap between the S1 and S2 states. Notably, an organic field-effect transistor (OFET) fabricated using the hexaxylyl derivative exhibited moderate hole carrier mobility, a result which opens the door for optoelectronic applications of s-indacene derivatives.
Collapse
Affiliation(s)
- Shun-Jie Jhang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 30010, Taiwan
| | - Jayabalan Pandidurai
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 30010, Taiwan
| | - Ching-Piao Chu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 30010, Taiwan
| | - Hirokazu Miyoshi
- Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Yuta Takahara
- Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Masahito Miki
- Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Hikaru Sotome
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Hiroshi Miyasaka
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Shreyam Chatterjee
- Nanoscience and Nanotechnology Center, The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Rumi Ozawa
- Nanoscience and Nanotechnology Center, The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Yutaka Ie
- Nanoscience and Nanotechnology Center, The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Ichiro Hisaki
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Chia-Lin Tsai
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 30010, Taiwan
| | - Yen-Ju Cheng
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 30010, Taiwan
| | - Yoshito Tobe
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 30010, Taiwan.,Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.,Nanoscience and Nanotechnology Center, The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
28
|
Wang J, Gámez FG, Marín-Beloqui J, Diaz-Andres A, Miao X, Casanova D, Casado J, Liu J. Synthesis of a Dicyclohepta[a,g]heptalene-Containing Polycyclic Conjugated Hydrocarbon and the Impact of Non-Alternant Topologies. Angew Chem Int Ed Engl 2023; 62:e202217124. [PMID: 36511094 DOI: 10.1002/anie.202217124] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Incorporating non-hexagonal rings into polycyclic conjugated hydrocarbons (PCHs) can significantly affect their electronic and optoelectronic properties and chemical reactivities. Here, we report the first bottom-up synthesis of a dicyclohepta[a,g]heptalene-embedded PCH (1) with four continuous heptagons, which are arranged in a "Z" shape. Compared with its structural isomer bischrysene 1 R with only hexagonal rings, compound 1 presents a distinct antiaromatic character, especially the inner heptalene core, which possesses clear antiaromatic nature. In addition, PCH 1 exhibits a narrower highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy gap than its benzenoid contrast 1 R, as verified by experimental measurements and theoretical calculations. Our work reported herein not only provides a new way to synthesize novel PCHs with non-alternant topologies but also offers the possibility to tune their electronic and optical properties.
Collapse
Affiliation(s)
- Junting Wang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Fernando Gordillo Gámez
- Department of Physical Chemistry, University of Malaga, Campus de Teations s/n, 229071, Malaga, Spain
| | - Jose Marín-Beloqui
- Department of Physical Chemistry, University of Malaga, Campus de Teations s/n, 229071, Malaga, Spain
| | - Aitor Diaz-Andres
- Donostia International Physics Center (DIPC), 20018, Donostia, Euskadi, Spain
| | - Xiaohe Miao
- Instrumentation and Service Center for Physical Sciences, Westlake University, Hangzhou, 310024, Zhejiang Province, China
| | - David Casanova
- Donostia International Physics Center (DIPC), 20018, Donostia, Euskadi, Spain.,IKERBASQUE-Basque Foundation for Science, 48009, Bilbao, Euskadi, Spain
| | - Juan Casado
- Department of Physical Chemistry, University of Malaga, Campus de Teations s/n, 229071, Malaga, Spain
| | - Junzhi Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
29
|
Sprachmann J, Wachsmuth T, Bhosale M, Burmeister D, Smales GJ, Schmidt M, Kochovski Z, Grabicki N, Wessling R, List-Kratochvil EJW, Esser B, Dumele O. Antiaromatic Covalent Organic Frameworks Based on Dibenzopentalenes. J Am Chem Soc 2023; 145:2840-2851. [PMID: 36701177 DOI: 10.1021/jacs.2c10501] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Despite their inherent instability, 4n π systems have recently received significant attention due to their unique optical and electronic properties. In dibenzopentalene (DBP), benzanellation stabilizes the highly antiaromatic pentalene core, without compromising its amphoteric redox behavior or small HOMO-LUMO energy gap. However, incorporating such molecules in organic devices as discrete small molecules or amorphous polymers can limit the performance (e.g., due to solubility in the battery electrolyte solution or low internal surface area). Covalent organic frameworks (COFs), on the contrary, are highly ordered, porous, and crystalline materials that can provide a platform to align molecules with specific properties in a well-defined, ordered environment. We synthesized the first antiaromatic framework materials and obtained a series of three highly crystalline and porous COFs based on DBP. Potential applications of such antiaromatic bulk materials were explored: COF films show a conductivity of 4 × 10-8 S cm-1 upon doping and exhibit photoconductivity upon irradiation with visible light. Application as positive electrode materials in Li-organic batteries demonstrates a significant enhancement of performance when the antiaromaticity of the DBP unit in the COF is exploited in its redox activity with a discharge capacity of 26 mA h g-1 at a potential of 3.9 V vs. Li/Li+. This work showcases antiaromaticity as a new design principle for functional framework materials.
Collapse
Affiliation(s)
- Josefine Sprachmann
- Department of Chemistry & IRIS Adlershof, Humboldt University of Berlin, 12489 Berlin, Germany
| | - Tommy Wachsmuth
- Department of Chemistry & IRIS Adlershof, Humboldt University of Berlin, 12489 Berlin, Germany
| | - Manik Bhosale
- Institute of Organic Chemistry II and Advanced Materials, Ulm University, 89081 Ulm, Germany
| | - David Burmeister
- Department of Chemistry & IRIS Adlershof, Humboldt University of Berlin, 12489 Berlin, Germany.,Institut für Physik, Humboldt-Universität zu Berlin, IRIS Adlershof, 12489 Berlin, Germany
| | - Glen J Smales
- Bundesanstalt für Materialforschung und -prüfung (BAM), 12205 Berlin, Germany
| | - Maximilian Schmidt
- Institute of Organic Chemistry II and Advanced Materials, Ulm University, 89081 Ulm, Germany
| | - Zdravko Kochovski
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Niklas Grabicki
- Department of Chemistry & IRIS Adlershof, Humboldt University of Berlin, 12489 Berlin, Germany
| | - Robin Wessling
- Institute of Organic Chemistry II and Advanced Materials, Ulm University, 89081 Ulm, Germany.,Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Emil J W List-Kratochvil
- Department of Chemistry & IRIS Adlershof, Humboldt University of Berlin, 12489 Berlin, Germany.,Institut für Physik, Humboldt-Universität zu Berlin, IRIS Adlershof, 12489 Berlin, Germany
| | - Birgit Esser
- Institute of Organic Chemistry II and Advanced Materials, Ulm University, 89081 Ulm, Germany
| | - Oliver Dumele
- Department of Chemistry & IRIS Adlershof, Humboldt University of Berlin, 12489 Berlin, Germany
| |
Collapse
|
30
|
Thery V, Barra C, Simeoni A, Pecaut J, Tomás-Mendivil E, Martin D. Bending Enamine Patterns of Stabilized Pentalenes into "Polymethine Ylides". Org Lett 2023; 25:560-564. [PMID: 36646641 DOI: 10.1021/acs.orglett.3c00037] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We report the synthesis and structural study of 2-substituted 1,3-bis(dimethylamino)pentalenes. The two electrons donating substituents shift the formally anti-aromatic pattern toward more suitable polarized structures. A subtle steric trade-off can result either in planar cyclopentadienyl vinamidiniums or in distorted structures featuring a pyramidalized ylidic carbon adjacent to a stabilized π-conjugated iminium (polymethine). This latter pattern mimics a postulated activated distorted geometry for key Breslow intermediates in the active site of thiamine-dependent enzymes. It highlights how the energetic drive to avoid anti-aromaticity can be used to access models for unconventional distorted conformations of organic molecules.
Collapse
Affiliation(s)
- Valentin Thery
- Univ. Grenoble-Alpes, UMR CNRS-UGA 5250, CS 40700, 38058 Grenoble, France
| | - Cyriac Barra
- Univ. Grenoble-Alpes, UMR CNRS-UGA 5250, CS 40700, 38058 Grenoble, France
| | - Alexandra Simeoni
- Univ. Grenoble-Alpes, UMR CNRS-UGA 5250, CS 40700, 38058 Grenoble, France
| | - Jacques Pecaut
- Univ. Grenoble Alpes, CEA, CNRS, INAC-SyMMES, UMR 5819, 38000 Grenoble, France
| | | | - David Martin
- Univ. Grenoble-Alpes, UMR CNRS-UGA 5250, CS 40700, 38058 Grenoble, France
| |
Collapse
|
31
|
Abstract
A novel class of stable monoareno-pentalenes is introduced that have an olefinic proton on each five-membered ring of the pentalene subunit. Their synthesis was accomplished via a regioselective carbopalladation cascade reaction between ortho-arylacetyleno gem-dibromoolefins and TIPS-acetylene. These molecules could be experimental probes of magnetic (anti)aromaticity effects.
Collapse
Affiliation(s)
- Péter
J. Mayer
- MTA
TTK Lendület Functional Organic Materials Research Group, Institute
of Organic Chemistry, Research Centre for
Natural Sciences, Magyar tudósok krt 2., Budapest, 1117, Hungary,Institute
of Chemistry, University of Szeged, Rerrich tér 1., Szeged, 6720, Hungary
| | - Gábor London
- MTA
TTK Lendület Functional Organic Materials Research Group, Institute
of Organic Chemistry, Research Centre for
Natural Sciences, Magyar tudósok krt 2., Budapest, 1117, Hungary,E-mail:
| |
Collapse
|
32
|
Murai M, Abe M, Ogi S, Yamaguchi S. Diazulenylmethyl Cations with a Silicon Bridge: A π-Extended Cationic Motif to Form J-Aggregates with Near-Infrared Absorption and Emission. J Am Chem Soc 2022; 144:20385-20393. [DOI: 10.1021/jacs.2c08372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Masahito Murai
- Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Mikiya Abe
- Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Soichiro Ogi
- Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Shigehiro Yamaguchi
- Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
33
|
|
34
|
Ong A, Tao T, Jiang Q, Han Y, Ou Y, Huang KW, Chi C. Azulene‐Fused Acenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Albert Ong
- National University of Singapore Asia Research Institute Department of Chemistry SINGAPORE
| | - Tao Tao
- Nanjing University of Information Science and Technology School of Environmental Science and Engineering CHINA
| | - Qing Jiang
- National University of Singapore Asia Research Institute Department of Chemistry SINGAPORE
| | - Yi Han
- National University of Singapore Asia Research Institute Department of Chemistry SINGAPORE
| | - Yaping Ou
- National University of Singapore Asia Research Institute Department of Chemistry SINGAPORE
| | - Kuo-Wei Huang
- King Abdullah University of Science and Technology KAUST Catalysis Center and Division of Physical Science and Engineering SAUDI ARABIA
| | - Chunyan Chi
- National University of Singapore Department of Chemistry 3 Science Drive 3 117543 Singapore SINGAPORE
| |
Collapse
|
35
|
Fei Y, Liu J. Synthesis of Defective Nanographenes Containing Joined Pentagons and Heptagons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201000. [PMID: 35470978 PMCID: PMC9259726 DOI: 10.1002/advs.202201000] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Defective nanographenes containing joined pentagons and heptagons exhibit striking physicochemical properties from both experimental and theoretical perspectives compared with their pure hexagonal counterparts. Thus, the synthesis and characterization of these unique polyarenes with well-defined defective topologies have attracted increasing attention. Despite extensive research on nonalternant molecules since the last century, most studies focused on the corresponding mutagenic and carcinogenic activities. Recently, researchers have realized that the defective domain induces geometric bending and causes electronic perturbation, thus leading to significant alteration of the photophysical properties. This review discusses the synthesis and characterization of small nonalternant polycyclic hydrocarbons in the early stage and recent developments in embedding pentagon-heptagon (5-7) pairs into large carbon skeletons through in-solution chemistry.
Collapse
Affiliation(s)
- Yiyang Fei
- Department of Chemistry and State Key Laboratory of Synthetic ChemistryThe University of Hong KongHong Kong999077P. R. China
| | - Junzhi Liu
- Department of Chemistry and State Key Laboratory of Synthetic ChemistryThe University of Hong KongHong Kong999077P. R. China
| |
Collapse
|
36
|
Wu F, Ma J, Lombardi F, Fu Y, Liu F, Huang Z, Liu R, Komber H, Alexandropoulos DI, Dmitrieva E, Lohr TG, Israel N, Popov AA, Liu J, Bogani L, Feng X. Benzo-Extended Cyclohepta[def]fluorene Derivatives with Very Low-Lying Triplet States. Angew Chem Int Ed Engl 2022; 61:e202202170. [PMID: 35290699 PMCID: PMC9324097 DOI: 10.1002/anie.202202170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Indexed: 12/24/2022]
Abstract
Open-shell non-alternant polycyclic hydrocarbons (PHs) are attracting increasing attention due to their promising applications in organic spintronics and quantum computing. Herein we report the synthesis of three cyclohepta[def]fluorene-based diradicaloids (1-3), by fusion of benzo rings on its periphery for the thermodynamic stabilization, as evidenced by multiple characterization techniques. Remarkably, all of them display a very narrow optical energy gap (Eg opt =0.52-0.69 eV) and persistent stability under ambient conditions (t1/2 =11.7-33.3 h). More importantly, this new type of diradicaloids possess a low-lying triplet state with an extremely small singlet-triplet energy gap, as low as 0.002 kcal mol-1 , with a clear dependence on the molecular size. This family of compounds thus offers a new route to create non-alternant open-shell PHs with high-spin ground states, and opens up novel possibilities and insights into understanding the structure-property relationships.
Collapse
Affiliation(s)
- Fupeng Wu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401062DresdenGermany
| | - Ji Ma
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401062DresdenGermany
| | | | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401062DresdenGermany
| | - Fupin Liu
- Leibniz Institute for Solid State and Materials Research01069DresdenGermany
| | - Zhijie Huang
- Department of MaterialsUniversity of OxfordOxfordOX1 3PHUK
| | - Renxiang Liu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401062DresdenGermany
| | - Hartmut Komber
- Leibniz-Institut für Polymerforschung Dresden e. V.Hohe Straße 601069DresdenGermany
| | | | - Evgenia Dmitrieva
- Leibniz Institute for Solid State and Materials Research01069DresdenGermany
| | - Thorsten G. Lohr
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401062DresdenGermany
| | - Noel Israel
- Leibniz Institute for Solid State and Materials Research01069DresdenGermany
| | - Alexey A. Popov
- Leibniz Institute for Solid State and Materials Research01069DresdenGermany
| | - Junzhi Liu
- Department of Chemistry and State Key Laboratory of Synthetic ChemistryThe University of Hong KongPokfulam RoadHong KongChina
| | - Lapo Bogani
- Department of MaterialsUniversity of OxfordOxfordOX1 3PHUK
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401062DresdenGermany
- Max Planck Institute of Microstructure PhysicsWeinberg 206120HalleGermany
| |
Collapse
|
37
|
Xie S, Chen W, Liu S, Zong H, Ming B, Zhou G. Facile synthesis and functionalization of fluoranthenes via intramolecular [4 + 2] annulations between thiophenes and alkynes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
38
|
Herzog S, Hinz A, Breher F, Podlech J. Cyclopenta-fused polyaromatic hydrocarbons: synthesis and characterisation of a stable, carbon-centred helical radical. Org Biomol Chem 2022; 20:2873-2880. [PMID: 35315476 DOI: 10.1039/d2ob00172a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An air- and moisture-stable helical radical with seven six- and five-membered rings arranged alternately was synthesized by cyclizations in a suitably ortho,ortho'-substituted terphenyl and re-establishment of its conjugation. Mesityl groups at the five-membered rings prevent radical reactions. This cyclopenta-fused polyaromatic hydrocarbon (CP-PAH) was characterized by X-ray crystallographic analysis, EPR and UV/Vis spectroscopy, and by cyclic voltammetry. Further properties and spectra were determined by quantum chemical calculation (spin densities, orbital energies, UV/Vis/NIR and ECD spectra). It turned out that this radical is best described with its radical centre being in the outer five-membered rings, which allows for the largest number of fully intact benzene rings. Its triradical character is rather small and can be neglected. The five-membered rings show significant antiaromatic character, which is highest in the central ring.
Collapse
Affiliation(s)
- Stefan Herzog
- Institut für Organische Chemie, Karlsruher Institut für Technologie (KIT), 76131 Karlsruhe, Fritz-Haber-Weg 6, Germany
| | - Alexander Hinz
- Institut für Anorganische Chemie, Karlsruher Institut für Technologie (KIT), 76131 Karlsruhe, Engesserstraße 15, Germany.
| | - Frank Breher
- Institut für Anorganische Chemie, Karlsruher Institut für Technologie (KIT), 76131 Karlsruhe, Engesserstraße 15, Germany.
| | - Joachim Podlech
- Institut für Organische Chemie, Karlsruher Institut für Technologie (KIT), 76131 Karlsruhe, Fritz-Haber-Weg 6, Germany
| |
Collapse
|
39
|
Wu F, Ma J, Lombardi F, Fu Y, Liu F, Huang Z, Liu R, Komber H, Alexandropoulos DI, Dmitrieva E, Lohr TG, Israel N, Popov AA, Liu J, Bogani L, Feng X. Benzo‐Extended Cyclohepta[
def
]fluorene Derivatives with Very Low‐Lying Triplet States. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fupeng Wu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01062 Dresden Germany
| | - Ji Ma
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01062 Dresden Germany
| | | | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01062 Dresden Germany
| | - Fupin Liu
- Leibniz Institute for Solid State and Materials Research 01069 Dresden Germany
| | - Zhijie Huang
- Department of Materials University of Oxford Oxford OX1 3PH UK
| | - Renxiang Liu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01062 Dresden Germany
| | - Hartmut Komber
- Leibniz-Institut für Polymerforschung Dresden e. V. Hohe Straße 6 01069 Dresden Germany
| | | | - Evgenia Dmitrieva
- Leibniz Institute for Solid State and Materials Research 01069 Dresden Germany
| | - Thorsten G. Lohr
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01062 Dresden Germany
| | - Noel Israel
- Leibniz Institute for Solid State and Materials Research 01069 Dresden Germany
| | - Alexey A. Popov
- Leibniz Institute for Solid State and Materials Research 01069 Dresden Germany
| | - Junzhi Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - Lapo Bogani
- Department of Materials University of Oxford Oxford OX1 3PH UK
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01062 Dresden Germany
- Max Planck Institute of Microstructure Physics Weinberg 2 06120 Halle Germany
| |
Collapse
|
40
|
Masani Y, Omura Y, Tachi Y, Kozaki M. Synthesis of Triazabenzo[
a
]pyrenes and Their Photophysical, Acid‐Responsive, and Electrochemical Properties. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yasufumi Masani
- Graduate School of Science Osaka City University 3-3-138 Sugimoto, Sumiyoshi-ku 558-8585 Osaka Osaka Japan
| | - Yuta Omura
- Graduate School of Science Osaka City University 3-3-138 Sugimoto, Sumiyoshi-ku 558-8585 Osaka Osaka Japan
| | - Yoshimitsu Tachi
- Graduate School of Science Osaka City University 3-3-138 Sugimoto, Sumiyoshi-ku 558-8585 Osaka Osaka Japan
| | - Masatoshi Kozaki
- Graduate School of Science Osaka City University 3-3-138 Sugimoto, Sumiyoshi-ku 558-8585 Osaka Osaka Japan
| |
Collapse
|
41
|
Harimoto T, Ishigaki Y. Redox‐Active Hydrocarbons: Isolation and Structural Determination of Cationic States toward Advanced Response Systems. Chempluschem 2022; 87:e202200013. [DOI: 10.1002/cplu.202200013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/17/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Takashi Harimoto
- Hokkaido University: Hokkaido Daigaku Department of Chemistry, Faculty of Science JAPAN
| | - Yusuke Ishigaki
- Hokkaido University: Hokkaido Daigaku Department of Chemistry, Faculty of Science North 10, West 8, North-ward 060-0810 Sapporo JAPAN
| |
Collapse
|
42
|
Gazdag T, Mayer PJ, Kalapos PP, Holczbauer T, El Bakouri O, London G. Unsymmetrical Thienopentalenes: Synthesis, Optoelectronic Properties, and (Anti)aromaticity Analysis. ACS OMEGA 2022; 7:8336-8349. [PMID: 35309486 PMCID: PMC8928497 DOI: 10.1021/acsomega.1c05618] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
The synthesis and properties of a series of unsymmetrical thienopentalenes are explored, including both monoareno and diareno derivatives. For the synthesis of monoareno pentalenes, a carbopalladation cascade reaction between alkynes and gem-dibromoolefins was applied. Diareno pentalene derivatives were accessed via gold-catalyzed cyclization of diynes. Thiophene was fused to pentalene in two different geometries via its 2,3 and 3,4 bonds. 2,3-Fusion resulted in increased antiaromaticity of the pentalene unit compared to the 3,4-fusion both in the monoareno and diareno framework. Monothienopentalenes that contained the destabilizing 2,3-fusion could not be isolated. For diareno derivatives, the aromatic character of the different aryl groups fused to the pentalene was not independent. Destabilizing fusion on one side resulted in alleviated aromaticity on the other side and vice versa. The synthesized molecules were characterized experimentally by 1H NMR and UV-vis spectroscopies, cyclic voltammetry, and X-ray crystallography, and their aromatic character was assessed using magnetic (NICS and ACID) and electronic indices (MCI and FLU).
Collapse
Affiliation(s)
- Tamás Gazdag
- MTA
TTK Lendület Functional Organic Materials Research Group, Institute
of Organic Chemistry, Research Centre for
Natural Sciences, Magyar tudósok krt. 2., Budapest 1117, Hungary
- Hevesy
György PhD School of Chemistry, Eötvös
Loránd University, Pázmány Péter sétány 1/a, Budapest 1117, Hungary
| | - Péter J. Mayer
- MTA
TTK Lendület Functional Organic Materials Research Group, Institute
of Organic Chemistry, Research Centre for
Natural Sciences, Magyar tudósok krt. 2., Budapest 1117, Hungary
- Institute
of Chemistry, University of Szeged, Rerrich tér 1, Szeged 6720, Hungary
| | - Péter Pál Kalapos
- MTA
TTK Lendület Functional Organic Materials Research Group, Institute
of Organic Chemistry, Research Centre for
Natural Sciences, Magyar tudósok krt. 2., Budapest 1117, Hungary
| | - Tamás Holczbauer
- Centre
for Structural Science and Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja
2 Budapest 1117, Hungary
| | - Ouissam El Bakouri
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, C/Maria Aurèlia Capmany 6, Girona 17003, Catalonia, Spain
| | - Gábor London
- MTA
TTK Lendület Functional Organic Materials Research Group, Institute
of Organic Chemistry, Research Centre for
Natural Sciences, Magyar tudósok krt. 2., Budapest 1117, Hungary
| |
Collapse
|
43
|
Horii K, Kishi R, Nakano M, Shiomi D, Sato K, Takui T, Konishi A, Yasuda M. Bis-periazulene (Cyclohepta[ def]fluorene) as a Nonalternant Isomer of Pyrene: Synthesis and Characterization of Its Triaryl Derivatives. J Am Chem Soc 2022; 144:3370-3375. [PMID: 35188785 DOI: 10.1021/jacs.2c00476] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bis-periazulene (cyclohepta[def]fluorene), which is an unknown pyrene isomer, was synthesized as kinetically protected forms. Its triaryl derivatives 1c-e exhibited the superimposed electronic structures of peripheral, polarized, and open-shell π-conjugated systems. In contrast to previous theoretical predictions, bis-periazulene derivatives were in the singlet ground state. Changing an aryl group controlled the energy gap between the lowest singlet-triplet states.
Collapse
Affiliation(s)
- Koki Horii
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryohei Kishi
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.,Center for Quantum Information and Quantum Biology (QIQB), Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Masayoshi Nakano
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.,Center for Quantum Information and Quantum Biology (QIQB), Osaka University, Toyonaka, Osaka 560-8531, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan.,Center for Spintronics Research Network (CSRN), Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Daisuke Shiomi
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Kazunobu Sato
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Takeji Takui
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Akihito Konishi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan.,Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Makoto Yasuda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
44
|
Horii K, Nogata A, Mizuno Y, Iwasa H, Suzuki M, Nakayama KI, Konishi A, Yasuda M. Synthesis and Characterization of Dinaphtho[2,1-a:2,3-f]pentalene: A Stable Antiaromatic/Quinoidal Hydrocarbon Showing Appropriate Carrier Mobility in the Amorphous Layer. CHEM LETT 2022. [DOI: 10.1246/cl.210809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Koki Horii
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akira Nogata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yusuke Mizuno
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Haruna Iwasa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mitsuharu Suzuki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ken-ichi Nakayama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akihito Konishi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Makoto Yasuda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
45
|
Wössner JS, Kohn J, Wassy D, Hermann M, Grimme S, Esser B. Increased Antiaromaticity through Pentalene Connection in [ n]Cyclo-1,5-dibenzopentalenes. Org Lett 2022; 24:983-988. [PMID: 35029397 DOI: 10.1021/acs.orglett.1c03900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Conjugated nanohoops incorporating nonalternant hydrocarbons have altered optoelectronic properties compared to [n]cycloparaphenylenes or other purely aromatic hoops. We synthesized [n]cyclo-1,5-dibenzopentalenes (n = 4, 5), in which nonalternant dibenzo[a,e]pentalenes are connected through their pentalene units. This leads to an increase in antiaromatic character and low-lying LUMO energies. Calculations show puckered or entangled conformations of the precursor macrocyclic Pt-complexes. Our study proves dibenzopentalene as a versatile nonalternant building block for conjugated nanohoops with modifiable antiaromaticity and optoelectronic properties.
Collapse
Affiliation(s)
- Jan S Wössner
- Institute for Organic Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Julia Kohn
- Mulliken Center for Theoretical Chemistry (MCTC), University of Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Daniel Wassy
- Institute for Organic Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Mathias Hermann
- Institute for Organic Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry (MCTC), University of Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Birgit Esser
- Institute for Organic Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany.,Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
46
|
Esser B, Wössner JS, Hermann M. Conjugated Nanohoops with Dibenzo[a,e]pentalenes as Non-alternant and Antiaromatic π-Systems. Synlett 2022. [DOI: 10.1055/a-1740-7139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Conjugated nanohoops are excellent candidates to study structure-property relationships, as optoelectronic materials and as hosts for supramolecular chemistry. While carbon nanohoops containing aromatics are well studied, antiaromatic units had not been incorporated until recently by our group using dibenzo[a,e]pentalene (DBP). The non-alternant electronic character of the DBP units significantly influences the optoelectronic properties of such nanohoops. We herein summarize our synthetic strategies to DBP-containing nanohoops, their structural and electronic properties, chirality and host-guest chemistry. We demonstrate how incorporating antiaromatic units leads to unique properties and opens new synthetic avenues, making such nanohoops attractive as potential electronic materials.
Collapse
Affiliation(s)
- Birgit Esser
- Institute for Organic Chemistry, University of Freiburg, Freiburg im Breisgau, Germany
| | - Jan S Wössner
- Institute for Organic Chemistry, University of Freiburg, Freiburg im Breisgau, Germany
| | - Mathias Hermann
- Institute for Organic Chemistry, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
47
|
Hong C, Baltazar J, Tovar JD. Manifestations of antiaromaticity in organic materials: case studies of cyclobutadiene, borole, and pentalene. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - John D. Tovar
- Johns Hopkins University Department of Chemistry Department of Materials Science and Engineering 3400 N. Charles StreetNCB 316 MD 21218 Baltimore UNITED STATES
| |
Collapse
|
48
|
Murai M. Silylative Cyclization with Dehydrogenation Leading to Benzosilole‐Fused Azulenes Showing Unique Stimuli‐Responsive Fluorescence. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Masahito Murai
- Department of Chemistry Graduate School of Science Nagoya University Furo, Chikusa 464-8602 Nagoya Japan
| |
Collapse
|
49
|
Kashida J, Shoji Y, Ikabata Y, Taka H, Sakai H, Hasobe T, Nakai H, Fukushima T. An Air- and Water-Stable B 4 N 4 -Heteropentalene Serving as a Host Material for a Phosphorescent OLED. Angew Chem Int Ed Engl 2021; 60:23812-23818. [PMID: 34467608 DOI: 10.1002/anie.202110050] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 11/12/2022]
Abstract
Replacement of the carbon-carbon bonds of antiaromatic compounds with polar boron-nitrogen bonds often provides isoelectronic BN compounds with excellent thermodynamic stability and interesting photophysical properties. By this element-substitution strategy, we synthesized a new B4 N4 -heteropentalene derivative, 1, which is fully substituted with mesityl groups. Owing to kinetic protection by the sterically bulky substituents, 1 is remarkably stable toward air and even water. Single-crystal X-ray analysis of 1 revealed the bonding characteristics of the B4 N4 -heteropentalene structure. In a glassy matrix, 1 emitted short-wavelength phosphorescence with an onset at 350 nm, indicating that the triplet energy is substantially high. DFT calculations reasonably explained the ground- and excited-state electronic structures of 1 as well as its emission properties. Motivated by the high-energy triplet state of 1, we used it as a host material to fabricate a phosphorescent organic light-emitting diode with an external quantum efficiency of 15 %.
Collapse
Affiliation(s)
- Junki Kashida
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.,Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Yoshiaki Shoji
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.,Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Yasuhiro Ikabata
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, 169-8555, Japan.,Present address: Information and Media Center, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Hideo Taka
- Konica Minolta, Ishikawa-cho, Hachioji, Tokyo, 192-8505, Japan
| | - Hayato Sakai
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, 223-8522, Japan
| | - Taku Hasobe
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, 223-8522, Japan
| | - Hiromi Nakai
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, 169-8555, Japan.,Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.,Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| |
Collapse
|
50
|
Chaolumen, Stepek IA, Yamada KE, Ito H, Itami K. Construction of Heptagon-Containing Molecular Nanocarbons. Angew Chem Int Ed Engl 2021; 60:23508-23532. [PMID: 33547701 DOI: 10.1002/anie.202100260] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 12/11/2022]
Abstract
Molecular nanocarbons containing heptagonal rings have attracted increasing interest due to their dynamic behavior, electronic properties, aromaticity, and solid-state packing. Heptagon incorporation can not only induce negative curvature within nanocarbon scaffolds, but also confer significantly altered properties through interaction with adjacent non-hexagonal rings. Despite the disclosure of several beautiful examples in recent years, synthetic strategies toward heptagon-embedded molecular nanocarbons remain relatively limited due to the intrinsic challenges of heptagon formation and incorporation into polyarene frameworks. In this Review, recent advances in solution-mediated and surface-assisted synthesis of heptagon-containing molecular nanocarbons, as well as the intriguing properties of these frameworks, will be discussed.
Collapse
Affiliation(s)
- Chaolumen
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Iain A Stepek
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Keigo E Yamada
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Hideto Ito
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan.,Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.,Institute of Chemistry, Academia Sinica, Nankang, Taipei, 115, Taiwan, R.O.C
| |
Collapse
|