1
|
Pinson A, Sevrin E, Chatzi C, Le Gac B, Thiry M, Westbrook GL, Parent AS. Induction of Oxidative Stress and Alteration of Synaptic Gene Expression in Newborn Hippocampal Granule Cells after Developmental Exposure to Aroclor 1254. Neuroendocrinology 2022; 113:1248-1261. [PMID: 36257292 PMCID: PMC10110769 DOI: 10.1159/000527576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/10/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Hippocampal newborn neurons integrate into functional circuits where they play an important role in learning and memory. We previously showed that perinatal exposure to Aroclor 1254, a commercial mixture of polychlorinated biphenyls (PCBs) associated with alterations of cognitive function in children, disrupted the normal maturation of excitatory synapses in the dentate gyrus. We hypothesized that hippocampal immature neurons underlie some of the cognitive effects of PCBs. METHODS We used newly generated neurons to examine the effects of PCBs in mice following maternal exposure. Newborn dentate granule cells were tagged with enhanced green fluorescent protein using a transgenic mouse line. The transcriptome of the newly generated granule cells was assessed using RNA sequencing. RESULTS Gestational and lactational exposure to 6 mg/kg/day of Aroclor 1254 disrupted the mRNA expression of 1,308 genes in newborn granule cells. Genes involved in mitochondrial functions were highly enriched with 154 genes significantly increased in exposed compared to control mice. The upregulation of genes involved in oxidative phosphorylation was accompanied by signs of endoplasmic reticulum stress and an increase in lipid peroxidation, a marker of oxidative stress, in the subgranular zone of the dentate gyrus but not in mature granule cells in the granular zone. Aroclor 1254 exposure also disrupted the expression of synaptic genes. Using laser-captured subgranular and granular zones, this effect was restricted to the subgranular zone, where newborn neurons are located. CONCLUSION Our data suggest that gene expression in newborn granule cells is disrupted by Aroclor 1254 and provide clues to the effects of endocrine-disrupting chemicals on the brain.
Collapse
Affiliation(s)
- Anneline Pinson
- Neuroendocrinology Unit, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Elena Sevrin
- Neuroendocrinology Unit, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Christina Chatzi
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Benjamin Le Gac
- Neuroendocrinology Unit, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Marc Thiry
- Cellular and tissular biology, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Gary L Westbrook
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Anne-Simone Parent
- Neuroendocrinology Unit, GIGA-Neurosciences, University of Liège, Liège, Belgium
| |
Collapse
|
2
|
Grados-Torrez RE, López-Iglesias C, Ferrer JC, Campos N. Loose Morphology and High Dynamism of OSER Structures Induced by the Membrane Domain of HMG-CoA Reductase. Int J Mol Sci 2021; 22:ijms22179132. [PMID: 34502042 PMCID: PMC8430881 DOI: 10.3390/ijms22179132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 11/16/2022] Open
Abstract
The membrane domain of eukaryotic HMG-CoA reductase (HMGR) has the conserved capacity to induce endoplasmic reticulum (ER) proliferation and membrane association into Organized Smooth Endoplasmic Reticulum (OSER) structures. These formations develop in response to overexpression of particular proteins, but also occur naturally in cells of the three eukaryotic kingdoms. Here, we characterize OSER structures induced by the membrane domain of Arabidopsis HMGR (1S domain). Immunochemical confocal and electron microscopy studies demonstrate that the 1S:GFP chimera co-localizes with high levels of endogenous HMGR in several ER compartments, such as the ER network, the nuclear envelope, the outer and internal membranes of HMGR vesicles and the OSER structures, which we name ER-HMGR domains. After high-pressure freezing, ER-HMGR domains show typical crystalloid, whorled and lamellar ultrastructural patterns, but with wide heterogeneous luminal spaces, indicating that the native OSER is looser and more flexible than previously reported. The formation of ER-HMGR domains is reversible. OSER structures grow by incorporation of ER membranes on their periphery and progressive compaction to the inside. The ER-HMGR domains are highly dynamic in their formation versus their disassembly, their variable spherical-ovoid shape, their fluctuating borders and their rapid intracellular movement, indicating that they are not mere ER membrane aggregates, but active components of the eukaryotic cell.
Collapse
Affiliation(s)
- Ricardo Enrique Grados-Torrez
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Department of Molecular Genetics, Campus UAB, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain;
| | - Carmen López-Iglesias
- Scientific and Technological Centers, University of Barcelona, 08028 Barcelona, Spain;
- Microscopy CORE Lab, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Joan Carles Ferrer
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain;
| | - Narciso Campos
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Department of Molecular Genetics, Campus UAB, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain;
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain;
- Correspondence:
| |
Collapse
|
3
|
Abstract
In the body, extracellular stimuli produce inositol 1,4,5-trisphosphate (IP3), an intracellular chemical signal that binds to the IP3 receptor (IP3R) to release calcium ions (Ca2+) from the endoplasmic reticulum. In the past 40 years, the wide-ranging functions mediated by IP3R and its genetic defects causing a variety of disorders have been unveiled. Recent cryo-electron microscopy and X-ray crystallography have resolved IP3R structures and begun to integrate with concurrent functional studies, which can explicate IP3-dependent opening of Ca2+-conducting gates placed ∼90 Å away from IP3-binding sites and its regulation by Ca2+. This review highlights recent research progress on the IP3R structure and function. We also propose how protein plasticity within IP3R, which involves allosteric gating and assembly transformations accompanied by rapid and chronic structural changes, would enable it to regulate diverse functions at cellular microdomains in pathophysiological states.
Collapse
Affiliation(s)
- Kozo Hamada
- Laboratory of Cell Calcium Signaling, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, 201210, China; ,
| | - Katsuhiko Mikoshiba
- Laboratory of Cell Calcium Signaling, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, 201210, China; ,
| |
Collapse
|
4
|
Cerebellar Neurodegeneration and Neuronal Circuit Remodeling in Golgi pH Regulator-Deficient Mice. eNeuro 2019; 6:ENEURO.0427-18.2019. [PMID: 31118204 PMCID: PMC6541875 DOI: 10.1523/eneuro.0427-18.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 05/09/2019] [Accepted: 05/12/2019] [Indexed: 12/27/2022] Open
Abstract
The Golgi apparatus plays an indispensable role in posttranslational modification and transport of proteins to their target destinations. Although it is well established that the Golgi apparatus requires an acidic luminal pH for optimal activity, morphological and functional abnormalities at the neuronal circuit level because of perturbations in Golgi pH are not fully understood. In addition, morphological alteration of the Golgi apparatus is associated with several neurodegenerative diseases, including Parkinson’s disease, Alzheimer’s disease, and amyotrophic lateral sclerosis. Here, we used anatomical and electrophysiological approaches to characterize morphological and functional abnormalities of neuronal circuits in Golgi pH regulator (GPHR) conditional knock-out mice. Purkinje cells (PCs) from the mutant mice exhibited vesiculation and fragmentation of the Golgi apparatus, followed by axonal degeneration and progressive cell loss. Morphological analysis provided evidence for the disruption of basket cell (BC) terminals around PC soma, and electrophysiological recordings showed selective loss of large amplitude responses, suggesting BC terminal disassembly. In addition, the innervation of mutant PCs was altered such that climbing fiber (CF) terminals abnormally synapsed on the somatic spines of mutant PCs in the mature cerebellum. The combined results describe an essential role for luminal acidification of the Golgi apparatus in maintaining proper neuronal morphology and neuronal circuitry.
Collapse
|
5
|
Huang Y, Feng Y, Wang Y, Wang P, Wang F, Ren H. Severe Burn-Induced Intestinal Epithelial Barrier Dysfunction Is Associated With Endoplasmic Reticulum Stress and Autophagy in Mice. Front Physiol 2018; 9:441. [PMID: 29740349 PMCID: PMC5925571 DOI: 10.3389/fphys.2018.00441] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 04/06/2018] [Indexed: 12/24/2022] Open
Abstract
The disruption of intestinal barrier plays a vital role in the pathophysiological changes after severe burn injury, however, the underlying mechanisms are poorly understood. Severe burn causes the disruption of intestinal tight junction (TJ) barrier. Previous studies have shown that endoplasmic reticulum (ER) stress and autophagy are closely associated with the impairment of intestinal mucosa. Thus, we hypothesize that ER stress and autophagy are likely involved in burn injury-induced intestinal epithelial barrier dysfunction. Mice received a 30% total body surface area (TBSA) full-thickness burn, and were sacrificed at 0, 1, 2, 6, 12 and 24 h postburn. The results showed that intestinal permeability was increased significantly after burn injury, accompanied by the damage of mucosa and the alteration of TJ proteins. Severe burn induced ER stress, as indicated by increased intraluminal chaperone binding protein (BIP), CCAAT/enhancer-binding protein homologous protein (CHOP) and inositol-requiring enzyme 1(IRE1)/X-box binding protein 1 splicing (XBP1). Autophagy was activated after burn injury, as evidenced by the increase of autophagy related protein 5 (ATG5), Beclin 1 and LC3II/LC3I ratio and the decrease of p62. Besides, the number of autophagosomes was also increased after burn injury. The levels of p-PI3K(Ser191), p-PI3K(Ser262), p-AKT(Ser473), and p-mTOR were decreased postburn, suggesting that autophagy-related PI3K/AKT/mTOR pathway is involved in the intestinal epithelial barrier dysfunction following severe burn. In summary, severe burn injury induces the ER stress and autophagy in intestinal epithelia, leading to the disruption of intestinal barrier.
Collapse
Affiliation(s)
- Yalan Huang
- School of Nursing, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yanhai Feng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yu Wang
- Department of Gastroenterology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Pei Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Army Medical University, Chongqing, China
| | - Fengjun Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Army Medical University, Chongqing, China
| | - Hui Ren
- School of Nursing, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
6
|
Filadi R, Pozzan T. Generation and functions of second messengers microdomains. Cell Calcium 2015; 58:405-14. [PMID: 25861743 DOI: 10.1016/j.ceca.2015.03.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 01/09/2023]
Abstract
A compelling example of the mechanisms by which the cells can organize and decipher complex and different functional activities is the convergence of a multitude of stimuli into signalling cascades, involving only few intracellular second messengers. The possibility of restricting these signalling events in distinct microdomains allows a fine and selective tuning of very different tasks. In this review, we will discuss the mechanisms that control the formation and the spatial distribution of Ca(2+) and cAMP microdomains, providing some examples of their functional consequences.
Collapse
Affiliation(s)
- Riccardo Filadi
- Department of Biomedical Sciences, University of Padova, Italy
| | - Tullio Pozzan
- Department of Biomedical Sciences, University of Padova, Italy; CNR Institute of Neuroscience, Padova Section, Padova, Italy; Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.
| |
Collapse
|
7
|
Mikoshiba K. Role of IP3 receptor signaling in cell functions and diseases. Adv Biol Regul 2014; 57:217-27. [PMID: 25497594 DOI: 10.1016/j.jbior.2014.10.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 10/06/2014] [Indexed: 11/25/2022]
Abstract
IP3 receptor (IP3R) was found to release Ca(2+) from non-mitochondrial store but the exact localization and the mode of action of IP3 remained a mystery. IP3R was identified to be P400 protein, a protein, which was missing in the cerebellum of ataxic mutant mice lacking Ca(2+) spikes in Pukinje cells. IP3R was an IP3 binding protein and was a Ca(2+) channel localized on the endoplasmic reticulum. Full-length cDNA of IP3R type 1 was initially cloned and later two other isoforms of IP3R (IP3R type 2 and type 3) were cloned in vertebrates. Interestingly, the phosphorylation sites, splicing sites, associated molecules, IP3 binding affinity and 5' promoter sequences of each isoform were different. Thus each isoform of IP3 receptor plays a role as a signaling hub offering a unique platform for matching various functional molecules that determines different trajectories of cell signaling. Because of this distinct role of each isoform of IP3R, the dysregulation of IP3 receptor causes various kinds of diseases in human and rodents such as ataxia, vulnerability to neuronal degeneration, heart disease, exocrine secretion deficit, taste perception deficit. Moreover, IP3 was found not only to release Ca(2+), but also to release IRBIT (IP3receptor binding protein released with inositol trisphosphate) essential for the regulation of acid-base balance, RNA synthesis and ribonucleotide reductase.
Collapse
Affiliation(s)
- Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama, Japan.
| |
Collapse
|
8
|
Cárdenas C, Escobar M, García A, Osorio-Reich M, Härtel S, Foskett JK, Franzini-Armstrong C. Visualization of inositol 1,4,5-trisphosphate receptors on the nuclear envelope outer membrane by freeze-drying and rotary shadowing for electron microscopy. J Struct Biol 2010; 171:372-81. [PMID: 20457258 DOI: 10.1016/j.jsb.2010.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Accepted: 05/04/2010] [Indexed: 01/27/2023]
Abstract
The receptors for the second messenger InsP(3) comprise a family of closely related ion channels that release Ca(2+) from intracellular stores, most prominently the endoplasmic reticulum and its extension into the nuclear envelope. The precise sub-cellular localization of InsP(3)Rs and the spatial relationships among them are important for the initiation, spatial and temporal properties and propagation of local and global Ca(2+) signals, but the spatial organization of InsP(3)Rs in Ca(2+) stores is poorly characterized. Using nuclei isolated from insect Sf9 cells and freeze-dry rotary shadowing, we have addressed this by directly visualizing the cytoplasmic domain of InsP(3)R located on the cytoplasmic side of the nuclear envelope. Identification of approximately 15 nm structures as the cytoplasmic domain of InsP(3)R was indirectly supported by a marked increase in their frequency after transient transfections with cDNAs for rat types 1 and 3 InsP(3)R, and directly confirmed by gold labeling either with heparin or a specific anti-InsP(3)R antibody. Over-expression of InsP(3)R did not result in the formation of arrays or clusters with channels touching each other. Gold-labeling suggests that the channel amino terminus resides near the center of the cytoplasmic tetrameric quaternary structure. The combination of nuclear isolation with freeze-drying and rotary shadow techniques allows direct visualization of InsP(3)Rs in native nuclear envelopes and can be used to determine their spatial distribution and density.
Collapse
Affiliation(s)
- Cesar Cárdenas
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104-6085, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Sakaino M, Ishigaki M, Ohgari Y, Kitajima S, Masaki R, Yamamoto A, Taketani S. Dual mitochondrial localization and different roles of the reversible reaction of mammalian ferrochelatase. FEBS J 2009; 276:5559-70. [PMID: 19691493 DOI: 10.1111/j.1742-4658.2009.07248.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ferrochelatase catalyzes the insertion of ferrous ions into protoporphyrin IX to produce heme. Previously, it was found that this enzyme also participates in the reverse reaction of iron removal from heme. To clarify the role of the reverse reaction of ferrochelatase in cells, mouse liver mitochondria were fractionated to examine the localization of ferrochelatase, and it was found that the enzyme localizes not only to the inner membrane, but also to the outer membrane. Observations by immunoelectron microscopy confirmed the dual localization of ferrochelatase in ferrochelatase-expressing human embryonic kidney cells and mouse liver mitochondria. The conventional (zinc-insertion) activities of the enzyme in the inner and outer membranes were similar, whereas the iron-removal activity was high in the outer membrane. 2D gel analysis revealed that two types of the enzyme with different isoelectric points were present in mitochondria, and the acidic form, which was enriched in the outer membrane, was found to be phosphorylated. Mutation of human ferrochelatase showed that serine residues at positions 130 and 303 were phosphorylated, and serine at position 130 may be involved in the balance of the reversible catalytic reaction. When mouse erythroleukemia cells were treated with 12-O-tetradecanoyl-phorbol 13-acetate, an activator of protein kinase C, or hemin, phospho-ferrochelatase levels increased, with a concomitant decrease in zinc-insertion activity and a slight increase in iron-removal activity. These results suggest that ferrochelatase localizes to both the mitochondrial outer and inner membranes and that the change in the equilibrium position of the forward and reverse activities may be regulated by the phosphorylation of ferrochelatase.
Collapse
|
10
|
Hashimoto D, Ohmuraya M, Hirota M, Yamamoto A, Suyama K, Ida S, Okumura Y, Takahashi E, Kido H, Araki K, Baba H, Mizushima N, Yamamura KI. Involvement of autophagy in trypsinogen activation within the pancreatic acinar cells. ACTA ACUST UNITED AC 2008; 181:1065-72. [PMID: 18591426 PMCID: PMC2442206 DOI: 10.1083/jcb.200712156] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autophagy is mostly a nonselective bulk degradation system within cells. Recent reports indicate that autophagy can act both as a protector and killer of the cell depending on the stage of the disease or the surrounding cellular environment (for review see Cuervo, A.M. 2004. Trends Cell Biol. 14:70–77). We found that cytoplasmic vacuoles induced in pancreatic acinar cells by experimental pancreatitis were autophagic in origin, as demonstrated by microtubule-associated protein 1 light chain 3 expression and electron microscopy experiments. To analyze the role of macroautophagy in acute pancreatitis, we produced conditional knockout mice lacking the autophagy-related 5 gene in acinar cells. Acute pancreatitis was not observed, except for very mild edema in a restricted area, in conditional knockout mice. Unexpectedly, trypsinogen activation was greatly reduced in the absence of autophagy. These results suggest that autophagy exerts devastating effects in pancreatic acinar cells by activation of trypsinogen to trypsin in the early stage of acute pancreatitis through delivering trypsinogen to the lysosome.
Collapse
Affiliation(s)
- Daisuke Hashimoto
- Division of Developmental Genetics, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Katayama H, Yamamoto A, Mizushima N, Yoshimori T, Miyawaki A. GFP-like Proteins Stably Accumulate in Lysosomes. Cell Struct Funct 2008; 33:1-12. [DOI: 10.1247/csf.07011] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Hiroyuki Katayama
- Laboratory for Cell Function Dynamics, Advanced Technology Development Group, Brain Science Institute, RIKEN
| | - Akitsugu Yamamoto
- Department of Cell Biology, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology
| | - Noboru Mizushima
- Department of Physiology and Cell Biology Tokyo Medical and Dental University Graduate School and Faculty of Medicine
| | - Tamotsu Yoshimori
- Department of Cell Regulation, Research Institute for Microbial Diseases, Osaka University
| | - Atsushi Miyawaki
- Laboratory for Cell Function Dynamics, Advanced Technology Development Group, Brain Science Institute, RIKEN
| |
Collapse
|
12
|
Nonaka M, Ma BY, Ohtani M, Yamamoto A, Murata M, Totani K, Ito Y, Miwa K, Nogami W, Kawasaki N, Kawasaki T. Subcellular localization and physiological significance of intracellular mannan-binding protein. J Biol Chem 2007; 282:17908-20. [PMID: 17442667 DOI: 10.1074/jbc.m700992200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mannan-binding protein (MBP) is a C-type mammalian lectin specific for mannose and N-acetylglucosamine. MBP is mainly synthesized in the liver and occurs naturally in two forms, serum MBP (S-MBP) and intracellular MBP (I-MBP). S-MBP activates complement in association with MBP-associated serine proteases via the lectin pathway. Despite our previous study (Mori, K., Kawasaki, T., and Yamashina, I. (1984) Arch. Biochem. Biophys. 232, 223-233), the subcellular localization of I-MBP and its functional implication have not been clarified yet. Here, as an extension of our previous studies, we have demonstrated that the expression of human MBP cDNA reproduces native MBP differentiation of S-MBP and I-MBP in human hepatoma cells. I-MBP shows distinct accumulation in cytoplasmic granules, and is predominantly localized in the endoplasmic reticulum (ER) and involved in COPII vesicle-mediated ER-to-Golgi transport. However, the subcellular localization of either a mutant (C236S/C244S) I-MBP, which lacks carbohydrate-binding activity, or the wild-type I-MBP in tunicamycin-treated cells shows an equally diffuse cytoplasmic distribution, suggesting that the unique accumulation of I-MBP in the ER and COPII vesicles is mediated by an N-glycan-lectin interaction. Furthermore, the binding of I-MBP with glycoprotein intermediates occurs in the ER, which is carbohydrate- and pH-dependent, and is affected by glucose-trimmed high-mannose-type oligosaccharides. These results strongly indicate that I-MBP may function as a cargo transport lectin facilitating ER-to-Golgi traffic in glycoprotein quality control.
Collapse
Affiliation(s)
- Motohiro Nonaka
- Research Center for Glycobiotechnology, Ritsumeikan University, Shiga 525-8577, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Nomura S, Fukaya M, Tsujioka T, Wu D, Watanabe M. Phospholipase Cβ3 is distributed in both somatodendritic and axonal compartments and localized around perisynapse and smooth endoplasmic reticulum in mouse Purkinje cell subsets. Eur J Neurosci 2007; 25:659-72. [PMID: 17298601 DOI: 10.1111/j.1460-9568.2007.05334.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Phospholipase Cbeta3 (PLCbeta3) and PLCbeta4 are the two major isoforms in cerebellar Purkinje cells (PCs), displaying reciprocal expression across the cerebellum. Here, we examined subcellular distribution of PLCbeta3 in the mouse cerebellum by producing specific antibody. PLCbeta3 was detected as a particulate pattern of immunostaining in various PC elements. Like PLCbeta4, PLCbeta3 was richly distributed in somatodendritic compartments, where it was colocalized with molecules constituting the metabotropic glutamate receptor (mGluR1) signalling pathway, i.e. mGluR1alpha, G alpha q/G alpha 11 subunits of G q protein, inositol 1,4,5-trisphosphate receptor IP3R1, Homer1, protein kinase C PKCgamma, and diacylglycerol lipase DAGLalpha. Unlike PLCbeta4, PLCbeta3 was also distributed at low to moderate levels in PC axons, which were intense for IP3R1 and PKCgamma, low for G alpha q/G alpha 11, and negative for mGluR1alpha, Homer1, and DAGLalpha. By immunoelectron microscopy, PLCbeta3 was preferentially localized around the smooth endoplasmic reticulum in spines, dendrites, and axons of PCs, and also accumulated at the perisynapse of parallel fibre-PC synapses. Consistent with the ultrastructural localization, PLCbeta3 was biochemically enriched in the microsomal and postsynaptic density fractions. These results suggest that PLCbeta3 plays a major role in mediating mGluR1-dependent synaptic transmission, plasticity, and integration in PLCbeta3-dominant PCs, through eliciting Ca2+ release, protein phosphorylation, and endocannabinoid production at local somatodendritic compartments. Because PLCbeta3 can be activated by G betagamma subunits liberated from Gi/o and Gs proteins as well, axonal PLCbeta3 seems to modulate the conduction of action potentials through mediating local Ca2+ release and protein phosphorylation upon activation of a variety of G protein-coupled receptors other than mGluR1.
Collapse
Affiliation(s)
- Sachi Nomura
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo 060-8638, Japan
| | | | | | | | | |
Collapse
|
14
|
Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006; 441:885-9. [PMID: 16625204 DOI: 10.1038/nature04724] [Citation(s) in RCA: 3044] [Impact Index Per Article: 160.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Accepted: 03/20/2006] [Indexed: 01/11/2023]
Abstract
Autophagy is an intracellular bulk degradation process through which a portion of the cytoplasm is delivered to lysosomes to be degraded. Although the primary role of autophagy in many organisms is in adaptation to starvation, autophagy is also thought to be important for normal turnover of cytoplasmic contents, particularly in quiescent cells such as neurons. Autophagy may have a protective role against the development of a number of neurodegenerative diseases. Here we report that loss of autophagy causes neurodegeneration even in the absence of any disease-associated mutant proteins. Mice deficient for Atg5 (autophagy-related 5) specifically in neural cells develop progressive deficits in motor function that are accompanied by the accumulation of cytoplasmic inclusion bodies in neurons. In Atg5-/- cells, diffuse, abnormal intracellular proteins accumulate, and then form aggregates and inclusions. These results suggest that the continuous clearance of diffuse cytosolic proteins through basal autophagy is important for preventing the accumulation of abnormal proteins, which can disrupt neural function and ultimately lead to neurodegeneration.
Collapse
Affiliation(s)
- Taichi Hara
- Department of Bioregulation and Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Matsui M, Yamamoto A, Kuma A, Ohsumi Y, Mizushima N. Organelle degradation during the lens and erythroid differentiation is independent of autophagy. Biochem Biophys Res Commun 2006; 339:485-9. [PMID: 16300732 DOI: 10.1016/j.bbrc.2005.11.044] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Accepted: 11/03/2005] [Indexed: 10/25/2022]
Abstract
Autophagy is a bulk degradation system within cells through which cytoplasmic components are degraded within lysosomes. Primary roles of autophagy are starvation adaptation and intracellular protein quality control. In contrast to the ubiquitin-proteasome system, autophagy can also degrade organelles. Here we examined a possible role of autophagy in organelle degradation during lens and erythroid differentiation. We observed that autophagy occurs in embryonic lens cells. However, organelle degradation in lens and erythroid cells occurred normally in autophagy-deficient Atg5(-/-) mice. Our data suggest that degradation system(s) other than autophagy play major roles in organelle degradation during these processes.
Collapse
Affiliation(s)
- Makoto Matsui
- Department of Bioregulation and Metabolism, The Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613, Japan
| | | | | | | | | |
Collapse
|
16
|
Nakamura M, Sato K, Fukaya M, Araishi K, Aiba A, Kano M, Watanabe M. Signaling complex formation of phospholipase Cβ4 with metabotropic glutamate receptor type 1α and 1,4,5-trisphosphate receptor at the perisynapse and endoplasmic reticulum in the mouse brain. Eur J Neurosci 2004; 20:2929-44. [PMID: 15579147 DOI: 10.1111/j.1460-9568.2004.03768.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Upon activation of cell surface receptors coupled to the Gq subclass of G proteins, phospholipase C (PLC) beta hydrolyses membrane phospholipid to yield a pair of second messengers, inositol 1,4,5-trisphosphate (IP3) and 1,2-diacylglycerol. PLCbeta4 has been characterized as the isoform enriched in cerebellar Purkinje cells (PCs) and the retina and involved in motor and visual functions. Here we examined cellular and subcellular distributions of PLCbeta4 in adult mouse brains. Immunohistochemistry showed that high levels of PLCbeta4 were detected in the somatodendritic domain of neuronal populations expressing the metabotropic glutamate receptor (mGluR) type 1alpha, including olfactory periglomerular cells, neurons in the bed nucleus anterior commissure, thalamus, substantia nigra, inferior olive, and unipolar brush cells and PCs in the cerebellum. Low to moderate levels were detected in many other mGluR1alpha-positive neurons and in a few mGluR1alpha-negative neurons. In PCs, immunogold electron microscopy localized PLCbeta4 to the perisynapse, at which mGluR1alpha is concentrated, and to the smooth endoplasmic reticulum in dendrites and spines, an intracellular Ca2+ store gated by IP3 receptors. In the cerebellum, immunoblot demonstrated its concentrated distribution in the post-synaptic density and microsomal fractions, where mGluR1alpha and type 1 IP3 receptor were also greatly enriched. Furthermore, PLCbeta4 formed coimmunoprecipitable complexes with mGluR1alpha, type 1 IP3 receptor and Homer 1. These results suggest that PLCbeta4 is preferentially localized in the perisynapse and smooth endoplasmic reticulum as a component of the physically linked phosphoinositide signaling complex. This close molecular relationship might provide PLCbeta4 with a high-fidelity effector function to mediate various neuronal responses under physiological and pathophysiological conditions.
Collapse
MESH Headings
- Animals
- Antibodies/metabolism
- Blotting, Western
- Brain/cytology
- Calbindins
- Calcium Channels/metabolism
- Calreticulin/metabolism
- Carrier Proteins/immunology
- Carrier Proteins/metabolism
- Endoplasmic Reticulum/metabolism
- Endoplasmic Reticulum/ultrastructure
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- Homer Scaffolding Proteins
- Immunohistochemistry/methods
- Immunoprecipitation/methods
- In Situ Hybridization/methods
- Inositol 1,4,5-Trisphosphate Receptors
- Isoenzymes/immunology
- Isoenzymes/metabolism
- Membrane Transport Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Inbred ICR
- Microscopy, Immunoelectron/methods
- Neurons/metabolism
- Neurons/ultrastructure
- Parvalbumins/metabolism
- Phospholipase C beta
- Presynaptic Terminals/metabolism
- Presynaptic Terminals/ultrastructure
- Receptors, AMPA/metabolism
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Metabotropic Glutamate/metabolism
- S100 Calcium Binding Protein G/metabolism
- Signal Transduction/physiology
- Type C Phospholipases/immunology
- Type C Phospholipases/metabolism
- Vesicular Glutamate Transport Protein 1
Collapse
Affiliation(s)
- Michiko Nakamura
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo 060-8638, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N. The role of autophagy during the early neonatal starvation period. Nature 2004; 432:1032-6. [PMID: 15525940 DOI: 10.1038/nature03029] [Citation(s) in RCA: 2270] [Impact Index Per Article: 108.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Accepted: 09/17/2004] [Indexed: 02/07/2023]
Abstract
At birth the trans-placental nutrient supply is suddenly interrupted, and neonates face severe starvation until supply can be restored through milk nutrients. Here, we show that neonates adapt to this adverse circumstance by inducing autophagy. Autophagy is the primary means for the degradation of cytoplasmic constituents within lysosomes. The level of autophagy in mice remains low during embryogenesis; however, autophagy is immediately upregulated in various tissues after birth and is maintained at high levels for 3-12 h before returning to basal levels within 1-2 days. Mice deficient for Atg5, which is essential for autophagosome formation, appear almost normal at birth but die within 1 day of delivery. The survival time of starved Atg5-deficient neonates (approximately 12 h) is much shorter than that of wild-type mice (approximately 21 h) but can be prolonged by forced milk feeding. Atg5-deficient neonates exhibit reduced amino acid concentrations in plasma and tissues, and display signs of energy depletion. These results suggest that the production of amino acids by autophagic degradation of 'self' proteins, which allows for the maintenance of energy homeostasis, is important for survival during neonatal starvation.
Collapse
Affiliation(s)
- Akiko Kuma
- Time's Arrow and Biosignaling, PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Flynn ER, Bradley KN, Muir TC, McCarron JG. Functionally separate intracellular Ca2+ stores in smooth muscle. J Biol Chem 2001; 276:36411-8. [PMID: 11477079 DOI: 10.1074/jbc.m104308200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In smooth muscle, release via the inositol 1,4,5-trisphosphate (Ins(1,4,5)P(3)R) and ryanodine receptors (RyR) on the sarcoplasmic reticulum (SR) controls oscillatory and steady-state cytosolic Ca(2+) concentrations ([Ca(2+)](c)). The interplay between the two receptors, itself determined by their organization on the SR, establishes the time course and spatial arrangement of the Ca(2+) signal. Whether or not the receptors are co-localized or distanced from each other on the same store or whether they exist on separate stores will significantly affect the Ca(2+) signal produced by the SR. To date these matters remain unresolved. The functional arrangement of the RyR and Ins(1,4,5)P(3)R on the SR has now been examined in isolated single voltage-clamped colonic myocytes. Depletion of the ryanodine-sensitive store, by repeated application of caffeine, in the presence of ryanodine, abolished the response to Ins(1,4,5)P(3), suggesting that Ins(1,4,5)P(3)R and RyR share a common Ca(2+) store. Ca(2+) release from the Ins(1,4,5)P(3)R did not activate Ca(2+)-induced Ca(2+) release at the RyR. Depletion of the Ins(1,4,5)P(3)-sensitive store, by the removal of external Ca(2+), on the other hand, caused only a small decrease ( approximately 26%) in caffeine-evoked Ca(2+) transients, suggesting that not all RyR exist on the common store shared with Ins(1,4,5)P(3)R. Dependence of the stores on external Ca(2+) for replenishment also differed; removal of external Ca(2+) depleted the Ins(1,4,5)P(3)-sensitive store but caused only a slight reduction in caffeine-evoked transients mediated at RyR. Different mechanisms are presumably responsible for the refilling of each store. Refilling of both Ins(1,4,5)P(3)-sensitive and caffeine-sensitive Ca(2+) stores was inhibited by each of the SR Ca(2+) ATPase inhibitors thapsigargin and cyclopiazonic acid. These results may be explained by the existence of two functionally distinct Ca(2+) stores; the first expressing only RyR and refilled from [Ca(2+)](c), the second expressing both Ins(1,4,5)P(3)R and RyR and dependent upon external Ca(2+) for refilling.
Collapse
Affiliation(s)
- E R Flynn
- Neuroscience and Biomedical Systems, Institute of Biomedical and Life Sciences, West Medical Bldg., University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | | | | |
Collapse
|
19
|
Koulen P, Janowitz T, Johnston LD, Ehrlich BE. Conservation of localization patterns of IP(3) receptor type 1 in cerebellar Purkinje cells across vertebrate species. J Neurosci Res 2000; 61:493-9. [PMID: 10956418 DOI: 10.1002/1097-4547(20000901)61:5<493::aid-jnr3>3.0.co;2-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The distribution of inositol 1,4,5-trisphosphate (IP(3)) receptor type 1 (IP(3)R1) protein was studied in the adult cerebella of six different vertebrate species, zebrafish, skate, claw frog, rat, hamster, and mouse. The receptor was found at high expression levels in Purkinje cells in all species examined using a subtype-specific polyclonal antiserum against IP(3)R1 and fluorescence immunocytochemistry. The immunoreactivity for IP(3)R1 was found intracellularly at high concentrations in dendrites and somata and at lower levels in axons of these cells. Despite the morphological and functional differences of the cerebella the staining patterns of IP(3)R1 labeling in Purkinje cells was preserved. This is notable because the cerebella were taken from organisms representing a large segment of vertebrate phylogenetic development. The high expression levels of IP(3)R1 in Purkinje cells were found independent of the degree of the formation of fissures and folia and of the degree of branching of Purkinje cell dendrites. The conservation of cerebellar structures not only at the cellular level but more importantly at the molecular level suggests that identical intracellular calcium signaling mechanisms are used in a number of species that represent different areas of phylogenetic development and specialization.
Collapse
Affiliation(s)
- P Koulen
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA.
| | | | | | | |
Collapse
|
20
|
Banno T, Kohno K. Conformational changes of the smooth endoplasmic reticulum are facilitated by L-glutamate and its receptors in rat Purkinje cells. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19981214)402:2<252::aid-cne9>3.0.co;2-u] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Lupu VD, Kaznacheyeva E, Krishna UM, Falck JR, Bezprozvanny I. Functional coupling of phosphatidylinositol 4,5-bisphosphate to inositol 1,4,5-trisphosphate receptor. J Biol Chem 1998; 273:14067-70. [PMID: 9603901 DOI: 10.1074/jbc.273.23.14067] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The inositol 1,4,5-trisphosphate receptor (InsP3R) plays a key role in intracellular Ca2+ signaling. InsP3R is activated by InsP3 produced from phosphatidylinositol 4,5-bisphosphate (PIP2) by phospholipase C cleavage. Using planar lipid bilayer reconstitution technique, we demonstrate here that rat cerebellar InsP3R forms a stable inhibitory complex with endogenous PIP2. Disruption of InsP3R-PIP2 interaction by specific anti-PIP2 monoclonal antibody resulted in 3-4-fold increase in InsP3R activity and 10-fold shift in apparent affinity for InsP3. Exogenously added PIP2 blocks InsP3 binding to InsP3R and inhibits InsP3R activity. Similar results were obtained with a newly synthesized water soluble analog of PIP2, dioctanoyl-(4,5)PIP2, indicating that insertion of PIP2 into membrane is not required to exert its inhibitory effects on the InsP3R. We hypothesize that the functional link between InsP3R and PIP2 described in the present report provides a basis for a local, rapid, and efficient coupling between phospholipase C activation, PIP2 hydrolysis, and intracellular Ca2+ wave initiation in neuronal and non-neuronal cells.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Brain/metabolism
- Calcium/physiology
- Calcium Channels/chemistry
- Calcium Channels/metabolism
- Electrophysiology
- Enzyme Activation/physiology
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors
- Microsomes/metabolism
- Molecular Structure
- Phosphatidylinositol 4,5-Diphosphate/analogs & derivatives
- Phosphatidylinositol 4,5-Diphosphate/pharmacology
- Protein Binding/drug effects
- Rats
- Rats, Sprague-Dawley
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/metabolism
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- V D Lupu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | | | | | |
Collapse
|
22
|
Yamada H, Yamamoto A, Yodozawa S, Kozaki S, Takahashi M, Morita M, Michibata H, Furuichi T, Mikoshiba K, Moriyama Y. Microvesicle-mediated exocytosis of glutamate is a novel paracrine-like chemical transduction mechanism and inhibits melatonin secretion in rat pinealocytes. J Pineal Res 1996; 21:175-91. [PMID: 8981262 DOI: 10.1111/j.1600-079x.1996.tb00285.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mammalian pinealocytes are neuroendocrine cells that synthesize and secrete melatonin, these processes being positively controlled by norepinephrine derived from innervating sympathetic neurons. Previously, we showed that pinealocytes contain a large number of microvesicles (MVs) that specifically accumulate L-glutamate through a vesicular glutamate transporter and contain proteins for exocytosis such as synaptobrevin 2 (VAMP2). These findings suggested that the MVs are counterparts of synaptic vesicles and are involved in paracrine-like chemical transduction in the pineal gland. Here, we show that pinealocytes actually secrete glutamate upon stimulation by KCl in the presence of Ca2+ at 37 degrees C. The ability of glutamate secretion disappeared when the cells were incubated at below 20 degrees C. Loss of the activity was also observed on successive stimulation, but it was recovered after 12 hr incubation. A low concentration of cadmium chloride or omega-conotoxin GVIA inhibited the secretion. Botulinum neurotoxin E cleaved synaptic vesicle-associated protein 25 (SNAP-25) and thus inhibited the secretion. The released L-glutamate stimulated pinealocytes themselves via glutamate receptor(s) and inhibited norepinephrine-stimulated melatonin secretion. These results strongly suggest that pinealocytes are glutaminergic paraneurons, and that the glutaminergic system regulates negatively the synthesis and secretion of melatonin. The MV-mediated paracrine-like chemical transduction seems to be a novel mechanism that regulates hormonal secretion by neuroendocrine cells.
Collapse
Affiliation(s)
- H Yamada
- Division of Marine Molecular Biology, Graduate School of Gene Sciences, Hiroshima University, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yamamoto A, Masaki R, Tashiro Y. Formation of crystalloid endoplasmic reticulum in COS cells upon overexpression of microsomal aldehyde dehydrogenase by cDNA transfection. J Cell Sci 1996; 109 ( Pt 7):1727-38. [PMID: 8832395 DOI: 10.1242/jcs.109.7.1727] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When rat liver microsomal aldehyde dehydrogenase (msALDH) was overexpressed in COS-1 cells by cDNA transfection, large granular structures containing both msALDH and endogenous protein disulfide isomerase appeared (Masaki et al. (1994) J. Cell Biol. 126, 1407–1420). Confocal laser microscopy revealed that these granular structures are dispersed throughout the cytoplasm. Electron microscopy showed that the structures are composed of regularly arranged crystalloid smooth endoplasmic reticulum (ER). The formation of the crystalloid ER was accompanied by a remarkable proliferation of smooth ER, which appeared occasionally continuous to the rough ER. We suggest that the smooth ER, proliferated from the rough ER, is transformed and assembled into the crystalloid ER by head-to-head association of the msALDH molecules on the apposed smooth ER membranes. In order to understand the molecular mechanism of the crystalloid ER formation, we asked which portions of the msALDH molecules are needed for the crystalloid ER formation by expressing deletion mutants or chimera protein of msALDH in COS-1 cells. The overexpression of msALDH molecules lacking the stem region preceding the membrane spanning region, although they were exclusively localized in the ER, did not induce the formation of crystalloid ER. More detailed analysis showed that the amino acid sequence FFLL, located in the stem region, is necessary to form the crystalloid ER. The chimera protein containing the last 35 amino acids of msALDH at the carboxyl terminus of chloramphenicol acetyltransferase was localized to the ER, but did not induce the formation of the crystalloid ER. These results suggest that at least two regions, the bulky amino-terminal region and the FFLL sequence in the stem region of msALDH molecules are required for the formation of the crystalloid ER.
Collapse
Affiliation(s)
- A Yamamoto
- Department of Physiology, Kansai Medical University, Osaka, Japan. RXL
| | | | | |
Collapse
|
24
|
Abstract
Morphological changes of the smooth endoplasmic reticulum (SER) in rat cerebellar Purkinje cell dendrites were examined under apneic conditions for 1-5 minutes, induced by an incision of the diaphragm and the collapse of the lungs. The dendrites obtained from control rats contained a tubular network of the SER and hypolemmal cisterns adjacent to the plasma membrane. After a 3-5-minute apnea, the cytoplasm was occupied by many flattened cisterns stacked into lamellae, referred to as "lamellar bodies." A quantitative analysis revealed that the number of lamellar bodies became maximum after 3 minutes of apnea. After the treatment time, they increased in size by adding new cisterns to the previous core lamellae. This analysis also showed that the total amount of the SER membranes contained in a dendrite did not change during anoxia. Conformational changes from the tubular or hypolemmal SER to lamellar bodies during brief anoxia might occur through a transient and intermediate form of "fenestrated cisterns," flat across the transverse plane and penetrated by many longitudinally arranged microtubules. We suggest that these morphological changes of the SER during brief anoxia are not fixation artifacts but represent a biological reaction for protecting against intracellular abnormalities during anoxia.
Collapse
Affiliation(s)
- T Banno
- Department of Anatomy, University of Tsukuba, Ibaraki, Japan
| | | |
Collapse
|
25
|
Yamada M, Miyawaki A, Saito K, Nakajima T, Yamamoto-Hino M, Ryo Y, Furuichi T, Mikoshiba K. The calmodulin-binding domain in the mouse type 1 inositol 1,4,5-trisphosphate receptor. Biochem J 1995; 308 ( Pt 1):83-8. [PMID: 7755592 PMCID: PMC1136846 DOI: 10.1042/bj3080083] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We determined the amino acid sequence responsible for the calmodulin (CaM)-binding ability of mouse type 1 Ins(1,4,5)P3 receptor (IP3R1). We expressed various parts of IP3R1 from deleted cDNA and examined their CaM-binding ability. It was shown that the sequence stretching from Lys-1564 to Arg-1585 is necessary for the binding. The full-length IP3R1 with replacement of Trp-1576 by Ala lost its CaM-binding ability. Antibody against residues 1564-1585 of IP3R1 inhibited cerebellar IP3R1 from binding CaM. The fluorescence spectrum of the peptide that corresponds to residues 1564-1585 shifted when Ca(2+)-CaM was added. From the change in the fluorescence spectrum, we estimated the dissociation constant (KD) between the peptide and CaM to be 0.7 microM. The submicromolar value of KD suggests an actual interaction between CaM and IP3R1 within cells. The CaM-binding ability of other types of IP3Rs was also examined. A part of the type 2IP3R, including the region showing sequence identity with the CaM-binding domain of IP3R1, also bound CaM, while the expressed full-length type 3 IP3R did not.
Collapse
Affiliation(s)
- M Yamada
- Department of Molecular Neurobiology, Institute of Medical Science, University of Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Connolly CN, Futter CE, Gibson A, Hopkins CR, Cutler DF. Transport into and out of the Golgi complex studied by transfecting cells with cDNAs encoding horseradish peroxidase. J Biophys Biochem Cytol 1994; 127:641-52. [PMID: 7962049 PMCID: PMC2120231 DOI: 10.1083/jcb.127.3.641] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have developed a novel technique with which to investigate the morphological basis of exocytotic traffic. We have used expression of HRP from cDNA in a variety of cells in combination with peroxidase cytochemistry to outline traffic into and out of the Golgi apparatus at the electron microscopic level with very high sensitivity. A secretory form of the peroxidase (ssHRP) is active from the beginning of the secretory pathway and the activity is efficiently cleared from cells. Investigation of the morphological elements involved in the itinerary of soluble ER proteins using ssHRP tagged with the ER retention motif (ssHRPKDEL) shows that it progresses through the Golgi stack no further than the cis-most element. Traffic between the RER and the Golgi stack as outlined by ssHRPKDEL occurs via vesicular carriers as well as by tubular elements. ssHRP has also been used to investigate the trans side of the Golgi complex, where incubation at reduced temperatures outlines the trans-Golgi network with HRP reaction product. Tracing the endosomal compartment with transferrin receptor in double-labeling experiments with ssHRP fails to show any overlap between these two compartments.
Collapse
Affiliation(s)
- C N Connolly
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, United Kingdom
| | | | | | | | | |
Collapse
|
27
|
Terasaki M, Slater NT, Fein A, Schmidek A, Reese TS. Continuous network of endoplasmic reticulum in cerebellar Purkinje neurons. Proc Natl Acad Sci U S A 1994; 91:7510-4. [PMID: 7519781 PMCID: PMC44431 DOI: 10.1073/pnas.91.16.7510] [Citation(s) in RCA: 150] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Purkinje neurons in rat cerebellar slices injected with an oil drop saturated with 1,1'-dihexadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate [DiIC16(3) or DiI] to label the endoplasmic reticulum were observed by confocal microscopy. DiI spread throughout the cell body and dendrites and into the axon. DiI spreading is due to diffusion in a continuous bilayer and is not due to membrane trafficking because it also spreads in fixed neurons. DiI stained such features of the endoplasmic reticulum as densities at branch points, reticular networks in the cell body and dendrites, nuclear envelope, spines, and aggregates formed during anoxia nuclear envelope, spines, and aggregates formed during anoxia in low extracellular Ca2+. In cultured rat hippocampal neurons, where optical conditions provide more detail, DiI labeled a clearly delineated network of endoplasmic reticulum in the cell body. We conclude that there is a continuous compartment of endoplasmic reticulum extending from the cell body throughout the dendrites. This compartment may coordinate and integrate neuronal functions.
Collapse
Affiliation(s)
- M Terasaki
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|
28
|
Abstract
Intracellular channels are located on the membranes of intracellular organelles and are involved in ion transfer, within the cytosolic compartments, in response to internal stimuli. Recently, various types of inositol 1,4,5-trisphosphate- and ryanodine-sensitive Ca(2+)-release channels, mitochondrial voltage-dependent anion channels, and a vesicular Cl- channel have been molecularly cloned and characterized, and their functional roles in the central nervous system are beginning to be clarified.
Collapse
Affiliation(s)
- T Furuichi
- Department of Molecular Neurobiology, University of Tokyo, Japan
| | | | | | | |
Collapse
|
29
|
Rodrigo J, Uttenthal O, Bentura ML, Maeda N, Mikoshiba K, Martinez-Murillo R, Polak JM. Subcellular localization of the inositol 1,4,5-trisphosphate receptor, P400, in the vestibular complex and dorsal cochlear nucleus of the rat. Brain Res 1994; 634:191-202. [PMID: 8131069 DOI: 10.1016/0006-8993(94)91922-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The subcellular localization of the inositol 1,4,5-trisphosphate receptor protein, P400, was studied in the vestibular complex, an area to which Purkinje cells project, as well as in neurons of the dorsal cochlear nucleus and in ectopic Purkinje cells of adult rat brain. The receptor was demonstrated by electron microscopical immunocytochemistry using the avidin-biotin peroxidase complex procedure, with the monoclonal antibody 4C11 raised against mouse cerebellar inositol 1,4,5-trisphosphate receptor protein. Immunoreactivity was found in preterminal fibres and terminal boutons in the nuclei of the vestibular complex, generally associated with the subsurface systems and stacks or fragments of smooth endoplasmic reticulum. Ectopic Purkinje cells and cartwheel cells of the dorsal cochlear nucleus also displayed immunoreactivity, but this was much less intense in the latter. The results of the present study suggest that this receptor protein, involved in the release of Ca2+, is located in sites that enable it to influence the synthesis, transport and release of neurotransmitters.
Collapse
Affiliation(s)
- J Rodrigo
- Unidad de Neuroanatomía Funcional, Instituto Cajal, C.S.I.C., Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
30
|
Danoff SK, Ross CA. The inositol trisphosphate receptor gene family: implications for normal and abnormal brain function. Prog Neuropsychopharmacol Biol Psychiatry 1994; 18:1-16. [PMID: 8115665 DOI: 10.1016/0278-5846(94)90021-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
1. The phosphatidyl inositol (PI) second messenger system has been extensively investigated in the past decade. This complex pathway results in the production of two second messengers, one of which, inositol 1,4,5-trisphosphate, will be the focus of this review. 2. The intracellular receptor for this second messenger (IP3R) has been purified, reconstituted and extensively characterized in both brain and peripheral tissues. 3. Localization and functional studies show that IP3 binding causes the receptor to release portions of the intracellular calcium stores. 4. Multiple modulators of the receptor have been identified, including pH, calcium concentration, adenine nucleotide concentration and phosphorylation. 5. The cDNA for this molecule has been cloned from a number of sources. Studies of the molecular structure of the receptor have revealed additional levels of complexity including multiple alternative splicing events in the initially cloned cerebellar (Type I) receptor, as well as the existence of highly related but distinct cDNAs which likely reflect a gene family. 6. There is suggestive evidence linking the PI system, and thus the IP3R, to bipolar disorder and the actions of lithium.
Collapse
Affiliation(s)
- S K Danoff
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | |
Collapse
|
31
|
Rusakov DA, Podini P, Villa A, Meldolesi J. Tridimensional organization of Purkinje neuron cisternal stacks, a specialized endoplasmic reticulum subcompartment rich in inositol 1,4,5-trisphosphate receptors. JOURNAL OF NEUROCYTOLOGY 1993; 22:273-82. [PMID: 8386750 DOI: 10.1007/bf01187126] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Stacks of regularly spaced, flat, smooth-surfaced endoplasmic reticulum cisternae frequently observed in both the cell body and dendrites of cerebellar Purkinje neurons, were previously shown by immunocytochemistry to be highly enriched in receptors for the second messenger, inositol 1,4,5-trisphosphate. Morphometric analyses have been carried out on randomly selected thin section images of rat Purkinje neurons to reveal the tridimensional organization of these structures. Individual stacked cisternae (on the average approximately 3.5 per stack) were shown to be separated from each other by a 23.5 nm space occupied by perpendicular bridges, approximately 20 nm in diameter, most probably composed by two apposed receptor homotetramer molecules, inserted into the parallel membranes in their hydrophobic domains. In the stacked membranes the density of the bridges was approximately 500 microns -2, corresponding to approximately 15% of the surface area. The lateral distribution of bridges was not random, but revealed regular distances that might correspond to unoccupied receptor slots. In each stack, the external cisternae were often in direct lumenal continuity with conventional elements of the endoplasmic reticulum, whereas the internal cisternae were not. Since continuities between stacked cisternae were never observed, the results indicate that the internal cisternae are at least transitorily discrete, i.e. they are not in permanent lumenal continuity with the rest of the endoplasmic reticulum. To our knowledge this is the first demonstration of a physical subcompartmentalization of the latter endomembrane system in a non-mitotic cells. A model for the biogenesis of cisternal stacks, based on the head-to-head binding and lateral interaction of the inositol 1,4,5-trisphosphate receptor molecules in the plane of the interacting membranes, is proposed and critically discussed.
Collapse
Affiliation(s)
- D A Rusakov
- Bogomoletz Institute of Physiology, Academy of Science, Kiev, Ukraine
| | | | | | | |
Collapse
|