1
|
Zhao D, Zhang Y, Wang F, Kaewmanee R, Cui W, Wu T, Du Y. Drug-phospholipid conjugate nano-assembly for drug delivery. SMART MEDICINE 2024; 3:e20240053. [PMID: 39776594 PMCID: PMC11669785 DOI: 10.1002/smmd.20240053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025]
Abstract
Phospholipid-based liposomes are among the most successful nanodrug delivery systems in clinical use. However, these conventional liposomes present significant challenges including low drug-loading capacity and issues with drug leakage. Drug-phospholipid conjugates (DPCs) and their assemblies offer a promising strategy for addressing these limitations. In this review, we summarize recent advances in the design, synthesis, and application of DPCs for drug delivery. We begin by discussing the chemical backbone structures and various design strategies such as phosphate head embedding and mono-/bis-embedding in the sn-1/sn-2 positions. Furthermore, we highlight stimulus-responsive designs of DPCs and their applications in treating diseases such as cancer, inflammation, and malaria. Lastly, we explore future directions for DPCs development and their potential applications in drug delivery.
Collapse
Affiliation(s)
- Ding Zhao
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yixiang Zhang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fan Wang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Rames Kaewmanee
- Department of Materials ScienceFaculty of ScienceChulalongkorn UniversityBangkokThailand
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Tianqi Wu
- Department of Radiation OncologyHuashan HospitalFudan UniversityShanghaiChina
| | - Yawei Du
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
2
|
Lin MZ, Bi YH, Li SQ, Xie JH, Zhou ZG. The enzyme encoded by Myrmecia incisa, a green microalga, phospholipase A 2 gene preferentially hydrolyzes arachidonic acid at the sn-2 position of phosphatidylcholine. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108806. [PMID: 38861822 DOI: 10.1016/j.plaphy.2024.108806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/20/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024]
Abstract
The enzyme phospholipase A2 (PLA2) plays a crucial role in acyl remodeling of phospholipids via the Lands' cycle, and consequently alters fatty acid compositions in triacylglycerol (TAG). In this study, a full-length cDNA sequence coding Myrmecia incisa phospholipase A2 (MiPLA2) was cloned using the technique of rapid amplification of cDNA ends. Comparison of the 1082-bp cDNA with its corresponding cloned DNA sequence revealed that MiPLA2 contained 3 introns. Mature MiPLA2 (mMiPLA2) had a conserved Ca2+-binding loop and a catalytic site motif that has been recognized in plant secretory PLA2 (sPLA2) proteins. Correspondingly, phylogenetic analysis illustrated that MiPLA2 was clustered within GroupXIA of plant sPLA2 proteins. To ascertain the function of MiPLA2, the cDNA coding for mMiPLA2 was subcloned into the vector pET-32a to facilitate the production of recombinant mMiPLA2 in Escherichia coli. Recombinant mMiPLA2 was purified and used for the in vitro enzyme reaction. Thin-layer chromatography profiles of the catalytic products generated by recombinant mMiPLA2 indicated a specificity for cleaving sn-2 acyl chains from phospholipids, thereby functionally characterizing MiPLA2. Although recombinant mMiPLA2 displayed a strong preference for phosphatidylethanolamine, it preferentially hydrolyzes arachidonic acid (ArA) at the sn-2 position of phosphatidylcholine. Results from the fused expression of p1300-sp-EGFP-mMiPLA2 illustrated that MiPLA2 was localized in the intercellular space of onion epidermis. Furthermore, the positive correlation between MiPLA2 transcription and free ArA levels were established. Consequently, the role of mMiPLA2 in the biosynthesis of ArA-rich TAG was elucidated. This study helps to understand how M. incisa preferentially uses ArA to synthesize TAG.
Collapse
Affiliation(s)
- Mei-Zhi Lin
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, No. 999 Huchenghuan Road, Nanhui New City, Shanghai, 201306, China
| | - Yan-Hui Bi
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, No. 999 Huchenghuan Road, Nanhui New City, Shanghai, 201306, China
| | - Si-Qi Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, No. 999 Huchenghuan Road, Nanhui New City, Shanghai, 201306, China
| | - Jin-Hai Xie
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, No. 999 Huchenghuan Road, Nanhui New City, Shanghai, 201306, China
| | - Zhi-Gang Zhou
- International Research Center for Marine Biosciences Conferred by Ministry of Science and Technology, Shanghai Ocean University, No. 999 Huchenghuan Road, Nanhui New City, Shanghai, 201306, China.
| |
Collapse
|
3
|
Qu X, Huang Q, Li H, Lou F. Comparative transcriptomics revealed the ecological trap effect of linearly polarized light on Oratosquilla oratoria. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101234. [PMID: 38631126 DOI: 10.1016/j.cbd.2024.101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/24/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024]
Abstract
Although polarized light can assist many animals in performing special visual tasks, current polarized light pollution (PLP) caused by urban construction has been shown to induce maladaptive behaviors of PL-sensitive animals and change ecological interactions. However, the underlying mechanisms remain unclear. Our previous work hypothesized that linearly polarized light (LPL) is an ecological trap for Oratosquilla oratoria, a common Stomatopoda species in the China Sea. Here we explored the underlying negative effects of artificially LPL on O. oratoria based on comparative transcriptomics. We identified 3616 differentially expressed genes (DEGs) in O. oratoria compound eyes continuous exposed to natural light (NL) and LPL scenarios. In comparison with the NL scenario, a total of 1972 up- and 1644 down- regulated genes were obtained from the O. oratoria compound eyes under LPL scenario, respectively. Furthermore, we performed functional annotation of those DEGs described above and identified 65 DEGs related to phototransduction, reproduction, immunity, and synapse. Based on the functional information, we suspected that continuous LPL exposure could block the light transmission, disrupt the reproductive process, and lead to the progressive failure of the immune response of O. oratoria. In conclusion, this study is the first to systematically describe the negative effects of artificial LPL exposure on O. oratoria at the genetic level, and it can improve the biological conservation theory behind PLP.
Collapse
Affiliation(s)
- Xiuyu Qu
- School of Ocean, Yantai University, Yantai 264003, Shandong, China
| | - Qi Huang
- School of Food Science and Bioengineering, Yantai Institute of Technology, Yantai 264003, Shandong, China
| | - Huanjun Li
- Shandong Marine Resource and Environment Research Institute, Yantai 264003, Shandong, China
| | - Fangrui Lou
- School of Ocean, Yantai University, Yantai 264003, Shandong, China.
| |
Collapse
|
4
|
Baruah D, Tamuli R. The cell functions of phospholipase C-1, Ca 2+/H + exchanger-1, and secretory phospholipase A 2 in tolerance to stress conditions and cellulose degradation in Neurospora crassa. Arch Microbiol 2023; 205:327. [PMID: 37676310 DOI: 10.1007/s00203-023-03662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/08/2023]
Abstract
We investigated the cell functions of the Ca2+ signaling genes phospholipase C-1 (plc-1), Ca2+/H+ exchanger (cpe-1), and secretory phospholipase A2 (splA2) for stress responses and cellulose utilization in Neurospora crassa. The Δplc-1, Δcpe-1, and ΔsplA2 mutants displayed increased sensitivity to the alkaline pH and reduced survival during induced thermotolerance. The ΔsplA2 mutant also exhibited hypersensitivity to the DTT-induced endoplasmic reticulum (ER) stress, increased microcrystalline cellulose utilization, increased protein secretion, and glucose accumulation in the culture supernatants. Moreover, the ΔsplA2 mutant could not grow on microcrystalline cellulose during ER stress. Furthermore, plc-1, cpe-1, and splA2 synthetically regulate the acquisition of thermotolerance induced by heat shock, responses to alkaline pH and ER stress, and utilization of cellulose and other alternate carbon sources in N. crassa. In addition, expression of the alkaline pH regulator, pac-3, and heat shock proteins, hsp60, and hsp80 was reduced in the Δplc-1, Δcpe-1, and ΔsplA2 single and double mutants. The expression of the unfolded protein response (UPR) markers grp-78 and pdi-1 was also significantly reduced in the mutants showing growth defect during ER stress. The increased cellulolytic activities of the ΔsplA2 and Δcpe-1; ΔsplA2 mutants were due to increased cbh-1, cbh-2, and endo-2 expression in N. crassa. Therefore, plc-1, cpe-1, and splA2 are involved in stress responses and cellulose utilization in N. crassa.
Collapse
Affiliation(s)
- Darshana Baruah
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India
| | - Ranjan Tamuli
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India.
| |
Collapse
|
5
|
Rafiei V, Vélëz H, Piombo E, Dubey M, Tzelepis G. Verticillium longisporum phospholipase VlsPLA 2 is a virulence factor that targets host nuclei and modulates plant immunity. MOLECULAR PLANT PATHOLOGY 2023; 24:1078-1092. [PMID: 37171182 PMCID: PMC10423322 DOI: 10.1111/mpp.13352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/13/2023]
Abstract
Phospholipase A2 (PLA2 ) is a lipolytic enzyme that hydrolyses phospholipids in the cell membrane. In the present study, we investigated the role of secreted PLA2 (VlsPLA2 ) in Verticillium longisporum, a fungal phytopathogen that mostly infects plants belonging to the Brassicaceae family, causing severe annual yield loss worldwide. Expression of the VlsPLA2 gene, which encodes active PLA2 , is highly induced during the interaction of the fungus with the host plant Brassica napus. Heterologous expression of VlsPLA2 in Nicotiana benthamiana resulted in increased synthesis of certain phospholipids compared to plants in which enzymatically inactive PLA2 was expressed (VlsPLA2 ΔCD ). Moreover, VlsPLA2 suppresses the hypersensitive response triggered by the Cf4/Avr4 complex, thereby suppressing the chitin-induced reactive oxygen species burst. VlsPLA2 -overexpressing V. longisporum strains showed increased virulence in Arabidopsis plants, and transcriptomic analysis of this fungal strain revealed that the induction of the gene contributed to increased virulence. VlsPLA2 was initially localized to the host nucleus and then translocated to the chloroplasts at later time points. In addition, VlsPLA2 bound to the vesicle-associated membrane protein A (VAMPA) and was transported to the nuclear membrane. In the nucleus, VlsPLA2 caused major alterations in the expression levels of genes encoding transcription factors and subtilisin-like proteases, which play a role in plant immunity. In conclusion, our study showed that VlsPLA2 acts as a virulence factor, possibly by hydrolysing host nuclear envelope phospholipids, which, through a signal transduction cascade, may suppress basal plant immune responses.
Collapse
Affiliation(s)
- Vahideh Rafiei
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural Sciences, Uppsala BiocenterUppsalaSweden
| | - Heriberto Vélëz
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural Sciences, Uppsala BiocenterUppsalaSweden
| | - Edoardo Piombo
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural Sciences, Uppsala BiocenterUppsalaSweden
| | - Mukesh Dubey
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural Sciences, Uppsala BiocenterUppsalaSweden
| | - Georgios Tzelepis
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural Sciences, Uppsala BiocenterUppsalaSweden
| |
Collapse
|
6
|
Alotaibi NH, Alharbi KS, Alzarea AI, Alruwaili NK, Alotaibi MR, Alotaibi NM, Alotaibi BS, Bukhari SNA. Pharmacological appraisal of ligustrazine based cyclohexanone analogs as inhibitors of inflammatory markers. Eur J Pharm Sci 2020; 147:105299. [PMID: 32165315 DOI: 10.1016/j.ejps.2020.105299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 11/25/2022]
Abstract
The targeting of pro-inflammatory enzymes becomes a therapeutic intervention when acute inflammation is proliferating in pathological conditions. This research is intended to carry out an evaluation of inhibiting and inducing enzymes with inflammatory associations with 28 cyclohexanone analogs based on the ligustrazine. Tests were undertaken with inhibitor screening assay kits using a range of synthetic compounds to investigate how they could inhibit the activity of cyclooxygenase (COX) enzymes, secretory phospholipase A2 (sPLA2), and lipoxygenase (LOX) enzyme. Significant and similar inhibitory activities against sPLA2 with were noted with synthetic compounds which included 1f and 1g (IC50 = 2.2 μM). The optimal inhibitory activity regarding LOX enzyme was shown with compounds 1d (IC50 = 8.1 μM) and 1e (IC50 = 7.5 μM). Additionally, the compounds 1b, 1d, 1e, 2n, and 2o were shown to be significant inhibitors of COX-1 activity with IC50 values 0.09 to 0.7 μM. The outcomes of assays for COX inhibition demonstrated that the same compounds had a further strong inhibitive influence on the COX-2 enzyme, and certain compounds such as 1d, 1e, and 2n demonstrated enhanced potency compared with positive controls.
Collapse
Affiliation(s)
| | | | | | - Nabil K Alruwaili
- College of Pharmacy, Jouf University, Aljouf, Sakaka 72341, Saudi Arabia
| | | | - Nawaf M Alotaibi
- College of Pharmacy, Northern Border University, Rafha, Saudi Arabia
| | - Badriyah S Alotaibi
- College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | | |
Collapse
|
7
|
Gust KA, Lotufo GR, Stanley JK, Wilbanks MS, Chappell P, Barker ND. Transcriptomics provides mechanistic indicators of mixture toxicology for IMX-101 and IMX-104 formulations in fathead minnows (Pimephales promelas). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 199:138-151. [PMID: 29625381 DOI: 10.1016/j.aquatox.2018.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 06/08/2023]
Abstract
Within the US military, new insensitive munitions (IMs) are rapidly replacing conventional munitions improving safety from unintended detonation. Toxicity data for IM chemicals are expanding rapidly, however IM constituents are typically deployed in mixture formulations, and very little is known about their mixture toxicology. In the present study we sought to characterize the mixture effects and toxicology of the two predominant IM formulations IMX-101 and IMX-104 in acute (48 h) larval fathead minnow (Pimephales promelas) exposures. IMX-101 consists of a mixture of 2,4-dinitroanisole (DNAN), 3-nitro-1,2,4-triazol-5-one (NTO), and nitroguanidine (NQ) while IMX-104 is composed of DNAN, NTO, and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). DNAN was the most potent constituent in IMX-101 eliciting an LC50 of 36.1 mg/L, whereas NTO and NQ did not elicit significant mortality in exposures up to 1040 and 2640 mg/L, respectively. Toxic unit calculations indicated that IMX-101 elicited toxicity representative of the component concentration of DNAN within the mixture. Toxicogenomic responses for the individual constituents of IMX-101 indicated unique transcriptional expression and functional responses characteristic of: oxidative stress, impaired energy metabolism, tissue damage and inflammatory responses in DNAN exposures; impaired steroid biosynthesis and developmental cell-signaling in NQ exposures; and altered mitogen-activated protein kinase signaling in NTO exposures. Transcriptional responses to the IMX-101 mixture were driven by the effects of DNAN where expression and functional responses were nearly identical comparing DNAN alone versus the fractional equivalent of DNAN within IMX-101. Given that each individual constituent of the IMX-101 mixture elicited unique functional responses, and NTO and NQ did not interact with DNAN within the IMX-101 mixture exposure, the overall toxicity and toxicogenomic responses within acute exposures to the IMX-101 formulation are indicative of "independent" mixture toxicology. Alternatively, in the IMX-104 exposure both DNAN and RDX were each present at concentrations sufficient to elicit lethality (RDX LC50 = 28.9 mg/L). Toxic-unit calculations for IMX-104 mixture formulation exposures indicated slight synergistic toxicity (ΣTU LC50 = 0.82, 95% confidence interval = 0.73-0.90). Unique functional responses relative to DNAN were observed in the IMX-104 exposure including responses characteristic of RDX exposure. Based on previous transcriptomics responses to acute RDX exposures in fathead minnow larvae, we hypothesize that the potentially synergistic responses within the IMX-104 mixture are related to interactive effects of each DNAN and RDX on oxidative stress mitigation pathways.
Collapse
Affiliation(s)
- Kurt A Gust
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA.
| | - Guilherme R Lotufo
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA
| | - Jacob K Stanley
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA; Stanley Environmental Consulting, Waynesboro, MS, USA
| | - Mitchell S Wilbanks
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA
| | | | | |
Collapse
|
8
|
Phospholipases play multiple cellular roles including growth, stress tolerance, sexual development, and virulence in fungi. Microbiol Res 2018; 209:55-69. [DOI: 10.1016/j.micres.2017.12.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/21/2017] [Accepted: 12/31/2017] [Indexed: 12/16/2022]
|
9
|
Affiliation(s)
- Thomas W. Stief
- Department of Clinical Chemistry, University Hospital Giessen & Marburg, Germany
| |
Collapse
|
10
|
Míčová P, Klevstig M, Holzerová K, Vecka M, Žurmanová J, Neckář J, Kolář F, Nováková O, Novotný J, Hlaváčková M. Antioxidant tempol suppresses heart cytosolic phospholipase A2α stimulated by chronic intermittent hypoxia. Can J Physiol Pharmacol 2017; 95:920-927. [DOI: 10.1139/cjpp-2017-0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Adaptation to chronic intermittent hypoxia (CIH) is associated with reactive oxygen species (ROS) generation implicated in the improved cardiac tolerance against acute ischemia–reperfusion injury. Phospholipases A2(PLA2s) play an important role in cardiomyocyte phospholipid metabolism influencing membrane homeostasis. Here we aimed to determine the effect of CIH (7000 m, 8 h/day, 5 weeks) on the expression of cytosolic PLA2(cPLA2α), its phosphorylated form (p-cPLA2α), calcium-independent (iPLA2), and secretory (sPLA2IIA) at protein and mRNA levels, as well as fatty acids (FA) profile in left ventricular myocardium of adult male Wistar rats. Chronic administration of antioxidant tempol was used to verify the ROS involvement in CIH effect on PLA2s expression and phospholipid FA remodeling. While CIH did not affect PLA2s mRNA levels, it increased the total cPLA2α protein in cytosol and membranes (by 191% and 38%, respectively) and p-cPLA2α (by 23%) in membranes. On the contrary, both iPLA2and sPLA2IIA were downregulated by CIH. CIH further decreased phospholipid n-6 polyunsaturated FA (PUFA) and increased n-3 PUFA proportion. Tempol treatment prevented only CIH-induced cPLA2α up-regulation and its phosphorylation on Ser505. Our results show that CIH diversely affect myocardial PLA2s and suggest that ROS are responsible for the activation of cPLA2α under these conditions.
Collapse
Affiliation(s)
- Petra Míčová
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martina Klevstig
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Kristýna Holzerová
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Marek Vecka
- 4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University and General Teaching Hospital in Prague, Czech Republic
| | - Jitka Žurmanová
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Neckář
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - František Kolář
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Olga Nováková
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Novotný
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Markéta Hlaváčková
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
11
|
Giresha AS, Pramod SN, Sathisha AD, Dharmappa KK. Neutralization of Inflammation by Inhibiting In vitro and In vivo Secretory Phospholipase A 2 by Ethanol Extract of Boerhaavia diffusa L. Pharmacognosy Res 2017; 9:174-181. [PMID: 28539742 PMCID: PMC5424559 DOI: 10.4103/0974-8490.204650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Inflammation is a normal and necessary prerequisite to healing of the injured tissues. Inflammation contributes to all disease process including immunity, vascular pathology, trauma, sepsis, chemical, and metabolic injuries. The secretory phospholipase A2 (sPLA2) is a key enzyme in the production of pro-inflammatory mediators in chronic inflammatory disorders such as rheumatoid arthritis, coronary heart disease, diabetes, and asthma. The sPLA2 also contribute to neuroinflammatory disorders such as Parkinson's, Alzheimer's, and Crohn's disease. AIMS The present study aims to investigate the inhibition of human sPLA2 by a popular medicinal herb Boerhaavia diffusa Linn. as a function of anti-inflammatory activity. MATERIALS AND METHODS The aqueous and different organic solvents extracts of B. diffusa were prepared and evaluated for human synovial fluid, human pleural fluid, as well as Vipera russelli and Naja naja venom sPLA2 enzyme inhibition. RESULTS Among the extracts, the ethanol extract of B. diffusa (EEBD) showed the highest sPLA2 inhibition and IC50 values ranging from 17.8 to 27.5 μg. Further, antioxidant and lipid peroxidation activities of B. diffusa extract were checked using 2,2-diphenyl-1-picrylhydrazyl radical, thiobarbituric acid, and rat liver homogenate. The antioxidant activity of EEBD was more or less directly proportional to in vitro sPLA2 inhibition. Eventually, the extract was subjected to neutralize sPLA2-induced mouse paw edema and indirect hemolytic activity. The EEBD showed similar potency in both the cases. CONCLUSIONS The findings suggest that the bioactive molecule/s from the EEBD is/are potentially responsible for the observed in vitro and in vivo sPLA2 inhibition and antioxidant activity. SUMMARY The present study aims to investigate the inhibition of human sPLA2 by a popular medicinal herb Boerhaavia diffusa Linn. as a function of anti inflammatory activity. Abbreviation Used: EEBD: Ethanolic extract of boerhaavia diffusa, sPLA2: Secretory phospholipase A2, HSF: Human synovial fluid, HPF: Human pleural fluid, VRV-PLA2-V: Vipera russelli phospholipase A2, NN-PLA2-I: Naja naja phospholipase A2.
Collapse
Affiliation(s)
- Aladahalli S. Giresha
- Department of Post Graduate Studies and Research in Biochemistry, Post Graduate Centre, Mangalore University, Kodagu, Karnataka, India
| | - Siddanakoppalu N. Pramod
- Department of Studies and Research in Biochemistry, Laboratory of Immunomodulation and inflammation Biology, Sahyadri Science College (Autonomous), Kuvempu University, Shimoga, Karnataka, India
| | - A. D. Sathisha
- Department of Biochemistry, Institute of Biomedical Sciences, College of Health Sciences, Ayder Referral Hospital, Mekelle University, Mekelle, Ethiopia
| | - K. K. Dharmappa
- Department of Post Graduate Studies and Research in Biochemistry, Post Graduate Centre, Mangalore University, Kodagu, Karnataka, India
| |
Collapse
|
12
|
Echaide M, Autilio C, Arroyo R, Perez-Gil J. Restoring pulmonary surfactant membranes and films at the respiratory surface. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1725-1739. [PMID: 28341439 DOI: 10.1016/j.bbamem.2017.03.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/14/2017] [Accepted: 03/19/2017] [Indexed: 02/08/2023]
Abstract
Pulmonary surfactant is a complex of lipids and proteins assembled and secreted by the alveolar epithelium into the thin layer of fluid coating the respiratory surface of lungs. There, surfactant forms interfacial films at the air-water interface, reducing dramatically surface tension and thus stabilizing the air-exposed interface to prevent alveolar collapse along respiratory mechanics. The absence or deficiency of surfactant produces severe lung pathologies. This review describes some of the most important surfactant-related pathologies, which are a cause of high morbidity and mortality in neonates and adults. The review also updates current therapeutic approaches pursuing restoration of surfactant operative films in diseased lungs, mainly through supplementation with exogenous clinical surfactant preparations. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- Mercedes Echaide
- Dept. Biochemistry, Faculty of Biology, and Research Institute "Hospital 12 de Octubre", Complutense University, Madrid, Spain
| | - Chiara Autilio
- Dept. Biochemistry, Faculty of Biology, and Research Institute "Hospital 12 de Octubre", Complutense University, Madrid, Spain
| | - Raquel Arroyo
- Dept. Biochemistry, Faculty of Biology, and Research Institute "Hospital 12 de Octubre", Complutense University, Madrid, Spain
| | - Jesus Perez-Gil
- Dept. Biochemistry, Faculty of Biology, and Research Institute "Hospital 12 de Octubre", Complutense University, Madrid, Spain.
| |
Collapse
|
13
|
Barman A, Tamuli R. The pleiotropic vegetative and sexual development phenotypes of Neurospora crassa arise from double mutants of the calcium signaling genes plc-1, splA2, and cpe-1. Curr Genet 2017; 63:861-875. [PMID: 28265741 DOI: 10.1007/s00294-017-0682-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/30/2017] [Accepted: 02/07/2017] [Indexed: 11/25/2022]
Abstract
We investigated phenotypes of the double mutants of the calcium (Ca2+) signaling genes plc-1, splA2, and cpe-1 encoding for a phospholipase C1 (PLC-1), a secretory phospholipase A2 (sPLA2), and a Ca2+/H+ exchanger (CPE-1), respectively, to understand the cell functions regulated by their genetic interactions. Mutants lacking plc-1 and either splA2 or cpe-1 exhibited numerous defects including reduced colonial growth, stunted aerial hyphae, premature conidiation on plates with delayed germination, inappropriate conidiation in submerged culture, and lesser mycelial pigmentation. Moreover, the ∆plc-1; ∆splA2 and ∆plc-1; ∆cpe-1 double mutants were female-sterile when crossed with wild type as the male parent. In addition, ∆plc-1, ∆splA2, and ∆cpe-1 single mutants displayed higher carotenoid accumulation and an increased level of intracellular reactive oxygen species (ROS). Therefore, the pleiotropic phenotype of the double mutants of plc-1, splA2, and cpe-1 suggested that the genetic interaction of these genes plays a critical role for normal vegetative and sexual development in N. crassa.
Collapse
Affiliation(s)
- Ananya Barman
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India
| | - Ranjan Tamuli
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India.
| |
Collapse
|
14
|
Kopincova J, Calkovska A. Meconium-induced inflammation and surfactant inactivation: specifics of molecular mechanisms. Pediatr Res 2016; 79:514-21. [PMID: 26679157 DOI: 10.1038/pr.2015.265] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/03/2015] [Indexed: 12/21/2022]
Abstract
This review summarizes neonatal meconium aspiration syndrome in light of meconium-induced inflammation and inflammatory surfactant inactivation, related to both endogenous and therapeutic exogenous surfactant. The wide effect of meconium on surfactant properties is divided into three points. Direct effect of meconium on surfactant properties refers mainly to fragmentation of dipalmitoylphosphatidylcholine and other surfactant phospholipids together with cleavage of surfactant proteins. Initiation of inflammatory response due to activation of receptors by yet unspecified compounds involves complement and Toll-like receptor activation. A possible role of lung collectins, surfactant proteins A and D, which can exert both pro- and anti-inflammatory reactions, is discussed. Initiation of inflammatory response by specified compounds in meconium reflects inflammatory functioning of cytokines, bile acids, and phospholipases contained in meconium. Unifying sketch of many interconnections in all these actions aims at providing integrated picture of inflammatory surfactant inactivation.
Collapse
Affiliation(s)
- Jana Kopincova
- Department of Physiology and Martin Biomedical Centre, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovak Republic
| | - Andrea Calkovska
- Department of Physiology and Martin Biomedical Centre, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovak Republic
| |
Collapse
|
15
|
Verlotta A, Trono D. Expression, purification and refolding of active durum wheat (Triticum durum Desf.) secretory phospholipase A2 from inclusion bodies of Escherichia coli. Protein Expr Purif 2014; 101:28-36. [DOI: 10.1016/j.pep.2014.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 05/18/2014] [Accepted: 05/26/2014] [Indexed: 11/16/2022]
|
16
|
Tirloni L, Reck J, Terra RMS, Martins JR, Mulenga A, Sherman NE, Fox JW, Yates JR, Termignoni C, Pinto AFM, da Silva Vaz I. Proteomic analysis of cattle tick Rhipicephalus (Boophilus) microplus saliva: a comparison between partially and fully engorged females. PLoS One 2014; 9:e94831. [PMID: 24762651 PMCID: PMC3998978 DOI: 10.1371/journal.pone.0094831] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/19/2014] [Indexed: 01/10/2023] Open
Abstract
The cattle tick Rhipicephalus (Boophilus) microplus is one of the most harmful parasites affecting bovines. Similarly to other hematophagous ectoparasites, R. microplus saliva contains a collection of bioactive compounds that inhibit host defenses against tick feeding activity. Thus, the study of tick salivary components offers opportunities for the development of immunological based tick control methods and medicinal applications. So far, only a few proteins have been identified in cattle tick saliva. The aim of this work was to identify proteins present in R. microplus female tick saliva at different feeding stages. Proteomic analysis of R. microplus saliva allowed identifying peptides corresponding to 187 and 68 tick and bovine proteins, respectively. Our data confirm that (i) R. microplus saliva is complex, and (ii) that there are remarkable differences in saliva composition between partially engorged and fully engorged female ticks. R. microplus saliva is rich mainly in (i) hemelipoproteins and other transporter proteins, (ii) secreted cross-tick species conserved proteins, (iii) lipocalins, (iv) peptidase inhibitors, (v) antimicrobial peptides, (vii) glycine-rich proteins, (viii) housekeeping proteins and (ix) host proteins. This investigation represents the first proteomic study about R. microplus saliva, and reports the most comprehensive Ixodidae tick saliva proteome published to date. Our results improve the understanding of tick salivary modulators of host defense to tick feeding, and provide novel information on the tick-host relationship.
Collapse
Affiliation(s)
- Lucas Tirloni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - José Reck
- Instituto de Pesquisas Veterinárias Desidério Finamor, Fundação Estadual de Pesquisa Agropecuária, Eldorado do Sul, RS, Brazil
| | - Renata Maria Soares Terra
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
- CAPES, Ministério da Educação do Brasil, Brasília, DF, Brasil
| | - João Ricardo Martins
- Instituto de Pesquisas Veterinárias Desidério Finamor, Fundação Estadual de Pesquisa Agropecuária, Eldorado do Sul, RS, Brazil
| | - Albert Mulenga
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Nicholas E. Sherman
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jay W. Fox
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Carlos Termignoni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Antônio F. M. Pinto
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
- CAPES, Ministério da Educação do Brasil, Brasília, DF, Brasil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
17
|
Nardicchi V, Ferrini M, Pilolli F, Angeli EB, Persichetti E, Beccari T, Mannucci R, Arcuri C, Donato R, Dorman RV, Goracci G. NGF Induces the Expression of Group IIA Secretory Phospholipase A2 in PC12 Cells: The Newly Synthesized Enzyme Is Addressed to Growing Neurites. Mol Neurobiol 2014; 50:15-25. [DOI: 10.1007/s12035-013-8621-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 12/15/2013] [Indexed: 12/31/2022]
|
18
|
Ilic D, Bollinger JM, Gelb M, Mauro TM. sPLA2 and the epidermal barrier. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:416-21. [PMID: 24269828 DOI: 10.1016/j.bbalip.2013.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/29/2013] [Accepted: 11/06/2013] [Indexed: 11/28/2022]
Abstract
The mammalian epidermis provides both an interface and a protective barrier between the organism and its environment. Lipid, processed into water-impermeable bilayers between the outermost layers of the epidermal cells, forms the major barrier that prevents water from exiting the organism, and also prevents toxins and infectious agents from entering. The secretory phospholipase 2 (sPLA2) enzymes control important processes in skin and other organs, including inflammation and differentiation. sPLA2 activity contributes to epidermal barrier formation and homeostasis by generating free fatty acids, which are required both for formation of lamellar membranes and also for acidification of the stratum corneum (SC). sPLA2 is especially important in controlling SC acidification and establishment of an optimum epidermal barrier during the first postnatal week. Several sPLA2 isoforms are present in the epidermis. We find that two of these isoforms, sPLA2 IIA and sPLA2 IIF, localize to the upper stratum granulosum and increase in response to experimental barrier perturbation. sPLA2F(-/-) mice also demonstrate a more neutral SC pH than do their normal littermates, and their initial recovery from barrier perturbation is delayed. These findings confirm that sPLA2 enzymes perform important roles in epidermal development, and suggest that the sPLA2IIF isoform may be central to SC acidification and barrier function. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.
Collapse
Affiliation(s)
- Dusko Ilic
- Human Embryonic Stem Cell Laboratories, Guy's Assisted Conception Unit, Division of Women's Health, King's College London School of Medicine, London, UK.
| | - James M Bollinger
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, WA, USA
| | - Michael Gelb
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, WA, USA.
| | - Theodora M Mauro
- Department of Dermatology, University of California, San Francisco, San Francisco Veterans Medical Center, San Francisco, CA, USA.
| |
Collapse
|
19
|
Ben Bacha A, Abid I, Horchani H, Mejdoub H. Enzymatic properties of stingray Dasyatis pastinaca group V, IIA and IB phospholipases A(2): a comparative study. Int J Biol Macromol 2013; 62:537-42. [PMID: 24120965 DOI: 10.1016/j.ijbiomac.2013.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/01/2013] [Accepted: 10/04/2013] [Indexed: 11/18/2022]
Abstract
In the present study, we have purified the group V phospholipase from the heart of cartilaginous fish stingray Dasyatis pastinaca and compared its biochemical properties with group IIA (sPLA2-IIA) and IB (sPLA2-IB) phospholipases previously purified from pancreas and intestine, respectively. Group V phospholipase (sPLA2-V) was purified to homogeneity by heat treatment, ammonium sulphate precipitation and RP-HPLC. The N-terminal sequence of the purified sPLA2-V exhibits a high degree of homology with those of mammal. The enzyme was found to be monomeric with a molecular mass estimation of 14 kDa. The specific activity of the purified enzyme, measured at pH 8 and 37 °C was 52 U/mg. Like sPLA2-IB and sPLA2-IIA, the sPLA2-V is found to be stable between pH 3 and 11 after 30 min of incubation. The purified sPLA2-V retained 65% of its activity after 10 min of incubation at 70 °C and it absolutely requires Ca(2+) for enzymatic activity. In addition it displayed high tolerance to organic solvents. Kinetic parameters Kmapp, kcat and the deduced catalytic efficiency (kcat/Kmapp) of the purified group-V, -IB and -IIA PLA2s were determined using phosphatidylethanolamine (PE), phosphatidylcholine (PC) or phosphatidylserine (PS) as substrate. The three enzymes hydrolyze the zwiterionic PE and PC substrates more efficiently than anionic PS substrate.
Collapse
Affiliation(s)
- Abir Ben Bacha
- Biochemistry Department, Science College, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; Laboratory of Plant Biotechnology Applied to Crop Improvement, Faculty of Science of Sfax, University of Sfax, Sfax 3038, Tunisia.
| | | | | | | |
Collapse
|
20
|
Rodríguez Diez G, Sánchez Campos S, Giusto N, Salvador G. Specific roles for Group V secretory PLA2 in retinal iron-induced oxidative stress. Implications for age-related macular degeneration. Exp Eye Res 2013; 113:172-81. [DOI: 10.1016/j.exer.2013.05.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/14/2013] [Accepted: 05/21/2013] [Indexed: 11/15/2022]
|
21
|
Huwiler A, Feuerherm AJ, Sakem B, Pastukhov O, Filipenko I, Nguyen T, Johansen B. The ω3-polyunsaturated fatty acid derivatives AVX001 and AVX002 directly inhibit cytosolic phospholipase A(2) and suppress PGE(2) formation in mesangial cells. Br J Pharmacol 2013; 167:1691-701. [PMID: 22831644 DOI: 10.1111/j.1476-5381.2012.02114.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 06/27/2012] [Accepted: 07/07/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE ω3-polyunsaturated fatty acids (ω3-PUFAs) are known to exert anti-inflammatory effects in various disease models although their direct targets are only poorly characterized. EXPERIMENTAL APPROACH Here we report on two new cPLA(2) inhibitors, the ω3-derivatives AVX001 and AVX002, and their effects on inflammatory PGE(2) production in cultures of renal mesangial cells. KEY RESULTS AVX001 and AVX002 dose-dependently inhibited the group IVA cytosolic phospholipase A(2) (cPLA(2) ) in an in vitro activity assay with similar IC(50) values for AVX001 and AVX002, whereas the known cPLA(2) inhibitor AACOCF(3) was less potent and docosahexaenoic acid (DHA) was inactive. In renal mesangial cells, AVX001 and AVX002 suppressed IL-1β-induced PGE(2) synthesis. Mechanistically, this effect occurred by a down-regulation of IL-1β-induced group IIA-sPLA(2) protein expression, mRNA expression and promoter activity. A similar but less potent effect was seen with AACOCF(3) and no effect was seen with DHA. As gene expression of sPLA(2) is known to be regulated by the transcription factor NF-κB, we further investigated NF-κB activation. Both compounds prevented NF-κB activation by blocking degradation of the inhibitor of κB. CONCLUSIONS AND IMPLICATIONS These data show for the first time that the novel cPLA(2) inhibitors AVX001 and AVX002 exert an anti-inflammatory effect in cultures of renal mesangial cells and reduce the pro-inflammatory mediator PGE(2) through an inhibitory effect on NF-κB activation. Therefore, these compounds may represent promising novel drugs for the treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Andrea Huwiler
- Institut für Pharmakologie, Universität Bern, Bern, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
22
|
Substituted thiobenzoic acid S-benzyl esters as potential inhibitors of a snake venom phospholipase A2: Synthesis, spectroscopic and computational studies. J Mol Struct 2012. [DOI: 10.1016/j.molstruc.2012.06.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Differences between group X and group V secretory phospholipase A(2) in lipolytic modification of lipoproteins. Cell Mol Biol Lett 2012; 17:459-78. [PMID: 22706677 PMCID: PMC6275602 DOI: 10.2478/s11658-012-0019-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 05/31/2012] [Indexed: 11/20/2022] Open
Abstract
Secretory phospholipases A(2) (sPLA(2)s) are a diverse family of low molecular mass enzymes (13-18 kDa) that hydrolyze the sn-2 fatty acid ester bond of glycerophospholipids to produce free fatty acids and lysophospholipids. We have previously shown that group X sPLA(2) (sPLA(2)-X) had a strong hydrolyzing activity toward phosphatidylcholine in low-density lipoprotein (LDL) linked to the formation of lipid droplets in the cytoplasm of macrophages. Here, we show that group V sPLA(2) (sPLA(2)-V) can also cause the lipolysis of LDL, but its action differs remarkably from that of sPLA(2)-X in several respects. Although sPLA(2)-V released almost the same amount of fatty acids from LDL, it released more linoleic acid and less arachidonic acid than sPLA(2)-X. In addition, the requirement of Ca(2+) for the lipolysis of LDL was about 10-fold higher for sPLA(2)-V than sPLA(2)-X. In fact, the release of fatty acids from human serum was hardly detectable upon incubation with sPLA(2)-V in the presence of sodium citrate, which contrasted with the potent response to sPLA(2)-X. Moreover, sPLA(2)-X, but not sPLA(2)-V, was found to specifically interact with LDL among the serum proteins, as assessed by gel-filtration chromatography as well as sandwich enzyme-immunosorbent assay using anti-sPLA(2)-X and anti-apoB antibodies. Surface plasmon resonance studies have revealed that sPLA2-X can bind to LDL with high-affinity (K(d) = 3.1 nM) in the presence of Ca(2+). Selective interaction of sPLA(2)-X with LDL might be involved in the efficient hydrolysis of cell surface or intracellular phospholipids during foam cell formation.
Collapse
|
24
|
Alexander DB, Iigo M, Yamauchi K, Suzui M, Tsuda H. Lactoferrin: an alternative view of its role in human biological fluids. Biochem Cell Biol 2012; 90:279-306. [PMID: 22553915 DOI: 10.1139/o2012-013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lactoferrin is a major component of biologically important mucosal fluids and of the specific granules of neutrophils. Understanding its biological function is essential for understanding neutrophil- and mucosal-mediated immunity. In this review, we reevaluate the in vivo functions of human lactoferrin (hLF) emphasizing in vivo studies and in vitro studies performed in biologically relevant fluids. We discuss the evidence in the literature that supports (or does not support) proposed roles for hLF in mucosal immunity and in neutrophil function. We argue that the current literature supports a microbiostatic role, but not a microbicidal role, for hLF in vivo. The literature also supports a role for hLF in inhibiting colonization and infection of epithelial surfaces by microorganisms and in protecting tissues from neutrophil-mediated damage. Using this information, we briefly discuss hLF in the context of the complex biological fluids in which it is found.
Collapse
Affiliation(s)
- David B Alexander
- Laboratory of Nanotoxicology Project, Nagoya City University, 3-1 Tanabedohri, Mizuho-ku, Nagoya 467-8603, Japan.
| | | | | | | | | |
Collapse
|
25
|
Saito Y, Watanabe K, Fujioka D, Nakamura T, Obata JE, Kawabata K, Watanabe Y, Mishina H, Tamaru S, Kita Y, Shimizu T, Kugiyama K. Disruption of group IVA cytosolic phospholipase A(2) attenuates myocardial ischemia-reperfusion injury partly through inhibition of TNF-α-mediated pathway. Am J Physiol Heart Circ Physiol 2012; 302:H2018-30. [PMID: 22427514 DOI: 10.1152/ajpheart.00955.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Group IVA cytosolic phospholipase A(2) (cPLA(2)α), which preferentially cleaves arachidonic acid from phospholipids, plays a role in apoptosis and tissue injury. Downstream signals in response to tumor necrosis factor (TNF)-α, a mediator of myocardial ischemia-reperfusion (I/R) injury, involve cPLA(2)α activation. This study examined the potential role of cPLA(2)α and its mechanistic link with TNF-α in myocardial I/R injury using cPLA(2)α knockout (cPLA(2)α(-/-)) mice. Myocardial I/R was created with 10-wk-old male mice by 1 h ligation of the left anterior descending coronary artery, followed by 24 h of reperfusion. As a result, compared with wild-type (cPLA(2)α(+/+)) mice, cPLA(2)α(-/-) mice had a 47% decrease in myocardial infarct size, preservation of echocardiographic left ventricle (LV) function (%fractional shortening: 14 vs. 21%, respectively), and lower content of leukotriene B(4) and thromboxane B(2) (62 and 50% lower, respectively) in the ischemic myocardium after I/R. Treatment with the TNF-α inhibitor (soluble TNF receptor II/IgG1 Fc fusion protein, sTNFR:Fc) decreased myocardial I/R injury and LV dysfunction in cPLA(2)α(+/+) mice but not cPLA(2)α(-/-) mice. sTNFR:Fc also suppressed cPLA(2)α phosphorylation in the ischemic myocardium after I/R of cPLA(2)α(+/+) mice. Similarly, sTNFR:Fc exerted protective effects against hypoxia-reoxygenation (H/R)-induced injury in the cultured cardiomyocytes from cPLA(2)α(+/+) mice but not cPLA(2)α(-/-) cardiomyocytes. H/R and TNF-α induced cPLA(2)α phosphorylation in cPLA(2)α(+/+) cardiomyocytes, which was reversible by sTNFR:Fc. In cPLA(2)α(-/-) cardiomyocytes, TNF-α induced apoptosis and release of arachidonic acid to a lesser extent than in cPLA(2)α(+/+) cardiomyocytes. In conclusion, disruption of cPLA(2)α attenuates myocardial I/R injury partly through inhibition of TNF-α-mediated pathways.
Collapse
Affiliation(s)
- Yukio Saito
- Department of Internal Medicine II, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ball JB, Khan SY, McLaughlin NJD, Kelher MR, Nuss R, Cole L, Liang X, Silliman CC. A two-event in vitro model of acute chest syndrome: the role of secretory phospholipase A2 and neutrophils. Pediatr Blood Cancer 2012; 58:399-405. [PMID: 21793188 DOI: 10.1002/pbc.23265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 06/09/2011] [Indexed: 02/02/2023]
Abstract
BACKGROUND Acute chest syndrome (ACS) in sickle cell disease is associated with elevation of secretory phospholipase A(2) (sPLA(2) ). We hypothesize that sPLA(2) cleaves membrane lipids from sickled red blood cells (RBCs) causing PMN-mediated endothelial cell injury (ECI) as the second event in a two-event model. METHODS Whole blood was collected from children when in steady state or daily during admissions for vaso-occlusive pain (VOC) or ACS. The plasma and RBCs were separated, sPLA(2) levels were measured, and the RBCs were incubated with sPLA(2) . Plasma and lipids, extracted from the plasma or the supernatant of sPLA(2) -treated RBCs, were assayed for PMN priming activity and used as the second event in a model of PMN-mediated ECI. Phosphatidylserine (PS) surface expression on RBCs was quantified by flow cytometry. RESULTS Increased sPLA(2) -IIa levels were associated with ACS. SPLA(2) -liberated lipids from VOC and the plasma, plasma lipids and sPLA(2) -liberated lipids from ACS primed PMNs and caused PMN-mediated ECI (P < 0.01). RBCs from VOC had increased in PS surface expression versus steady state. CONCLUSIONS ACS plasma and lipids and sPLA(2) -released lipids from RBCs during VOC or ACS induce PMN-mediated ECI. VOC elicited increases in PS surface expression providing a membrane substrate for sPLA(2) lysis of sickle RBCs.
Collapse
Affiliation(s)
- J Bradley Ball
- The Research Department, Bonfils Blood Center, 717 Yosemite Street, Denver, CO 80230, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Sanford SD, Yun BG, Leslie CC, Murphy RC, Pfenninger KH. Group IVA phospholipase A₂ is necessary for growth cone repulsion and collapse. J Neurochem 2012; 120:974-84. [PMID: 22220903 DOI: 10.1111/j.1471-4159.2012.07651.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The repellent semaphorin 3A (Sema3A) causes growth cone turning or collapse by triggering cytoskeletal rearrangements and detachment of adhesion sites. Growth cone detachment is dependent on eicosanoid activation of protein kinase C epsilon (PKCε), but the characterization of the phospholipase A(2) (PLA(2) ) that releases arachidonic acid (AA) for eicosanoid synthesis has remained elusive. Here, we show, in rat dorsal root ganglion (DRG) neurons, that Sema3A stimulates PLA(2) activity, that Sema3A-induced growth cone turning and collapse are dependent on the release of AA, and that the primary PLA(2) involved is the group IV α isoform (GIVA). Silencing GIVA expression renders growth cones resistant to Sema3A-induced collapse, and GIVA inhibition reverses Sema3A-induced repulsion into attraction. These studies identify a novel, early step in Sema3A-signaling and a PLA(2) necessary for growth cone repulsion and collapse.
Collapse
Affiliation(s)
- Staci D Sanford
- Department of Pediatrics, Neuroscience Program, and Colorado Intellectual and Developmental Disabilities Research Center, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | | | | | | |
Collapse
|
28
|
Petrova S, Atanasov V, Balashev K. Vipoxin and Its Components. STRUCTURAL AND MECHANISTIC ENZYMOLOGY - BRINGING TOGETHER EXPERIMENTS AND COMPUTING 2012; 87:117-53. [DOI: 10.1016/b978-0-12-398312-1.00005-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
29
|
Watanabe K, Fujioka D, Saito Y, Nakamura T, Obata JE, Kawabata K, Watanabe Y, Mishina H, Tamaru S, Hanasaki K, Kugiyama K. Group X secretory PLA2 in neutrophils plays a pathogenic role in abdominal aortic aneurysms in mice. Am J Physiol Heart Circ Physiol 2011; 302:H95-104. [PMID: 21984544 DOI: 10.1152/ajpheart.00695.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Group X secretory PLA(2) (sPLA(2)-X) is expressed in neutrophils and plays a role in the pathogenesis of neutrophil-mediated tissue inflammation and injury. This study tested the hypothesis that sPLA(2)-X in neutrophils may contribute to the pathogenesis of abdominal aortic aneurysms (AAA) using sPLA(2)-X(-/-) mice. AAA was created by application of CaCl(2) to external surface of aorta. As a result, the aortas of sPLA(2)-X(-/-) mice had smaller diameters (percent increase from baseline; 24.8 ± 3.5% vs. 49.9 ± 9.1%, respectively; P < 0.01), a reduced grade of elastin degradation, and lower activities of elastase and gelatinase (26% and 19% lower, respectively) after CaCl(2) treatment compared with sPLA(2)-X(+/+) mice. In sPLA(2)-X(+/+) mice, immunofluorescence microscopic images showed that the immunoreactivity of sPLA(2)-X was detected only in neutrophils within aortic walls 3 days, 1, 2, and 6 wk after CaCl(2) treatment, whereas the immunoreactivity was not detected in macrophages or mast cells in aortic walls. sPLA(2)-X immunoreactivity also was colocalized in cells expressing matrix metalloproteinase (MMP)-9. Neutrophils isolated from sPLA(2)-X(-/-) mice had lower activities of elastase, gelatinase, and MMP-9 in response to stimuli compared with sPLA(2)-X(+/+) mice. The attenuated release of elastase and gelatinase from sPLA(2)-X(-/-) neutrophils was reversed by exogenous addition of mouse sPLA(2)-X protein. The adoptive transfer of sPLA(2)-X(+/+) neutrophils days 0 and 3 after CaCl(2) treatment reversed aortic diameters and elastin degradation grades in the lethally irradiated sPLA(2)-X(+/+) mice reconstituted with sPLA(2)-X(-/-) bone marrow to an extent similar to that seen in sPLA(2)-X(+/+) mice. In conclusion, sPLA(2)-X in neutrophils plays a pathogenic role in AAA in a mice model.
Collapse
Affiliation(s)
- Kazuhiro Watanabe
- Department of Internal Medicine II, University of Yamanashi, Chuo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Pereañez JA, Núñez V, Patiño AC. Inhibitory effects of bile acids on enzymatic and pharmacological activities of a snake venom phospholipase A(2) from group IIA. Protein J 2011; 30:253-61. [PMID: 21499855 DOI: 10.1007/s10930-011-9327-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bile acids, such as cholic acid (CA) and ursodeoxycholic acid (UDCA) have shown to decrease or increase the enzymatic activity of group IB pancreatic PLA(2), depending on the concentration used. Studies suggest that the inhibition of hydrolysis rate of the substrate is due to formation in aqueous phase of a complex between bile acid and PLA(2), which is catalytically inert. For this reason, we tested the inhibition of the enzymatic activity of group IIA snake venom PLA(2) by bile acids, using an aqueous phase model. In addition, we measured the ability of bile acids to inhibit the toxic effects caused by the mentioned toxin. UDCA and CA inhibited the enzymatic activity of the PLA(2) in a competitive mode. Moreover, these compounds inhibited myotoxic, cytotoxic and edema-forming activities induced by the toxin, but UDCA was more efficient than CA. It was demonstrated that bile acids interact directly with this protein by causing slight changes in the intrinsic fluorescence spectra. Preliminary molecular docking studies suggest that bile acids interact with amino acids at the active site of the PLA(2) through different interactions, CA showed hydrogen bonds with His48, whereas, UDCA displayed with Asp49. Results obtained herein may turn UDCA and CA into promising models for the development of new molecules with anti-inflammatory and anti-snake venom PLA(2) properties.
Collapse
Affiliation(s)
- Jaime Andrés Pereañez
- Programa de Ofidismo/Escorpionismo, Universidad de Antioquia, A.A. 1226, Medellín, Colombia.
| | | | | |
Collapse
|
31
|
Karray A, Ben Ali Y, Boujelben J, Amara S, Carrière F, Gargouri Y, Bezzine S. Drastic changes in the tissue-specific expression of secreted phospholipases A2 in chicken pulmonary disease. Biochimie 2011; 94:451-60. [PMID: 21893157 PMCID: PMC7117035 DOI: 10.1016/j.biochi.2011.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 08/17/2011] [Indexed: 12/16/2022]
Abstract
Infectious bronchitis is one of the most important diseases in poultry and it causes major economic losses. Infectious bronchitis is an acute, highly contagious, viral disease of chickens, characterized by rales, coughing, and sneezing. Because secreted phospholipases A2 (sPLA2) are involved in inflammatory processes, the gene expressions of sPLA2s were investigated in both healthy chickens and chickens with infectious bronchitis and lung inflammation. The draft chicken genome was first scanned using human sPLA2 sequences to identify chicken sPLA2s (ChPLA2), chicken total mRNA were isolated and RT-PCR experiments were performed to amplify and then sequence orthologous cDNAs. Full-length cDNA sequences of ChPLA2-IB, -IIA, -IIE, -V and -X were cloned. The high degree of sequence identity of 50–70% between the avian and mammalian (human and mouse) sPLA2 orthologs suggests a conservation of important enzymatic functions for these phospholipases. Quantitation by qPCR of the transcript levels of ChPLA2-IB, -IIA, -IIE, -V and -X in several tissues from healthy chicken indicated that the expression patterns and mRNA levels diverged among the phospholipases tested. In chicken with infectious bronchitis, an over expression of ChPLA2-V was observed in lungs and spleen in comparison with healthy chicken. These findings suggest that ChPLA2-V could be a potential biomarker for lung inflammation. Conversely, a down regulation of ChPLA2-IB, -IIA and -X was observed in lungs and spleen in case of infectious bronchitis. A significant increase in the expression level of ChPLA2-X and ChPLA2-IB was also noticed in pancreas. No or minor changes have been detected in the expression of ChPLA2-IIE in lungs and small intestine, but it shows a significant increase in several infected tissues.
Collapse
Affiliation(s)
- Aida Karray
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, ENIS Route de Soukra, université de Sfax, Tunisia
| | | | | | | | | | | | | |
Collapse
|
32
|
Inhibition of secretory phospholipase A2 activity attenuates acute cardiogenic pulmonary edema induced by isoproterenol infusion in mice after myocardial infarction. J Cardiovasc Pharmacol 2011; 56:369-78. [PMID: 20625313 DOI: 10.1097/fjc.0b013e3181ef1aab] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Several types of secretory phospholipase A2 (sPLA2) are expressed in lung tissue, yielding various eicosanoids that might cause pulmonary edema. This study examined whether inhibition of sPLA2 activity attenuates acute cardiogenic pulmonary edema in mice. Acute cardiogenic pulmonary edema was induced in C57BL/6J male mice by an increase in heart rate with continuous intravenous infusion of isoproterenol (ISP) (10 mg/kg/h) at 2 weeks after the creation of myocardial infarction by left coronary artery ligation. Just before ISP infusion, a single intraperitoneal injection of 100 mg/kg LY374388, a prodrug of LY329722 that inhibits sPLA2 activity, or vehicle was administered. The ISP infusion after myocardial infarction induced interstitial and alveolar edema on lung histology. Furthermore, it increased the lung-to-body weight ratio, pulmonary vascular permeability evaluated by the Evans blue extravasation method, lung activity of sPLA2, and lung content of thromboxane A2 and leukotriene B4. These changes were significantly attenuated by LY374388 treatment. In Kaplan-Meier analysis, the survival rate during the ISP infusion after myocardial infarction was significantly higher in LY374388- than in vehicle-treated mice. Similar results were obtained with another inhibitor of sPLA2 activity, para-bromophenacyl bromide. In conclusion, inhibition of sPLA2 activity suppressed acute cardiogenic pulmonary edema.
Collapse
|
33
|
Yano T, Fujioka D, Saito Y, Kobayashi T, Nakamura T, Obata JE, Kawabata K, Watanabe K, Watanabe Y, Mishina H, Tamaru S, Kugiyama K. Group V secretory phospholipase A2 plays a pathogenic role in myocardial ischaemia-reperfusion injury. Cardiovasc Res 2010; 90:335-43. [PMID: 21169294 DOI: 10.1093/cvr/cvq399] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
AIMS Group V secretory phospholipase A(2) (sPLA(2)-V) is highly expressed in the heart. This study examined (i) the role of sPLA(2)-V in myocardial ischaemia-reperfusion (I/R) injury and (ii) the cooperative action of sPLA(2)-V and cytosolic PLA(2) (cPLA(2)) in myocardial I/R injury, using sPLA(2)-V knockout (sPLA(2)V(-/-)) mice. METHODS AND RESULTS Myocardial I/R injury was created by 1 h ligation of the left anterior descending coronary artery, followed by 24 h of reperfusion. The sPLA(2)V(-/-) mice had a 44% decrease in myocardial infarct size, a preservation of echocardiographic LV function (%fractional shortening: 40 ± 3.5 vs. 21 ± 4.6, respectively), and lower content of leucotriene B(4) (LTB(4)) and thromboxane B(2) (TXB(2)) (40 and 37% lower, respectively) in the ischaemic myocardium after I/R compared with wild-type (WT) mice. Intraperitoneal administration of AACOCF3 or MAFP, inhibitors of cPLA(2) activity, decreased myocardial infarct size and myocardial content of LTB(4) and TXB(2) in both genotyped mice. The decrease in myocardial infarct size and content of LTB(4) and TXB(2) after cPLA(2) inhibitor administration was greater in WT mice than in sPLA(2)V(-/-) mice. I/R increased phosphorylation of extracellular signal-related kinase 1/2, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinases in the ischaemic myocardium in association with cPLA(2) phosphorylation. The I/R-induced increase in the phosphorylation of p38 and cPLA(2) was less in sPLA(2)-V(-/-) mice than in WT mice. Pretreatment with the p38 inhibitor SB202190 suppressed an increase in cPLA(2) phosphorylation after I/R in WT mice. CONCLUSION sPLA(2)-V plays an important role in the pathogenesis of myocardial I/R injury partly in concert with the activation of cPLA(2).
Collapse
Affiliation(s)
- Toshiaki Yano
- Department of Internal Medicine II, Faculty of Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Yamanashi, Chuo 409-3898, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ferrini M, Nardicchi V, Mannucci R, Arcuri C, Nicoletti I, Donato R, Goracci G. Effect of NGF on the subcellular localization of group IIA secretory phospholipase A(2) (GIIA) in PC12 cells: role in neuritogenesis. Neurochem Res 2010; 35:2168-74. [PMID: 21125328 DOI: 10.1007/s11064-010-0345-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2010] [Indexed: 01/01/2023]
Abstract
Phospholipases A(2) (PLA(2)s) are involved in neuritogenesis but the identity of the isoforms(s) contributing to this process is still not defined. Several reports have focused on secretory PLA(2)s (sPLA(2)) as the administration of exogenous sPLA(2)s to PC12 neuronal cells stimulates neurite outgrowth. The present study demonstrates that the endogenous group IIA sPLA(2) (GIIA), constitutively expressed in mammalian neural cells, changes its subcellular localization when PC12 cells are induced to differentiate by NGF treatment. Indeed, confocal analysis showed a time-dependent accumulation of GIIA in growth cones and neurite tips. Under identical conditions the subcellular distribution of another isoform (GV) was unaffected by NGF. Contrary to GX, another sPLA(2) isoform expressed by PC12 cells, the contribution of GIIA to neuritogenesis does not require its release in the extracellular medium.
Collapse
Affiliation(s)
- M Ferrini
- Departments of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06126 Perugia, Italy
| | | | | | | | | | | | | |
Collapse
|
35
|
Bryant KJ, Bidgood MJ, Lei PW, Taberner M, Salom C, Kumar V, Lee L, Church WB, Courtenay B, Smart BP, Gelb MH, Cahill MA, Graham GG, McNeil HP, Scott KF. A bifunctional role for group IIA secreted phospholipase A2 in human rheumatoid fibroblast-like synoviocyte arachidonic acid metabolism. J Biol Chem 2010; 286:2492-503. [PMID: 21068383 DOI: 10.1074/jbc.m110.123927] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Human group IIA-secreted phospholipase A(2) (sPLA(2)-IIA) is an important regulator of cytokine-mediated inflammatory responses in both in vitro and in vivo models of rheumatoid arthritis (RA). However, treatment of RA patients with sPLA(2)-IIA inhibitors shows only transient benefit. Using an activity-impaired sPLA(2)-IIA mutant protein (H48Q), we show that up-regulation of TNF-dependent PGE(2) production and cyclooxygenase-2 (COX-2) induction by exogenous sPLA(2)-IIA in RA fibroblast-like synoviocytes (FLSs) is independent of its enzyme function. Selective cytosolic phospholipase A(2)-α (cPLA(2)-α) inhibitors abrogate TNF/sPLA(2)-IIA-mediated PGE(2) production without affecting COX-2 levels, indicating arachidonic acid (AA) flux to COX-2 occurs exclusively through TNF-mediated activation of cPLA(2)-α. Nonetheless, exogenous sPLA(2)-IIA, but not H48Q, stimulates both AA mobilization from FLSs and microparticle-derived AA release that is not used for COX-2-dependent PGE(2) production. sPLA(2)-IIA-mediated AA production is inhibited by pharmacological blockade of sPLA(2)-IIA but not cPLA(2)-α. Exogenous H48Q alone, like sPLA(2)-IIA, increases COX-2 protein levels without inducing PGE(2) production. Unlike TNF, sPLA(2)-IIA alone does not rapidly mobilize NF-κB or activate phosphorylation of p38 MAPK, two key regulators of COX-2 protein expression, but does activate the ERK1/2 pathway. Thus, sPLA(2)-IIA regulates AA flux through the cPLA(2)-α/COX-2 pathway in RA FLSs by up-regulating steady state levels of these biosynthetic enzymes through an indirect mechanism, rather than direct provision of substrate to the pathway. Inhibitors that have been optimized for their potency in enzyme activity inhibition alone may not adequately block the activity-independent function of sPLA(2)-IIA.
Collapse
|
36
|
Kadimaliev DA, Nadezhina OS, Parshin AA, Atykyan NA, Revin VV. Change in phospholipid composition and phospholipase activity of the fungus Lentinus tigrinus VKM F-3616D during growth in the presence of phenol and lignocellulosic substrates. BIOCHEMISTRY. BIOKHIMIIA 2010; 75:1342-1351. [PMID: 21314601 DOI: 10.1134/s0006297910110052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Changes in phospholipid composition, phospholipase activity, and accumulation of lipid peroxidation products in mycelium of the lignin-degrading fungus Lentinus (Panus) tigrinus VKM F-3616D in the presence of phenol and lignocellulosic substrates in the cultivation medium are reported. It is shown that in fungal mycelium in the presence of both substrates the share of lysophosphatidylcholine sharply increases. The parity between separate groups of phosphatidylinositols also changes. The lysophosphatidylcholine content increase during cultivation is connected with activation of phospholipase A(2) (EC 3.1.1.4), and phosphatidylinositol parity change is associated with distinctions in affinity of phosphoinositide-specific phospholipase C (EC 3.1.4.11) to them.
Collapse
Affiliation(s)
- D A Kadimaliev
- Ogaryov Mordovian State University, Saransk 430005, Russia.
| | | | | | | | | |
Collapse
|
37
|
Varespladib (A-002), a secretory phospholipase A2 inhibitor, reduces atherosclerosis and aneurysm formation in ApoE-/- mice. J Cardiovasc Pharmacol 2010; 53:60-5. [PMID: 19129734 DOI: 10.1097/fjc.0b013e318195bfbc] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The family of secretory phospholipase A2 (sPLA2) enzymes has been associated with inflammatory diseases and tissue injury including atherosclerosis. A-001 is a novel inhibitor of sPLA2 enzymes discovered by structure-based drug design, and A-002 is the orally bioavailable prodrug currently in clinical development. A-001 inhibited human and mouse sPLA2 group IIA, V, and X enzymes with IC50 values in the low nM range. A-002 (1 mg/kg) led to high serum levels of A-001 and inhibited PLA2 activity in transgenic mice overexpressing human sPLA2 group IIA in C57BL/6J background. In addition, the effects of A-002 on atherosclerosis in 2 ApoE mouse models were evaluated using en face analysis. (1) In a high-fat diet model, A-002 (30 and 90 mg/kg twice a day for 16 weeks) reduced aortic atherosclerosis by 50% (P < 0.05). Plasma total cholesterol was decreased (P < 0.05) by 1 month and remained lowered throughout the study. (2) In an accelerated atherosclerosis model, with angiotensin II-induced aortic lesions and aneurysms, A-002 (30 mg/kg twice a day) reduced aortic atherosclerosis by approximately 40% (P < 0.05) and attenuated aneurysm formation (P = 0.0096). Thus, A-002 was effective at significantly decreasing total cholesterol, atherogenesis, and aneurysm formation in these 2 ApoE mouse models.
Collapse
|
38
|
Sato R, Yamaga S, Watanabe K, Hishiyama S, Kawabata KI, Kobayashi T, Fujioka D, Saito Y, Yano T, Watanabe K, Watanabe Y, Ishihara H, Kugiyama K. Inhibition of secretory phospholipase A2 activity attenuates lipopolysaccharide-induced acute lung injury in a mouse model. Exp Lung Res 2010; 36:191-200. [PMID: 20426527 DOI: 10.3109/01902140903288026] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study evaluated the hypothesis that LY374388, an inhibitor of secretory phospholipase A(2) (sPLA(2)) activity, may exert a protective effect on lipopolysaccharide (LPS)-induced acute lung injury in male C57BL/6J mice. Intratracheal administration of LPS increased histopathological changes in lung tissue, lung wet to dry ratios, and the bronchoalveolar lavage fluid levels of neutrophil numbers, sPLA(2) activity, leukotriene B(4), and thromboxane B(2). However, a simultaneous intraperitoneal treatment with LY374388 significantly attenuated these LPS-induced changes. Thus, inhibition of sPLA(2) activity significantly attenuated the acute lung injury induced by LPS. sPLA(2) played an important role in the pathogenesis of LPS-induced acute lung injury in mice.
Collapse
Affiliation(s)
- Ryota Sato
- Department of Internal Medicine II, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Chiricozzi E, Fernandez-Fernandez S, Nardicchi V, Almeida A, Bolaños JP, Goracci G. Group IIA secretory phospholipase A2(GIIA) mediates apoptotic death during NMDA receptor activation in rat primary cortical neurons. J Neurochem 2010; 112:1574-83. [DOI: 10.1111/j.1471-4159.2010.06567.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Nakahama T, Nakanishi Y, Viscomi AR, Takaya K, Kitamoto K, Ottonello S, Arioka M. Distinct enzymatic and cellular characteristics of two secretory phospholipases A2 in the filamentous fungus Aspergillus oryzae. Fungal Genet Biol 2010; 47:318-31. [PMID: 20045482 DOI: 10.1016/j.fgb.2009.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 12/08/2009] [Accepted: 12/28/2009] [Indexed: 11/17/2022]
Abstract
Microbial secretory phospholipases A(2) (sPLA(2)s) are among the last discovered and least known members of this functionally diverse family of enzymes. We analyzed here two sPLA(2)s, named sPlaA and sPlaB, of the filamentous ascomycete Aspergillus oryzae. sPlaA and sPlaB consist of 222 and 160 amino acids, respectively, and share the conserved Cys and catalytic His-Asp residues typical of microbial sPLA(2)s. Two sPLA(2)s differ in pH optimum, Ca(2+) requirement and expression profile. The splaA mRNA was strongly upregulated in response to carbon starvation, oxidative stress and during conidiation, while splaB was constitutively expressed at low levels and was weakly upregulated by heat shock. Experiments with sPLA(2) overexpressing strains demonstrated that two enzymes produce subtly different phospholipid composition variations and also differ in their subcellular localization: sPlaA is most abundant in hyphal tips and secreted to the medium, whereas sPlaB predominantly localizes to the ER-like intracellular compartment. Both sPLA(2) overexpressing strains were defective in conidiation, which was more pronounced for sPlaB overexpressors. Although no major morphological abnormality was detected in either DeltasplaA or DeltasplaB mutants, hyphal growth of DeltasplaB, but not that of DeltasplaA, displayed increased sensitivity to H(2)O(2) treatment. These data indicate that two A. oryzae sPLA(2) enzymes display distinct, presumably non-redundant, physiological functions.
Collapse
Affiliation(s)
- Tomoyuki Nakahama
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Magrioti V, Kokotos G. Phospholipase A2inhibitors as potential therapeutic agents for the treatment of inflammatory diseases. Expert Opin Ther Pat 2009; 20:1-18. [DOI: 10.1517/13543770903463905] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Coupled calcium and zinc dyshomeostasis and oxidative stress in cardiac myocytes and mitochondria of rats with chronic aldosteronism. J Cardiovasc Pharmacol 2009; 53:414-23. [PMID: 19333130 DOI: 10.1097/fjc.0b013e3181a15e77] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A dyshomeostasis of extra- and intracellular Ca(2+) and Zn(2+) occurs in rats receiving chronic aldosterone/salt treatment (ALDOST). Herein, we hypothesized that the dyshomeostasis of intracellular Ca(2+) and Zn(2+) is intrinsically coupled that alters the redox state of cardiac myocytes and mitochondria, with Ca(2+) serving as a pro-oxidant and Zn(2+) as an antioxidant. Toward this end, we harvested hearts from rats receiving 4 weeks of ALDOST alone or cotreatment with either spironolactone (Spiro), an aldosterone receptor antagonist, or amlodipine (Amlod), an L-type Ca(2+) channel blocker, and from age/sex-matched untreated controls. In each group, we monitored cardiomyocyte [Ca(2+)]i and [Zn(2+)]i and mitochondrial [Ca(2+)]m and [Zn(2+)]m; biomarkers of oxidative stress and antioxidant defenses; expression of Zn transporters, Zip1 and ZnT-1; metallothionein-1, a Zn(2+)-binding protein; and metal response element transcription factor-1, a [Zn(2+)]i sensor and regulator of antioxidant defenses. Compared with controls, at 4-week ALDOST, we found the following: (a) increased [Ca(2+)]i and [Zn(2+)]i, together with increased [Ca(2+)]m and [Zn(2+)]m, each of which could be prevented by Spiro and attenuated with Amlod; (b) increased levels of 3-nitrotyrosine and 4-hydroxy-2-nonenal in cardiomyocytes, together with increased H(2)O(2) production, malondialdehyde, and oxidized glutathione in mitochondria that were coincident with increased activities of Cu/Zn superoxide dismutase and glutathione peroxidase; and (c) increased expression of metallothionein-1, Zip1 and ZnT-1, and metal response element transcription factor-1, attenuated by Spiro. Thus, an intrinsically coupled dyshomeostasis of intracellular Ca(2+) and Zn(2+) occurs in cardiac myocytes and mitochondria in rats receiving ALDOST, where it serves to alter their redox state through a respective induction of oxidative stress and generation of antioxidant defenses. The importance of therapeutic strategies that can uncouple these two divalent cations and modulate their ratio in favor of sustained antioxidant defenses is therefore suggested.
Collapse
|
43
|
Linderoth L, Fristrup P, Hansen M, Melander F, Madsen R, Andresen TL, Peters GH. Mechanistic Study of the sPLA2-Mediated Hydrolysis of a Thio-ester Pro Anticancer Ether Lipid. J Am Chem Soc 2009; 131:12193-200. [DOI: 10.1021/ja901412j] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lars Linderoth
- Department of Chemistry, MEMPHYS-Center for Biomembrane Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby Denmark, Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark, Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, California 91125, LiPlasome Pharma A/S, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark, and DTU Nanotech, Technical University of Denmark, DK-4000 Roskilde, Denmark
| | - Peter Fristrup
- Department of Chemistry, MEMPHYS-Center for Biomembrane Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby Denmark, Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark, Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, California 91125, LiPlasome Pharma A/S, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark, and DTU Nanotech, Technical University of Denmark, DK-4000 Roskilde, Denmark
| | - Martin Hansen
- Department of Chemistry, MEMPHYS-Center for Biomembrane Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby Denmark, Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark, Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, California 91125, LiPlasome Pharma A/S, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark, and DTU Nanotech, Technical University of Denmark, DK-4000 Roskilde, Denmark
| | - Fredrik Melander
- Department of Chemistry, MEMPHYS-Center for Biomembrane Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby Denmark, Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark, Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, California 91125, LiPlasome Pharma A/S, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark, and DTU Nanotech, Technical University of Denmark, DK-4000 Roskilde, Denmark
| | - Robert Madsen
- Department of Chemistry, MEMPHYS-Center for Biomembrane Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby Denmark, Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark, Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, California 91125, LiPlasome Pharma A/S, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark, and DTU Nanotech, Technical University of Denmark, DK-4000 Roskilde, Denmark
| | - Thomas L. Andresen
- Department of Chemistry, MEMPHYS-Center for Biomembrane Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby Denmark, Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark, Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, California 91125, LiPlasome Pharma A/S, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark, and DTU Nanotech, Technical University of Denmark, DK-4000 Roskilde, Denmark
| | - Günther H. Peters
- Department of Chemistry, MEMPHYS-Center for Biomembrane Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby Denmark, Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark, Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, California 91125, LiPlasome Pharma A/S, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark, and DTU Nanotech, Technical University of Denmark, DK-4000 Roskilde, Denmark
| |
Collapse
|
44
|
sPhospholipase A(2) is inhibited by anthocyanidins. J Neural Transm (Vienna) 2009; 116:1071-7. [PMID: 19649692 DOI: 10.1007/s00702-009-0268-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 07/10/2009] [Indexed: 12/19/2022]
Abstract
Epidemiological studies suggest that nutritional antioxidants may reduce the incidence of neurodegenerative disorders and age-related cognitive decline. Specifically, protection against oxidative stress and inflammation has served as a rationale for promoting diets rich in vegetables and fruits. The present study addresses secretory phospholipase A(2) (sPLA(2)) as a novel candidate effector of neuroprotection conferred by anthocyanins and anthocyanidins. Using a photometric assay, 15 compounds were screened for their ability to inhibit PLA(2). Of these, cyanidin, malvidin, peonidin, petunidin, and delphinidin achieved K(i) values <or=18 microM, suggesting a modulatory role for berry polyphenols in phospholipid metabolism.
Collapse
|
45
|
Lipids as targets for novel anti-inflammatory therapies. Pharmacol Ther 2009; 124:96-112. [PMID: 19576246 DOI: 10.1016/j.pharmthera.2009.06.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 06/12/2009] [Indexed: 02/01/2023]
Abstract
Lipids serve important functions as membrane constituents and also as energy storing molecules. Besides these functions certain lipid species have now been recognized as signalling molecules that regulate a multitude of cellular responses including cell growth and death, and also inflammatory reactions. Bioactive lipids are generated by hydrolysis from membrane lipids mainly by phospholipases giving rise to fatty acids and lysophospholipids that either directly exert their function or are further converted to active mediators. This review will summarize the present knowledge about bioactive lipids that either promote or attenuate inflammatory reactions. These lipids include polyunsaturated fatty acids (PUFA), eicosanoids including the epoxyeicosatrienoic acids (EET), peroxisome proliferation activating receptor (PPAR) activators, cannabinoids and the sphingolipids ceramide, sphingosine 1-phosphate and sphingosylphosphorylcholine.
Collapse
|
46
|
Wang Q, Sun AY, Pardeike J, Müller RH, Simonyi A, Sun GY. Neuroprotective effects of a nanocrystal formulation of sPLA(2) inhibitor PX-18 in cerebral ischemia/reperfusion in gerbils. Brain Res 2009; 1285:188-95. [PMID: 19527696 DOI: 10.1016/j.brainres.2009.06.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Revised: 06/04/2009] [Accepted: 06/05/2009] [Indexed: 12/23/2022]
Abstract
The group IIA secretory phospholipase A2 (sPLA(2)-IIA) has been studied extensively because of its involvement in inflammatory processes. Up-regulation of this enzyme has been shown in a number of neurodegenerative diseases including cerebral ischemia and Alzheimer's disease. PX-18 is a selective sPLA(2) inhibitor effective in reducing tissue damage resulting from myocardial infarction. However, its use as a neuroprotective agent has been hampered due to its low solubility. In this study, we test the possible neuroprotective effects of PX-18 formulated as a suspension of nanocrystals. Transient global cerebral ischemia was induced in gerbils by occlusion of both common carotid arteries for 5 min. Four days after ischemia/reperfusion (I/R), extensive delayed neuronal death, DNA damage, and increases in reactive astrocytes and microglial cells were observed in the hippocampal CA1 region. PX-18 nanocrystals (30 and 60 mg/kg body wt) and vehicle controls were injected i.p. immediately after I/R. PX-18 nanocrystal injection significantly reduced delayed neuronal death, DNA damage, as well as glial cell activation. These findings demonstrated the effective neuroprotection of PX-18 in the form of nanocrystal against I/R-induced neuronal damage. The results also suggest that nanocrystals hold promise as an effective strategy for the delivery of compounds with poor solubility that would otherwise be precluded from preclinical development.
Collapse
Affiliation(s)
- Qun Wang
- Department of Biochemistry, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | | | | | | | | | | |
Collapse
|
47
|
Mansfeld J. Plant phospholipases A2: perspectives on biotechnological applications. Biotechnol Lett 2009; 31:1373-80. [DOI: 10.1007/s10529-009-0034-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 04/30/2009] [Accepted: 05/06/2009] [Indexed: 01/21/2023]
|
48
|
Kabarowski JH. G2A and LPC: regulatory functions in immunity. Prostaglandins Other Lipid Mediat 2009; 89:73-81. [PMID: 19383550 DOI: 10.1016/j.prostaglandins.2009.04.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 04/10/2009] [Accepted: 04/13/2009] [Indexed: 02/07/2023]
Abstract
The G2A receptor was originally identified by virtue of its transcriptional induction in murine B lymphoid cells in response to oncogenic transformation and treatment with various DNA-damaging agents. While preliminary characterization of cellular responses to G2A overexpression in fibroblastic cell lines suggested that this receptor may negatively regulate cell growth under conditions of proliferative and genotoxic stress, subsequent studies driven by the discovery of lysophosphatidylcholine (LPC) as a regulator of G2A signaling in immunoregulatory cells point to an important role for this receptor in innate and adaptive immunity.
Collapse
Affiliation(s)
- Janusz H Kabarowski
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA.
| |
Collapse
|
49
|
Ikeno Y, Cheon SH, Konno N, Nakamura A, Kitamoto K, Arioka M. Lysophosphatidylcholine protects cerebellar granule neurons from apoptotic cell death. J Neurosci Res 2009; 87:190-9. [DOI: 10.1002/jnr.21821] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Shaposhnik Z, Wang X, Trias J, Fraser H, Lusis AJ. The synergistic inhibition of atherogenesis in apoE-/- mice between pravastatin and the sPLA2 inhibitor varespladib (A-002). J Lipid Res 2008; 50:623-9. [PMID: 19029066 DOI: 10.1194/jlr.m800361-jlr200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Secretory phospholipase A2 (sPLA2) activity promotes foam cell formation, increases proinflammatory bioactive lipid levels, decreases HDL levels, increases atherosclerosis in transgenic mice, and is an independent marker of cardiovascular disease. The effects of the sPLA2 inhibitor A-002 (varespladib) and pravastatin as monotherapies and in combination on atherosclerosis, lipids, and paraoxonase (PON) activity in apoE(-/-) mice were investigated. Male apoE(-/-) mice were placed on a 12-week high-fat diet supplemented with A-002 alone or combined with pravastatin. Atherosclerotic lesions were examined for size and composition using en face analysis, Movat staining, anti-CD68, and anti-alpha actin antibodies. Plasma lipids and PON activity were measured. A-002 decreased atherosclerotic lesion area by approximately 75% while increasing fibrous cap size by over 200%. HDL levels increased 40% and plasma PON activity increased 80%. Pravastatin monotherapy had no effect on lesion size but when combined with A-002, decreased lesion area 50% and total cholesterol levels 18% more than A-002 alone. A-002, a sPLA2 inhibitor, acts synergistically with pravastatin to decrease atherosclerosis, possibly through decreased levels of systemic inflammation or decreased lipid levels. A-002 treatment also resulted in a profound increase in plasma PON activity and significantly larger fibrous caps, suggesting the formation of more stable plaque architecture.
Collapse
Affiliation(s)
- Zory Shaposhnik
- Division of Cardiology, David Geffen School of Medicine at University of California at Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|