1
|
Li Y, Talbot CL, Chandravanshi B, Ksiazek A, Sood A, Chowdhury KH, Maschek JA, Cox J, Babu AKS, Paz HA, Babu PVA, Meyerholz DK, Wankhade UD, Holland W, Shyong Tai E, Summers SA, Chaurasia B. Cordyceps inhibits ceramide biosynthesis and improves insulin resistance and hepatic steatosis. Sci Rep 2022; 12:7273. [PMID: 35508667 PMCID: PMC9068713 DOI: 10.1038/s41598-022-11219-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/20/2022] [Indexed: 11/12/2022] Open
Abstract
Ectopic ceramide accumulation in insulin-responsive tissues contributes to the development of obesity and impairs insulin sensitivity. Moreover, pharmacological inhibition of serine palmitoyl transferase (SPT), the first enzyme essential for ceramide biosynthesis using myriocin in rodents reduces body weight and improves insulin sensitivity and associated metabolic indices. Myriocin was originally extracted from fruiting bodies of the fungus Isaria sinclairii and has been found abundant in a number of closely related fungal species such as the Cordyceps. Myriocin is not approved for human use but extracts from Cordyceps are routinely consumed as part of traditional Chinese medication for the treatment of numerous diseases including diabetes. Herein, we screened commercially available extracts of Cordyceps currently being consumed by humans, to identify Cordyceps containing myriocin and test the efficacy of Cordyceps extract containing myriocin in obese mice to improve energy and glucose homeostasis. We demonstrate that commercially available Cordyceps contain variable amounts of myriocin and treatment of mice with a human equivalent dose of Cordyceps extract containing myriocin, reduces ceramide accrual, increases energy expenditure, prevents diet-induced obesity, improves glucose homeostasis and resolves hepatic steatosis. Mechanistically, these beneficial effects were due to increased adipose tissue browning/beiging, improved brown adipose tissue function and hepatic insulin sensitivity as well as alterations in the abundance of gut microbes such as Clostridium and Bilophila. Collectively, our data provide proof-of-principle that myriocin containing Cordyceps extract inhibit ceramide biosynthesis and attenuate metabolic impairments associated with obesity. Moreover, these studies identify commercially available Cordyceps as a readily available supplement to treat obesity and associated metabolic diseases.
Collapse
Affiliation(s)
- Ying Li
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
| | - Chad Lamar Talbot
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
| | - Bhawna Chandravanshi
- Division of Endocrinology, Department of Internal Medicine, Carver College of Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa City, IA, 52242, USA
| | - Alec Ksiazek
- Division of Endocrinology, Department of Internal Medicine, Carver College of Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa City, IA, 52242, USA
| | - Ayushi Sood
- Division of Endocrinology, Department of Internal Medicine, Carver College of Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa City, IA, 52242, USA
| | - Kamrul Hasan Chowdhury
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
| | - J Alan Maschek
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - James Cox
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Adhini Kuppuswamy Satheesh Babu
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
| | - Henry A Paz
- Arkansas Children's Nutrition Center, Little Rock, AR, USA
- Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Pon Velayutham Anandh Babu
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
| | - David K Meyerholz
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Umesh D Wankhade
- Arkansas Children's Nutrition Center, Little Rock, AR, USA
- Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - William Holland
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
| | - E Shyong Tai
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
| | - Bhagirath Chaurasia
- Division of Endocrinology, Department of Internal Medicine, Carver College of Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa City, IA, 52242, USA.
| |
Collapse
|
2
|
Extraction, structure and pharmacological effects of the polysaccharides from Cordyceps sinensis: A review. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
3
|
Yang X, Lin P, Wang J, Liu N, Yin F, Shen N, Guo S. Purification, characterization and anti-atherosclerotic effects of the polysaccharides from the fruiting body of Cordyceps militaris. Int J Biol Macromol 2021; 181:890-904. [PMID: 33878353 DOI: 10.1016/j.ijbiomac.2021.04.083] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/01/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022]
Abstract
Hyperlipidemia is one major cause of atherosclerosis, which is a basic pathological change of cardiovascular diseases. Polysaccharide is a water-soluble component with lipid-lowering effects. In this study, alkaline-extracted polysaccharides were obtained from the fruiting body of C. militaris. Polysaccharides were purified via anion exchange and size exclusion chromatography. Their structural characteristics were investigated via chemical and spectroscopic methods. CM3I was mainly composed of →4)α-D-Glcp(1 → glycosyls and differed from starch due to the presence of →4,6)β-D-Glcp(1 → glycosyls. CM3II was characterized by its backbone, which was composed of →4)-β-D-Manp(1 → 6)-α-D-Manp(1 → 6)-β-D-Manp(1 → linked glycosyls, and especially the presence of O-methyl. Moreover, CM3II exhibited powerful anti-atherosclerotic effects via lowering plasma lipid levels in apolipoprotein E-deficient mice. The underlying mechanisms were attributed to its promoting effect on LXRα and inhibitory effect on SREBP-2. Collectively, CM3I and CM3II are different from the previously reported polysaccharides from C. militaris, and CM3II has a potential application in hypolipidemia and anti-atherosclerosis.
Collapse
Affiliation(s)
- Xiaoqian Yang
- Institute of Lipid metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Ping Lin
- Institute of Lipid metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Jin Wang
- Institute of Lipid metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Na Liu
- Institute of Lipid metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Fan Yin
- Institute of Lipid metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Nuo Shen
- Institute of Lipid metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Shoudong Guo
- Institute of Lipid metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
4
|
Das G, Shin HS, Leyva-Gómez G, Prado-Audelo MLD, Cortes H, Singh YD, Panda MK, Mishra AP, Nigam M, Saklani S, Chaturi PK, Martorell M, Cruz-Martins N, Sharma V, Garg N, Sharma R, Patra JK. Cordyceps spp.: A Review on Its Immune-Stimulatory and Other Biological Potentials. Front Pharmacol 2021; 11:602364. [PMID: 33628175 PMCID: PMC7898063 DOI: 10.3389/fphar.2020.602364] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/02/2020] [Indexed: 01/31/2023] Open
Abstract
In recent decades, interest in the Cordyceps genus has amplified due to its immunostimulatory potential. Cordyceps species, its extracts, and bioactive constituents have been related with cytokine production such as interleukin (IL)-1β, IL-2, IL-6, IL-8, IL-10, IL-12, and tumor necrosis factor (TNF)-α, phagocytosis stimulation of immune cells, nitric oxide production by increasing inducible nitric oxide synthase activity, and stimulation of inflammatory response via mitogen-activated protein kinase pathway. Other pharmacological activities like antioxidant, anti-cancer, antihyperlipidemic, anti-diabetic, anti-fatigue, anti-aging, hypocholesterolemic, hypotensive, vasorelaxation, anti-depressant, aphrodisiac, and kidney protection, has been reported in pre-clinical studies. These biological activities are correlated with the bioactive compounds present in Cordyceps including nucleosides, sterols, flavonoids, cyclic peptides, phenolic, bioxanthracenes, polyketides, and alkaloids, being the cyclic peptides compounds the most studied. An organized review of the existing literature was executed by surveying several databanks like PubMed, Scopus, etc. using keywords like Cordyceps, cordycepin, immune system, immunostimulation, immunomodulatory, pharmacology, anti-cancer, anti-viral, clinical trials, ethnomedicine, pharmacology, phytochemical analysis, and different species names. This review collects and analyzes state-of-the-art about the properties of Cordyceps species along with ethnopharmacological properties, application in food, chemical compounds, extraction of bioactive compounds, and various pharmacological properties with a special focus on the stimulatory properties of immunity.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Goyangsi, South Korea
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyangsi, South Korea
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - María L. Del Prado-Audelo
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Hernán Cortes
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| | - Yengkhom Disco Singh
- Department of Post-Harvest Technology, College of Horticulture and Forestry, Central Agricultural University, Pasighat, India
| | - Manasa Kumar Panda
- Environment and Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, India
| | - Abhay Prakash Mishra
- Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Saharanpur, India
| | - Manisha Nigam
- Department of Biochemistry, H. N. B. Garhwal University, Srinagar Garhwal, India
| | - Sarla Saklani
- Department of Pharmaceutical Chemistry, H. N. B. Garhwal University, Srinagar Garhwal, India
| | | | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile
| | - Natália Cruz-Martins
- Faculty of Medicine, Alameda Prof. Hernani Monteiro, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Vineet Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Neha Garg
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Goyangsi, South Korea
| |
Collapse
|
5
|
Liu K, Li XY, Luo JP, Zha XQ. Bioactivities. Food Hydrocoll 2021. [DOI: 10.1007/978-981-16-0320-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Li Y, Jiang X, Xu H, Lv J, Zhang G, Dou X, Zhang Y, Li X. Acremonium terricola culture plays anti-inflammatory and antioxidant roles by modulating MAPK signaling pathways in rats with lipopolysaccharide-induced mastitis. Food Nutr Res 2020; 64:3649. [PMID: 33281536 PMCID: PMC7681784 DOI: 10.29219/fnr.v64.3649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 11/20/2022] Open
Affiliation(s)
- Yang Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xin Jiang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hongjian Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jingyi Lv
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Guangning Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xiujing Dou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Xiujing Dou and Yonggen Zhang, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China. Tel.: +8645155190840, Fax: +86 451 55190840. ;
| | - Yonggen Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Xiujing Dou and Yonggen Zhang, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China. Tel.: +8645155190840, Fax: +86 451 55190840. ;
| | - Xiaoxiang Li
- Microbial Biological Engineering Company Limited, Hefei, China
| |
Collapse
|
7
|
Tung YT, Pan CH, Chien YW, Huang HY. Edible Mushrooms: Novel Medicinal Agents to Combat Metabolic Syndrome and Associated Diseases. Curr Pharm Des 2020; 26:4970-4981. [DOI: 10.2174/1381612826666200831151316] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/29/2020] [Indexed: 12/25/2022]
Abstract
Metabolic syndrome is an aggregation of conditions and associated with an increased risk of developing
diabetes, obesity and cardiovascular diseases (CVD). Edible mushrooms are widely consumed in many countries
and are valuable components of the diet because of their attractive taste, aroma, and nutritional value. Medicinal
mushrooms are higher fungi with additional nutraceutical attributes having low-fat content and a transisomer
of unsaturated fatty acids along with high fiber content, biologically active compounds such as polysaccharides
or polysaccharide β-glucans, alkaloids, steroids, polyphenols and terpenoids. In vitro experiments, animal
models, and even human studies have demonstrated not only fresh edible mushroom but also mushroom
extract that has great therapeutic applications in human health as they possess many properties such as antiobesity,
cardioprotective and anti-diabetic effect. They are considered as the unmatched source of healthy foods
and drugs. The focus of this report was to provide a concise and complete review of the novel medicinal properties
of fresh or dry mushroom and extracts, fruiting body or mycelium and its extracts, fiber, polysaccharides,
beta-glucan, triterpenes, fucoidan, ergothioneine from edible mushrooms that may help to prevent or treat metabolic
syndrome and associated diseases.
Collapse
Affiliation(s)
- Yu-Tang Tung
- Graduate Institute of Metabolism and Obesity Science, Taipei Medical University, Taipei City 11031, Taiwan
| | - Chun-Hsu Pan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei City 11031, Taiwan
| | - Yi-Wen Chien
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei City 11031, Taiwan
| | - Hui-Yu Huang
- Graduate Institute of Metabolism and Obesity Science, Taipei Medical University, Taipei City 11031, Taiwan
| |
Collapse
|
8
|
Jagadeesh R, Babu G, Lakshmanan H, Oh OMJ, Jang JKY, Kong KWS, Raaman N. Bioactive Sterol Derivatives Isolated from the Pleurotus djamor var. Roseus Induced Apoptosis in Cancer Cell Lines. Cardiovasc Hematol Agents Med Chem 2020; 18:124-134. [PMID: 32660409 DOI: 10.2174/1871525718666200303123557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The aim of the present study is to isolate and characterize the bioactive compounds from Pleurotus djamor against human breast cancer (MDA-MD-231) and mouse T cell lymphoma (EL4) cell lines. MATERIALS AND METHODS Sequential fractionization and column chromatography methods were involved in compound isolation. The structures of the isolated compound were determined by NMR, GC/MS, and X-ray crystallography studies. RESULTS The isolated compounds 1- 4 [D-mannitol (C1), ergosta-5,7,22-trien-3β-ol (C2), 5,8- epidioxy-ergosta-6-22-dien-3β-ol (C3), and palmitic acid (C4)] are white crystal and amorphous powder in nature. All these compounds were isolated from this mushroom for the first time. In vitro lipid peroxidation activities of isolated compounds were determined by ferric thiocyanate (FTC) and thiobarbituric acid (TBA) method. The sterol derivatives C2 and C3 compounds displayed strong antioxidant activity and were not significantly different (p<0.05) to α-tocopherol. This finding elaborates on the isolation of a cytotoxic compound C2 and C3 from P. djamor via a rapid elution method. CONCLUSION The compound C3 has exhibited better cytotoxic activity against MDA-MD-231 and EL4 cells. The present finding and data might provide new insights into the possible therapeutic and pharmaceutical use for the design of anti-cancer drugs from this edible mushroom.
Collapse
Affiliation(s)
- Raman Jagadeesh
- Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, Republic of Korea,Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai- 600 025, Tamil Nadu, India
| | - Gajandran Babu
- State Key Laboratory of Functions and Applications of Medicinal Plants and Chinese Academy of Sciences, Guizhou Medical University, Guiyang-550014, China,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang-550014, China
| | - Hariprasath Lakshmanan
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai- 600 025, Tamil Nadu, India,Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Oh Min-Ji Oh
- Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, Republic of Korea
| | - Jang Kab-Yeul Jang
- Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, Republic of Korea
| | - Kong Won-Sik Kong
- Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, Republic of Korea
| | - Nanjian Raaman
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai- 600 025, Tamil Nadu, India
| |
Collapse
|
9
|
Bibi S, Wang YB, Tang DX, Kamal MA, Yu H. Prospects for Discovering the Secondary Metabolites of Cordyceps Sensu Lato by the Integrated Strategy. Med Chem 2019; 17:97-120. [PMID: 31880251 DOI: 10.2174/1573406416666191227120425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Some species of Cordyceps sensu lato are famous Chinese herbs with significant biological activities, often used as edible food and traditional medicine in China. Cordyceps represents the largest entomopathogenic group of fungi, including 40 genera and 1339 species in three families and incertae sedis of Hypocreales. OBJECTIVE Most of the Cordyceps-derivatives have been approved clinically for the treatment of various diseases such as diabetes, cancers, inflammation, cardiovascular, renal and neurological disorders and are used worldwide as supplements and herbal drugs, but there is still need for highly efficient Cordyceps-derived drugs for fatal diseases with approval of the U.S. Food and Drug Administration. METHODS Computer-aided drug design concepts could improve the discovery of putative Cordyceps- derived medicine within less time and low budget. The integration of computer-aided drug design methods with experimental validation has contributed to the successful discovery of novel drugs. RESULTS This review focused on modern taxonomy, active metabolites, and modern drug design techniques that could accelerate conventional drug design and discovery of Cordyceps s. l. Successful application of computer-aided drug design methods in Cordyceps research has been discussed. CONCLUSION It has been concluded that computer-aided drug design techniques could influence the multiple target-focused drug design, because each metabolite of Cordyceps has shown significant activities for the various diseases with very few or no side effects.
Collapse
Affiliation(s)
- Shabana Bibi
- Yunnan Herbal Laboratory, School of Life Sciences, Yunnan University, Kunming 650091, Yunnan, China
| | - Yuan-Bing Wang
- Yunnan Herbal Laboratory, School of Life Sciences, Yunnan University, Kunming 650091, Yunnan, China
| | - De-Xiang Tang
- Yunnan Herbal Laboratory, School of Life Sciences, Yunnan University, Kunming 650091, Yunnan, China
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Hong Yu
- Yunnan Herbal Laboratory, School of Life Sciences, Yunnan University, Kunming 650091, Yunnan, China
| |
Collapse
|
10
|
The potential application of
Cordyceps
in metabolic‐related disorders. Phytother Res 2019; 34:295-305. [PMID: 31667949 DOI: 10.1002/ptr.6536] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 09/15/2019] [Accepted: 10/09/2019] [Indexed: 01/26/2023]
|
11
|
|
12
|
Tang Y, Cui Y, De Agostini A, Zhang L. Biological mechanisms of glycan- and glycosaminoglycan-based nutraceuticals. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 163:445-469. [DOI: 10.1016/bs.pmbts.2019.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Chanjula P, Cherdthong A. Effects of spent mushroom Cordyceps militaris supplementation on apparent digestibility, rumen fermentation, and blood metabolite parameters of goats. J Anim Sci 2018; 96:1150-1158. [PMID: 29409013 DOI: 10.1093/jas/skx079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 01/24/2018] [Indexed: 01/01/2023] Open
Abstract
The objective of this experiment was to study the effects of dried spent mushroom Cordyceps militaris (SMCM) supplementation on digestibility, rumen fermentation, and blood metabolite parameters in goats. When the mushroom production and harvesting was complete, SMCM was collected fresh from a mushroom farm. Four 18-mo-old male crossbred (Thai Native × Anglo Nubian) goats with initial BW of 26.0 ± 1.40 kg were randomly assigned according to a 4 × 4 Latin square design to receive four different levels of SMCM at 0, 100, 200, and 300 g/d. There were quadratic effects (P < 0.06) on apparent digestibility of DM, OM, CP, NDF, and ADF among treatment groups, and greater values for the goats fed SMCM at 100 g/d were observed. A quadratic effect in energy intake (ME, Mcal/kg DM) (P = 0.02), with greater values for the goats fed SMCM at 100 g/d, was also observed. Rumen temperature was similar among groups (P = 0.23), whereas feeding of SMCM linearly decreased (P = 0.001) ruminal pH with increasing SMCM supplementation. Supplementing SMCM linearly decreased plasma concentration of cholesterol (P = 0.01), and there was also a tendency of reduction in plasma concentration of triglyceride (P = 0.10), with greater values for the goats fed SMCM at 100 g/d. There were quadratic effects on plasma of total protein, HgB, and MCHC among treatment groups. However, there were quadratic effects on fecal N (P = 0.04) and nitrogen retention (P = 0.07) based on g/d/animal or percentage of nitrogen retained (P = 0.01) among treatment groups, and greater values for the goats fed SMCM at 100 g/d were observed. Based on this experiment, it could be concluded that supplementing goat diets with SMCM at 100 to 200 g/d results in improved apparent digestibility of nutrients and blood metabolites, suggesting that SMCM has positive functions as a feed additive to improve energy substance metabolism and contribute to glyconeogenesis.
Collapse
Affiliation(s)
- Pin Chanjula
- Department of Animal Science, Faculty of Natural Resources, Prince of Songkla University, Songkhla, Thailand
| | - Anusorn Cherdthong
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
14
|
Sagbo IJ, van de Venter M, Koekemoer T, Bradley G. In Vitro Antidiabetic Activity and Mechanism of Action of Brachylaena elliptica (Thunb.) DC. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:4170372. [PMID: 30108655 PMCID: PMC6077518 DOI: 10.1155/2018/4170372] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/06/2018] [Indexed: 12/13/2022]
Abstract
In South Africa, the number of people suffering from diabetes is believed to be rising steadily and the current antidiabetic therapies are frequently reported to have adverse side effects. Ethnomedicinal plant use has shown promise for the development of cheaper, cost-effective antidiabetic agents with fewer side effects. The aim of this study was to investigate the antidiabetic activity and mechanism of action of aqueous leaf extract prepared from Brachylaena elliptica. The potential of the extract for cytotoxicity was evaluated using MTT assay in HepG2 cells. The effects of the plant extract on glucose utilization in HepG2 cells and L6 myotubes, triglyceride accumulation in 3T3-L1, INS-1 proliferation, glucose metabolism in INS-1 cells, and NO production in RAW macrophages were also investigated using cell culture procedures. The inhibitory effects of the extract on the activities of different enzymes including alpha-amylase, alpha-glucosidase, pancreatic lipase, dipeptidyl peptidase IV (DPP-IV), collagenase, and CYP3A4 enzymes were evaluated. The extract also tested against protein glycation using standard published procedure. The plant extract displayed low level of toxicity, where both concentrations tested did not induce 50% cell death. The extract caused a significant increase in glucose uptake in HepG2 liver cells, with efficacy significantly higher than the positive control, berberine. The crude extract also displayed no significant effect on muscle glucose uptake, triglyceride accumulation in 3T3-L1, glucose metabolism in INS-1 cells, alpha-amylase, alpha-glucosidase, DPP-IV, lipase, protein glycation, and collagenase compared to the respective positive controls. The extract displayed a proliferative effect on INS-1 cells at 25 μg/ml when compared to the negative control. The plant also produced a concentration-dependent reduction in NO production in RAW macrophages and also demonstrated weak significant inhibition on CYP3A4 activity. The findings provide evidence that B. elliptica possess antidiabetic activity and appear to exact its hypoglycemic effect independent of insulin.
Collapse
Affiliation(s)
- Idowu Jonas Sagbo
- Plant Stress Group, Department of Biochemistry and Microbiology, University of Fort Hare, P.O. Box X1314, Alice, South Africa
| | - Maryna van de Venter
- Department of Biochemistry and Microbiology, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031, South Africa
| | - Trevor Koekemoer
- Department of Biochemistry and Microbiology, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031, South Africa
| | - Graeme Bradley
- Plant Stress Group, Department of Biochemistry and Microbiology, University of Fort Hare, P.O. Box X1314, Alice, South Africa
| |
Collapse
|
15
|
Geng P, Siu KC, Wang Z, Wu JY. Antifatigue Functions and Mechanisms of Edible and Medicinal Mushrooms. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9648496. [PMID: 28890898 PMCID: PMC5584359 DOI: 10.1155/2017/9648496] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/16/2017] [Indexed: 12/14/2022]
Abstract
Fatigue is the symptom of tiredness caused by physical and/or psychological stresses. As fatigue is becoming a serious problem in the modern society affecting human health, work efficiency, and quality of life, effective antifatigue remedies other than pharmacological drugs or therapies are highly needed. Mushrooms have been widely used as health foods, because of their various bioactive constituents such as polysaccharides, proteins, vitamins, minerals, and dietary fiber. This paper reviews the major findings from previous studies on the antifatigue effects, the active components of mushrooms, and the possible mechanisms. Many studies have demonstrated the antifatigue effects of edible and medicinal mushrooms. These mushrooms probably mitigate human fatigue through effects on the functional systems, including the muscular, cardiovascular, hormone, and immune system. The bioactive constituents that contribute to the antifatigue effects of mushrooms may include polysaccharides, peptides, nucleosides, phenolic compounds, and triterpenoids. Further research is still needed to identify the active ingredients and to investigate their mechanism of action on the antifatigue effects. Since most previous studies have been carried out in animal models, more human trials should be performed to verify the antifatigue function of edible and medicinal mushrooms.
Collapse
Affiliation(s)
- Ping Geng
- Department of Applied Biology & Chemical Technology, State Key Laboratory of Chinese Medicine and Molecular Pharmacology in Shenzhen, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Ka-Chai Siu
- Department of Applied Biology & Chemical Technology, State Key Laboratory of Chinese Medicine and Molecular Pharmacology in Shenzhen, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Zhaomei Wang
- School of Food Science & Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jian-Yong Wu
- Department of Applied Biology & Chemical Technology, State Key Laboratory of Chinese Medicine and Molecular Pharmacology in Shenzhen, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
16
|
Doan HV, Hoseinifar SH, Tapingkae W, Chitmanat C, Mekchay S. Effects of Cordyceps militaris spent mushroom substrate on mucosal and serum immune parameters, disease resistance and growth performance of Nile tilapia, (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2017; 67:78-85. [PMID: 28578127 DOI: 10.1016/j.fsi.2017.05.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/02/2017] [Accepted: 05/30/2017] [Indexed: 06/07/2023]
Abstract
The aim of present study was determination effects of dietary administration of C. militaris spent mushroom substrate (SMS) on mucosal and serum immune parameters, disease resistance, and growth performance of Nile tilapia (Oreochromis niloticus). Two hundred twenty five fish of similar weight (37.28 ± 0.10 g) were assigned to the following diets [0 (T1- Control), 5 (T2), 10 (T3), 20 (T4) and 40 g kg-1 (T5) SMS]. After 60 days of feeding trial, growth performance, skin mucus lysozyme and peroxidase activities as well as serum innate immune were measured. In addition, survival rate and innate immune responses were calculated after challenge test (15 days) against Streptococcus agalactiae. The results revealed that regardless of inclusion levels, feeding Nile tilapia with SMS supplemented diets significantly increased skin mucus lysozyme and peroxidase activities as well as serum immune parameters (SL, ACH50, PI, RB, and RB) compared control group (P < 0.05). The highest increment of immune parameters was observed in fish fed 10 g kg-1 SMS which was significantly higher than other treatments (P < 0.05). Also, the relative percent survival (RSP) in T2, T3, T4, and T5 was 61.11%, 88.89%, 66.67, and 55.56%, respectively. Among the supplemented groups, fish fed 10 g kg-1 SMS showed significant higher RPS and resistance to S. agalactiae than other groups (P < 0.05). Regarding the growth performance, SGR, WG, FW, and FCR were remarkably improved (P < 0.05) in SMS groups; the highest improvement observed in 10 g kg-1 SMS treatment. According to these finding, administration of 10 g kg-1 SMS is suggested in tilapia to improve growth performance and health status.
Collapse
Affiliation(s)
- Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200 Thailand.
| | - Seyed Hossein Hoseinifar
- Department of Fisheries Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Wanaporn Tapingkae
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200 Thailand
| | - Chanagun Chitmanat
- Faculty of Fisheries Technology and Aquatic Resources, Maejo University, Chiang Mai 50290 Thailand
| | - Supamit Mekchay
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200 Thailand
| |
Collapse
|
17
|
Baral B. Entomopathogenicity and Biological Attributes of Himalayan Treasured Fungus Ophiocordyceps sinensis (Yarsagumba). J Fungi (Basel) 2017; 3:E4. [PMID: 29371523 PMCID: PMC5715966 DOI: 10.3390/jof3010004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/20/2017] [Accepted: 01/31/2017] [Indexed: 01/01/2023] Open
Abstract
Members of the entomophagous fungi are considered very crucial in the fungal domain relative to their natural phenomenon and economic perspectives; however, inadequate knowledge of their mechanisms of interaction keeps them lagging behind in parallel studies of fungi associated with agro-ecology, forest pathology and medical biology. Ophiocordyceps sinensis (syn. Cordyceps sinensis), an intricate fungus-caterpillar complex after it parasitizes the larva of the moth, is a highly prized medicinal fungus known widely for ages due to its peculiar biochemical assets. Recent technological innovations have significantly contributed a great deal to profiling the variable clinical importance of this fungus and other related fungi with similar medicinal potential. However, a detailed mechanism behind fungal pathogenicity and fungal-insect interactions seems rather ambiguous and is poorly justified, demanding special attention. The goal of the present review is to divulge an update on the published data and provides promising insights on different biological events that have remained underemphasized in previous reviews on fungal biology with relation to life-history trade-offs, host specialization and selection pressures. The infection of larvae by a fungus is not a unique event in Cordyceps; hence, other fungal species are also reviewed for effective comparison. Conceivably, the rationale and approaches behind the inheritance of pharmacological abilities acquired and stored within the insect framework at a time when they are completely hijacked and consumed by fungal parasites, and the molecular mechanisms involved therein, are clearly documented.
Collapse
Affiliation(s)
- Bikash Baral
- Research, Community Development and Conservation Center (C3DR), Pokhara 33700, Nepal.
- Department of Biochemistry, University of Turku, Turku, Finn-20014, Finland.
| |
Collapse
|
18
|
Shi L. Bioactivities, isolation and purification methods of polysaccharides from natural products: A review. Int J Biol Macromol 2016; 92:37-48. [PMID: 27377457 PMCID: PMC7124366 DOI: 10.1016/j.ijbiomac.2016.06.100] [Citation(s) in RCA: 339] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 12/31/2022]
Abstract
Polysaccharides play multiple roles and have extensive bioactivities in life process and an immense potential in healthcare, food and cosmetic industries, due to their therapeutic effects and relatively low toxicity. This review describes their major functions involved in antitumor, anti-virus, and anti-inflammatory bioactivities. Due to their enormous structural heterogeneity, the approaches for isolation and purification of polysaccharides are distinct from that of the other macromolecules such as proteins, etc. Yet, to achieve the homogeneity is the initial step for studies of polysaccharide structure, pharmacology, and its structure-activity relationships. According to the experiences accumulated by our lab and the published literatures, this review also introduces the methods widely used in isolation and purification of polysaccharides.
Collapse
Affiliation(s)
- Lei Shi
- Centre of Innovation, School of Applied Science, Temasek Polytechnic, 21 Tampines Avenue 1, 529757, Singapore.
| |
Collapse
|
19
|
Microwave-Assisted Extraction, Chemical Structures, and Chain Conformation of Polysaccharides from a Novel Cordyceps Sinensis
Fungus UM01. J Food Sci 2016; 81:C2167-74. [DOI: 10.1111/1750-3841.13407] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/21/2016] [Accepted: 07/01/2016] [Indexed: 12/26/2022]
|
20
|
Klupp NL, Kiat H, Bensoussan A, Steiner GZ, Chang DH. A double-blind, randomised, placebo-controlled trial of Ganoderma lucidum for the treatment of cardiovascular risk factors of metabolic syndrome. Sci Rep 2016; 6:29540. [PMID: 27511742 PMCID: PMC4980683 DOI: 10.1038/srep29540] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/17/2016] [Indexed: 11/09/2022] Open
Abstract
This study aimed to evaluate the efficacy and safety of Ganoderma lucidum for the treatment of hyperglycaemia and other cardiovascular risk components of metabolic syndrome using a prospective, double-blind, randomised, placebo-controlled trial. Eighty-four participants with type 2 diabetes mellitus and metabolic syndrome were randomised to one of three intervention groups: Ganoderma lucidum, Ganoderma lucidum with Cordyceps sinensis, or placebo. The dosage was 3 g/day of Ganoderma lucidum, with or without Cordyceps sinensis, for 16 weeks. The primary outcome measure was blood glucose (glycosylated haemoglobin [HbA1c] and fasting plasma glucose [FPG]); a number of secondary outcome measures were also tested. Data from the two intervention groups were combined. The combined intervention had no effect on any of the primary (baseline-adjusted difference in means: HbA1c = 0.13%, 95% CI [-0.35, 0.60], p = 0.60; FPG = 0.03 mmol/L, 95% CI [-0.90, 0.96], p = 0.95) or secondary outcome measures over the course of the 16-week trial, and no overall increased risk of adverse events with either active treatment. Evidence from this randomised clinical trial does not support the use of Ganoderma lucidum for treatment of cardiovascular risk factors in people with diabetes mellitus or metabolic syndrome. This Clinical Trial was registered with the Australian New Zealand Clinical Trials Registry on November 23, 2006. Trial ID: ACTRN12606000485538 and can be accessed here: https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=81705.
Collapse
Affiliation(s)
- Nerida L. Klupp
- The National Institute of Complementary Medicine, School of Science and Health, Western Sydney University, Penrith NSW, Australia
| | - Hosen Kiat
- Faculty of Medicine, University of New South Wales, Kensington NSW, Australia
- School of Medicine, Western Sydney University, Penrith NSW, Australia
- Faculty of Medicine and Health Sciences, Macquarie University NSW, Australia
| | - Alan Bensoussan
- The National Institute of Complementary Medicine, School of Science and Health, Western Sydney University, Penrith NSW, Australia
| | - Genevieve Z. Steiner
- The National Institute of Complementary Medicine, School of Science and Health, Western Sydney University, Penrith NSW, Australia
| | - Dennis H. Chang
- The National Institute of Complementary Medicine, School of Science and Health, Western Sydney University, Penrith NSW, Australia
| |
Collapse
|
21
|
Liu H, Cao D, Liu H, Liu X, Mai W, Lan H, Huo W, Zheng Q. The Herbal Medicine Cordyceps sinensis Protects Pancreatic Beta Cells from Streptozotocin-Induced Endoplasmic Reticulum Stress. Can J Diabetes 2016; 40:329-35. [DOI: 10.1016/j.jcjd.2016.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 01/21/2016] [Accepted: 02/01/2016] [Indexed: 11/24/2022]
|
22
|
Jang SH, Park J, Jang SH, Chae SW, Jung SJ, So BO, Ha KC, Sin HS, Jang YS. In vitro Stimulation of NK Cells and Lymphocytes Using an Extract Prepared from Mycelial Culture of Ophiocordyceps sinensis. Immune Netw 2016; 16:140-5. [PMID: 27162531 PMCID: PMC4853500 DOI: 10.4110/in.2016.16.2.140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/08/2016] [Accepted: 04/11/2016] [Indexed: 12/01/2022] Open
Abstract
Ophiocordyceps sinensis is a natural fungus that has been valued as a health food and used in traditional Chinese medicine for centuries. The fungus is parasitic and colonizes insect larva. Naturally occurring O. sinensis thrives at high altitude in cold and grassy alpine meadows on the Himalayan mountain ranges. Wild Ophiocordyceps is becoming increasingly rare in its natural habitat, and its price limits its use in clinical practice. Therefore, the development of a standardized alternative is a great focus of research to allow the use of Ophiocordyceps as a medicine. To develop an alternative for wild Ophiocordyceps, a refined standardized extract, CBG-CS-2, was produced by artificial fermentation and extraction of the mycelial strain Paecilomyces hepiali CBG-CS-1, which originated from wild O. sinensis. In this study, we analyzed the in vitro immune-modulating effect of CBG-CS-2 on natural killer cells and B and T lymphocytes. CBG-CS-2 stimulated splenocyte proliferation and enhanced Th1-type cytokine expression in the mouse splenocytes. Importantly, in vitro CBG-CS-2 treatment enhanced the killing activity of the NK-92MI natural killer cell line. These results indicate that the mycelial culture extract prepared from Ophiocordyceps exhibits immune-modulating activity, as was observed in vivo and this suggests its possible use in the treatment of diseases caused by abnormal immune function.
Collapse
Affiliation(s)
- Sun-Hee Jang
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 54896, Korea
| | - Jisang Park
- Department of Bioactive Materials and Research Center of Bioactive Materials, Chonbuk National University, Jeonju 54896, Korea
| | | | - Soo-Wan Chae
- Department of Pharmacology, Chonbuk National University Medical School, Jeonju 54896, Korea.; Clinical Trial Center for Functional Foods, Chonbuk National University Hospital, Jeonju 54896, Korea
| | - Su-Jin Jung
- Clinical Trial Center for Functional Foods, Chonbuk National University Hospital, Jeonju 54896, Korea
| | - Byung-Ok So
- Clinical Trial Center for Functional Foods, Chonbuk National University Hospital, Jeonju 54896, Korea
| | - Ki-Chan Ha
- Healthcare Claims & Management Inc., Jeonju 54896, Korea
| | | | - Yong-Suk Jang
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 54896, Korea.; Department of Bioactive Materials and Research Center of Bioactive Materials, Chonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
23
|
Antihyperglycemic and antioxidant activities of polysaccharide produced from Pleurotus ferulae in streptozotocin-induced diabetic rats. KOREAN J CHEM ENG 2016. [DOI: 10.1007/s11814-016-0007-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Sharma SK, Gautam N, Atri NS. Optimized extraction, composition, antioxidant and antimicrobial activities of exo and intracellular polysaccharides from submerged culture of Cordyceps cicadae. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:446. [PMID: 26694071 PMCID: PMC4689043 DOI: 10.1186/s12906-015-0967-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/09/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Cordyceps cicadae is known as Jin Chan Hua in Traditional Chinese Medicine and known to possess different pharmacological activities. Presently, it was collected from the wild and isolated. Mycelial culture was optimized for extraction of polysaccharides under submerged culture conditions. Besides antioxidant, antibacterial activities of extracted polysaccharides were tested for first time. METHODS Exo-polysaccharides (EPS) and intracellular polysaccharides (IPS) production was tested under different factors (medium capacity, rotation speed, pH, incubation time, temperature, carbon, nitrogen, minerals sources and carbon to nitrogen ratio) by orthogonal experiments using one-factor-at-a-time method. Monosaccharides composition of polysaccharides produced by C. cicadae was determined using high performance liquid chromatography. Antioxidant and antimicrobial activities on eight bacterial strains were checked by different standard procedures. RESULTS Factors viz., medium capacity, rotation speed, incubation time, pH and temperature affected the EPS and IPS production under submerged culture conditions. EPS and IPS production was observed to vary with different carbon and nitrogen sources as well as C/N ratio. Glucose was the major component of polysaccharides (63.10 ± 4.15 %). Extracted EPS and IPS showed higher antioxidant potential with significant DPPH radical scavenging activity, ABTS radical scavenging activity, reducing power and iron chelating activity. Antimicrobial activities of EPS and IPS varied among the tested bacterial strains. IPS showed slightly higher inhibition rate to all the tested bacterial strains as compared to EPS. Maximum inhibition zones of IPS (12.9 ± 0.2 mm) and EPS (12.5 ± 0.3 mm) was observed against Pseudomonas aeruginosa at 10 % con. However, both EPS and IPS fractions showed broad spectrum for all the pathogenic microbial strains tested. The MIC of both the extracts ranged from 60-100 mg/mL. CONCLUSIONS EPS and IPS production from submerged culture of C. cicadae with significant antioxidant and antibacterial potential can be enhanced with the combination of several factors which can be used for large scale industrial fermentation of C. cicadae.
Collapse
|
25
|
Hypoglycemic Effect of Ethanol and Ethyl Acetate Extract of Phellinus baumii Fruiting Body in Streptozotocin-Induced Diabetic Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015. [PMID: 26221177 PMCID: PMC4499395 DOI: 10.1155/2015/783460] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigated hypoglycemic effect of ethanol (EtOH) and ethyl acetate extract acetate (AcOEt) extracts in streptozotocin- (STZ-) induced diabetic mice. Our data showed the maximum inhibitory effect on the fasting plasma glucose (FPG) level was detected in STZ-induced diabetic mice administered with 400 mg/kg AcOEt extract of P. baumii. A lower glycated albumin (GA) level and a higher insulin level were observed in 400 mg/kg AcOEt and EtOH extract groups. Moreover, 400 mg/kg AcOEt and EtOH extract exhibited a stronger effect on increasing size and cell number of islets. The insulin expression level of β-cells and integrated optical density (IOD) value were significantly increased by the administration of 400 mg/kg AcOEt and EtOH extracts. Taken together, AcOEt and EtOH extracts of P. baumii fruiting body exhibited considerable hypoglycemic effect on STZ-induced diabetic mice.
Collapse
|
26
|
Sharma SK, Gautam N, Atri NS. Optimization, Composition, and Antioxidant Activities of Exo- and Intracellular Polysaccharides in Submerged Culture of Cordyceps gracilis (Grev.) Durieu & Mont. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:462864. [PMID: 25878715 PMCID: PMC4387898 DOI: 10.1155/2015/462864] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 02/18/2015] [Accepted: 02/27/2015] [Indexed: 02/04/2023]
Abstract
Under present experiments, EPS and IPS production, monosaccharide composition, and antioxidant activities of C. gracilis were studied for the first time under submerged culture conditions. Effect of different factors on polysaccharides production was studied by orthogonal experiments using one-factor-at-a-time method. Incubation of culture in the medium with capacity 200 mL (675.12 ± 5.01 and 385.20 ± 5.01 mg/L), rotation speed 150 rpm (324.62 ± 3.32 and 254.62 ± 4.62 mg/L), 6-day culture incubation time (445.24 ± 1.11, 216.60 ± 1.71 mg/L), pH 6.0 (374.81 ± 2.52 and 219.45 ± 2.59 mg/L), and temperature 23°C (405.24 ± 1.11 and 215.60 ± 1.71 mg/L) produced higher EPS and IPS, respectively. Maximum EPS and IPS production was observed in the medium supplemented with glucose as a carbon source (464.82 ± 2.12 and 264.42 ± 2.62 mg/L) and yeast extract as a nitrogen source (465.21 ± 3.11 and 245.17 ± 3.24 mg/L), respectively. Carbon to nitrogen ratio for maximum EPS and IPS production was observed as 10 : 1 (395.29 ± 2.15 and 235.62 ± 1.40 mg/L), respectively. Glucose was found to be the major monosaccharide (62.15 ± 7.33%). Both EPS and IPS of C. gracilis showed significant DPPH radical scavenging activity, ABTS radical scavenging activity, reducing power, and iron chelating activity.
Collapse
Affiliation(s)
- Sapan Kumar Sharma
- Department of Plant Pathology, CSK, Himachal Pradesh Agriculture University, Palampur 176 062, India
| | - Nandini Gautam
- Centre for Environment Science and Technology, School of Environmental and Earth Sciences, Central University of Punjab, Bathinda 151 001, India
| | | |
Collapse
|
27
|
Meng L, Sun S, Li R, Shen Z, Wang P, Jiang X. Antioxidant activity of polysaccharides produced by Hirsutella sp. and relation with their chemical characteristics. Carbohydr Polym 2015; 117:452-457. [DOI: 10.1016/j.carbpol.2014.09.076] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 09/21/2014] [Indexed: 10/24/2022]
|
28
|
Luo Y, Yang SK, Zhou X, Wang M, Tang D, Liu FY, Sun L, Xiao L. Use of Ophiocordyceps sinensis (syn. Cordyceps sinensis) combined with angiotensin-converting enzyme inhibitors (ACEI)/angiotensin receptor blockers (ARB) versus ACEI/ARB alone in the treatment of diabetic kidney disease: a meta-analysis. Ren Fail 2015; 37:614-34. [PMID: 25682973 DOI: 10.3109/0886022x.2015.1009820] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Ophiocordyceps sinensis (O. sinensis; syn. Cordyceps sinensis) has been used in clinical therapy for diabetic kidney disease (DKD) for more than 15 years. O. sinensis is a household name in china and it is available even in supermarket. However, the precise role of O. sinensis has not been fully elucidated with meta-analysis. The aim of this study was to review existing evidence on the effectiveness of O. sinensis for the treatment of DKD. We identified 60 trials involving 4288 participants. Overall, O. sinensis combined with ACEI/ARB had a better effect when compared to ACEI/ARB alone on 24 h UP (MD = -0.23 g/d, 95% CI: - 0.28 to -0.19, p < 0.00001), UAER (MD = -19.71 μg/min, 95% CI: -22.76 to -16.66, p < 0.00001), MAU (MD = -45.09 mg/d, 95% CI: -55.68 to -34.50, p < 0.00001), BUN (MD = -0.70 mmol/L, 95% CI: -1.02 to -0.39, p < 0.0001), SCr (MD = -8.37 μmol/L, 95% CI: -12.41 to -4.32, p < 0.0001), CRP (MD = -1.32 mg/L; 95% CI: -1.78 to -0.86; p < 0.00001), TG (MD = -0.51 mmol/L; 95% CI: -0.69 to -0.34, p < 0.00001), TC (MD = -0.64 mmol/L; 95% CI: -0.91 to -0.37, p < 0.00001), and SBP (MD = -2.01 mmHg; 95% CI: -3.45 to -0.58, p = 0.006). However, no effects were found for DBP, FBG, and HbA1C. This meta-analysis suggested that use of O. sinensis combined with ACEI/ARB may have a more beneficial effect on the proteinuria, inflammatory, dyslipidemia status as compared to ACEI/ARB alone in DKD III-IV stage patients, while there is no evidence that O. sinensis could improve the hyperglycemia status. However, with regard to low-quality and significant heterogeneity of included trials, to further verify the current results from this meta-analysis, long-term and well-designed RCTs with high-quality study are warranted to ascertain the long-term efficacy of O. sinensis.
Collapse
Affiliation(s)
- Ying Luo
- Department of Nephrology, the Second Xiangya Hospital, Central South University , Changsha, Hunan Province , China and
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Shashidhar GM, Giridhar P, Manohar B. Functional polysaccharides from medicinal mushroom Cordyceps sinensis as a potent food supplement: extraction, characterization and therapeutic potentials – a systematic review. RSC Adv 2015. [DOI: 10.1039/c4ra13539c] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
As a rich source of novel polysaccharides, Cordyceps sinensis (CS), one of the valued traditional Chinese medicinal fungi, is a major focus of many natural products research efforts.
Collapse
Affiliation(s)
- G. M. Shashidhar
- Academy of Scientific and Innovative Research
- New Delhi
- India
- Department of Food Engineering
- CSIR-Central Food Technological Research Institute
| | - P. Giridhar
- Department of Plant Cell Biotechnology
- CSIR-Central Food Technological Research Institute
- Mysore
- India
| | - B. Manohar
- Academy of Scientific and Innovative Research
- New Delhi
- India
- Department of Food Engineering
- CSIR-Central Food Technological Research Institute
| |
Collapse
|
30
|
Yu SH, Chen SYT, Li WS, Dubey NK, Chen WH, Chuu JJ, Leu SJ, Deng WP. Hypoglycemic Activity through a Novel Combination of Fruiting Body and Mycelia of Cordyceps militaris in High-Fat Diet-Induced Type 2 Diabetes Mellitus Mice. J Diabetes Res 2015; 2015:723190. [PMID: 26258146 PMCID: PMC4519550 DOI: 10.1155/2015/723190] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/30/2015] [Accepted: 07/05/2015] [Indexed: 11/17/2022] Open
Abstract
Diabetes mellitus (DM) is currently ranked among leading causes of death worldwide in which type 2 DM is reaching an epidemic proportion. Hypoglycemic medications for type 2 DM have either proven inadequate or posed adverse effects; therefore, the Chinese herbal products are under investigation as an alternative treatment. In this study, a novel combination of fruiting body and mycelia powder of herbal Cordyceps militaris number 1 (CmNo1) was administered to evaluate their potential hypoglycemic effects in high-fat diet- (HFD-) induced type 2 DM in C57BL/6J mice. Body weight, fasting blood glucose (FBG), oral glucose tolerance test (OGTT), and blood biochemistry indexes were measured. Results indicated that CmNo1 lowered the blood glucose level by increasing insulin sensitivity, while no change in body weight was observed. Increased protein expression of IRS-1, pIRS-1, AKT, pAKT, and GLUT-4 in skeletal muscle and adipose tissue was found indicating restoration of insulin signaling. Additionally, PPAR-γ expression in adipose tissue restored the triglyceride and cholesterol levels. Finally, our results suggest that CmNo1 possesses strong hypoglycemic, anticholesterolemic, and antihypertriglyceridemic actions and is more economical alternate for DM treatment.
Collapse
Affiliation(s)
- Sung-Hsun Yu
- Graduate Institute of Medical Sciences, School of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Stem Cell Research Center, Taipei Medical University, Taipei 110, Taiwan
| | - Szu-Yu Tina Chen
- Stem Cell Research Center, Taipei Medical University, Taipei 110, Taiwan
| | - Wei-Shan Li
- Stem Cell Research Center, Taipei Medical University, Taipei 110, Taiwan
| | - Navneet Kumar Dubey
- Stem Cell Research Center, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Wei-Hong Chen
- Stem Cell Research Center, Taipei Medical University, Taipei 110, Taiwan
| | - Jiunn-Jye Chuu
- Institute of Biotechnology, College of Engineering, Southern Taiwan University of Science and Technology, Yongkang District, Tainan, Taiwan
| | - Sy-Jye Leu
- Graduate Institute of Medical Sciences, School of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Microbiology and Immunology, School of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Win-Ping Deng
- Stem Cell Research Center, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan
- *Win-Ping Deng:
| |
Collapse
|
31
|
Yang S, Jin L, Ren X, Lu J, Meng Q. Optimization of fermentation process of Cordyceps militaris and antitumor activities of polysaccharides in vitro. J Food Drug Anal 2014; 22:468-476. [PMID: 28911462 PMCID: PMC9355014 DOI: 10.1016/j.jfda.2014.01.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/12/2014] [Accepted: 01/18/2014] [Indexed: 11/25/2022] Open
Abstract
The influence of medium composition and cultural conditions on simultaneous yield of mycelia, intracellular polysaccharide, adenosine, and mannitol by Cordyceps militaris CGMCC 2909 was investigated with desirability functions in this study. An optimization strategy based on the desirability function approach, together with response surface methodology (RSM) has been used to optimize medium composition, and the optimal medium was obtained via the desirability as follows: yeast extract 10.33 g/L, sucrose 27.24 g/L, KH2PO4 5.60 g/L and the optimal culture conditions are initial pH 6, 25°C, rotation speed 150 r/minute, inoculum size 4%(v/v), and medium capacity 40 mL/250 mL. Under these conditions, the yield of mycelia, intracellular polysaccharide, adenosine and mannitol reached 12.19 g/L, 0.6 g/L, 61.84 mg/L, and 1.38 g/L, respectively, and the D value was 0.77. Furthermore, the polysaccharides showed significant antitumor activities against HeLa and HepG2 in vitro in a dose-dependent manner in 72 hours. At a concentration of 1000 mg/mL, the inhibition rate of polysaccharides was 92.38% and 98.79%. The IC50 for HeLa and HepG2 were 70.91 μg/mL and 97.63 μg/mL, respectively.
Collapse
|
32
|
Studies on the antidiabetic activities of Cordyceps militaris extract in diet-streptozotocin-induced diabetic Sprague-Dawley rats. BIOMED RESEARCH INTERNATIONAL 2014; 2014:160980. [PMID: 24738047 PMCID: PMC3967809 DOI: 10.1155/2014/160980] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/29/2014] [Accepted: 01/30/2014] [Indexed: 01/08/2023]
Abstract
Due to substantial morbidity and high complications, diabetes mellitus is considered as the third “killer” in the world. A search for alternative antidiabetic drugs from herbs or fungi is highly demanded. Our present study aims to investigate the antidiabetic activities of Cordyceps militaris on diet-streptozotocin-induced type 2 diabetes mellitus in rats. Diabetic rats were orally administered with water extract or alcohol extract at 0.05 g/kg and 2 g/kg for 3 weeks, and then, the factors levels related to blood glucose, lipid, free radicals, and even nephropathy were determined. Pathological alterations on liver and kidney were examined. Data showed that, similar to metformin, Cordyceps militaris extracts displayed a significant reduction in blood glucose levels by promoting glucose metabolism and strongly suppressed total cholesterol and triglycerides concentration in serum. Cordyceps militaris extracts exhibit antioxidative effects indicated by normalized superoxide dismutase and glutathione peroxidase levels. The inhibitory effects on blood urea nitrogen, creatinine, uric acid, and protein revealed the protection of Cordyceps militaris extracts against diabetic nephropathy, which was confirmed by pathological morphology reversion. Collectively, Cordyceps militaris extract, a safe pharmaceutical agent, presents excellent antidiabetic and antinephropathic activities and thus has great potential as a new source for diabetes treatment.
Collapse
|
33
|
Yan JK, Wang WQ, Wu JY. Recent advances in Cordyceps sinensis polysaccharides: Mycelial fermentation, isolation, structure, and bioactivities: A review. J Funct Foods 2014; 6:33-47. [PMID: 32362940 PMCID: PMC7185505 DOI: 10.1016/j.jff.2013.11.024] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 11/23/2013] [Accepted: 11/27/2013] [Indexed: 12/26/2022] Open
Abstract
Cordyceps (Ophiocordyceps sinensis) sinensis, the Chinese caterpillar fungus, is a unique and precious medicinal fungus in traditional Chinese medicine which has been used as a prestigious tonic and therapeutic herb in China for centuries. Polysaccharides are bioactive constituents of C. sinensis, exhibiting several activities such as immunomodulation, antitumour, antioxidant and hypoglycaemic. As natural C. sinensis fruiting body-caterpillar complexes are very rare and expensive, the polysaccharides documented over the last 15-20 years from this fungal species were mostly extracted from cultivated fungal mycelia (intracellular polysaccharides) or from mycelial fermentation broth (exopolysaccharides). Extraction and purification of the polysaccharides is a tedious process involving numerous steps of liquid and solid phase separations. Nevertheless, a large number of polysaccharide structures have been purified and elucidated. However, relationships between the structures and activities of these polysaccharides are not well established. This review provides a comprehensive summary of the most recent developments in various aspects (i.e., production, extraction, structure, and bioactivity) of the intracellular and exopolysaccharides from mycelial fermentation of C. sinensis fungi. The contents and data will serve as useful references for further investigation, production and application of these polysaccharides in functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Jing-Kun Yan
- Department of Applied Biology & Chemical Technology, PolyU Shenzhen Research Institute, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Wen-Qiang Wang
- Department of Applied Biology & Chemical Technology, PolyU Shenzhen Research Institute, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jian-Yong Wu
- Department of Applied Biology & Chemical Technology, PolyU Shenzhen Research Institute, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
34
|
Brigham A, Bryan JK, Ceurvels J, Conquer J, Costa D, Culwell S, Giese N, Hashmi S, Hawkins EB, Isaac R, Le TD, LeBlanc Y, Liu A, Rusie-Seamon E, Grimes Serrano JM, Tanguay-Colucci S, Weissner W, Zhou S. Cordyceps (Cordyceps spp.): An Evidence-Based Systematic Review by the Natural Standard Research Collaboration. ACTA ACUST UNITED AC 2013. [DOI: 10.1089/act.2013.19606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Ashley Brigham
- Former pharmacy students at Northeastern University, in Boston, Massachusetts
| | - J. Kathryn Bryan
- The Natural Standard Research Collaboration, in Somerville, Massachusetts
| | - James Ceurvels
- Former pharmacy students at Northeastern University, in Boston, Massachusetts
| | - Julie Conquer
- President of RGB Consulting, in London, Ontario, Canada
| | - Dawn Costa
- The Natural Standard Research Collaboration, in Somerville, Massachusetts
| | - Samantha Culwell
- The Natural Standard Research Collaboration, in Somerville, Massachusetts
| | - Nicole Giese
- The Natural Standard Research Collaboration, in Somerville, Massachusetts
| | - Sadaf Hashmi
- A clinical assistant professor of psychiatry at the Brown University Alpert School of Medicine, in Providence, Rhode Island
| | | | - Richard Isaac
- The Natural Standard Research Collaboration, in Somerville, Massachusetts
| | - Thuy-Duong Le
- A former pharmacy student at Oregon State University, Corvallis, Oregon
| | - Yvonne LeBlanc
- The Natural Standard Research Collaboration, in Somerville, Massachusetts
| | - Angela Liu
- The Natural Standard Research Collaboration, in Somerville, Massachusetts
| | - Erica Rusie-Seamon
- The Natural Standard Research Collaboration, in Somerville, Massachusetts
| | | | | | - Wendy Weissner
- The Natural Standard Research Collaboration, in Somerville, Massachusetts
| | - Sara Zhou
- The Natural Standard Research Collaboration, in Somerville, Massachusetts
| |
Collapse
|
35
|
Jeong M, Kim YW, Min JR, Kwon M, Han BS, Kim JG, Jeong SH. Change in kidney damage biomarkers after 13weeks of exposing rats to the complex of Paecilomyces sinclairii and its host Bombyx mori larvae. Food Chem Toxicol 2013; 59:177-86. [DOI: 10.1016/j.fct.2013.05.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 05/22/2013] [Accepted: 05/24/2013] [Indexed: 12/28/2022]
|
36
|
Shashidhar M, Giridhar P, Udaya Sankar K, Manohar B. Bioactive principles from Cordyceps sinensis: A potent food supplement - A review. J Funct Foods 2013; 5:1013-1030. [PMID: 32288795 PMCID: PMC7104994 DOI: 10.1016/j.jff.2013.04.018] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/18/2013] [Accepted: 04/19/2013] [Indexed: 11/19/2022] Open
Abstract
Introducing the importance of Cordyceps sinensis (CS) and its economics. Alternative artificial cultivation methods for large scale production to meet the world demand for CS. Chemical characterization of compounds in different extracts of CS. Potential health benefits and mechanism of action of compounds in CS. Possible application of whole fungus or its extracts in food and pharmaceutical industries.
Cordyceps sinensis (CS) is a well-known entamophagus fungus, naturally distributed in the Tibetan Plateau of Asia and Himalayas. Recently this synonym is transferred to Ophiocordyceps by both scientific and non-scientific communities. It is widely used as a tonic and medicinal food in traditional Chinese medicine (TCM), as it possess wonderful health benefits. To support its functional attributes, various investigations have been carried out to find out its adaptogenic, aphrodisiac, anti-oxidant, anti-aging, neuroprotective, nootropic, immunomodulatory, anti-cancer and hepatoprotective role. Its fruiting portion as well as the larvae possesses potent bio-active fractions and their composition almost found to be similar in both. The bioactive principles are nucleosides, exo-polysaccharides, sterols and, proteins, among others. Among nucleosides, adenosine and cordycepin are the major biochemical markers. Further, different types of solvent extracts and their mixtures exhibit wide range of pharmacological activities, while the water and methanol extracts with the richest sources of nucleosides and polysaccharides also show wide range of pharmacological activities. This review gives a panoramic view of potential health benefits of various classes of bio-active fractions along with the need for sustainable management of CS for human wellness.
Collapse
Affiliation(s)
- M.G. Shashidhar
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial research, New Delhi, India
- Department of Food Engineering, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | - P. Giridhar
- Department of Plant Cell Biotechnology, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | - K. Udaya Sankar
- Department of Food Engineering, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | - B. Manohar
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial research, New Delhi, India
- Department of Food Engineering, CSIR-Central Food Technological Research Institute, Mysore 570020, India
- Corresponding author at: Department of Food Engineering, CSIR-Central Food Technological Research Institute, Mysore 570020, India. Fax: +91 821 2517233.
| |
Collapse
|
37
|
Wu ZX, Pang SF, Chen XX, Yu YM, Zhou JM, Chen X, Pang LJ. Effect of Coriolus versicolor polysaccharides on the hematological and biochemical parameters and protection against Aeromonas hydrophila in allogynogenetic crucian carp (Carassius auratus gibelio). FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:181-90. [PMID: 22791194 DOI: 10.1007/s10695-012-9689-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 06/26/2012] [Indexed: 06/01/2023]
Abstract
The effect of dietary intake of Coriolus versicolor Polysaccharides (CVP) on the hematological and biochemical indices of Allogynogenetic crucian carp (Carassius auratus gibelio) was investigated. Fish were fed CVP supplemented diets (0, 0.25, 0.5, 1.0, 2.0 or 4.0 g CVP kg(-1)) for 56 days. The RBC, WBC counts, hemoglobin content, ESR in blood and TP, ALT, AST, ALP, GLU, CHO, TG, and BUN in serum were measured on day 0, 14, 28, 42, and 56. After feeding of 56 days, fish were infected with Aeromonas hydrophila and mortalities were recorded. The results indicated that feeding crucian carp with suitable dose of CVP enhanced the RBC, WBC counts, hemoglobin and TP content, ALP activity, and decreased the ESR, ALT, AST, GLU, CHO, TG and BUN. There was no effect in fish at low dose (0.25 g kg(-1)). Unexpectedly, the higher CVP dose used here (2.0 and 4.0 g kg(-1)) has a negative effect in fish. The results of challenge experiment indicated that a moderate level of CVP in the diet (1.0 g kg(-1)) was the most effective to enhance the survival of fish after infected with A. hydrophila. In summary, the use of CVP, as dietary supplements, can improve the innate defense of crucian carp providing resistance to pathogens.
Collapse
Affiliation(s)
- Zhi-xin Wu
- College of Fisheries, Huazhong Agriculture University, Wuhan 430070, Hubei Province, China
| | | | | | | | | | | | | |
Collapse
|
38
|
Lo HC, Hsieh C, Lin FY, Hsu TH. A Systematic Review of the Mysterious Caterpillar Fungus Ophiocordyceps sinensis in Dong-ChongXiaCao ( Dōng Chóng Xià Cǎo) and Related Bioactive Ingredients. J Tradit Complement Med 2013; 3:16-32. [PMID: 24716152 PMCID: PMC3924981 DOI: 10.4103/2225-4110.106538] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The caterpillar fungus Ophiocordyceps sinensis (syn.Cordyceps sinensis), which was originally used in traditional Tibetan and Chinese medicine, is called either "yartsa gunbu" or "DongChongXiaCao ( Dōng Chóng Xià Cǎo)" ("winter worm-summer grass"), respectively. The extremely high price of DongChongXiaCao, approximately USD $20,000 to 40,000 per kg, has led to it being regarded as "soft gold" in China. The multi-fungi hypothesis has been proposed for DongChongXiaCao; however, Hirsutella sinensis is the anamorph of O. sinensis. In Chinese, the meaning of "DongChongXiaCao" is different for O. sinensis, Cordyceps spp., and Cordyceps sp. Over 30 bioactivities, such as immunomodulatory, antitumor, anti-inflammatory, and antioxidant activities, have been reported for wild DongChongXiaCao and for the mycelia and culture supernatants of O. sinensis. These bioactivities derive from over 20 bioactive ingredients, mainly extracellular polysaccharides, intracellular polysaccharides, cordycepin, adenosine, mannitol, and sterols. Other bioactive components have been found as well, including two peptides (cordymin and myriocin), melanin, lovastatin, γ-aminobutyric acid, and cordysinins. Recently, the bioactivities of O. sinensis were described, and they include antiarteriosclerosis, antidepression, and antiosteoporosis activities, photoprotection, prevention and treatment of bowel injury, promotion of endurance capacity, and learning-memory improvement. H. sinensis has the ability to accelerate leukocyte recovery, stimulate lymphocyte proliferation, antidiabetes, and improve kidney injury. Starting January 1(st), 2013, regulation will dictate that one fungus can only have one name, which will end the system of using separate names for anamorphs. The anamorph name "H. sinensis" has changed by the International Code of Nomenclature for algae, fungi, and plants to O. sinensis.
Collapse
Affiliation(s)
- Hui-Chen Lo
- Department of Nutritional Science, Fu Jen Catholic University, Xinzhuang District, New Taipei City, Taiwan
| | - Chienyan Hsieh
- Department of Biotechnology, National Kaohsiung Normal University, Yanchao Township, Kao-Hsiung County, Taiwan
| | - Fang-Yi Lin
- Department of Medicinal Botanicals and Healthcare and Department of Bioindustry Technology, Da-Yeh University, Changhua, Taiwan
| | - Tai-Hao Hsu
- Department of Medicinal Botanicals and Healthcare and Department of Bioindustry Technology, Da-Yeh University, Changhua, Taiwan
| |
Collapse
|
39
|
Bioactive polysaccharides from Cordyceps sinensis: Isolation, structure features and bioactivities. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.bcdf.2012.12.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
40
|
Lo HC, Hsieh C, Lin FY, Hsu TH. A Systematic Review of the Mysterious Caterpillar Fungus Ophiocordyceps sinensis in DongChongXiaCao (冬蟲夏草 Dōng Chóng Xià Cǎo) and Related Bioactive Ingredients. J Tradit Complement Med 2013. [DOI: 10.1016/s2225-4110(16)30164-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
41
|
Xiao C, Wu QP, Cai W, Tan JB, Yang XB, Zhang JM. Hypoglycemic effects of Ganoderma lucidum polysaccharides in type 2 diabetic mice. Arch Pharm Res 2012; 35:1793-801. [PMID: 23139131 DOI: 10.1007/s12272-012-1012-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 04/26/2012] [Accepted: 06/01/2012] [Indexed: 11/28/2022]
Abstract
Our aims were to investigate the hypoglycemic effects and mechanisms of action of Ganoderma lucidum polysaccharides (GLPs) administered for 7 days in type 2 diabetic mice. The mice were randomly divided into four groups (8 mice/group): normal control group, diabetic control group, low-dose GLP-treated diabetic group (50 mg/kg/d), and high-dose GLP-treated diabetic group (100 mg/kg/d). Diabetes was induced by streptozotocin injection and high-fat dietary feeding. At the end of the study, fasting serum glucose, insulin, body weight (BW) and epididymal white adipose tissue weight were measured. The hepatic mRNA levels of glycogen phosphorylase (GP), fructose-1,6-bisphosphatase (FBPase), phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) genes were determined by real-time polymerase chain reaction. Both doses of GLPs significantly decreased fasting serum glucose, insulin and epididymal fat/BW ratio compared with the diabetic control group (p < 0.05). The hepatic mRNA levels of GP, FBPase, PEPCK and G6Pase were significantly lower in both GLP-treated groups compared with the diabetic control group. Taken together, GLPs significantly decrease fasting serum glucose levels in type 2 diabetic mice in a dose-dependent manner. The decreases in fasting serum glucose levels may be associated with decreased mRNA expression levels of several key enzymes involved in gluconeogenesis and/or glycogenolysis.
Collapse
Affiliation(s)
- Chun Xiao
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Ministry of Guangdong Province Joint Breeding Base, South China, Guangdong Institute of Microbiology, Guangzhou, China.
| | | | | | | | | | | |
Collapse
|
42
|
Yue K, Ye M, Zhou Z, Sun W, Lin X. The genus Cordyceps: a chemical and pharmacological review. J Pharm Pharmacol 2012; 65:474-93. [DOI: 10.1111/j.2042-7158.2012.01601.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 09/14/2012] [Indexed: 11/30/2022]
Abstract
Abstract
Objectives
Natural remedies are becoming increasingly popular and important in the public and scientific communities. Historically, natural remedies have been shown to present interesting biological and pharmacological activity and are used as chemotherapeutic agents. For centuries Cordyceps, which is a genus of more than 400 species in the family Clavicipitaceae, has been used in traditional Chinese medicine. This study highlights the chemistry and pharmacology of Cordyceps, especially Cordyceps sinensis (Berk.) Sacc. and C. militaris (Fr.) L. Information was obtained from Google Scholar and the journal databases PubMed and Scopus.
Key findings
Many bioactive components of Cordyceps have been extracted, such as cordycepin, cordycepic acid, ergosterol, polysaccharides, nucleosides and peptides. Studies show that Cordyceps and its active principles possess a wide range of pharmacological actions, such as anti-inflammatory, antioxidant, antitumour, antihyperglycaemic, antiapoptosis, immunomodulatory, nephroprotective, and hepatoprotective.
Summary
More research is required to discover the full extent of the activity of Cordyceps.
Collapse
Affiliation(s)
- Kai Yue
- College of Forestry, Sichuan Agricultural University, Ya'an, China
| | - Meng Ye
- College of Forestry, Sichuan Agricultural University, Ya'an, China
| | - Zuji Zhou
- College of Forestry, Sichuan Agricultural University, Ya'an, China
| | - Wen Sun
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Xiao Lin
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
43
|
|
44
|
Jeong M, Kim YW, Min JR, Kwon M, Han BS, Kim JG, Jeong SH. Kidney Toxicity Induced by 13 Weeks Exposure to the Fruiting Body of Paecilomyces sinclairii in Rats. Toxicol Res 2012; 28:179-85. [PMID: 24278608 PMCID: PMC3834420 DOI: 10.5487/tr.2012.28.3.179] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 09/22/2012] [Accepted: 09/25/2012] [Indexed: 11/30/2022] Open
Abstract
Paecilomyces sinclairiis (PS) is known as a functional food or human health supplement. However concerns have been raised about its kidney toxicity. This study was performed to investigate the kidney toxicity of PS by 13 week-oral administration to rats. Blood urea nitrogen (BUN), serum creatinine, and kidney damage biomarkers including beta-2-microglobulin (β2m), glutathione S-transferase alpha (GST-α), kidney injury molecule 1 (KIM-1), tissue inhibitor of matrix metalloproteinase 1 (TIMP-1), vascular endothelial growth factor (VEGF), calbindin, clusterin, cystatin C, neutrophil gelatinase-associated lipocalin (NGAL) and osteopontin were measured during or after the treatment of PS. BUN, creatinine and kidney damage biomarkers in serum were not changed by PS. However, kidney cell karyomegaly and tubular hypertrophy were observed dose-dependently with higher severity in males. KIM-1, TIMP-1 and osteopontin in kidney and urine were increased dose dependently in male or at the highest dose in female rats. Increased urinary osteopontin by PS was not recovered at 2 weeks of post-exposure in both genders. Cystatin C in kidney was decreased at all treatment groups but inversely increased in urine. The changes in kidney damage biomarkers were more remarkable in male than female rats. These data indicate that the PS may provoke renal cell damage and glomerular filtration dysfunction in rats with histopathological lesions and change of kidney damage biomarkers in kidney or urine. Kidney and urinary KIM-1 and cystatin C were the most marked indicators, while kidney weight, BUN and creatinine and kidney damage biomarkers in serum were not influenced.
Collapse
Affiliation(s)
- Mihye Jeong
- Agro-Material Safety Evaluating Division, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Korea
| | - Young-Won Kim
- Department of Bio Applied Toxicology, Hoseo Toxicology Research Center, Hoseo University, Asan 336-795, Korea
| | - Jeong-Ran Min
- Department of Bio Applied Toxicology, Hoseo Toxicology Research Center, Hoseo University, Asan 336-795, Korea
| | - Min Kwon
- Department of Bio Applied Toxicology, Hoseo Toxicology Research Center, Hoseo University, Asan 336-795, Korea
| | - Beom-Suk Han
- Department of Bio Applied Toxicology, Hoseo Toxicology Research Center, Hoseo University, Asan 336-795, Korea
| | - Jeong-Gyu Kim
- Environmental Science and Ecological Engineering, Korea University 136-701, Korea
| | - Sang-Hee Jeong
- Department of Bio Applied Toxicology, Hoseo Toxicology Research Center, Hoseo University, Asan 336-795, Korea
| |
Collapse
|
45
|
Effect of Dongchunghacho (Cordyceps militaris) on hyperglycemia and dyslipidemia in type 2 diabetic db/db mice. Food Sci Biotechnol 2012. [DOI: 10.1007/s10068-012-0151-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
46
|
Lo HC, Hsu TH, Tu ST, Lin KC. Anti-hyperglycemic Activity of Natural and Fermented Cordyceps sinensis in Rats with Diabetes Induced by Nicotinamide and Streptozotocin. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 34:819-32. [PMID: 17080547 DOI: 10.1142/s0192415x06004314] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Our previous study demonstrated that the fruiting bodies of Cordyceps sinensis, a traditional Chinese medicine, attenuated diabetes-induced weight loss, polydipsia, and hyperglycemia in rats. In the present study, we further compared the anti-hyperglycemic activity of the fermented mycelia and broth of Cordyceps sinensis with that of the fruiting bodies. Male Wistar rats orally administered a placebo (STZ group), fruiting bodies (FB group, 1 g/day), fermented mycelia (MCS group, 1 g/day), fermented broth (BCS group, 1 g/day), or fermented mycelia plus broth (XCS group, 0.5 g/day of each) of Cordyceps sinensis (d1 to d28) were injected with nicotinamide (200 mg/kg) and streptozotocin (65 mg/kg) on d15. Rats fed with a placebo and injected with saline served as the control (CON) group. The amount of water and food consumption (d15 to d29), the 2-hour-postprandial blood glucose concentrations (d21 and d28), and the serum concentrations of fructosamine (d29) were significantly lower in the FB, MCS, BCS, and XCS groups than in the STZ group (one-way ANOVA, p < 0.05). The diabetic rats had significantly higher blood glucose concentrations as measured by the oral glucose tolerance test than the control rats; moreover, these changes were significantly reduced by ingesting the fruiting bodies, fermented mycelia and/or broth of Cordyceps sinensis. Our results revealed that the fermented mycelia and broth of Cordyceps sinensis have anti-hyperglycemic activities similar to those of the fruiting bodies. Therefore, the fermented products of Cordyceps sinensis could be developed as potential anti-diabetic agents or functional foods for persons with a high risk of diabetes mellitus.
Collapse
Affiliation(s)
- Hui-Chen Lo
- Department of Bioscience Technology, Chang-Jung Christian University, Tainan, 71101, Taiwan, ROC
| | | | | | | |
Collapse
|
47
|
Xiang M, Tang J, Zou XL, Zhao ZY, Wang YY, Xie SN. β Cell Protecting and Immunomodulatory Activities of Paecilomyces Hepiali Chen Mycelium in STZ Induced T1DM Mice. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 37:361-72. [DOI: 10.1142/s0192415x09006825] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The anti-hyperglycemic and immunomodulatory activities of the ethanol extract from Paecilomyces Hepiali Chen (PHC), a Chinese medicine, were investigated in streptozotocin-induced type 1 diabetic (T1DM) mice. Male Balb/c mice, which were i.p. injected with streptozotocin (STZ, 50 mg/kg, for 5 consecutive days) on Day 7, were orally administered saline (the normal control and diabetic control group), Metformin (60 mg/kg, b.w., positive group), or the extract (100 mg/kg, b.w., PHC prevention group) from Day 1 to Day 28, Mice i.p. injected with streptozotocin (STZ, 50 mg/kg, b.w.) for 5 consecutive days prior to PHC treatment (100 mg/kg, b.w.) were used as the PHC treatment group. The effects of PHC on postprandial blood glucose concentrations, plasmatic insulin levels, morphology of pancreatic β cells and CD4+ T cells proliferation after 28-day treatment were monitored. Results showed that PHC administered 6 days before STZ induction of diabetes in mice significantly decreased blood glucose level (p < 0.01). An increase of insulin level was also observed as compared to those in the diabetic control group (p < 0.01). In addition, fewer inflammatory cells infiltrated the pancreatic islet and fewer β cells death by apoptosis within the inflamed islets were observed. More importantly, the CD4+ T cell proliferation was remarkably attenuated ex vivo in mice preventively treated with PHC (p < 0.01). In comparison to the PHC prevention group, no significant hypoglycemia, changes of insulin level and β cell protection were observed in mice treated with PHC after STZ administration. Our findings demonstrated that preventive administration of PHC protected β cells from apoptosis in type 1 diabetes induced by STZ, and the underlying mechanism may be involved in suppressing CD4+ T cells reaction, reducing inflammatory cells infiltration and protecting beta cell apoptosis in pancreatic islet.
Collapse
Affiliation(s)
- Ming Xiang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, HuaZhong University of Science and Technology, Wuhan, China
| | - Jing Tang
- Department of Pharmacy, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai, China
| | - Xiao-Lei Zou
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, HuaZhong University of Science and Technology, Wuhan, China
| | - Zeng-Yu Zhao
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, HuaZhong University of Science and Technology, Wuhan, China
| | - Yun-Yang Wang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, HuaZhong University of Science and Technology, Wuhan, China
| | - Sheng-Nan Xie
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, HuaZhong University of Science and Technology, Wuhan, China
| |
Collapse
|
48
|
Effect of Cordyceps sinensis and taurine either alone or in combination on streptozotocin induced diabetes. Food Chem Toxicol 2012; 50:1159-65. [DOI: 10.1016/j.fct.2011.12.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Revised: 12/13/2011] [Accepted: 12/15/2011] [Indexed: 11/22/2022]
|
49
|
Study on macrophage activation and structural characteristics of purified polysaccharide from the liquid culture broth of Cordyceps militaris. Carbohydr Polym 2010. [DOI: 10.1016/j.carbpol.2010.06.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
50
|
Lee JS, Kwon JS, Yun JS, Pahk JW, Shin WC, Lee SY, Hong EK. Structural characterization of immunostimulating polysaccharide from cultured mycelia of Cordyceps militaris. Carbohydr Polym 2010. [DOI: 10.1016/j.carbpol.2010.01.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|