1
|
Bader AC, Van Zuylen EM, Handsley-Davis M, Alegado RA, Benezra A, Pollet RM, Ehau-Taumaunu H, Weyrich LS, Anderson MZ. A relational framework for microbiome research with Indigenous communities. Nat Microbiol 2023; 8:1768-1776. [PMID: 37770743 DOI: 10.1038/s41564-023-01471-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 07/26/2023] [Indexed: 09/30/2023]
Abstract
Ethical practices in human microbiome research have failed to keep pace with scientific advances in the field. Researchers seeking to 'preserve' microbial species associated with Indigenous groups, but absent from industrialized populations, have largely failed to include Indigenous people in knowledge co-production or benefit, perpetuating a legacy of intellectual and material extraction. We propose a framework centred on relationality among Indigenous peoples, researchers and microbes, to guide ethical microbiome research. Our framework centres accountability to flatten historical power imbalances that favour researcher perspectives and interests to provide space for Indigenous worldviews in pursuit of Indigenous research sovereignty. Ethical inclusion of Indigenous communities in microbiome research can provide health benefits for all populations and reinforce mutually beneficial partnerships between researchers and the public.
Collapse
Affiliation(s)
- Alyssa C Bader
- Department of Anthropology, McGill University, Montreal, Quebec, Canada.
| | - Essie M Van Zuylen
- Department of Microbiology and Immunology, University of Otago, Dunedin North, Dunedin, New Zealand
- School of Product Design, University of Canterbury, Christchurch, New Zealand
| | - Matilda Handsley-Davis
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- ARC Centre of Excellence for Australian Biodiversity and Heritage (CABAH), University of Wollongong, Wollongong, New South Wales, Australia
| | - Rosanna A Alegado
- Department of Oceanography, University of Hawai'i Mānoa, Honolulu, HI, USA
| | - Amber Benezra
- Department of Science and Technology Studies, Stevens Institute of Technology, Hoboken, NJ, USA
| | | | - Hanareia Ehau-Taumaunu
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, State College, PA, USA
| | - Laura S Weyrich
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- ARC Centre of Excellence for Australian Biodiversity and Heritage (CABAH), University of Wollongong, Wollongong, New South Wales, Australia
- Department of Anthropology, Pennsylvania State University, State College, PA, USA
| | - Matthew Z Anderson
- Department of Microbiology, The Ohio State University, Columbus, OH, USA.
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA.
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA.
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
2
|
Wahab S, Almaghaslah D, Mahmood SE, Ahmad MF, Alsayegh AA, Abu Haddash YM, Rahman MA, Ahamd I, Ahmad W, Khalid M, Usmani S, Ahmad MP, Hani U. Pharmacological Efficacy of Probiotics in Respiratory Viral Infections: A Comprehensive Review. J Pers Med 2022; 12:1292. [PMID: 36013241 PMCID: PMC9409792 DOI: 10.3390/jpm12081292] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 01/30/2023] Open
Abstract
Mortality and morbidity from influenza and other respiratory viruses are significant causes of concern worldwide. Infections in the respiratory tract are often underappreciated because they tend to be mild and incapacitated. On the other hand, these infections are regarded as a common concern in clinical practice. Antibiotics are used to treat bacterial infections, albeit this is becoming more challenging since many of the more prevalent infection causes have acquired a wide range of antimicrobial resistance. Resistance to frontline treatment medications is constantly rising, necessitating the development of new antiviral agents. Probiotics are one of several medications explored to treat respiratory viral infection (RVI). As a result, certain probiotics effectively prevent gastrointestinal dysbiosis and decrease the likelihood of secondary infections. Various probiotic bacterias and their metabolites have shown immunomodulating and antiviral properties. Unfortunately, the mechanisms by which probiotics are effective in the fight against viral infections are sometimes unclear. This comprehensive review has addressed probiotic strains, dosage regimens, production procedures, delivery systems, and pre-clinical and clinical research. In particular, novel probiotics' fight against RVIs is the impetus for this study. Finally, this review may explore the potential of probiotic bacterias and their metabolites to treat RVIs. It is expected that probiotic-based antiviral research would be benefitted from this review's findings.
Collapse
Affiliation(s)
- Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Dalia Almaghaslah
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Syed Esam Mahmood
- Department of Family and Community Medicine, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdulrahman A. Alsayegh
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Yahya M. Abu Haddash
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohammad Akhlaquer Rahman
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21974, Saudi Arabia
| | - Irfan Ahamd
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Safaa, Dammam 34222, Saudi Arabia
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Shazia Usmani
- Herbal Bioactive Research Laboratory, Faculty of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow 226026, Uttar Pradesh, India
| | - Md Parwez Ahmad
- Department of Pharmacology, School of Medicine, Maldives National University, Male 20402, Maldives
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
3
|
Yang T, Chakraborty S, Mandal J, Mei X, Joe B. Microbiota and Metabolites as Factors Influencing Blood Pressure Regulation. Compr Physiol 2021; 11:1731-1757. [PMID: 33792901 DOI: 10.1002/cphy.c200009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The study of microbes has rapidly expanded in recent years due to a surge in our understanding that humans host a plethora of commensal microbes, which reside in their bodies and depending upon their composition, contribute to either normal physiology or pathophysiology. This article provides a general foundation for learning about host-commensal microbial interactions as an emerging area of research. The article is divided into two sections. The first section is dedicated to introducing commensal microbiota and its known effects on the host. The second section is on metabolites, which are biochemicals that the host and the microbes use for bi-directional communication with each other. Together, the sections review what is known about how microbes interact with the host to impact cardiovascular physiology, especially blood pressure regulation. © 2021 American Physiological Society. Compr Physiol 11:1731-1757, 2021.
Collapse
Affiliation(s)
- Tao Yang
- Center for Hypertension and Precision Medicine and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Saroj Chakraborty
- Center for Hypertension and Precision Medicine and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Juthika Mandal
- Center for Hypertension and Precision Medicine and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Xue Mei
- Center for Hypertension and Precision Medicine and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Bina Joe
- Center for Hypertension and Precision Medicine and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| |
Collapse
|
4
|
The immunomodulatory effects of probiotics on respiratory viral infections: A hint for COVID-19 treatment? Microb Pathog 2020; 148:104452. [PMID: 32818576 PMCID: PMC7431320 DOI: 10.1016/j.micpath.2020.104452] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
Respiratory virus infections are among the most prevalent diseases in humans and contribute to morbidity and mortality in all age groups. Moreover, since they can evolve fast and cross the species barrier, some of these viruses, such as influenza A and coronaviruses, have sometimes caused epidemics or pandemics and were associated with more serious clinical diseases and even mortality. The recently identified Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a Public Health Emergency of International concern and has been associated with rapidly progressive pneumonia. To ensure protection against emerging respiratory tract infections, the development of new strategies based on modulating the immune responses is essential. The use of probiotic components has substantially increased due to their effects on immune responses, in particular on those that occur in the upper/lower respiratory tract. Superinduction of inflammatory reaction, known as a cytokine storm, has been correlated directly with viral pneumonia and serious complications of respiratory infections. In this review, probiotics, as potential immunomodulatory agents, have been proposed to improve the host's response to respiratory viral infections. In addition, the effects of probiotics on different aspects of immune responses and their antiviral properties in both pre-clinical and clinical contexts have been described in detail.
Collapse
|
5
|
Wen B, Taibi A, Villa CR, Lee SH, Sagaidak S, Comelli EM. Effects of Bifidobacterium bifidum in Mice Infected with Citrobacter rodentium. Microorganisms 2019; 7:microorganisms7020051. [PMID: 30769786 PMCID: PMC6407003 DOI: 10.3390/microorganisms7020051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
In vitro and in vivo studies suggest that selected Bifidobacterium bifidum strains sustain intestinal homeostasis. This study aimed to examine whether the administration of B. bifidum MIMBb75 (BB75) attenuates Citrobacter rodentium infection, a murine model for enteric infection and inflammatory bowel disease in humans. C57Bl6/J mice were randomized to receive BB75 daily starting before or after C. rodentium infection. BB75 load and infection kinetics were monitored. On day 10 post-infection (p.i.), histological parameters of the large intestine were assessed. Barrier integrity was evaluated by pathogen translocation to secondary organs and in vivo permeability test. Fecal C. rodentium load peaked at 1010 CFU/g at day 10 p.i., with clearance at day 24 p.i., regardless of probiotic treatment. BB75 administration resulted in 107 cells/g of feces with no effect of timing of administration. BB75 treatment did not attenuate C. rodentium-induced crypt hyperplasia nor inflammation. C. rodentium and BB75 can co-exist in the gut with no mutual displacement. However, BB75 cannot counteract C. rodentium pathology. Our findings provide insight for the understanding of probiotics behavior and their clinical relevance in intestinal inflammation.
Collapse
Affiliation(s)
- Bijun Wen
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Amel Taibi
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Christopher R Villa
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Shin-Hann Lee
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Sofia Sagaidak
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Elena M Comelli
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
- Joannah and Brian Lawson Centre for Child Nutrition, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
6
|
Rebuilding the Gut Microbiota Ecosystem. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15081679. [PMID: 30087270 PMCID: PMC6121872 DOI: 10.3390/ijerph15081679] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/04/2018] [Indexed: 11/17/2022]
Abstract
A microbial ecosystem in which bacteria no longer live in a mutualistic association is called dysbiotic. Gut microbiota dysbiosis is a condition related with the pathogenesis of intestinal illnesses (irritable bowel syndrome, celiac disease, and inflammatory bowel disease) and extra-intestinal illnesses (obesity, metabolic disorder, cardiovascular syndrome, allergy, and asthma). Dysbiosis status has been related to various important pathologies, and many therapeutic strategies aimed at restoring the balance of the intestinal ecosystem have been implemented. These strategies include the administration of probiotics, prebiotics, and synbiotics; phage therapy; fecal transplantation; bacterial consortium transplantation; and a still poorly investigated approach based on predatory bacteria. This review discusses the various aspects of these strategies to counteract intestinal dysbiosis.
Collapse
|
7
|
Oral administration of Bifidobacterium bifidum G9-1 alleviates rotavirus gastroenteritis through regulation of intestinal homeostasis by inducing mucosal protective factors. PLoS One 2017; 12:e0173979. [PMID: 28346473 PMCID: PMC5367788 DOI: 10.1371/journal.pone.0173979] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/01/2017] [Indexed: 12/17/2022] Open
Abstract
Human rotavirus (RV) infection is a leading cause of dehydrating diarrhea in infants and young children worldwide. Since therapeutic approaches to RV gastroenteritis are limited to alleviation of dehydration with oral rehydration solutions, more direct approaches to palliate symptoms of RV gastroenteritis are required. Treatments with probiotics have been increasingly recognized as alternative safe and low cost treatments for moderate infectious diarrhea. In this study, Bifidobacterium bifidum G9-1 (BBG9-1), which has been used as an intestinal drug for several decades, was shown to have a remarkable protective effect against RV gastroenteritis in a suckling mice model. As well as prophylactic oral administration of BBG9-1 from 2 days before RV infection, therapeutic oral administration of BBG9-1 from 1 day after RV infection significantly alleviated RV-induced diarrhea. Therapeutic administration of BBG9-1 reduced various types of damage in the small intestine, such as epithelial vacuolization and villous shortening, and significantly diminished the infectious RV titer in mixtures of cecal contents and feces. It was also shown that therapeutic administration of BBG9-1 significantly increased the number of acidic mucin-positive goblet cells and the gene expression of mucosal protective factors including MUC2, MUC3, MUC4, TGFβ1 and TFF3 in the small intestine. This led to alleviation of low gut permeability shown as decreased gene expression levels of occludin, claudin-1 and villin-1 after RV infection. Furthermore, in the small intestine, therapeutic administration of BBG9-1 significantly palliated the decreased gene expression of SGLT-1, which plays an important role in water absorption. In the large intestine, administered BBG9-1 was shown to replicate to assimilate undigested nutrients, resulting in normalization of the abnormally high osmotic pressure. These results suggested that water malabsorption caused by RV infection was alleviated in mice administered BBG9-1. Thus, the present study showed that oral administration of BBG9-1 palliated diarrhea partly through protection against RV-induced lesions by inducing mucosal protective factors. Oral administration of BBG9-1 is thought to be an efficient method for management of an RV epidemic for both prophylactic and therapeutic purposes.
Collapse
|
8
|
Górska S, Schwarzer M, Srutkova D, Hermanova P, Brzozowska E, Kozakova H, Gamian A. Polysaccharides L900/2 and L900/3 isolated from Lactobacillus rhamnosus LOCK 0900 modulate allergic sensitization to ovalbumin in a mouse model. Microb Biotechnol 2017; 10:586-593. [PMID: 28165193 PMCID: PMC5404188 DOI: 10.1111/1751-7915.12606] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/08/2017] [Indexed: 01/01/2023] Open
Abstract
Here, we compared the abilities of polysaccharides L900/2 and L900/3, which were previously isolated from Lactobacillus rhamnosus LOCK 0900, to modulate the immune response to bystander antigens in a mouse model of ovalbumin (OVA) sensitization. In vivo, both polysaccharides reduced the levels of OVA‐specific IgE, IgE‐dependent basophil degranulation and IgG2a antibodies, but had no effect on the levels of OVA‐specific IgA or IgG1. Interestingly, both polysaccharides triggered recall cellular responses with distinct properties. L900/3 significantly suppressed the OVA‐induced upregulations of IL‐4, IL‐5, IL‐10 and IL‐13 in re‐stimulated spleen cells and mesenteric lymph nodes. Our findings support and expand on our previous in vitro studies by demonstrating that polymer L900/3 might modulate the Th1/Th2 balance and could be a promising candidate molecule for preventing allergic sensitization.
Collapse
Affiliation(s)
- Sabina Górska
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - Martin Schwarzer
- Institute of Microbiology, Laboratory of Gnotobiology, Academy of Sciences of the Czech Republic v. v. i., 549 22, Novy Hradek, Czech Republic
| | - Dagmar Srutkova
- Institute of Microbiology, Laboratory of Gnotobiology, Academy of Sciences of the Czech Republic v. v. i., 549 22, Novy Hradek, Czech Republic
| | - Petra Hermanova
- Institute of Microbiology, Laboratory of Gnotobiology, Academy of Sciences of the Czech Republic v. v. i., 549 22, Novy Hradek, Czech Republic
| | - Ewa Brzozowska
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - Hana Kozakova
- Institute of Microbiology, Laboratory of Gnotobiology, Academy of Sciences of the Czech Republic v. v. i., 549 22, Novy Hradek, Czech Republic
| | - Andrzej Gamian
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| |
Collapse
|
9
|
Choi WJ, Konkit M, Kim Y, Kim MK, Kim W. Oral administration of Lactococcus chungangensis inhibits 2,4-dinitrochlorobenzene-induced atopic-like dermatitis in NC/Nga mice. J Dairy Sci 2016; 99:6889-6901. [DOI: 10.3168/jds.2016-11301] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 05/05/2016] [Indexed: 12/31/2022]
|
10
|
Tsunemine S, Isa Y, Ohno H, Hagino S, Yamamura H, Mizutani N, Nabe T. Longitudinal study of effects of oral dosage of Bifidobacterium bifidum G9-1 on Japanese cedar pollen-induced allergic nasal symptoms in guinea pigs. Microbiol Immunol 2016; 59:690-9. [PMID: 26400839 DOI: 10.1111/1348-0421.12324] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/10/2015] [Accepted: 09/17/2015] [Indexed: 11/27/2022]
Abstract
Previous studies using experimental animal models have reported the beneficial effects of probiotics on allergic responses; however, their long-term effects on allergic nasal symptoms in clinical settings have not yet been elucidated in detail. In the present study, a guinea pig allergic rhinitis model involving repeated inhalation challenges with a natural allergen, Japanese cedar pollen, was used to examine the longitudinal effects of Bifidobacterium bifidum G9-1 (BBG9-1) on allergic nasal symptoms. BBG9-1 was administered orally once a day. Amelioration of nasal blockage was consistently observed throughout the experimental period in the BBG9-1-treated group. Although challenge-induced sneezing was not significantly inhibited in the BBG9-1-treated group, prolonged treatment with BBG9-1 slightly reduced the frequency of sneezing. Antigen-specific IgE antibody production was also not inhibited in the BBG9-1-treated group. Increases in the numbers of eosinophils and neutrophils in nasal cavity lavage fluid collected after pollen challenge were almost completely suppressed by BBG9-1 treatment, whereas those in mast cell mediators, histamine and cysteinyl leukotrienes were not. In contrast, increases in the levels of nitric oxide metabolites were potently suppressed. Furthermore, prolonged BBG9-1 treatment markedly suppressed exogenous leukotriene D4 -induced nasal blockage. Thus, prolonged oral administration of BBG9-1 suppresses Japanese cedar pollen-induced allergic nasal symptoms. The inhibitory mechanisms responsible may involve reductions in the responsiveness of target organs, such as endothelial cells in nasal mucosal blood vessels, to chemical mediators.
Collapse
Affiliation(s)
- Satoru Tsunemine
- Biofermin Kobe Research institute, Biofermin Pharmaceutical Co., Ltd., 7-3-4 Ibukidai-Higashimachi, Nishi-ku, Kobe, 651-2242
| | - Yasuhiro Isa
- Biofermin Kobe Research institute, Biofermin Pharmaceutical Co., Ltd., 7-3-4 Ibukidai-Higashimachi, Nishi-ku, Kobe, 651-2242
| | - Hiroshi Ohno
- Biofermin Kobe Research institute, Biofermin Pharmaceutical Co., Ltd., 7-3-4 Ibukidai-Higashimachi, Nishi-ku, Kobe, 651-2242
| | - Satoko Hagino
- Department of Pharmacology, Kyoto Pharmaceutical University, 5 Nakauchi, Misasagi, Yamashina, Kyoto, 607-8414
| | - Hideki Yamamura
- Biofermin Kobe Research institute, Biofermin Pharmaceutical Co., Ltd., 7-3-4 Ibukidai-Higashimachi, Nishi-ku, Kobe, 651-2242
| | - Nobuaki Mizutani
- Department of Pharmacology, Kobe Pharmaceutical University, 4-19-1 Motoyama-kita, Higashinada, Kobe, 658-8558, Japan
| | - Takeshi Nabe
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101.,Department of Pharmacology, Kyoto Pharmaceutical University, 5 Nakauchi, Misasagi, Yamashina, Kyoto, 607-8414
| |
Collapse
|
11
|
Kawahara T, Takahashi T, Oishi K, Tanaka H, Masuda M, Takahashi S, Takano M, Kawakami T, Fukushima K, Kanazawa H, Suzuki T. Consecutive oral administration of Bifidobacterium longum MM-2 improves the defense system against influenza virus infection by enhancing natural killer cell activity in a murine model. Microbiol Immunol 2015; 59:1-12. [PMID: 25400245 DOI: 10.1111/1348-0421.12210] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/24/2014] [Accepted: 10/30/2014] [Indexed: 12/24/2022]
Abstract
Bifidobacterium, one of the major components of intestinal microflora, shows anti-influenza virus (IFV) potential as a probiotic, partly through enhancement of innate immunity by modulation of the intestinal immune system. Bifidobacterium longum MM-2 (MM-2), a very safe bacterium in humans, was isolated from healthy humans and its protective effect against IFV infection in a murine model shown. In mice that were intranasally inoculated with IFV, oral administration of MM-2 for 17 consecutive days improved clinical symptoms, reduced mortality, suppressed inflammation in the lower respiratory tract, and decreased virus titers, cell death, and pro-inflammatory cytokines such as IL-6 and TNF-α in bronchoalveolar lavage fluid. The anti-IFV mechanism of MM-2 involves innate immunity through significant increases in NK cell activities in the lungs and spleen and a significant increase in pulmonary gene expression of NK cell activators such as IFN-γ, IL-2, IL-12 and IL-18. Even in non-infected mice, MM-2 administration also induced significant enhancement of both IFN-γ production by Peyer's patch cells (PPs) and splenetic NK cell activity. Oral administration of MM-2 for 17 days activates systemic immunoreactivity in PPs, which contributes to innate immunity, including NK cell activation, resulting in an anti-IFV effect. MM-2 as a probiotic may function as a prophylactic agent in the management of an IFV epidemic.
Collapse
Affiliation(s)
- Tomohiro Kawahara
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan; Biofermin Kobe Research Institute, Biofermin Pharmaceutical, 7-3-4 Ibukidai-Higashimachi, Nishi-ku, Kobe, 651-2242, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Probiotic fermented milk consumption modulates the allergic process induced by ovoalbumin in mice. Br J Nutr 2015; 114:566-76. [PMID: 26179751 DOI: 10.1017/s0007114515001981] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Orally administered probiotic micro-organisms are able to regulate the exacerbated immune response during the antigenic sensitisation process. The aim of the present study was to evaluate the potential efficacy of probiotic fermented milk (PFM) in preventing or treating allergy in an experimental model, and to investigate its underlying mechanisms. Ovoalbumin (OVA)-sensitised BALB/c mice were fed with PFM before the sensitisation procedure or fed continuously with PFM. At 7 and 15 d post-sensitisation, anti-OVA-specific IgE, IgG, IgG1 and IgG2a concentrations were measured in the serum and broncho-alveolar lavage fluid (BALF). Concentrations of interferon-γ (IFN-γ), IL-4, IL-10 and total secretory IgA (S-IgA) were measured in the supernatants of macerated lungs or in the BALF. The levels of IgA+, CD4+ and CD8+ T lymphocytes and F4/80+ cells were measured in the lungs by immunofluorescence. Inducible CD4+/CD25/Foxp3+ regulatory T (Treg) cells were evaluated in the lungs. PFM shifted the T helper (Th)2 profile response towards a Th1 response that led to the production of IgG instead of IgE, with increasing levels of IL-10 and IFN-γ that play an important role in immunomodulation exerted by PFM administration in sensitised mice. Anti-OVA-specific IgE levels were significantly decreased; however, there was no modification in the levels of anti-OVA-specific IgG and total S-IgA. PFM did not influence Treg cells in treated mice. Consumption of PFM could be a promising strategy in the amelioration of airway allergies, considering that the effect is mediated by the production of IgG through the activation of Th1 instead of the direct activation of Th2 cells to produce IgE.
Collapse
|
13
|
Scientific Opinion on the substantiation of health claims related to a combination of Lactobacillus gasseri PA 16/8, Bifidobacterium bifidum M 20/5 and Bifidobacterium longum SP 07/3 and maintenance of upper respiratory tract defence against pathogens (ID 931, further assessment) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
14
|
Zhu L, Shimada T, Chen R, Lu M, Zhang Q, Lu W, Yin M, Enomoto T, Cheng L. Effects of lysed Enterococcus faecalis FK-23 on experimental allergic rhinitis in a murine model. J Biomed Res 2012; 26:226-34. [PMID: 23554753 PMCID: PMC3596073 DOI: 10.7555/jbr.26.20120023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 04/03/2012] [Accepted: 04/14/2012] [Indexed: 12/20/2022] Open
Abstract
In the current study, we sought to investigate whether lysed Enterococcus faecalis FK-23 (LFK), a heat-killed probiotic preparation, attenuated eosinophil influx into the upper airway and had immunomodulatory activity in a murine allergic rhinitis model. Eighteen BALB/c mice were divided into three groups; the ovalbumin (OVA)-sensitized/challenged group, which received saline orally for 6 weeks (OVA group), the OVA-sensitized/challenged group, which received LFK orally for 6 weeks (LFK-fed group), and the non-sensitized group, which received saline for 6 weeks (saline control group). Nasal rubbing and sneezing were monitored during the study. After the final challenge, interleukin (IL)-4, interferon (IFN)-γ, and OVA-specific IgE levels in the sera and splenocyte culture supernatants were determined, eosinophilic infiltrate into the upper airway was quantified, and splenic CD4+CD25+ regulatory T cells (Tregs) were examined by flow cytometry. We found that nasal rubbing was significantly reduced in LFK-fed mice compared to the OVA group on d 27 and 35, and sneezing was significantly inhibited by LFK administration for 35 d. LFK-fed mice had significantly less eosinophil influx into the nasal mucosa than the OVA group. There were no significant differences between the LFK-fed group and OVA group in the serum and splenocyte culture supernatant levels of IL-4, IFN-γ, and OVA-specific IgE. Interestingly, the LFK-fed mice had a significantly greater percentage of splenic CD4+CD25+ Tregs than OVA group. Our results indicate that oral administration of LFK may alleviate nasal symptoms, reduce nasal eosinophilia, and increase the percentage of CD4+CD25+ Tregs in experimental allergic rhinitis.
Collapse
Affiliation(s)
- Luping Zhu
- Department of Otorhinolaryngology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hohchi N, Hashida K, Ohkubo JI, Wakasugi T, Mori T, Nguyen KH, Kuroda E, Ikeno T, Taniguchi H, Suzuki H. Synergism of Staphylococcus aureus colonization and allergic reaction in the nasal cavity in mice. Int Arch Allergy Immunol 2012; 159:33-40. [PMID: 22555155 DOI: 10.1159/000335200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 11/04/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The aim of this study is to investigate the reciprocal effect of Staphylococcus aureus colonization and allergic rhinitis in an allergy model of mice. METHODS BALB/c mice with intraperitoneal ovalbumin (OVA) sensitization and/or intranasal S. aureus inoculation were prepared. The following 4 groups were designed: an OVA-sensitized S. aureus-inoculated (AR-SA) group, an OVA-sensitized uninoculated (AR) group, a nonsensitized S. aureus-inoculated (SA) group, and a nonsensitized uninoculated (control) group. After intranasal OVA challenge, nasal lavage fluid, peripheral blood, and nasal mucosa were collected. Polymorphonuclear cells in the nasal lavage fluid were counted, serum OVA-specific IgE and IgG1 were measured by enzyme immunoassays, and IL-4, IL-5, and IFN-γ mRNAs in the nasal mucosa were assessed by quantitative real-time reverse transcription-PCR. The number of S. aureus in the nasal mucosa and lavage fluid was counted. RESULTS Both eosinophil and neutrophil counts were larger in the AR-SA group than in the other groups. Both IgE and IgG1 levels were higher in the AR and AR-SA groups than in the SA and control groups, and the IgG1 level was higher in the AR-SA group than in the AR group. The expression of IL-4 mRNA was higher in the AR-SA group than in the other groups, and the expression of IL-5 mRNA was higher in the AR-SA group than in the SA group. The AR-SA group showed higher counts of S. aureus in the nasal mucosa than the SA group. CONCLUSION These results indicate the mutually potentiating effect of S. aureus colonization and allergic rhinitis.
Collapse
Affiliation(s)
- Nobusuke Hohchi
- Department of Otorhinolaryngology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Castro M, Azpiroz M, Molina M, Mourelle A, Alaniz F, Maldonado A, Manghi M. Preliminary Studies on the Prevention of the Ovalbumin-Induced Allergic Response by Enterococcus faecalis CECT7121 in Mice. Int Arch Allergy Immunol 2012; 157:11-20. [DOI: 10.1159/000324673] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 01/26/2011] [Indexed: 01/15/2023] Open
|
17
|
Shandilya UK, Jadhav S, Panwar V, Kansal VK. Probiotics: Potent Immunomodulatory Tool Against Allergy. Probiotics Antimicrob Proteins 2011; 3:151-8. [DOI: 10.1007/s12602-011-9077-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
18
|
Yoshida A, Aoki R, Kimoto-Nira H, Kobayashi M, Kawasumi T, Mizumachi K, Suzuki C. Oral administration of liveLactococcus lactisC59 suppresses IgE antibody production in ovalbumin-sensitized mice via the regulation of interleukin-4 production. ACTA ACUST UNITED AC 2011; 61:315-22. [DOI: 10.1111/j.1574-695x.2010.00777.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Characterization of immunostimulatory CpG-rich sequences from different Bifidobacterium species. Appl Environ Microbiol 2010; 76:2846-55. [PMID: 20208019 DOI: 10.1128/aem.01714-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The beneficial effects of Bifidobacterium are partly due to its immunostimulatory properties. These immunostimulatory properties may be linked to the presence of unmethylated CpG motifs specific to bacterial DNA, which may induce a TH1 response by activating Toll-like receptors (TLR). Using in silico analyses, PCR amplification, and dot blotting, we characterized the CpG content of various bifidobacterial strains and evaluated the immunostimulatory properties and genomic heterogeneity of these motifs in the genus. Our in silico study, based on entire genome sequences from five bifidobacterial strains, showed that Bifidobacterium genomes contain numerous CpG motifs, including 5'-purine-purine-CG-pyrimidine-pyrimidine-3' and 5'-purine-TCG-pyrimidine-pyrimidine-3' motifs, and biologically active sequences previously identified in lactic acid bacteria. We identified four CpG-rich sequences with Bifidobacterium longum NCC2705. Two sequences with a percent G+C of about 68% included 14 and 16 CpG motifs. Two sequences with a percent G+C of about 60% included 16 and 6 CpG motifs. These sequences induce the production of monocyte chemoattractant protein 1 (MCP-1) and tumor necrosis factor alpha (TNF-alpha) through a pattern of TLR9 stimulation on RAW 264.7 macrophages. No link could be established between their immunostimulatory properties, the number of CpG motifs, and percent G+C. We investigated inter- and intraspecies heterogeneity in 71 strains of various origins. These sequences were highly conserved in the genus. No link was found between the presence of the CpG-rich sequence and the origin of the strains (healthy, allergic, or preterm infants). The high frequency of CpG motifs in the DNA of Bifidobacterium may play an important role in the immunostimulatory properties of commensal or probiotic bifidobacterial strains.
Collapse
|
20
|
Tsunemine S, Isa Y, Shimakawa M, Ohno H, Yamamura H. Effects of Bifidobacterium bifidum G9-1 on Nasal Symptoms in a Guinea Pig Model of Experimental Allergic Rhinitis. Biosci Microflora 2010; 30:1-7. [PMID: 25045310 PMCID: PMC4103633 DOI: 10.12938/bifidus.30.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 10/29/2010] [Indexed: 12/31/2022] Open
Abstract
Recent studies of several animal models have shown beneficial effects of probiotics
against allergic responses. However, few reports have examined the effects of probiotics
on allergic nasal symptoms such as sneezing and nasal obstruction in animal models of
allergic rhinitis. This study evaluated the efficacy of Bifidobacterium
bifidum G9-1 (BBG9-1) on antigen-induced nasal symptoms using guinea pig models
of allergic rhinitis. Oral administration of BBG9-1 significantly inhibited
antigen-induced allergic nasal reactions such as sneezing and nasal obstruction. Our
results suggest that BBG9-1 may be useful for alleviating nasal symptoms in patients with
allergic rhinitis.
Collapse
Affiliation(s)
- Satoru Tsunemine
- Biofermin Kobe Research Institute, Biofermin Pharmaceutical Co., Ltd., 7-3-4 Higashi-machi, Ibukidai, Nishi-ku, Kobe 651-2242, Japan
| | - Yasuhiro Isa
- Biofermin Kobe Research Institute, Biofermin Pharmaceutical Co., Ltd., 7-3-4 Higashi-machi, Ibukidai, Nishi-ku, Kobe 651-2242, Japan
| | - Masaki Shimakawa
- Biofermin Kobe Research Institute, Biofermin Pharmaceutical Co., Ltd., 7-3-4 Higashi-machi, Ibukidai, Nishi-ku, Kobe 651-2242, Japan
| | - Hiroshi Ohno
- Biofermin Kobe Research Institute, Biofermin Pharmaceutical Co., Ltd., 7-3-4 Higashi-machi, Ibukidai, Nishi-ku, Kobe 651-2242, Japan
| | - Hideki Yamamura
- Biofermin Kobe Research Institute, Biofermin Pharmaceutical Co., Ltd., 7-3-4 Higashi-machi, Ibukidai, Nishi-ku, Kobe 651-2242, Japan
| |
Collapse
|
21
|
Maity C, Rana S, Pati BR, Mondal KC. Effect of graded hyperbaric atmospheric pressure on the quantity and composition of faecal flora. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.1080/08910600902992725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Chiranjit Maity
- Department of Microbiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Sukanta Rana
- Department of Microbiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Bikas Ranjan Pati
- Department of Microbiology, Vidyasagar University, Midnapore, West Bengal, India
| | | |
Collapse
|
22
|
Inoue Y, Iwabuchi N, Xiao JZ, Yaeshima T, Iwatsuki K. Suppressive effects of bifidobacterium breve strain M-16V on T-helper type 2 immune responses in a murine model. Biol Pharm Bull 2009; 32:760-3. [PMID: 19336921 DOI: 10.1248/bpb.32.760] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Bifidobacterium breve M-16V strain has previously been shown to be effective in infants in improving the symptoms of allergic hypersensitivity to cow's milk and atopic dermatitis. In the current study, we investigated the effect of an oral administration of M-16V on immunoglobulin (Ig) E production in BALB/c mice. Live M-16V was orally administered to ovalbumin (OVA)-immunized mice for 3 weeks at a dose level of 5x10(8) colony-forming unit (cfu)/0.5 ml/d/animal. While M-16V treatment significantly reduced the serum levels of total IgE, OVA-specific IgE and OVA-specific IgG1, as compared to controls, it did not affect the serum level of OVA-specific IgG2a. In M-16V-administered mice, there was a significant decrease in the serum OVA-specific IgG1/IgG2a ratio. In addition, while ex vivo production of interleukin (IL)-4 by the splenocytes from M-16V-administered mice was significantly lower as compared to controls, there was no difference in the production of gamma-interferon (IFN-gamma) and IL-10. We also examined the effect of M-16V on cytokine and IgE production from OVA-sensitized splenocytes via restimulation with OVA in vitro. While M-16V suppressed OVA-induced total IgE and IL-4 production and induced secretion of IFN-gamma and IL-10 in a dose-dependent manner, it was not able to induce IL-12. We concluded that oral administration of M-16V suppressed the T-helper type (Th) 2 immune response and IgE production and modulated the systemic Th1/Th2 balance, and which was at least partially independent of the Th1 cytokine induction. These results suggest that M-16V may potentially have an antiallergic activity.
Collapse
Affiliation(s)
- Yumi Inoue
- Food Science and Technology Institute, Morinaga Milk Industry Co., Ltd, Japan
| | | | | | | | | |
Collapse
|
23
|
Borchers AT, Selmi C, Meyers FJ, Keen CL, Gershwin ME. Probiotics and immunity. J Gastroenterol 2009; 44:26-46. [PMID: 19159071 DOI: 10.1007/s00535-008-2296-0] [Citation(s) in RCA: 295] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 09/03/2008] [Indexed: 02/04/2023]
Abstract
Probiotics are defined as live microorganisms that, when administered in adequate amounts, confer a health benefit on the host, including the gastrointestinal tract. While this beneficial effect was originally thought to stem from improvements in the intestinal microbial balance, there is now substantial evidence that probiotics can also provide benefits by modulating immune functions. In animal models, probiotic supplementation is able to provide protection from spontaneous and chemically induced colitis by downregulating inflammatory cytokines or inducing regulatory mechanisms in a strain-specific manner. In animal models of allergen sensitization and murine models of asthma and allergic rhinitis, orally administered probiotics can strain-dependently decrease allergen-specific IgE production, in part by modulating systemic cytokine production. Certain probiotics have been shown to decrease airway hyperresponsiveness and inflammation by inducing regulatory mechanisms. Promising results have been obtained with probiotics in the treatment of human inflammatory diseases of the intestine and in the prevention and treatment of atopic eczema in neonates and infants. However, the findings are too variable to allow firm conclusions as to the effectiveness of specific probiotics in these conditions.
Collapse
Affiliation(s)
- Andrea T Borchers
- Department of Nutrition, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | | | | | | | | |
Collapse
|
24
|
Mine Y, Yang M. Recent advances in the understanding of egg allergens: basic, industrial, and clinical perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:4874-4900. [PMID: 18543935 DOI: 10.1021/jf8001153] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The emergence of egg allergy has had both industrial and clinical implications. In industrialized countries, egg allergy accounts for one of the most prevalent food hypersensitivities, especially in children. Atopic dermatitis represents the most common clinical manifestation in infancy; however, the range of clinical signs is broad and encompasses life-threatening anaphylaxis. The dominant egg allergens are proteins and are mainly present in the egg white, for example, ovalbumin, ovomucoid, ovotransferrin, and lysozyme. However, egg yolk also displays low-level allergenicity, for example, alpha-livetin. Strict avoidance of the offending food remains the most common recommendation for egg-allergic individuals. Nevertheless, the omnipresence of egg-derived components in prepackaged or prepared foods makes it difficult. Therefore, more efficient preventive approaches are investigated to protect consumers from inadvertent exposure and ensuing adverse reactions. On the one hand, commercial kits have become readily available that allow for the detection of egg contaminants at trace levels. On the other hand, attempts to produce hypoallergenic egg-containing products through food-processing techniques have met with promising results, but the approach is limited due to its potentially undesirable effects on the unique functional and sensory attributes of egg proteins. Therefore, the development of preventive or curative strategies for egg allergy remains strongly warranted. Pilot studies have suggested that oral immunotherapy (IT) with raw or cooked preparations of egg may represent a safe alternative, immediately available to allergic subjects, but remains applicable to only nonanaphylactic patients. Due to the limitations of conventional IT, novel forms of immunotherapy are sought based on information obtained from the molecular characterization of major egg allergens. In the past decade, promising approaches to the treatment and prevention of egg allergy have been explored and include, among others, the production of hypoallergenic recombinant egg proteins, the development of customized peptides, and bacterial-mediated immunotherapy. Nonspecific approaches have also been evaluated, and preliminary trials with the use of probiotic bacteria have yielded encouraging results. The current understanding of egg allergens offers novel approaches toward the making of food products safe for human consumption and the development of efficient immunotherapeutic strategies.
Collapse
Affiliation(s)
- Yoshinori Mine
- Department of Food Science, University of Guelph, Guelph, Ontario N1G2W1, Canada.
| | | |
Collapse
|
25
|
Jung WK, Lee DY, Choi YH, Yea SS, Choi I, Park SG, Seo SK, Lee SW, Lee CM, Kim SK, Jeon YJ, Choi IW. Caffeic acid phenethyl ester attenuates allergic airway inflammation and hyperresponsiveness in murine model of ovalbumin-induced asthma. Life Sci 2008; 82:797-805. [PMID: 18299139 DOI: 10.1016/j.lfs.2008.01.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 01/21/2008] [Accepted: 01/22/2008] [Indexed: 10/22/2022]
Abstract
Caffeic acid phenethyl ester (CAPE) is a biologically active ingredient of propolis, which has several interesting biological properties, including antioxidant and anti-inflammatory; however, its anti-allergic effects are poorly understood. The objective of this study was to determine whether treatment with CAPE results in significant inhibition of asthmatic reactions in a mouse model. Mice sensitized and challenged with ovalbumin (OVA) had the following typical asthmatic reactions: an increase in the number of eosinophils in bronchoalveolar lavage (BAL) fluid; a marked influx of inflammatory cells into the lung around blood vessels and airways, and airway luminal narrowing; the development of airway hyperresponsiveness (AHR); the presence of tumor necrosis factor-alpha (TNF-alpha) and Th2 cytokines, including IL-4 and IL-5, in the BAL fluid; and the presence of allergen-specific IgE in the serum. Five successive intraperitoneal administrations of CAPE before the last airway OVA challenge resulted in significant inhibition of characteristic asthmatic reactions. We determined that increased generation of reactive oxygen species (ROS) by inhalation of OVA was diminished via the administration of CAPE in BAL fluid, as well as nuclear factor-kappaB (NF-kappaB) DNA binding activity. These findings indicate that oxidative stress may have a crucial function in the pathogenesis of bronchial asthma, and that CAPE may be useful as an adjuvant therapy for the treatment of bronchial asthma.
Collapse
Affiliation(s)
- Won-Kyo Jung
- Department of Microbiology, Center for Viral Disease Research, Bio-Marker Research Center for Personalized Therapy, Inje University College of Medicine, Busan 614-735, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Iwabuchi N, Takahashi N, Xiao JZ, Miyaji K, Iwatsuki K. In vitro Th1 cytokine-independent Th2 suppressive effects of bifidobacteria. Microbiol Immunol 2007; 51:649-60. [PMID: 17641467 DOI: 10.1111/j.1348-0421.2007.tb03953.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A comparison between 17 strains of lactic acid bacteria and 15 strains of bifidobacteria indicated that bifidobacteria induced significantly lower levels of interleukin-12 (IL-12) in murine splenic cells. The present study aims to evaluate the effect and mechanism of Bifidobacterium longum BB536, a probiotic strain, in suppressing antigen-induced Th2 immune response in vitro. BB536 suppressed immunoglobulin (Ig) E and IL-4 production by ovalbumin-sensitized splenic cells, but induction of Th1-inducing cytokine production, such as IL-12 and gamma interferon (IFN-gamma) tended to be lower compared with lactic acid bacteria. Neutralization with antibodies to IL-12, IFN-gamma, IL-10 and transforming growth factor beta indicated negative involvement of Th1-inducing cytokines and regulatory cytokines in the suppression of Th2 immune response by BB536, especially when treated at higher doses of BB536 (>10 microg cells/ml). Furthermore, BB536 induced the maturation of immature bone marrow-derived dendritic cells (BM-DCs), and suppressed antigen-induced IL-4 production mediated by BM-DCs. These results suggested that BB536 suppressed Th2 immune responses, partially independent of Th1-inducing cytokines and independent of regulatory cytokines, mediated by antigen-presenting cells such as dendritic cells.
Collapse
Affiliation(s)
- Noriyuki Iwabuchi
- Food Science and Technology Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan.
| | | | | | | | | |
Collapse
|
27
|
Daniel C, Repa A, Mercenier A, Wiedermann U, Wells J. The European LABDEL project and its relevance to the prevention and treatment of allergies. Allergy 2007; 62:1237-42. [PMID: 17919137 DOI: 10.1111/j.1398-9995.2007.01496.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In March 2001, the European Commission funded a 3-year project (contract no. QLK3-CT-2000-00340) under the fifth Framework Programme to develop and test prototype products based on the oral delivery of vaccine and therapeutic agents using harmless lactic acid bacteria (LAB). The project, best known under its acronym LABDEL (for LAB delivery) also included research on LAB fermentation and technological innovations aimed at enhancing the efficiency of LAB delivery systems (1). One of the key scientific objectives was to investigate the possibility to prevent or treat a type I allergic disease using mucosal administration of LAB expressing the pollen allergen Bet v 1. The aim of this paper was to describe the background of the project with reference to a limited selection of articles and recent reviews as well as the results and major conclusions arising from this part of the project.
Collapse
Affiliation(s)
- C Daniel
- Laboratoire des Bactéries Lactiques et Immunité des Muqueuses, Institut Pasteur de Lille, Lille Cedex, France
| | | | | | | | | |
Collapse
|
28
|
Bifidobacterium components have immunomodulatory characteristics dependent on the method of preparation. Cytotechnology 2007; 55:79-87. [PMID: 19002997 DOI: 10.1007/s10616-007-9105-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 10/10/2007] [Indexed: 10/22/2022] Open
Abstract
Some bifidobacteria or lactobacilli exhibit a variety of immunomodulatory effects, such as being anti-inflammatory, increasing IgA secretion, and moderating allergy. We prepared three types of Bifidobacterium components from B. pseudocatenulatum JCM 7041 (Bp) using preparation methods such as sonication, heat treatment, and non-treatment (live Bp). Furthermore, we compared their immunomodulatory effects using in vivo and in vitro immunological bio-assays. We determined immune responses such as cell proliferation and the production of cytokines and IgA in Peyer's patch cells in vitro following co-culture with bacterial components, and investigated the effects of oral administration of each of them on cytokine and IgA production by Peyer's patch cells. Live-, ultrasonic treated- and heat-treated Bp exhibited cytokine-inducing and cell proliferation activities. Sonicated Bp in particular showed the greatest immunomodulatory activity in the short term as measured by in vitro and in vivo assays, while heat-treated Bp induced cytokines (e.g. IL-6 and IFN-gamma) and IgA production following oral administration for 7 consecutive days. These data showed that Bifidobacterium components prepared by different methods might induce different immune responses. Using scanning electron microscopy we demonstrated that the surface structure of sonicated Bp, which contained more soluble saccharides, was different from other components. These data suggest that the immunomodulatory effect of Bp is dependent upon the bacterial conformation and condition.
Collapse
|
29
|
Medina M, Izquierdo E, Ennahar S, Sanz Y. Differential immunomodulatory properties of Bifidobacterium logum strains: relevance to probiotic selection and clinical applications. Clin Exp Immunol 2007; 150:531-8. [PMID: 17956582 DOI: 10.1111/j.1365-2249.2007.03522.x] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Modulation of host immunity is one of the proposed benefits of the consumption of probiotics. Nonetheless, comparative studies on the immunological properties that support the selection of strains of the same species for specific health benefits are limited. In this study, the ability of different strains of Bifidobacterium longum to induce cytokine production by peripheral blood mononuclear cells (PBMCs) has been evaluated. Live cells of all B. longum strains greatly stimulated regulatory cytokine interleukin (IL)-10 and proinflammatory cytokine tumour necrosis factor (TNF)-alpha production. Strains of the same species also induced specific cytokine patterns, suggesting that they could drive immune responses in different directions. The probiotic strain B. longum W11 stimulated strongly the production of T helper 1 (Th1) cytokines while B. longum NCIMB 8809 and BIF53 induced low levels of Th1 cytokines and high levels of IL-10. The effects of cell-surface components obtained by sonication of B. longum strains overall confirm the effects detected by stimulation of PBMCs with live cells, indicating that these components are important determinants of the immunomodulatory activity of B. longum. Genomic DNA of some strains stimulated the production of the Th1 and pro-inflammatory cytokines, interferon (IFN)-gamma and TNF-alpha, but not that of IL-10. None of the cell-free culture supernatants of the studied strains was able to induce TNF-alpha production, suggesting that the proinflammatory component of these strains is associated mainly with structural cell molecules. The results suggest that despite sharing certain features, some strains can perform a better functional role than others and their careful selection for therapeutic use is desirable.
Collapse
Affiliation(s)
- M Medina
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Burjassot-Valencia, Spain
| | | | | | | |
Collapse
|
30
|
Blümer N, Sel S, Virna S, Patrascan CC, Zimmermann S, Herz U, Renz H, Garn H. Perinatal maternal application of Lactobacillus rhamnosus GG suppresses allergic airway inflammation in mouse offspring. Clin Exp Allergy 2007; 37:348-57. [PMID: 17359385 DOI: 10.1111/j.1365-2222.2007.02671.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Clinical studies indicate that maternal exposure to probiotic bacteria may protect from the development of allergic disease later in life. OBJECTIVE The purpose of this study was to analyse the effects of a perinatal Lactobacillus rhamnosus GG (LGG) supplementation on the development of allergic disorders in offspring. METHODS Female BALB/c mice received intragastric LGG every other day before conception, during pregnancy and lactation (perinatal supplementation group) or before conception and during pregnancy only (prenatal supplementation group). Cytokine expression of placental tissues was examined. Offspring of LGG-supplemented and sham-exposed mothers were sensitized to Ovalbumin (OVA), followed by aerosol allergen challenges. Development of experimental asthma was assessed by bronchoalveolar lavage analysis, lung histology and lung function measurement. Cytokine production of splenic mononuclear cells was analysed following in vitro stimulation. RESULTS Intestinal colonization with LGG was observed in mother mice only, but not in the offspring. However, a reduced expression of TNF-alpha, IFN-gamma, IL-5 as well as IL-10 was observed in mice derived from perinatally LGG-supplemented mothers, whereas IL-13 and IL-4 expression remained unchanged. Moreover, in offspring of prenatally or perinatally LGG-supplemented mothers allergic airway and peribronchial inflammation as well as goblet cell hyperplasia were significantly reduced as compared with mice derived from non-supplemented mothers. In contrast, airway hyperresponsiveness to methacholine was not affected. Exposure to LGG during pregnancy only shifted the placental cytokine expression pattern with a markedly increased TNF-alpha level. CONCLUSION Our data suggest that LGG may exert beneficial effects on the development of experimental allergic asthma, when applied in a very early phase of life. Immunological effects are, at least in parts, mediated via the placenta, probably by induction of pro-inflammatory cell signals.
Collapse
Affiliation(s)
- N Blümer
- Department of Clinical Chemistry, Hospital of the Phillips University of Marburg, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Torii A, Torii S, Fujiwara S, Tanaka H, Inagaki N, Nagai H. Lactobacillus Acidophilus strain L-92 regulates the production of Th1 cytokine as well as Th2 cytokines. Allergol Int 2007; 56:293-301. [PMID: 17646735 DOI: 10.2332/allergolint.o-06-459] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 02/27/2007] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND There is growing interest in probiotics such as lactic acid bacteria (LAB), not only for treatment of T helper type (Th) 1-mediated diseases but also for Th2-mediated diseases, including allergic diseases, since lactic acid bacteria may be able to modulate the Th1/Th2 balance, in addition to having an immunomodulative effect through induction of Th1 bias. METHODS The effect of oral administration of heat-killed Lactobacillus acidophilus Strain L-92 (L-92) on ovalbumin (OVA)-specific immunoglobulin (Ig)E production was investigated in BALB/c mice. L-92 was orally administered to mice for 8 weeks from 2 weeks after initiation of OVA-immunization. Patterns of cytokine and Ig production in splenocytes and cells from Peyer's patches (PPs) from these mice were examined after restimulation with OVA in vitro. RESULTS L-92 significantly suppressed serum OVA-specific IgE levels for a long period. Cytokines such as interferon (IFN)-gamma, interleukin (IL)-4 and IL-10 and Igs such as total IgE and OVA-specific IgE were produced at significantly lower levels by splenocytes of L-92-treated mice, compared with those of control mice. In contrast, transforming growth factor (TGF)-beta and IgA levels produced by PPs from L-92-treated mice were significantly higher than in those from control mice. CONCLUSIONS Oral L-92 administration regulated both Th1 and Th2 cytokine responses, suppressed serum OVA-specific IgE, and induced TGF-beta production in PPs. TGF-beta is known to be associated with activation of regulatory T (Treg) cells. These data suggest that LAB may have immunomodulative effect by Treg cells via TGF-beta activity.
Collapse
Affiliation(s)
- Akiko Torii
- Department of Pharmacology, Gifu Pharmaceutical University, Gifu, Japan.
| | | | | | | | | | | |
Collapse
|
32
|
Xiao JZ, Kondo S, Yanagisawa N, Takahashi N, Odamaki T, Iwabuchi N, Miyaji K, Iwatsuki K, Togashi H, Enomoto K, Enomoto T. Probiotics in the treatment of Japanese cedar pollinosis: a double-blind placebo-controlled trial. Clin Exp Allergy 2007; 36:1425-35. [PMID: 17083353 DOI: 10.1111/j.1365-2222.2006.02575.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Probiotic bacteria may be effective in the treatment of allergic inflammation and food allergy, but efficacy and underlying mechanisms remain unclear. OBJECTIVE The present study investigated the effects of probiotic strain Bifidobacterium longum BB536 in the treatment of Japanese cedar pollinosis (JCPsis). METHODS In a randomized, double-blind, placebo-controlled trial, 44 JCPsis subjects received BB536 or placebo for 13 weeks during the pollen season. Subjective symptoms and self-care measures were recorded daily and blood samples were taken before and during intervention to measure blood levels of parameters related to JCPsis. RESULTS BB536 intake was associated with a significant reduction in number of subjects prematurely terminated due to severe symptoms and pollinosis medication (P=0.0057 vs. placebo group). Comparison of subjective symptom scores indicated significant decreases in rhinorrhea, nasal blockage and composite scores in the BB536 group compared with the placebo group. Comparison of medical scores showed marked improvements in all symptoms on BB536 intake. A T-helper type 2 (Th2)-skewed immune response occurring along with pollen dispersion was observed. BB536 significantly suppressed increases in plasma thymus- and activation-regulated chemokine and tended to suppress elevations of Japanese cedar pollen (JCP)-specific IgE. CONCLUSION These results suggest the efficacy of BB536 in relieving JCPsis symptoms, probably through the modulation of Th2-skewed immune response.
Collapse
Affiliation(s)
- J-Z Xiao
- Food Research and Development Laboratory, Morinaga Milk Industry Co Ltd, Zama, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Banerjee ER, Jiang Y, Henderson WR, Scott LM, Papayannopoulou T. Alpha4 and beta2 integrins have nonredundant roles for asthma development, but for optimal allergen sensitization only alpha4 is critical. Exp Hematol 2007; 35:605-17. [PMID: 17379071 DOI: 10.1016/j.exphem.2007.01.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 01/29/2007] [Accepted: 01/29/2007] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Recruitment of effector cell subsets to inflammatory lung, together with airway resident cells responsive to secreted products, play pivotal roles in developing and maintaining asthma. Differential use of adhesion molecules dictates the recruitment patterns of specific cell subsets, yet a clear understanding of the distinctive adhesive molecular pathways guiding them to lung is lacking. To provide further insight into the role of alpha4beta1/VCAM-1 pathway and to compare this to the role of beta2 integrin in the development of acute asthma phenotype, we used genetically deficient mice, in contrast to previous studies with anti-functional antibodies yielding ambiguous results. METHODS Allergen-dependent airway inflammation and hyperresponsiveness was induced in conditional alpha4(Delta/Delta), VCAM-1(-/-), and beta2(-/-) mice. Cytology, immunocytochemistry, cytokine and immunoglobulin measurements, and cell type accumulation in lung, BAL fluid, plasma, and hemopoietic tissues were carried out. RESULTS Asthma phenotype was totally abrogated in alpha4- or beta2-deficient mice. Adoptive transfer of sensitized alpha4(Delta/Delta) CD4(+) cells into challenged normal mice failed to induce asthma, whereas alpha4(+/+) CD4(+) cells were able to induce asthma in challenged alpha4(Delta/Delta) mice. Parallel studies with beta2(-/-) or VCAM-1(-/-) mice uncovered novel mechanistic insights in primary sensitization and into redundant or unique functional roles of these adhesion pathways in allergic asthma. CONCLUSIONS The lack of alpha4 integrin not only impedes the migration of all white cell subsets to lung and airways, but also prevents upregulation of vascular cell adhesion molecule-1 (VCAM-1) in inflamed lung vasculature and, unlike beta2, attenuates optimal sensitization and ovalbumin-specific IgE production in vivo. As VCAM-1 deficiency did not protect mice from asthma, interactions of alpha4beta1(+) or alpha4beta7(+) cells with other ligands are suggested.
Collapse
Affiliation(s)
- Ena Ray Banerjee
- Divisions of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA
| | | | | | | | | |
Collapse
|
34
|
Takahashi N, Kitazawa H, Iwabuchi N, Xiao JZ, Miyaji K, Iwatsuki K, Saito T. Oral administration of an immunostimulatory DNA sequence from Bifidobacterium longum improves Th1/Th2 balance in a murine model. Biosci Biotechnol Biochem 2006; 70:2013-7. [PMID: 16926520 DOI: 10.1271/bbb.60260] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have reported the antiallergic activities of the immunostimulatory oligodeoxynucleotide (ODN) BL07S, identified from genomic DNA of Bifidobacterium longum BB536 from in vitro and in vivo studies. The present study evaluated the efficiency of ODN BL07S in preventing allergic responses by oral administration. Oral administration of BL07S suppressed serum ovalbumin (OVA)-specific immunoglobulin (Ig) E levels and improved the OVA-specific IgG2a/IgG1 ratio. ODN BL07S increased Th1 cytokine and decreased Th2 cytokine production in splenocytes. These results suggest that immunostimulatory ODNs are potentially associated with the antiallergic effects of probiotics.
Collapse
Affiliation(s)
- Noritoshi Takahashi
- Food Research and Development Laboratory, Morinaga Milk Industry Co., Ltd., Zama, Japan.
| | | | | | | | | | | | | |
Collapse
|
35
|
Takahashi N, Kitazawa H, Iwabuchi N, Xiao JZ, Miyaji K, Iwatsuki K, Saito T. Immunostimulatory oligodeoxynucleotide from Bifidobacterium longum suppresses Th2 immune responses in a murine model. Clin Exp Immunol 2006; 145:130-8. [PMID: 16792683 PMCID: PMC1941999 DOI: 10.1111/j.1365-2249.2006.03111.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We have reported previously that novel immunostimulatory sequence (ISS) oligodeoxynucleotide (ODN) BL07S from a probiotic strain of Bifidobacterium longum inhibited immunoglobulin (Ig) E production in vitro. However, whether ISS-ODNs from probiotics regulate T helper type 2 (Th2)-polarized immune reactions in vivo remains unclear. To evaluate the inhibitory effects of ODN BL07S on type I allergic response, BALB/c mice were injected with or without ODN BL07S in the presence of ovalbumin (OVA) on days 0 and 14. Serum Ig levels (IgE, IgG1 and IgG2a) and cytokine levels (interferon (IFN)-gamma, interleukin (IL)-12, IL-4, IL-5, IL-10 and IL-13) were investigated in splenocyte cultures from days 14-28. Production of OVA-specific and total IgE were significantly suppressed by administration of ODN BL07S, but not by ODN BL06S, a non-ISS-ODN. Compared to controls, ODN BL07S induced significantly lower levels of Th2 cytokines (IL-4 and IL-5) in splenocyte cultures, and significantly higher levels of serum OVA-specific IgG2a. These effects of ODN BL07S on modulation of Th2 immune response were dose-dependent. The present results demonstrate that ODN BL07S from genomic DNA of B. longum BB536 prevents antigen-induced Th2 immune responses in vivo, suggesting that ISS-ODNs from probiotics might be useful in preventing allergic disease.
Collapse
Affiliation(s)
- N Takahashi
- Food Research and Development Laboratory, Morinaga Milk Industry Co. Ltd, Zama, Japan.
| | | | | | | | | | | | | |
Collapse
|
36
|
Takahashi N, Kitazawa H, Shimosato T, Iwabuchi N, Xiao JZ, Iwatsuki K, Kokubo S, Saito T. An immunostimulatory DNA sequence from a probiotic strain of Bifidobacterium longum inhibits IgE production in vitro. ACTA ACUST UNITED AC 2006; 46:461-9. [PMID: 16553822 DOI: 10.1111/j.1574-695x.2006.00064.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The immunostimulatory oligodeoxynucleotide (ODN) BL07 (5'-GCGTCGGTTTCGGTGCTCAC-3') was identified from the genomic DNA of the probiotic strain Bifidobacterium longum BB536. ODN BL07 stimulated B-lymphocyte proliferation and induced interleukin-12 (IL-12) production in macrophage-like J774.1 cells. ODNs BL07 and BL07S (modified with phosphorothioate backbone) significantly inhibited immunoglobulin E (IgE) production and stimulated interferon-gamma (IFN-gamma) and IL-12 production, but did not affect IL-4 secretion in murine splenic cells of ovalbumin-primed BALB/c mice. These ODNs also significantly inhibited production of IgE in purified murine B cells in the presence of IL-4 and anti-CD40. The results suggest the potential of ODNs BL07 and BL07S in preventing IgE-related immune responses and the possible involvement of ODN BL07 in the antiallergic efficacy of B. longum BB536.
Collapse
Affiliation(s)
- Noritoshi Takahashi
- Food Research and Development Laboratory, Morinaga Milk Industry Co., Ltd, Zama, Kanagawa, Japan.
| | | | | | | | | | | | | | | |
Collapse
|