1
|
Guzewska MM, Szuszkiewicz J, Kaczmarek MM. Extracellular vesicles: Focus on peri-implantation period of pregnancy in pigs. Mol Reprod Dev 2023; 90:634-645. [PMID: 36645872 DOI: 10.1002/mrd.23664] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 01/18/2023]
Abstract
The establishment of cell-to-cell communication between the endometrium and the developing embryo is the most important step in successful mammalian pregnancy. Close interaction between the uterine luminal epithelium and trophoblast cells requires triggering timely molecular dialog for successful maternal recognition of pregnancy, embryo implantation, and placenta development. Quite recently, extracellular vesicles (EVs) carrying unique molecular cargo emerged as evolutionarily conserved mediators of cell-to-cell communication during early pregnancy. To date, the presence of EVs at the embryo-maternal interface has been demonstrated in numerous mammals, including domestic livestock, such as pigs. However, few studies have focused on revealing the mechanism of EV-mediated crosstalk between developing early embryos and receptive endometrium. Over the past years, it has appeared that understanding the role of EVs in mammalian reproduction can substantially improve our understanding of the biological challenges of successful reproductive performance. This review describes current knowledge of EVs, specifically in relation to the peri-implantation period in pigs, characterized by common features of embryo implantation and high embryonic mortality in mammals.
Collapse
Affiliation(s)
- Maria M Guzewska
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Joanna Szuszkiewicz
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Monika M Kaczmarek
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
- Molecular Biology Laboratory, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
2
|
Overlapping Machinery in Lysosome-Related Organelle Trafficking: A Lesson from Rare Multisystem Disorders. Cells 2022; 11:cells11223702. [PMID: 36429129 PMCID: PMC9688865 DOI: 10.3390/cells11223702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
Lysosome-related organelles (LROs) are a group of functionally diverse, cell type-specific compartments. LROs include melanosomes, alpha and dense granules, lytic granules, lamellar bodies and other compartments with distinct morphologies and functions allowing specialised and unique functions of their host cells. The formation, maturation and secretion of specific LROs are compromised in a number of hereditary rare multisystem disorders, including Hermansky-Pudlak syndromes, Griscelli syndrome and the Arthrogryposis, Renal dysfunction and Cholestasis syndrome. Each of these disorders impacts the function of several LROs, resulting in a variety of clinical features affecting systems such as immunity, neurophysiology and pigmentation. This has demonstrated the close relationship between LROs and led to the identification of conserved components required for LRO biogenesis and function. Here, we discuss aspects of this conserved machinery among LROs in relation to the heritable multisystem disorders they associate with, and present our current understanding of how dysfunctions in the proteins affected in the disease impact the formation, motility and ultimate secretion of LROs. Moreover, we have analysed the expression of the members of the CHEVI complex affected in Arthrogryposis, Renal dysfunction and Cholestasis syndrome, in different cell types, by collecting single cell RNA expression data from the human protein atlas. We propose a hypothesis describing how transcriptional regulation could constitute a mechanism that regulates the pleiotropic functions of proteins and their interacting partners in different LROs.
Collapse
|
3
|
Izumi T. In vivo Roles of Rab27 and Its Effectors in Exocytosis. Cell Struct Funct 2021; 46:79-94. [PMID: 34483204 PMCID: PMC10511049 DOI: 10.1247/csf.21043] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/31/2021] [Indexed: 11/11/2022] Open
Abstract
The monomeric GTPase Rab27 regulates exocytosis of a broad range of vesicles in multicellular organisms. Several effectors bind GTP-bound Rab27a and/or Rab27b on secretory vesicles to execute a series of exocytic steps, such as vesicle maturation, movement along microtubules, anchoring within the peripheral F-actin network, and tethering to the plasma membrane, via interactions with specific proteins and membrane lipids in a local milieu. Although Rab27 effectors generally promote exocytosis, they can also temporarily restrict it when they are involved in the rate-limiting step. Genetic alterations in Rab27-related molecules cause discrete diseases manifesting pigment dilution and immunodeficiency, and can also affect common diseases such as diabetes and cancer in complex ways. Although the function and mechanism of action of these effectors have been explored, it is unclear how multiple effectors act in coordination within a cell to regulate the secretory process as a whole. It seems that Rab27 and various effectors constitutively reside on individual vesicles to perform consecutive exocytic steps. The present review describes the unique properties and in vivo roles of the Rab27 system, and the functional relationship among different effectors coexpressed in single cells, with pancreatic beta cells used as an example.Key words: membrane trafficking, regulated exocytosis, insulin granules, pancreatic beta cells.
Collapse
Affiliation(s)
- Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| |
Collapse
|
4
|
Prasai B, Haber GJ, Strub MP, Ahn R, Ciemniecki JA, Sochacki KA, Taraska JW. The nanoscale molecular morphology of docked exocytic dense-core vesicles in neuroendocrine cells. Nat Commun 2021; 12:3970. [PMID: 34172739 PMCID: PMC8233335 DOI: 10.1038/s41467-021-24167-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 06/04/2021] [Indexed: 12/31/2022] Open
Abstract
Rab-GTPases and their interacting partners are key regulators of secretory vesicle trafficking, docking, and fusion to the plasma membrane in neurons and neuroendocrine cells. Where and how these proteins are positioned and organized with respect to the vesicle and plasma membrane are unknown. Here, we use correlative super-resolution light and platinum replica electron microscopy to map Rab-GTPases (Rab27a and Rab3a) and their effectors (Granuphilin-a, Rabphilin3a, and Rim2) at the nanoscale in 2D. Next, we apply a targetable genetically-encoded electron microscopy labeling method that uses histidine based affinity-tags and metal-binding gold-nanoparticles to determine the 3D axial location of these exocytic proteins and two SNARE proteins (Syntaxin1A and SNAP25) using electron tomography. Rab proteins are distributed across the entire surface and t-SNARE proteins at the base of docked vesicles. We propose that the circumferential distribution of Rabs and Rab-effectors could aid in the efficient transport, capture, docking, and rapid fusion of calcium-triggered exocytic vesicles in excitable cells.
Collapse
Affiliation(s)
- Bijeta Prasai
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gideon J Haber
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marie-Paule Strub
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Regina Ahn
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - John A Ciemniecki
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kem A Sochacki
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Justin W Taraska
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
5
|
Zavala-Barrera C, Del-Río-Robles JE, García-Jiménez I, Egusquiza-Alvarez CA, Hernández-Maldonado JP, Vázquez-Prado J, Reyes-Cruz G. The calcium sensing receptor (CaSR) promotes Rab27B expression and activity to control secretion in breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119026. [PMID: 33845096 DOI: 10.1016/j.bbamcr.2021.119026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022]
Abstract
Chemotactic and angiogenic factors secreted within the tumor microenvironment eventually facilitate the metastatic dissemination of cancer cells. Calcium-sensing receptor (CaSR) activates secretory pathways in breast cancer cells via a mechanism driven by vesicular trafficking of this receptor. However, it remains to be elucidated how endosomal proteins in secretory vesicles are controlled by CaSR. In the present study, we demonstrate that CaSR promotes expression of Rab27B and activates this secretory small GTPase via PI3K, PKA, mTOR and MADD, a guanine nucleotide exchange factor, also known as DENN/Rab3GEP. Active Rab27B leads secretion of various cytokines and chemokines, including IL-6, IL-1β, IL-8, IP-10 and RANTES. Expression of Rab27B is stimulated by CaSR in MDA-MB-231 and MCF-7 breast epithelial cancer cells, but not in non-cancerous MCF-10A cells. This regulatory mechanism also occurs in HeLa and PC3 cells. Our findings provide insightful information regarding how CaSR activates a Rab27B-dependent mechanism to control secretion of factors known to intervene in paracrine communication circuits within the tumor microenvironment.
Collapse
Affiliation(s)
- Cesar Zavala-Barrera
- Departments of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN (Cinvestav-IPN), Mexico City, Mexico
| | - Jorge Eduardo Del-Río-Robles
- Departments of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN (Cinvestav-IPN), Mexico City, Mexico
| | - Irving García-Jiménez
- Departments of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN (Cinvestav-IPN), Mexico City, Mexico
| | | | | | - José Vázquez-Prado
- Departments of Pharmacology, Centro de Investigación y Estudios Avanzados del IPN (Cinvestav-IPN), Mexico City, Mexico
| | - Guadalupe Reyes-Cruz
- Departments of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN (Cinvestav-IPN), Mexico City, Mexico.
| |
Collapse
|
6
|
Fu R, Edman MC, Hamm-Alvarez SF. Rab27a Contributes to Cathepsin S Secretion in Lacrimal Gland Acinar Cells. Int J Mol Sci 2021; 22:1630. [PMID: 33562815 PMCID: PMC7914720 DOI: 10.3390/ijms22041630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Altered lacrimal gland (LG) secretion is a feature of autoimmune dacryoadenitis in Sjögren's syndrome (SS). Cathepsin S (CTSS) is increased in tears of SS patients, which may contribute to disease. Rab3D and Rab27a/b isoforms are effectors of exocytosis in LG, but Rab27a is poorly studied. To investigate whether Rab27a mediates CTSS secretion, we utilized quantitative confocal fluorescence microscopy of LG from SS-model male NOD and control male BALB/c mice, showing that Rab27a-enriched vesicles containing CTSS were increased in NOD mouse LG. Live-cell imaging of cultured lacrimal gland acinar cells (LGAC) transduced with adenovirus encoding wild-type (WT) mCFP-Rab27a revealed carbachol-stimulated fusion and depletion of mCFP-Rab27a-enriched vesicles. LGAC transduced with dominant-negative (DN) mCFP-Rab27a exhibited significantly reduced carbachol-stimulated CTSS secretion by 0.5-fold and β-hexosaminidase by 0.3-fold, relative to stimulated LGAC transduced with WT mCFP-Rab27a. Colocalization of Rab27a and endolysosomal markers (Rab7, Lamp2) with the apical membrane was increased in both stimulated BALB/c and NOD mouse LG, but the extent of colocalization was much greater in NOD mouse LG. Following stimulation, Rab27a colocalization with endolysosomal membranes was decreased. In conclusion, Rab27a participates in CTSS secretion in LGAC though the major regulated pathway, and through a novel endolysosomal pathway that is increased in SS.
Collapse
Affiliation(s)
- Runzhong Fu
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA;
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | - Maria C. Edman
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | - Sarah F. Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA;
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| |
Collapse
|
7
|
Al-Saad RZ, Kerr I, Hume AN. Determination of the Rab27-Effector Binding Affinity Using a High-Throughput FRET-Based Assay. Methods Mol Biol 2021; 2293:143-162. [PMID: 34453715 DOI: 10.1007/978-1-0716-1346-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Thus far, two Rab27 isoforms (Rab27a and Rab27b) have been identified that interact with their eleven downstream effectors proteins, preferentially in their GTP-bound state. In recent years, a number of studies has suggested roles for Rab27-effector protein interactions in the development of cancer cell invasion and metastasis, and immune and inflammatory responses. Here we develop an in vitro fluorescence resonance energy transfer (FRET)-based protein-protein interaction assay to report Rab27 protein interactions with their effectors. We particularly focus on determining the interaction of mouse (m) Synaptotagmin-like protein (Slp)1 and mSlp2 effector proteins with human (h)Rab27. Green fluorescent protein (GFP)-N-terminus Rab27 binding domains (m-Slp1 and m-Slp2) recombinant proteins were used as donor fluorophores, whereas mCherry-hRab27a/b recombinant proteins were used as acceptor fluorophores. The conditions of this assay were validated and optimized, and the specificity of the assay was confirmed. Accordingly, this assay can be used to assess and identify key determinants and/or candidate inhibitors of Rab27-effector interactions.
Collapse
Affiliation(s)
- Raghdan Z Al-Saad
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK.
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Babylon, Babylon, Iraq.
| | - Ian Kerr
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Alistair N Hume
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| |
Collapse
|
8
|
Wang H, Mizuno K, Takahashi N, Kobayashi E, Shirakawa J, Terauchi Y, Kasai H, Okunishi K, Izumi T. Melanophilin Accelerates Insulin Granule Fusion without Predocking to the Plasma Membrane. Diabetes 2020; 69:2655-2666. [PMID: 32994278 DOI: 10.2337/db20-0069] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
Abstract
Direct observation of fluorescence-labeled secretory granule exocytosis in living pancreatic β-cells has revealed heterogeneous prefusion behaviors: some granules dwell beneath the plasma membrane before fusion, while others fuse immediately once they are recruited to the plasma membrane. Although the former mode seems to follow sequential docking-priming-fusion steps as found in synaptic vesicle exocytosis, the latter mode, which is unique to secretory granule exocytosis, has not been explored well. Here, we show that melanophilin, one of the effectors of the monomeric guanosine-5'-triphosphatase Rab27 on the granule membrane, is involved in such an accelerated mode of exocytosis. Melanophilin-mutated leaden mouse and melanophilin-downregulated human pancreatic β-cells both exhibit impaired glucose-stimulated insulin secretion, with a specific reduction in fusion events that bypass stable docking to the plasma membrane. Upon stimulus-induced [Ca2+]i rise, melanophilin mediates this type of fusion by dissociating granules from myosin-Va and actin in the actin cortex and by associating them with a fusion-competent, open form of syntaxin-4 on the plasma membrane. These findings provide the hitherto unknown mechanism to support sustainable exocytosis by which granules are recruited from the cell interior and fuse promptly without stable predocking to the plasma membrane.
Collapse
Affiliation(s)
- Hao Wang
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Kouichi Mizuno
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Noriko Takahashi
- Department of Physiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Eri Kobayashi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Jun Shirakawa
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Yasuo Terauchi
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Haruo Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsuhide Okunishi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| |
Collapse
|
9
|
Al-Saad RZ, Kerr I, Hume AN. In Vitro Fluorescence Resonance Energy Transfer-Based Assay Used to Determine the Rab27-Effector-Binding Affinity. Assay Drug Dev Technol 2020; 18:180-194. [PMID: 32384245 DOI: 10.1089/adt.2019.960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The Rab27 subfamily consists of Rab27a/b isoforms that have similar but not identical functions. Those functions include the regulation of trafficking, docking, and fusion of various lysosome-related organelles and secretory granules; such as melanosomes in melanocytes and lytic granules in cytotoxic T lymphocytes. Rab27a/b exert their specific and versatile functions by interacting with 11 effector proteins, preferentially in their GTP-bound state. In recent years, a number of studies have identified roles for Rab27 proteins and their effectors in cancer cell invasion and metastasis, immune response, inflammation, and allergic responses. These findings suggest that Rab27-effector protein interaction inhibitors could contribute to the development of effective strategies to treat these diseases. To facilitate inhibitor identification, in this study we developed a fluorescence resonance energy transfer-based protein-protein interaction assay that reports Rab27-effector interactions. Green fluorescent protein (GFP)-mouse (m) synaptotagmin-like protein (Slp)1 and GFP-mSlp2 (N-terminus Rab27-binding domains) recombinant proteins were used as donor fluorophores, whereas mCherry-human (h) Rab27a/b recombinant proteins were used as acceptor fluorophores. The in vitro binding affinity of mSlp2 to Rab27 was found to be higher compared with mSlp1 and was evidenced by the effective concentration 50 value differences (mSlp2-hRab27b = 0.15 μM < mSlp2-hRab27a = 0.2 μM < mSlp1-hRab27a = 0.32 μM < mSlp1-hRab27b = 0.33 μM). The specificity of the assay was assessed using unlabeled rat (r) Rab27a and hRab27b recombinant proteins as typical competitive inhibitors for Rab27-effector interactions and was evidenced by the inhibitory concentration 50 value differences. Accordingly, this in vitro assay can be employed in identification of candidate inhibitors of Rab27-effector interactions.
Collapse
Affiliation(s)
- Raghdan Z Al-Saad
- Division of Physiology, Pharmacology, and Neuroscience, Queen's Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Ian Kerr
- Division of Physiology, Pharmacology, and Neuroscience, Queen's Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Alistair N Hume
- Division of Physiology, Pharmacology, and Neuroscience, Queen's Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
10
|
miR-124a expression contributes to the monophasic pattern of insulin secretion in islets from pregnant rats submitted to a low-protein diet. Eur J Nutr 2017; 57:1471-1483. [PMID: 28314963 DOI: 10.1007/s00394-017-1425-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 03/01/2017] [Indexed: 10/19/2022]
Abstract
PURPOSE To evaluate the role of miR-124a in the regulation of genes involved in insulin exocytosis and its effects on the kinetics of insulin secretion in pancreatic islets from pregnant rats submitted to a low-protein diet. METHODS Adult control non-pregnant (CNP) and control pregnant (CP) rats were fed a normal protein diet (17%), whereas low-protein non-pregnant (LPNP) and low-protein pregnant (LPP) rats were fed a low-protein diet (6%) from days 1 to 15 of pregnancy. Kinetics of the glucose-induced insulin release and measurement of [Ca2+]i in pancreatic islets were assessed by standard protocols. The miR-124a expression and gene transcriptions from pancreatic islets were determined by real-time polymerase chain reaction. RESULTS In islets from LPP rats, the first phase of insulin release was abrogated. The AUC [Ca2+]i from the LPP group was lower compared with the other groups. miR-124a expression was reduced by a low-protein diet. SNAP-25 mRNA, protein expression, and Rab3A protein content were lower in the LPP rats than in CP rats. Syntaxin 1A and Kir6.2 mRNA levels were decreased in islets from low-protein rats compared with control rats, whereas their protein content was reduced in islets from pregnant rats. CONCLUSIONS Loss of biphasic insulin secretion in islets from LPP rats appears to have resulted from reduced [Ca2+]i due, at least in part, to Kir6.2 underexpression and from the changes in exocytotic elements that are influenced either directly or indirectly by miR-124a.
Collapse
|
11
|
McCloskey RJ. Sleep and cargo reorganization: A hypothesis. Med Hypotheses 2017; 100:37-42. [PMID: 28236845 DOI: 10.1016/j.mehy.2017.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/03/2017] [Accepted: 01/12/2017] [Indexed: 11/19/2022]
Abstract
Several molecules that act in the nervous system to regulate sleep and wake were first identified based on their transport effects in pigmented cells. I compiled a list of such molecules like melatonin, melanin-concentrating hormone, and pigment dispersing factor, etc. Molecules that induce pigment aggregation promote sleep whereas molecules that induce pigment dispersal promote wake. I call these Sleep and PIgment Regulating Factors SPIRFs. SPIRFs regulate organelle trafficking in both pigmentary models and neurons. I propose that cargo transport fulfills necessary sleep functions such as remodeling synapses and restoring homeostasis in the distribution of cell components. I put forth the hypothesis that sleep-promoting SPIRFs induce states of increased cargo movement towards the cell body, and propose that this function is a critical neuron maintenance task for which animals must sleep.
Collapse
|
12
|
Matsunaga K, Taoka M, Isobe T, Izumi T. Rab2a and Rab27a cooperatively regulate the transition from granule maturation to exocytosis through the dual effector Noc2. J Cell Sci 2016; 130:541-550. [PMID: 27927751 DOI: 10.1242/jcs.195479] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/28/2016] [Indexed: 11/20/2022] Open
Abstract
Exocytosis of secretory granules entails budding from the trans-Golgi network, sorting and maturation of cargo proteins, and trafficking and fusion to the plasma membrane. Rab27a regulates the late steps in this process, such as granule recruitment to the fusion site, whereas Rab2a functions in the early steps, such as granule biogenesis and maturation. Here, we demonstrate that these two small GTPases simultaneously bind to Noc2 (also known as RPH3AL) in a GTP-dependent manner, although Rab2a binds only after Rab27a has bound. In pancreatic β-cells, the ternary Rab2a-Noc2-Rab27a complex specifically localizes on perinuclear immature granules, whereas the binary Noc2-Rab27a complex localizes on peripheral mature granules. In contrast to the wild type, Noc2 mutants defective in binding to Rab2a or Rab27a fail to promote glucose-stimulated insulin secretion. Although knockdown of any component of the ternary complex markedly inhibits insulin secretion, only knockdown of Rab2a or Noc2, and not that of Rab27a, impairs cargo processing from proinsulin to insulin. These results suggest that the dual effector, Noc2, regulates the transition from Rab2a-mediated granule biogenesis to Rab27a-mediated granule exocytosis.
Collapse
Affiliation(s)
- Kohichi Matsunaga
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan .,Research Program for Signal Transduction, Division of Endocrinology, Metabolism and Signal Research, Gunma University Initiative for Advanced Research, Gunma University, Maebashi 371-8512, Japan
| |
Collapse
|
13
|
Hu H, Bienefeld K, Wegener J, Zautke F, Hao Y, Feng M, Han B, Fang Y, Wubie AJ, Li J. Proteome Analysis of the Hemolymph, Mushroom Body, and Antenna Provides Novel Insight into Honeybee Resistance against Varroa Infestation. J Proteome Res 2016; 15:2841-54. [PMID: 27384112 DOI: 10.1021/acs.jproteome.6b00423] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Varroa destructor has been identified as a major culprit responsible for the losses of millions of honeybee colonies. Varroa sensitive hygiene (VSH) is a suite of behaviors from adult bees to suppress mite reproduction by uncapping and/or removing mite infested pupae from a sealed brood. Despite the efforts to elucidate the molecular underpinnings of VSH, they remain largely unknown. We investigated the proteome of mushroom bodies (MBs) and antennae of adult bees with and without VSH from a stock selected for VSH based on their response to artificially Varroa-infected brood cells by near-infrared camera observation. The pupal hemolymph proteome was also compared between the VSH-line and the line that was not selected for VSH. The identified 8609 proteins in the hemolymph, MBs, and antennae represent the most depth coverage of the honeybee proteome (>55%) to date. In the hemolymph, the VSH-line adapts a unique strategy to boost the social immunity and drive pupal organogenesis by enhancing energy metabolism and protein biosynthesis. In MBs, the up-regulated proteins implicated in neuronal sensitivity suggest their roles to promote the execution of VSH by activation of synaptic vesicles and calcium channel activities. In antennae, the highly expressed proteins associated with sensitivity of olfactory senses and signal transmissions signify their roles by inputting a strong signal to the MBs for initiating VSH. These observations illustrate that the enhanced social immunities and olfactory and neuronal sensitivity play key roles in the combat against Varroa infestation. The identified candidate markers may be useful for accelerating marker-associated selection for VSH to aid in resistance to a parasite responsible for decline in honeybee health.
Collapse
Affiliation(s)
- Han Hu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science , Beijing 100093, China
| | - Kaspar Bienefeld
- Institute for Bee ResearchHohen Neuendorf , F.-Engels-Strasse 32, 16540 Hohen Neuendorf, Germany
| | - Jakob Wegener
- Institute for Bee ResearchHohen Neuendorf , F.-Engels-Strasse 32, 16540 Hohen Neuendorf, Germany
| | - Fred Zautke
- Institute for Bee ResearchHohen Neuendorf , F.-Engels-Strasse 32, 16540 Hohen Neuendorf, Germany
| | - Yue Hao
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science , Beijing 100093, China
| | - Mao Feng
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science , Beijing 100093, China
| | - Bin Han
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science , Beijing 100093, China
| | - Yu Fang
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science , Beijing 100093, China
| | - Abebe Jenberie Wubie
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science , Beijing 100093, China
| | - Jianke Li
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science , Beijing 100093, China
| |
Collapse
|
14
|
Granuphilin exclusively mediates functional granule docking to the plasma membrane. Sci Rep 2016; 6:23909. [PMID: 27032672 PMCID: PMC4817151 DOI: 10.1038/srep23909] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/16/2016] [Indexed: 11/08/2022] Open
Abstract
In regulated exocytosis, it is generally assumed that vesicles must stably “dock” at the plasma membrane before they are primed to become fusion-competent. However, recent biophysical analyses in living cells that visualize fluorescent secretory granules have revealed that exocytic behaviors are not necessarily uniform: some granules beneath the plasma membrane are resistant to Ca2+ -triggered release, while others are accelerated to fuse without a pause for stable docking. These findings suggest that stable docking is unnecessary, and can even be inhibitory or nonfunctional, for fusion. Consistently, pancreatic β cells deficient in the Rab27 effector, granuphilin, lack insulin granules directly attached to the plasma membrane in electron micrographs but nevertheless exhibit augmented exocytosis. Here we directly compare the exocytic behaviors between granuphilin-positive and -negative insulin granules. Although granuphilin makes granules immobile and fusion-reluctant beneath the plasma membrane, those granuphilin-positive, docked granules release a portion of granuphilin upon fusion, and fuse at a frequency and time course similar to those of granuphilin-negative undocked granules. Furthermore, granuphilin forms a 180-nm cluster at the site of each docked granule, along with granuphilin-interacting Rab27a and Munc18-1 clusters. These findings indicate that granuphilin is an exclusive component of the functional and fusion-inhibitory docking machinery of secretory granules.
Collapse
|
15
|
Guo L, Guo N. Exosomes: Potent regulators of tumor malignancy and potential bio-tools in clinical application. Crit Rev Oncol Hematol 2015; 95:346-58. [PMID: 25982702 DOI: 10.1016/j.critrevonc.2015.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 03/11/2015] [Accepted: 04/07/2015] [Indexed: 01/08/2023] Open
Abstract
Multiple lines of evidence indicate that exosomes, as efficient messengers in cell-to-cell communication, play pleiotropic roles in regulating tumor malignancy. The cargos (proteins, mRNAs, and miRNAs) carried by exosomes can be functionally delivered between different types of cells and even transferred to distant locations, influencing the biological activities of tumor and non-tumor cells and promoting tumor growth, invasion, metastasis, angiogenesis, and drug resistance. Tumor-associated exosomes have been identified in biological (plasma, urine, saliva) and pathological (malignant effusions, pleural effusions, ascites) fluids from cancer patients. The contents of exosomes may vary depending on tumor types and status. Detection of exosomes in biofluids of cancer patients may represent a promising strategy to gain pathogenic information and to select specific biomarkers for the diagnosis and prognosis of cancer. Utilization of exosomes as delivery vehicles for siRNAs and therapeutic drugs brings out new concepts such as biomimetics in cancer treatment. In this review, we will mainly discuss emerging roles of exosomes in tumor invasion, metastasis, angiogenesis, and drug resistance and potential clinical application of exosomes as biomarkers and therapeutic tools.
Collapse
Affiliation(s)
- Liang Guo
- Department of Pathophysiology, Institute of Basic Medical Sciences, Beijing 100850, PR China
| | - Ning Guo
- Department of Pathophysiology, Institute of Basic Medical Sciences, Beijing 100850, PR China.
| |
Collapse
|
16
|
Tata B, Huijbregts L, Jacquier S, Csaba Z, Genin E, Meyer V, Leka S, Dupont J, Charles P, Chevenne D, Carel JC, Léger J, de Roux N. Haploinsufficiency of Dmxl2, encoding a synaptic protein, causes infertility associated with a loss of GnRH neurons in mouse. PLoS Biol 2014; 12:e1001952. [PMID: 25248098 PMCID: PMC4172557 DOI: 10.1371/journal.pbio.1001952] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/12/2014] [Indexed: 12/20/2022] Open
Abstract
Characterization of the genetic defects causing gonadotropic deficiency has made a major contribution to elucidation of the fundamental role of Kisspeptins and Neurokinin B in puberty onset and reproduction. The absence of puberty may also reveal neurodevelopmental disorders caused by molecular defects in various cellular pathways. Investigations of these neurodevelopmental disorders may provide information about the neuronal processes controlling puberty onset and reproductive capacity. We describe here a new syndrome observed in three brothers, which involves gonadotropic axis deficiency, central hypothyroidism, peripheral demyelinating sensorimotor polyneuropathy, mental retardation, and profound hypoglycemia, progressing to nonautoimmune insulin-dependent diabetes mellitus. High-throughput sequencing revealed a homozygous in-frame deletion of 15 nucleotides in DMXL2 in all three affected patients. This homozygous deletion was associated with lower DMXL2 mRNA levels in the blood lymphocytes of the patients. DMXL2 encodes the synaptic protein rabconnectin-3α, which has been identified as a putative scaffold protein for Rab3-GAP and Rab3-GEP, two regulators of the GTPase Rab3a. We found that rabconnectin-3α was expressed in exocytosis vesicles in gonadotropin-releasing hormone (GnRH) axonal extremities in the median eminence of the hypothalamus. It was also specifically expressed in cells expressing luteinizing hormone (LH) and follicle-stimulating hormone (FSH) within the pituitary. The conditional heterozygous deletion of Dmxl2 from mouse neurons delayed puberty and resulted in very low fertility. This reproductive phenotype was associated with a lower number of GnRH neurons in the hypothalamus of adult mice. Finally, Dmxl2 knockdown in an insulin-secreting cell line showed that rabconnectin-3α controlled the constitutive and glucose-induced secretion of insulin. In conclusion, this study shows that low levels of DMXL2 expression cause a complex neurological phenotype, with abnormal glucose metabolism and gonadotropic axis deficiency due to a loss of GnRH neurons. Our findings identify rabconectin-3α as a key controller of neuronal and endocrine homeostatic processes.
Collapse
Affiliation(s)
- Brooke Tata
- Inserm, U1141, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France
| | - Lukas Huijbregts
- Inserm, U1141, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France
| | | | | | | | | | | | - Joelle Dupont
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Perrine Charles
- Genetics Department and Inserm US975, Université Pierre et Marie Curie, Hôpital la Pitié-Salpêtrière, Paris, France
| | - Didier Chevenne
- AP-HP, Laboratoire de Biochimie, Hôpital Robert Debré, Paris, France
| | - Jean-Claude Carel
- Inserm, U1141, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France
- AP-HP, Service d'Endocrinologie Diabétologie Pédiatrique et Centre de Référence des Maladies Endocriniennes Rares de la Croissance, Hôpital Robert Debré, Paris, France
| | - Juliane Léger
- Inserm, U1141, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France
- AP-HP, Service d'Endocrinologie Diabétologie Pédiatrique et Centre de Référence des Maladies Endocriniennes Rares de la Croissance, Hôpital Robert Debré, Paris, France
| | - Nicolas de Roux
- Inserm, U1141, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France
- AP-HP, Laboratoire de Biochimie, Hôpital Robert Debré, Paris, France
- * E-mail:
| |
Collapse
|
17
|
Rab proteins: the key regulators of intracellular vesicle transport. Exp Cell Res 2014; 328:1-19. [PMID: 25088255 DOI: 10.1016/j.yexcr.2014.07.027] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/06/2014] [Accepted: 07/23/2014] [Indexed: 01/01/2023]
Abstract
Vesicular/membrane trafficking essentially regulates the compartmentalization and abundance of proteins within the cells and contributes in many signalling pathways. This membrane transport in eukaryotic cells is a complex process regulated by a large and diverse array of proteins. A large group of monomeric small GTPases; the Rabs are essential components of this membrane trafficking route. Most of the Rabs are ubiquitously expressed proteins and have been implicated in vesicle formation, vesicle motility/delivery along cytoskeleton elements and docking/fusion at target membranes through the recruitment of effectors. Functional impairments of Rabs affecting transport pathways manifest different diseases. Rab functions are accompanied by cyclical activation and inactivation of GTP-bound and GDP-bound forms between the cytosol and membranes which is regulated by upstream regulators. Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways. Mutations of Rabs affect cell growth, motility and other biological processes.
Collapse
|
18
|
Booth AEG, Tarafder AK, Hume AN, Recchi C, Seabra MC. A role for Na+,K+-ATPase α1 in regulating Rab27a localisation on melanosomes. PLoS One 2014; 9:e102851. [PMID: 25051489 PMCID: PMC4106853 DOI: 10.1371/journal.pone.0102851] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/23/2014] [Indexed: 12/23/2022] Open
Abstract
The mechanism(s) by which Rab GTPases are specifically recruited to distinct intracellular membranes remains elusive. Here we used Rab27a localisation onto melanosomes as a model to investigate Rab targeting. We identified the α1 subunit of Na+,K+-ATPase (ATP1a1) as a novel Rab27a interacting protein in melanocytes and showed that this interaction is direct with the intracellular M4M5 loop of ATP1a1 and independent of nucleotide bound status of the Rab. Knockdown studies in melanocytes revealed that ATP1a1 plays an essential role in Rab27a-dependent melanosome transport. Specifically, expression of ATP1a1, like the Rab27a GDP/GTP exchange factor (Rab3GEP), is essential for targeting and activation of Rab27a to melanosomes. Finally, we showed that the ability of Rab27a mutants to target to melanosomes correlates with the efficiency of their interaction with ATP1a1. Altogether these studies point to a new role for ATP1a1 as a regulator of Rab27a targeting and activation.
Collapse
Affiliation(s)
- Antonia E. G. Booth
- Molecular Medicine, National Heart and Lung Institute, Sir Alexander Fleming Building, Imperial College London, London, United Kingdom
| | - Abul K. Tarafder
- Molecular Medicine, National Heart and Lung Institute, Sir Alexander Fleming Building, Imperial College London, London, United Kingdom
| | - Alistair N. Hume
- Molecular Medicine, National Heart and Lung Institute, Sir Alexander Fleming Building, Imperial College London, London, United Kingdom
- School of Biomedical Sciences, University of Nottingham, Medical School, Queens Medical Centre, Nottingham, United Kingdom
| | - Chiara Recchi
- Molecular Medicine, National Heart and Lung Institute, Sir Alexander Fleming Building, Imperial College London, London, United Kingdom
| | - Miguel C. Seabra
- Molecular Medicine, National Heart and Lung Institute, Sir Alexander Fleming Building, Imperial College London, London, United Kingdom
- CEDOC, Faculdade de Ciencias Medicas, FCM, Universidade Nova de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
19
|
Abstract
Recruitment of specific molecules to a specific membrane site is essential for communication between specialized membranous organelles. In the present study, we identified IQGAP1 as a novel GDP-bound-Rab27a-interacting protein. We found that IQGAP1 interacts with GDP-bound Rab27a when it forms a complex with GTP-bound Cdc42. We also found that IQGAP1 regulates the endocytosis of insulin secretory membranes. Silencing of IQGAP1 inhibits both endocytosis and the glucose-induced redistribution of endocytic machinery, including Rab27a and its binding protein coronin 3. These processes can also be inhibited by disruption of the trimeric complex with dominant negative IQGAP1 and Cdc42. These results indicate that activation of Cdc42 in response to the insulin secretagogue glucose recruits endocytic machinery to IQGAP1 at the cell periphery and regulates endocytosis at this membrane site.
Collapse
|
20
|
Ljubicic S, Bezzi P, Brajkovic S, Nesca V, Guay C, Ohbayashi N, Fukuda M, Abderrhamani A, Regazzi R. The GTPase Rab37 Participates in the Control of Insulin Exocytosis. PLoS One 2013; 8:e68255. [PMID: 23826383 PMCID: PMC3694898 DOI: 10.1371/journal.pone.0068255] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 05/27/2013] [Indexed: 01/04/2023] Open
Abstract
Rab37 belongs to a subclass of Rab GTPases regulating exocytosis, including also Rab3a and Rab27a. Proteomic studies indicate that Rab37 is associated with insulin-containing large dense core granules of pancreatic β-cells. In agreement with these observations, we detected Rab37 in extracts of β-cell lines and human pancreatic islets and confirmed by confocal microscopy the localization of the GTPase on insulin-containing secretory granules. We found that, as is the case for Rab3a and Rab27a, reduction of Rab37 levels by RNA interference leads to impairment in glucose-induced insulin secretion and to a decrease in the number of granules in close apposition to the plasma membrane. Pull-down experiments revealed that, despite similar functional effects, Rab37 does not interact with known Rab3a or Rab27a effectors and is likely to operate through a different mechanism. Exposure of insulin-secreting cells to proinflammatory cytokines, fatty acids or oxidized low-density lipoproteins, mimicking physiopathological conditions that favor the development of diabetes, resulted in a decrease in Rab37 expression. Our data identify Rab37 as an additional component of the machinery governing exocytosis of β-cells and suggest that impaired expression of this GTPase may contribute to defective insulin release in pre-diabetic and diabetic conditions.
Collapse
Affiliation(s)
- Sanda Ljubicic
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Paola Bezzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Saska Brajkovic
- EGID FR 3508, INSERM U859, Université de Lille 2, Lille, France
| | - Valeria Nesca
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Claudiane Guay
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Norihiko Ohbayashi
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
21
|
Herpes simplex virus 1 infection induces activation and subsequent inhibition of the IFI16 and NLRP3 inflammasomes. J Virol 2013; 87:5005-18. [PMID: 23427152 DOI: 10.1128/jvi.00082-13] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Inflammasomes are multiprotein complexes that recognize pathogens and pathogen- or danger-associated molecular patterns. They induce the maturation and secretion of powerful proinflammatory interleukin-1B (IL-1β), IL-18, and IL-33 cytokines, which in turn activate expression of other immune genes and lymphocyte recruitment to the site of primary infection, thereby controlling invading pathogens. Inflammasomes are comprised of cytoplasmic sensor molecules, such as NLRP3 and AIM2 or nuclear sensor IFI16, the adaptor protein ASC (apoptosis-associated speck-like protein containing CARD), and the effector protein procaspase-1. Herpes simplex virus 1 (HSV-1), a ubiquitous virus that infects humans and establishes life-long latency, has evolved numerous mechanisms to evade host detection and immune responses. Here, we show that early during in vitro infection of human foreskin fibroblasts (2 to 4 h), HSV-1 induced the activation of the IFI16 and NLRP3 inflammasomes and maturation of IL-1β. Independent of viral gene expression, IFI16 recognized the HSV-1 genome in infected cell nuclei, relocalized, and colocalized with ASC in the cytoplasm. However, HSV-1 specifically targeted IFI16 for rapid proteasomic degradation at later times postinfection, which was dependent on the expression of ICP0, an immediate early protein of HSV-1. In contrast, NLRP3, AIM2, and ASC levels were not decreased. Also, caspase-1 was "trapped" in actin clusters at later time points that likely blocked the NLRP3/IFI16 inflammasome activity. In addition, the secretion of mature IL-1β was inhibited. These results suggest that though the host cell responds to HSV-1 infection by IFI16 and NLRP3 inflammasomes early during infection, HSV-1 has evolved mechanisms to shut down these responses to evade the proinflammatory consequences.
Collapse
|
22
|
Catz SD. Regulation of vesicular trafficking and leukocyte function by Rab27 GTPases and their effectors. J Leukoc Biol 2013; 94:613-22. [PMID: 23378593 DOI: 10.1189/jlb.1112600] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Rab27 family of GTPases regulates the efficiency and specificity of exocytosis in hematopoietic cells, including neutrophils, CTLs, NK cells, and mast cells. However, the mechanisms regulated by Rab27 GTPases are cell-specific, as they depend on the differential expression and function of particular effector molecules that are recruited by the GTPases. In addition, Rab27 GTPases participate in multiple steps of the regulation of the secretory process, including priming, tethering, docking, and fusion through sequential interaction with multiple effector molecules. Finally, recent reports suggest that Rab27 GTPases and their effectors regulate vesicular trafficking mechanisms other than exocytosis, including endocytosis and phagocytosis. This review focuses on the latest discoveries on the function of Rab27 GTPases and their effectors Munc13-4 and Slp1 in neutrophil function comparatively to their functions in other leukocytes.
Collapse
Affiliation(s)
- Sergio Daniel Catz
- 1.The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, CA 92037, USA. ; Twitter: http://www.scripps.edu/catz/
| |
Collapse
|
23
|
Wang H, Ishizaki R, Xu J, Kasai K, Kobayashi E, Gomi H, Izumi T. The Rab27a effector exophilin7 promotes fusion of secretory granules that have not been docked to the plasma membrane. Mol Biol Cell 2012; 24:319-30. [PMID: 23223571 PMCID: PMC3564536 DOI: 10.1091/mbc.e12-04-0265] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Recent microscopic recordings in living cells demonstrated that granules without prior stable docking to the plasma membrane can efficiently undergo exocytosis, although the molecular mechanism is unknown. The present report is the first to identify exophilin7 as a molecule that functions in the exocytosis of undocked granules. Granuphilin, an effector of the small GTPase Rab27a, mediates the stable attachment (docking) of insulin granules to the plasma membrane and inhibits subsequent fusion of docked granules, possibly through interaction with a fusion-inhibitory Munc18-1/syntaxin complex. However, phenotypes of insulin exocytosis differ considerably between Rab27a- and granuphilin-deficient pancreatic β cells, suggesting that other Rab27a effectors function in those cells. We found that one of the putative Rab27a effector family proteins, exophilin7/JFC1/Slp1, is expressed in β cells; however, unlike granuphilin, exophilin7 overexpressed in the β-cell line MIN6 failed to show granule-docking or fusion-inhibitory activity. Furthermore, exophilin7 has no affinities to either Munc18-1 or Munc18-1–interacting syntaxin-1a, in contrast to granuphilin. Although β cells of exophilin7-knockout mice show no apparent abnormalities in intracellular distribution or in ordinary glucose-induced exocytosis of insulin granules, they do show impaired fusion in response to some stronger stimuli, specifically from granules that have not been docked to the plasma membrane. Exophilin7 appears to mediate the fusion of undocked granules through the affinity of its C2A domain toward the plasma membrane phospholipids. These findings indicate that the two Rab27a effectors, granuphilin and exophilin7, differentially regulate the exocytosis of either stably or minimally docked granules, respectively.
Collapse
Affiliation(s)
- Hao Wang
- Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Bello-Morales R, Crespillo AJ, Fraile-Ramos A, Tabarés E, Alcina A, López-Guerrero JA. Role of the small GTPase Rab27a during herpes simplex virus infection of oligodendrocytic cells. BMC Microbiol 2012; 12:265. [PMID: 23164453 PMCID: PMC3554593 DOI: 10.1186/1471-2180-12-265] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 11/01/2012] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The morphogenesis of herpes simplex virus type 1 (HSV-1) comprises several events, of which some are not completely understood. It has been shown that HSV-1 glycoproteins accumulate in the trans-Golgi network (TGN) and in TGN-derived vesicles. It is also accepted that HSV-1 acquires its final morphology through a secondary envelopment by budding into TGN-derived vesicles coated with viral glycoproteins and tegument proteins. Nevertheless, several aspects of this process remain elusive. The small GTPase Rab27a has been implicated in regulated exocytosis, and it seems to play a key role in certain membrane trafficking events. Rab27a also seems to be required for human cytomegalovirus assembly. However, despite the involvement of various Rab GTPases in HSV-1 envelopment, there is, to date, no data reported on the role of Rab27a in HSV-1 infection. RESULTS Herein, we show that Rab27a colocalized with GHSV-UL46, a tegument-tagged green fluorescent protein-HSV-1, in the TGN. In fact, this small GTPase colocalized with viral glycoproteins gH and gD in that compartment. Functional analysis through Rab27a depletion showed a significant decrease in the number of infected cells and viral production in Rab27a-silenced cells. CONCLUSIONS Altogether, our results indicate that Rab27a plays an important role in HSV-1 infection of oligodendrocytic cells.
Collapse
Affiliation(s)
- Raquel Bello-Morales
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 5, Cantoblanco, 28049, Madrid, Spain
| | - Antonio Jesús Crespillo
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 5, Cantoblanco, 28049, Madrid, Spain
| | - Alberto Fraile-Ramos
- Universidad Complutense de Madrid, Facultad de Medicina, Ciudad Universitaria, 28040, Madrid, Spain
| | - Enrique Tabarés
- Universidad Autónoma de Madrid, Facultad de Medicina, Arzobispo Morcillo 4, 28029, Madrid, Spain
| | - Antonio Alcina
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento s/n, 18100, Armilla, Granada, Spain
| | | |
Collapse
|
25
|
Abstract
Griscelli syndrome (GS) is a rare autosomal recessive disorder associated with skin or hair hypopigmentation, hepatosplenomegaly, pancytopenia, and immunologic and central nervous system abnormalities. GS type II is caused by RAB27A mutations. We present RAB27A mutation analysis of 6 cases diagnosed as GS type II. Missense mutations (L26P and L130P) in 2 cases, deletion of 5 bases (514delCAAGC) in 2 cases, and 1 base deletion (148delA) in 2 cases were detected. This report has importance in phenotype-genotype correlation of different types of mutations including missense mutations and deletions within the RAB27A gene in GSII syndrome.
Collapse
|
26
|
Li J, Song J, Cassidy MG, Rychahou P, Starr ME, Liu J, Li X, Epperly G, Weiss HL, Townsend CM, Gao T, Evers BM. PI3K p110α/Akt signaling negatively regulates secretion of the intestinal peptide neurotensin through interference of granule transport. Mol Endocrinol 2012; 26:1380-93. [PMID: 22700584 DOI: 10.1210/me.2012-1024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Neurotensin (NT), an intestinal peptide secreted from N cells in the small bowel, regulates a variety of physiological functions of the gastrointestinal tract, including secretion, gut motility, and intestinal growth. The class IA phosphatidylinositol 3-kinase (PI3K) family, which comprised of p110 catalytic (α, β and δ) and p85 regulatory subunits, has been implicated in the regulation of hormone secretion from endocrine cells. However, the underlying mechanisms remain poorly understood. In particular, the role of PI3K in intestinal peptide secretion is not known. Here, we show that PI3K catalytic subunit, p110α, negatively regulates NT secretion in vitro and in vivo. We demonstrate that inhibition of p110α, but not p110β, induces NT release in BON, a human endocrine cell line, which expresses NT mRNA and produces NT peptide in a manner analogous to N cells, and QGP-1, a pancreatic endocrine cell line that produces NT peptide. In contrast, overexpression of p110α decreases NT secretion. Consistently, p110α-inhibition increases plasma NT levels in mice. To further delineate the mechanisms contributing to this effect, we demonstrate that inhibition of p110α increases NT granule trafficking by up-regulating α-tubulin acetylation; NT secretion is prevented by overexpression of HDAC6, an α-tubulin deacetylase. Moreover, ras-related protein Rab27A (a small G protein) and kinase D-interacting substrate of 220 kDa (Kidins220), which are associated with NT granules, play a negative and positive role, respectively, in p110α-inhibition-induced NT secretion. Our findings identify the critical role and novel mechanisms for the PI3K signaling pathway in the control of intestinal hormone granule transport and release.
Collapse
Affiliation(s)
- Jing Li
- Department of Surgery, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Direct imaging of RAB27B-enriched secretory vesicle biogenesis in lacrimal acinar cells reveals origins on a nascent vesicle budding site. PLoS One 2012; 7:e31789. [PMID: 22363735 PMCID: PMC3282733 DOI: 10.1371/journal.pone.0031789] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 01/16/2012] [Indexed: 12/20/2022] Open
Abstract
This study uses YFP-tagged Rab27b expression in rabbit lacrimal gland acinar cells, which are polarized secretory epithelial cells, to characterize early stages of secretory vesicle trafficking. Here we demonstrate the utility of YFP-Rab27b to delineate new perspectives on the mechanisms of early vesicle biogenesis in lacrimal gland acinar cells, where information is significantly limited. Protocols were developed to deplete the mature YFP-Rab27b-enriched secretory vesicle pool in the subapical region of the cell, and confocal fluorescence microscopy was used to track vesicle replenishment. This analysis revealed a basally-localized organelle, which we termed the "nascent vesicle site," from which nascent vesicles appeared to emerge. Subapical vesicular YFP-Rab27b was co-localized with p150(Glued), a component of the dynactin cofactor of cytoplasmic dynein. Treatment with the microtubule-targeted agent, nocodazole, did not affect release of mature secretory vesicles, although during vesicle repletion it significantly altered nascent YFP-Rab27b-enriched secretory vesicle localization. Instead of moving to the subapical region, these vesicles were trapped at the nascent vesicle site which was adjacent to, if not a sub-compartment of, the trans-Golgi network. Finally, YFP-Rab27b-enriched secretory vesicles which reached the subapical cytoplasm appeared to acquire the actin-based motor protein, Myosin 5C. Our findings show that Rab27b enrichment occurs early in secretory vesicle formation, that secretory vesicles bud from a visually discernable nascent vesicle site, and that transport from the nascent vesicle site to the subapical region requires intact microtubules.
Collapse
|
28
|
Bello OD, Zanetti MN, Mayorga LS, Michaut MA. RIM, Munc13, and Rab3A interplay in acrosomal exocytosis. Exp Cell Res 2012; 318:478-88. [PMID: 22248876 DOI: 10.1016/j.yexcr.2012.01.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 12/09/2011] [Accepted: 01/03/2012] [Indexed: 12/26/2022]
Abstract
Exocytosis is a highly regulated, multistage process consisting of multiple functionally definable stages, including recruitment, targeting, tethering, priming, and docking of secretory vesicles with the plasma membrane, followed by calcium-triggered membrane fusion. The acrosome reaction of spermatozoa is a complex, calcium-dependent regulated exocytosis. Fusion at multiple sites between the outer acrosomal membrane and the cell membrane causes the release of the acrosomal contents and the loss of the membranes surrounding the acrosome. Not much is known about the molecules that mediate membrane docking in this particular fusion model. In neurons, the formation of the ternary RIM/Munc13/Rab3A complex has been suggested as a critical component of synaptic vesicles docking. Previously, we demonstrated that Rab3A localizes to the acrosomal region in human sperm, stimulates acrosomal exocytosis, and participates in an early stage during membrane fusion. Here, we report that RIM and Munc13 are also present in human sperm and localize to the acrosomal region. Like Rab3A, RIM and Munc13 participate in a prefusion step before the efflux of intra-acrosomal calcium. By means of a functional assay using antibodies and recombinant proteins, we show that RIM, Munc13 and Rab3A interplay during acrosomal exocytosis. Finally, we report by electron transmission microscopy that sequestering RIM and Rab3A alters the docking of the acrosomal membrane to the plasma membrane during calcium-activated acrosomal exocytosis. Our results suggest that the RIM/Munc13/Rab3 A complex participates in acrosomal exocytosis and that RIM and Rab3A have central roles in membrane docking.
Collapse
Affiliation(s)
- Oscar D Bello
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología, IHEM (CONICET-UNCuyo), Facultad de Ciencias Médicas, Argentina
| | | | | | | |
Collapse
|
29
|
Abstract
Phagocytosis is used by macrophages, dendritic cells and neutrophils to capture and destroy pathogens and particulate antigens. Although localized assembly of actin filaments is the driving force for particle internalization, exocytosis of intracellular compartments, and in particular endocytic compartments, has been shown recently to be required for the early steps of phagosome formation. Here we report on the different compartments undergoing exocytosis during phagocytosis, with a special focus on late endosomes. We then compare this process with secretion from lysosomes or lysosome-related organelles in specialized cells. Finally, we discuss how some of the molecular mechanisms responsible for lysosome-related organelle secretion could also be implicated in phagosome formation.
Collapse
Affiliation(s)
- Virginie Braun
- Membrane and Cytoskeleton Dynamics group, Institut Curie, CNRS UMR144, 75005 Paris, France
| | | |
Collapse
|
30
|
Cellular Mechanisms for the Biogenesis and Transport of Synaptic and Dense-Core Vesicles. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 299:27-115. [DOI: 10.1016/b978-0-12-394310-1.00002-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Kimura T, Niki I. Rab27a in pancreatic beta-cells, a busy protein in membrane trafficking. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 107:219-23. [PMID: 21762718 DOI: 10.1016/j.pbiomolbio.2011.06.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 06/15/2011] [Accepted: 06/20/2011] [Indexed: 12/14/2022]
Abstract
The small GTPases have the 'active' GTP-bound and 'inactive' GDP-bound states, and thereby act as a molecular switch in cells. Rab27a is a member of this family and exists in T-lymphocytes, melanocytes and pancreatic beta-cells. Rab27a regulates secretion of cytolytic granules from cytotoxic T-lymphocytes and intracellular transport of melanosomes in melanocytes. In pancreatic beta-cells, Rab27a controls pre-exocytotic stages of insulin secretion. A few GTP-dependent Rab27a effectors are known to mediate these cellular functions. We recently found that Rab27a also possesses the GDP-dependent effector coronin 3. Coronin 3 regulates endocytosis in pancreatic beta-cells through its interaction with GDP-Rab27a. These results imply that GTP- and GDP-Rab27a actively regulate distinct stages in the insulin secretory pathway. In this review, we provide an overview of the roles of both GTP- and GDP-Rab27a in pancreatic beta-cells.
Collapse
Affiliation(s)
- Toshihide Kimura
- Department of Pharmacology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama, Yufu, Oita 8795593, Japan
| | | |
Collapse
|
32
|
Chiang L, Ngo J, Schechter JE, Karvar S, Tolmachova T, Seabra MC, Hume AN, Hamm-Alvarez SF. Rab27b regulates exocytosis of secretory vesicles in acinar epithelial cells from the lacrimal gland. Am J Physiol Cell Physiol 2011; 301:C507-21. [PMID: 21525430 DOI: 10.1152/ajpcell.00355.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tear proteins are supplied by the regulated fusion of secretory vesicles at the apical surface of lacrimal gland acinar cells, utilizing trafficking mechanisms largely yet uncharacterized. We investigated the role of Rab27b in the terminal release of these secretory vesicles. Confocal fluorescence microscopy analysis of primary cultured rabbit lacrimal gland acinar cells revealed that Rab27b was enriched on the membrane of large subapical vesicles that were significantly colocalized with Rab3D and Myosin 5C. Stimulation of cultured acinar cells with the secretagogue carbachol resulted in apical fusion of these secretory vesicles with the plasma membrane. Evaluation of morphological changes by transmission electron microscopy of lacrimal glands from Rab27b(-/-) and Rab27(ash/ash)/Rab27b(-/-) mice, but not ashen mice deficient in Rab27a, showed changes in abundance and organization of secretory vesicles, further confirming a role for this protein in secretory vesicle exocytosis. Glands lacking Rab27b also showed increased lysosomes, damaged mitochondria, and autophagosome-like organelles. In vitro, expression of constitutively active Rab27b increased the average size but retained the subapical distribution of Rab27b-enriched secretory vesicles, whereas dominant-negative Rab27b redistributed this protein from membrane to the cytoplasm. Functional studies measuring release of a cotransduced secretory protein, syncollin-GFP, showed that constitutively active Rab27b enhanced, whereas dominant-negative Rab27b suppressed, stimulated release. Disruption of actin filaments inhibited vesicle fusion to the apical membrane but did not disrupt homotypic fusion. These data show that Rab27b participates in aspects of lacrimal gland acinar cell secretory vesicle formation and release.
Collapse
Affiliation(s)
- Lilian Chiang
- School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Kariya Y, Honma M, Hanamura A, Aoki S, Ninomiya T, Nakamichi Y, Udagawa N, Suzuki H. Rab27a and Rab27b are involved in stimulation-dependent RANKL release from secretory lysosomes in osteoblastic cells. J Bone Miner Res 2011; 26:689-703. [PMID: 20939018 DOI: 10.1002/jbmr.268] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The quantity of the receptor activator of NF-κB ligand (RANKL) expressed at the cell surface of osteoblastic cells is an important factor regulating osteoclast activation. Previously, RANKL was found to be localized to secretory lysosomes in osteoblastic cells and to translocate to the cell surface in response to stimulation with RANK-Fc-conjugated beads. However, the in vivo significance of stimulation-dependent RANKL release has not been elucidated. In this study we show that small GTPases Rab27a and Rab27b are involved in the stimulation-dependent RANKL release pathway in osteoblastic cells. Suppression of either Rab27a or Rab27b resulted in a marked reduction in RANKL release after stimulation. Slp4-a, Slp5, and Munc13-4 acted as effector molecules that coordinated Rab27a/b activity in this pathway. Suppression of Rab27a/b or these effector molecules did not inhibit accumulation of RANKL in lysosomal vesicles around the stimulated sites but did inhibit the fusion of these vesicles to the plasma membrane. In osteoblastic cells, suppression of the effector molecules resulted in reduced osteoclastogenic ability. Furthermore, Jinx mice, which lack a functional Munc13-4 gene, exhibited a phenotype characterized by increased bone volume near the tibial metaphysis caused by low bone resorptive activity. In conclusion, stimulation-dependent RANKL release is mediated by Rab27a/b and their effector molecules, and this mechanism may be important for osteoclast activation in vivo.
Collapse
Affiliation(s)
- Yoshiaki Kariya
- Department of Pharmacy, University of Tokyo Hospital, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The output and time-course of insulin release from pancreatic beta-cells are elegantly controlled. The secretory process comprises pre-exocytotic stages, exocytosis and post-exocytotic stages. The small GTPase Rab27a is known to regulate pre-exocytotic stages that determine the size of the readily-releasable pool of insulin granules. GTP-Rab27a and its specific effectors are responsible for this process like other GTPases. Recently, we searched for Rab27a-interacting proteins and identified coronin 3. Unexpectedly, coronin 3 only bound GDP-Rab27a and this interaction regulated post-exocytotic stages via reorganization of the actin cytoskeleton. Since glucose converts Rab27a from the GTP- to GDP-bound form, we suggested that Rab27a plays a crucial role in stimulus-endocytosis coupling in pancreatic beta-cells, and that this is the key molecule for membrane recycling of insulin granules. In this review, we provide an overview of the roles of Rab27a and its GTP- and GDP-dependent effectors in the insulin secretory pathway of pancreatic beta-cells.
Collapse
Affiliation(s)
- Toshihide Kimura
- Department of Pharmacology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama, Yufu, Oita, Japan
| | | |
Collapse
|
35
|
Versatile roles for myosin Va in dense core vesicle biogenesis and function. Biochem Soc Trans 2010; 38:199-204. [PMID: 20074059 DOI: 10.1042/bst0380199] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The motor protein myosin Va is involved in multiple successive steps in the development of dense-core vesicles, such as in the membrane remodelling during their maturation, their transport along actin filaments and the regulation of their exocytosis. In the present paper, we summarize the current knowledge on the roles of myosin Va in the different steps of dense-core vesicle biogenesis and exocytosis, and compare findings obtained from different cell types and experimental systems.
Collapse
|
36
|
Strunnikova NV, Barb J, Sergeev YV, Thiagarajasubramanian A, Silvin C, Munson PJ, Macdonald IM. Loss-of-function mutations in Rab escort protein 1 (REP-1) affect intracellular transport in fibroblasts and monocytes of choroideremia patients. PLoS One 2009; 4:e8402. [PMID: 20027300 PMCID: PMC2793004 DOI: 10.1371/journal.pone.0008402] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 11/15/2009] [Indexed: 11/25/2022] Open
Abstract
Background Choroideremia (CHM) is a progressive X-linked retinopathy caused by mutations in the CHM gene, which encodes Rab escort protein-1 (REP-1), an escort protein involved in the prenylation of Rabs. Under-prenylation of certain Rabs, as a result of loss of function mutations in REP-1, could affect vesicular trafficking, exocytosis and secretion in peripheral cells of CHM patients. Methodology/Principal Findings To evaluate this hypothesis, intracellular vesicle transport, lysosomal acidification and rates of proteolytic degradation were studied in monocytes (CD14+ fraction) and primary skin fibroblasts from the nine age-matched controls and thirteen CHM patients carrying 10 different loss-of-function mutations. With the use of pHrodo™ BioParticles® conjugated with E. coli, collagen I coated FluoSpheres beads and fluorescent DQ™ ovalbumin with BODYPY FL dye, we demonstrated for the first time that lysosomal pH was increased in monocytes of CHM patients and, as a consequence, the rates of proteolytic degradation were slowed. Microarray analysis of gene expression revealed that some genes involved in the immune response, small GTPase regulation, transcription, cell adhesion and the regulation of exocytosis were significantly up and down regulated in cells from CHM patients compared to controls. Finally, CHM fibroblasts secreted significantly lower levels of cytokine/growth factors such as macrophage chemoattractant protein-1 (MCP-1), pigment epithelial derived factor (PEDF), tumor necrosis factor (TNF) alpha, fibroblast growth factor (FGF) beta and interleukin (lL)-8. Conclusions/Significance We demonstrated for the first time that peripheral cells of CHM patients had increased pH levels in lysosomes, reduced rates of proteolytic degradation and altered secretion of cytokines. Peripheral cells from CHM patients expose characteristics that were not previously recognized and could used as an alternative models to study the effects of different mutations in the REP-1 gene on mechanism of CHM development in human population.
Collapse
Affiliation(s)
- Natalia V Strunnikova
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Gordiyenko NV, Fariss RN, Zhi C, MacDonald IM. Silencing of the CHM gene alters phagocytic and secretory pathways in the retinal pigment epithelium. Invest Ophthalmol Vis Sci 2009; 51:1143-50. [PMID: 19741243 DOI: 10.1167/iovs.09-4117] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Choroideremia (CHM) is an X-linked progressive degeneration of the retinal pigment epithelium (RPE), photoreceptors, and choroid caused by mutations in the CHM gene, which encodes Rab escort-protein-1 (REP-1). REP-1 enables posttranslational isoprenyl modification of Rab GTPases, proteins that control vesicle formation, movement, docking, and fusion. The aim of this study was to determine the effect of REP-1 depletion on vesicular trafficking in phagocytic and secretory pathways of human RPE. METHODS In vitro, REP-1 expression was inhibited in human fetal RPE (hfRPE) cells by siRNA knockdown and its effects measured on the uptake of bovine photoreceptor outer segments (POS), proteolysis of POS rhodopsin, phagosomal pH, phagosome fusion with early and late endosomes/lysosomes, and polarized secretion of cytokines. RESULTS Depletion of REP-1 in human RPE cells did not affect POS internalization but reduced phagosomal acidification and delayed POS protein clearance. REP-1 depletion also caused a decrease in the association of POS-containing phagosomes with late endosomal markers (Rab7, LAMP-1) and increases in the secretion of monocyte chemotactic protein (MCP-1) and interleukin (IL)-8 by hfRPE cells. CONCLUSIONS Lack of REP-1 protein expression in hfRPE cells leads to reduced degradation of POS most likely because of the inhibition of phagosome-lysosome fusion events and increased constitutive secretion of MCP-1 and IL-8. These observations may explain the accumulation of unprocessed outer segments within the phagolysosomes of RPE cells and the presence of inflammatory cells in the choroid of patients with CHM.
Collapse
Affiliation(s)
- Nataliya V Gordiyenko
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
38
|
Plonka PM, Passeron T, Brenner M, Tobin DJ, Shibahara S, Thomas A, Slominski A, Kadekaro AL, Hershkovitz D, Peters E, Nordlund JJ, Abdel-Malek Z, Takeda K, Paus R, Ortonne JP, Hearing VJ, Schallreuter KU. What are melanocytes really doing all day long...? Exp Dermatol 2009; 18:799-819. [PMID: 19659579 PMCID: PMC2792575 DOI: 10.1111/j.1600-0625.2009.00912.x] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Everyone knows and seems to agree that melanocytes are there to generate melanin - an intriguing, but underestimated multipurpose molecule that is capable of doing far more than providing pigment and UV protection to skin (1). What about the cell that generates melanin, then? Is this dendritic, neural crest-derived cell still serving useful (or even important) functions when no-one looks at the pigmentation of our skin and its appendages and when there is essentially no UV exposure? In other words, what do epidermal and hair follicle melanocytes do in their spare time - at night, under your bedcover? How much of the full portfolio of physiological melanocyte functions in mammalian skin has really been elucidated already? Does the presence or absence of melanocytes matter for normal epidermal and/or hair follicle functions (beyond pigmentation and UV protection), and for skin immune responses? Do melanocytes even deserve as much credit for UV protection as conventional wisdom attributes to them? In which interactions do these promiscuous cells engage with their immediate epithelial environment and who is controlling whom? What lessons might be distilled from looking at lower vertebrate melanophores and at extracutaneous melanocytes in the endeavour to reveal the 'secret identity' of melanocytes? The current Controversies feature explores these far too infrequently posed, biologically and clinically important questions. Complementing a companion viewpoint essay on malignant melanocytes (2), this critical re-examination of melanocyte biology provides a cornucopia of old, but under-appreciated concepts and novel ideas on the slowly emerging complexity of physiological melanocyte functions, and delineates important, thought-provoking questions that remain to be definitively answered by future research.
Collapse
Affiliation(s)
- P M Plonka
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, PL-30-387 Kraków, Poland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Brunner Y, Schvartz D, Couté Y, Sanchez JC. Proteomics of regulated secretory organelles. MASS SPECTROMETRY REVIEWS 2009; 28:844-867. [PMID: 19301366 DOI: 10.1002/mas.20211] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Regulated secretory organelles are important subcellular structures of living cells that allow the release in the extracellular space of crucial compounds, such as hormones and neurotransmitters. Therefore, the regulation of biogenesis, trafficking, and exocytosis of regulated secretory organelles has been intensively studied during the last 30 years. However, due to the large number of different regulated secretory organelles, only a few of them have been specifically characterized. New insights into regulated secretory organelles open crucial perspectives for a better comprehension of the mechanisms that govern cell secretion. The combination of subcellular fractionation, protein separation, and mass spectrometry is also possible to study regulated secretory organelles at the proteome level. In this review, we present different strategies used to isolate regulated secretory organelles, separate their protein content, and identify the proteins by mass spectrometry. The biological significance of regulated secretory organelles-proteomic analysis is discussed as well.
Collapse
Affiliation(s)
- Yannick Brunner
- Biomedical Proteomics Research Group, University Medical Center, Geneva, Switzerland
| | | | | | | |
Collapse
|
40
|
Meschede IP, Santos TO, Izidoro-Toledo TC, Gurgel-Gianetti J, Espreafico EM. Griscelli syndrome-type 2 in twin siblings: case report and update on RAB27A human mutations and gene structure. Braz J Med Biol Res 2009; 41:839-48. [PMID: 19030707 DOI: 10.1590/s0100-879x2008001000002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 10/09/2008] [Indexed: 11/22/2022] Open
Abstract
Griscelli syndrome (GS) is a rare autosomal recessive disorder caused by mutation in the MYO5A (GS1, Elejalde), RAB27A (GS2) or MLPH (GS3) genes. Typical features of all three subtypes of this disease include pigmentary dilution of the hair and skin and silvery-gray hair. Whereas the GS3 phenotype is restricted to the pigmentation dysfunction, GS1 patients also show primary neurological impairment and GS2 patients have severe immunological deficiencies that lead to recurrent infections and hemophagocytic syndrome. We report here the diagnosis of GS2 in 3-year-old twin siblings, with silvery-gray hair, immunodeficiency, hepatosplenomegaly and secondary severe neurological symptoms that culminated in multiple organ failure and death. Light microscopy examination of the hair showed large, irregular clumps of pigments characteristic of GS. A homozygous nonsense mutation, C-T transition (c.550C>T), in the coding region of the RAB27A gene, which leads to a premature stop codon and prediction of a truncated protein (R184X), was found. In patient mononuclear cells, RAB27A mRNA levels were the same as in cells from the parents, but no protein was detected. In addition to the case report, we also present an updated summary on the exon/intron organization of the human RAB27A gene, a literature review of GS2 cases, and a complete list of the human mutations currently reported in this gene. Finally, we propose a flow chart to guide the early diagnosis of the GS subtypes and Chédiak-Higashi syndrome.
Collapse
Affiliation(s)
- I P Meschede
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | | | | | | | | |
Collapse
|
41
|
Gage MC, Keen JN, Buxton AT, Bedi MK, Findlay JBC. Proteomic Analysis of IgE-Mediated Secretion by LAD2 Mast Cells. J Proteome Res 2009; 8:4116-25. [DOI: 10.1021/pr900108w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Matthew C. Gage
- Institute of Membrane and Systems Biology, Faculty of Biological Sciences, LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom, and Division of Cardiovascular and Diabetes Research, Faculty of Medicine and Health, LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Jeffrey N. Keen
- Institute of Membrane and Systems Biology, Faculty of Biological Sciences, LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom, and Division of Cardiovascular and Diabetes Research, Faculty of Medicine and Health, LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Anthony T. Buxton
- Institute of Membrane and Systems Biology, Faculty of Biological Sciences, LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom, and Division of Cardiovascular and Diabetes Research, Faculty of Medicine and Health, LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Maninder K. Bedi
- Institute of Membrane and Systems Biology, Faculty of Biological Sciences, LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom, and Division of Cardiovascular and Diabetes Research, Faculty of Medicine and Health, LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - John B. C. Findlay
- Institute of Membrane and Systems Biology, Faculty of Biological Sciences, LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom, and Division of Cardiovascular and Diabetes Research, Faculty of Medicine and Health, LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
42
|
Arimura N, Kimura T, Nakamuta S, Taya S, Funahashi Y, Hattori A, Shimada A, Ménager C, Kawabata S, Fujii K, Iwamatsu A, Segal RA, Fukuda M, Kaibuchi K. Anterograde transport of TrkB in axons is mediated by direct interaction with Slp1 and Rab27. Dev Cell 2009; 16:675-86. [PMID: 19460344 DOI: 10.1016/j.devcel.2009.03.005] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 11/25/2008] [Accepted: 03/03/2009] [Indexed: 12/18/2022]
Abstract
The neurotrophin receptors TrkA, TrkB, and TrkC are localized at the surface of the axon terminus and transmit key signals from brain-derived neurotrophic factor (BDNF) for diverse effects on neuronal survival, differentiation, and axon formation. Trk receptors are sorted into axons via the anterograde transport of vesicles and are then inserted into axonal plasma membranes. However, the transport mechanism remains largely unknown. Here, we show that the Slp1/Rab27B/CRMP-2 complex directly links TrkB to Kinesin-1, and that this association is required for the anterograde transport of TrkB-containing vesicles. The cytoplasmic tail of TrkB binds to Slp1 in a Rab27B-dependent manner, and CRMP-2 connects Slp1 to Kinesin-1. Knockdown of these molecules by siRNA reduces the anterograde transport and membrane targeting of TrkB, thereby inhibiting BDNF-induced ERK1/2 phosphorylation in axons. Our data reveal a molecular mechanism for the selective anterograde transport of TrkB in axons and show how the transport is coupled to BDNF signaling.
Collapse
Affiliation(s)
- Nariko Arimura
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Showa, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Anitei M, Cowan AE, Pfeiffer SE, Bansal R. Role for Rab3a in oligodendrocyte morphological differentiation. J Neurosci Res 2009; 87:342-52. [PMID: 18798275 DOI: 10.1002/jnr.21870] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Rab3a, a small GTPase important for exocytosis, is uniquely up-regulated as oligodendrocytes enter terminal differentiation and initiate myelin biosynthesis. In this study, we analyze the role of this protein in oligodendrocyte morphological differentiation by using Rab3a overexpression and siRNAi-mediated Rab3a silencing. We found that Rab3a silencing delayed mature oligodendrocyte morphological differentiation but did not interfere with lineage progression of OL progenitors; this is consistent with the high levels of Rab3a expressed by mature oligodendrocytes compared with progenitor cells. Overexpression of GTP-bound, but not that of wild-type, Rab3a delayed OL morphological differentiation; this suggests that expression of a GTP-bound Rab3a mutant interferes with the normal function of endogenous Rab3a. We have also identified in oligodendrocytes two other exocytic small GTPases, Rab27B and RalA. Together, these findings indicate that Rab3a specifically stimulates morphological differentiation of mature oligodendrocytes and thus may be part of the necessary machinery for myelin membrane biogenesis.
Collapse
Affiliation(s)
- Mihaela Anitei
- Department of Neuroscience, University of Connecticut Medical School, Farmington, Connecticut 06030-3401, USA
| | | | | | | |
Collapse
|
44
|
Williams JA, Chen X, Sabbatini ME. Small G proteins as key regulators of pancreatic digestive enzyme secretion. Am J Physiol Endocrinol Metab 2009; 296:E405-14. [PMID: 19088252 PMCID: PMC2660147 DOI: 10.1152/ajpendo.90874.2008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Small GTP-binding (G) proteins act as molecular switches to regulate a number of cellular processes, including vesicular transport. Emerging evidence indicates that small G proteins regulate a number of steps in the secretion of pancreatic acinar cells. Diverse small G proteins have been localized at discrete compartments along the secretory pathway and particularly on the secretory granule. Rab3D, Rab27B, and Rap1 are present on the granule membrane and play a role in the steps leading up to exocytosis. Whether the function of these G proteins is simply to ensure appropriate targeting or if they are involved as regulatory molecules is discussed. Most evidence suggests that Rab3D and Rab27B play a role in tethering the secretory granule to its target membrane. Other Rabs have been identified on the secretory granule that are associated with different steps in the secretory pathway. The Rho family small G proteins RhoA and Rac1 also regulate secretion through remodeling of the actin cytoskeleton. Possible mechanisms for regulation of these G proteins and their effector molecules are considered.
Collapse
Affiliation(s)
- John A Williams
- Dept. of Molecular and Integrative Physiology, Univ. of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
45
|
Molecular mechanism of attachment process of dense-core vesicles to the plasma membrane in neuroendocrine cells. Neurosci Res 2009; 63:83-8. [DOI: 10.1016/j.neures.2008.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 10/27/2008] [Accepted: 11/10/2008] [Indexed: 11/21/2022]
|
46
|
Chapter 5: rab proteins and their interaction partners. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 274:235-74. [PMID: 19349039 DOI: 10.1016/s1937-6448(08)02005-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Ras superfamily consists of over 150 low molecular weight proteins that cycle between an inactive guanosine diphosphate (GDP)-bound state and an active guanosine triphosphate (GTP)-bound state. They are involved in a variety of signal transduction pathways that regulate cell growth, intracellular trafficking, cell migration, and apoptosis. Several methods have been devised to detect and characterize the interacting partners of small GTPases with the aim of better understanding their physiological function in normal cells and tumor cells. The Rab (Ras analog in brain) proteins form the largest family within the Ras superfamily. Rab proteins regulate vesicular trafficking pathways, behaving as membrane-associated molecular switches. The guanine nucleotide-binding status of Rab proteins is modulated by three different classes of regulatory proteins, which have been extensively studied for the Rab molecules but also for other subfamilies of the Ras superfamily. Furthermore, numerous effector molecules have been isolated especially for the Rab subfamily of proteins, which interact via a Rab-binding domain (RBD) and are recruited afterwards to specific sub-cellular compartments by the Rab proteins.
Collapse
|
47
|
A newly identified isoform of Slp2a associates with Rab27a in cytotoxic T cells and participates to cytotoxic granule secretion. Blood 2008; 112:5052-62. [DOI: 10.1182/blood-2008-02-141069] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Abstract
Cytotoxic T lymphocytes (CTLs) and natural killer cells help control infections and tumors via a killing activity that is mediated by the release of cytotoxic granules. Granule secretion at the synapse formed between the CTL and the target cell leads to apoptosis of the latter. This process involves polarization of the CTL's secretory machinery and cytotoxic granules. The small GTPase Rab27a and the hMunc13-4 protein have been shown to be required for both granule maturation and granule docking and priming at the immunologic synapse. Using a tandem affinity purification technique, we identified a previously unknown hematopoietic form of Slp2a (Slp2a-hem) and determined that it is a specific effector of the active form of Rab27a. This interaction occurs in vivo in primary CTLs. We have shown that (1) Rab27a recruits Slp2a-hem on vesicular structures in peripheral CTLs and (2) following CTL-target cell conjugate formation, the Slp2a-hem/Rab27a complex colocalizes with perforin-containing granules at the immunologic synapse, where it binds to the plasma membrane through its C2 domains. The overexpression of a dominant-negative form of Slp2a-hem markedly impaired exocytosis of cytotoxic granules—indicating that Slp2a is required for cytotoxic granule docking at the immunologic synapse.
Collapse
|
48
|
Kimura T, Kaneko Y, Yamada S, Ishihara H, Senda T, Iwamatsu A, Niki I. The GDP-dependent Rab27a effector coronin 3 controls endocytosis of secretory membrane in insulin-secreting cell lines. J Cell Sci 2008; 121:3092-8. [PMID: 18768935 DOI: 10.1242/jcs.030544] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Rab27a is involved in the control of membrane traffic, a crucial step in the regulated secretion. Typically, the guanosine triphosphate (GTP)-bound form has been considered to be active and, therefore, searching for proteins binding to the GTP-form has been attempted to look for their effectors. Here, we have identified the actin-bundling protein coronin 3 as a novel Rab27a effector that paradoxically bound guanosine diphosphate (GDP)-Rab27a in the pancreatic beta-cell line MIN6. Coronin 3 directly bound GDP-Rab27a through its beta-propeller structure. The most important insulin secretagogue glucose promptly shifted Rab27a from the GTP- to GDP-bound form. Knockdown of coronin 3 by RNAi resulted in the inhibition of phogrin (an insulin-granule-associated protein) internalization and the uptake of FM4-64 (a marker of endocytosis). Similar results were reproduced by disruption of the coronin-3-GDP-Rab27a interaction with the dominant-negative coronin 3, and coexpression of the GDP-Rab27a mutant rescued these changes. Taken together, our results indicate that interaction of GDP-Rab27a and coronin 3 is important in stimulus-endocytosis coupling, and that GTP- and GDP-Rab27a regulates insulin membrane recycling at the distinct stages.
Collapse
Affiliation(s)
- Toshihide Kimura
- Department of Pharmacology, Oita University Faculty of Medicine, Hasama, Yufu, Oita 879-5593, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Chavas LM, Ihara K, Kawasaki M, Torii S, Uejima T, Kato R, Izumi T, Wakatsuki S. Elucidation of Rab27 Recruitment by Its Effectors: Structure of Rab27a Bound to Exophilin4/Slp2-a. Structure 2008; 16:1468-77. [DOI: 10.1016/j.str.2008.07.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 07/18/2008] [Accepted: 07/21/2008] [Indexed: 01/03/2023]
|
50
|
Lovis P, Roggli E, Laybutt DR, Gattesco S, Yang JY, Widmann C, Abderrahmani A, Regazzi R. Alterations in microRNA expression contribute to fatty acid-induced pancreatic beta-cell dysfunction. Diabetes 2008; 57:2728-36. [PMID: 18633110 PMCID: PMC2551683 DOI: 10.2337/db07-1252] [Citation(s) in RCA: 267] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Visceral obesity and elevated plasma free fatty acids are predisposing factors for type 2 diabetes. Chronic exposure to these lipids is detrimental for pancreatic beta-cells, resulting in reduced insulin content, defective insulin secretion, and apoptosis. We investigated the involvement in this phenomenon of microRNAs (miRNAs), a class of noncoding RNAs regulating gene expression by sequence-specific inhibition of mRNA translation. RESEARCH DESIGN AND METHODS We analyzed miRNA expression in insulin-secreting cell lines or pancreatic islets exposed to palmitate for 3 days and in islets from diabetic db/db mice. We studied the signaling pathways triggering the changes in miRNA expression and determined the impact of the miRNAs affected by palmitate on insulin secretion and apoptosis. RESULTS Prolonged exposure of the beta-cell line MIN6B1 and pancreatic islets to palmitate causes a time- and dose-dependent increase of miR34a and miR146. Elevated levels of these miRNAs are also observed in islets of diabetic db/db mice. miR34a rise is linked to activation of p53 and results in sensitization to apoptosis and impaired nutrient-induced secretion. The latter effect is associated with inhibition of the expression of vesicle-associated membrane protein 2, a key player in beta-cell exocytosis. Higher miR146 levels do not affect the capacity to release insulin but contribute to increased apoptosis. Treatment with oligonucleotides that block miR34a or miR146 activity partially protects palmitate-treated cells from apoptosis but is insufficient to restore normal secretion. CONCLUSIONS Our findings suggest that at least part of the detrimental effects of palmitate on beta-cells is caused by alterations in the level of specific miRNAs.
Collapse
Affiliation(s)
- Pascal Lovis
- Department of Cell Biology and Morphology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|