1
|
Guo X, Luo W, Wu L, Zhang L, Chen Y, Li T, Li H, Zhang W, Liu Y, Zheng J, Wang Y. Natural Products from Herbal Medicine Self-Assemble into Advanced Bioactive Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403388. [PMID: 39033533 PMCID: PMC11425287 DOI: 10.1002/advs.202403388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/09/2024] [Indexed: 07/23/2024]
Abstract
Novel biomaterials are becoming more crucial in treating human diseases. However, many materials require complex artificial modifications and synthesis, leading to potential difficulties in preparation, side effects, and clinical translation. Recently, significant progress has been achieved in terms of direct self-assembly of natural products from herbal medicine (NPHM), an important source for novel medications, resulting in a wide range of bioactive supramolecular materials including gels, and nanoparticles. The NPHM-based supramolecular bioactive materials are produced from renewable resources, are simple to prepare, and have demonstrated multi-functionality including slow-release, smart-responsive release, and especially possess powerful biological effects to treat various diseases. In this review, NPHM-based supramolecular bioactive materials have been revealed as an emerging, revolutionary, and promising strategy. The development, advantages, and limitations of NPHM, as well as the advantageous position of NPHM-based materials, are first reviewed. Subsequently, a systematic and comprehensive analysis of the self-assembly strategies specific to seven major classes of NPHM is highlighted. Insights into the influence of NPHM structural features on the formation of supramolecular materials are also provided. Finally, the drivers and preparations are summarized, emphasizing the biomedical applications, future scientific challenges, and opportunities, with the hope of igniting inspiration for future research and applications.
Collapse
Affiliation(s)
- Xiaohang Guo
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Weikang Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lingyu Wu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Lianglin Zhang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuxuan Chen
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, 519087, China
| | - Teng Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Haigang Li
- Hunan key laboratory of the research and development of novel pharmaceutical preparations, Changsha Medical University, Changsha, 410219, China
| | - Wei Zhang
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yawei Liu
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jun Zheng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
2
|
Uekusa Y, Tanioka C, Nakamoto K, Tsutsumi R, Iida C, Enshu N, Nishimura T, Kiuchi F, Kikuchi H. Compound-compound interaction analysis of baicalin and berberine derivatives in aqueous solution. J Nat Med 2024; 78:590-598. [PMID: 38573419 DOI: 10.1007/s11418-024-01804-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/09/2024] [Indexed: 04/05/2024]
Abstract
Baicalin and berberine are biologically active constituents of the crude drugs Scutellaria root and Coptis rhizome/Phellodendron bark, respectively. Baicalin and berberine are reported to combine together as a 1:1 complex that forms yellow precipitates by electrostatic interaction in decoctions of Kampo formulae containing these crude drugs. However, the structural basis and mechanism for the precipitate formation of this compound-compound interaction in aqueous solution remains unclarified. Herein, we searched for berberine derivatives in the Coptis rhizome that interact with baicalin and identified the chemical structures involved in the precipitation formation. Precipitation assays showed that baicalin formed precipitates with berberine and coptisine but not with palmatine and epiberberine. Thus, the 2,3-methylenedioxy structure may be crucial to the formation of the precipitates, and electrostatic interaction is necessary but is not sufficient. In this multicomponent system experiment, palmatine formed a dissociable complex with baicalin and may competitively inhibit the formation of berberine and coptisine precipitation with baicalin. Therefore, the precipitation formed by berberine and baicalin was considered to be caused by the aggregation of the berberine-baicalin complex, and the 2,3-methylenedioxy structure is likely crucial to the aggregation of the complex.
Collapse
Affiliation(s)
- Yoshinori Uekusa
- Division of Natural Medicines, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-Ku, Tokyo, 105-8512, Japan.
| | - Chiharu Tanioka
- Division of Natural Medicines, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-Ku, Tokyo, 105-8512, Japan
| | - Kenjiro Nakamoto
- Division of Natural Medicines, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-Ku, Tokyo, 105-8512, Japan
| | - Riina Tsutsumi
- Division of Natural Medicines, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-Ku, Tokyo, 105-8512, Japan
| | - Chihiro Iida
- Division of Natural Medicines, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-Ku, Tokyo, 105-8512, Japan
| | - Naoto Enshu
- Division of Natural Medicines, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-Ku, Tokyo, 105-8512, Japan
| | - Takehiro Nishimura
- Division of Natural Medicines, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-Ku, Tokyo, 105-8512, Japan
| | - Fumiyuki Kiuchi
- Division of Natural Medicines, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-Ku, Tokyo, 105-8512, Japan
| | - Haruhisa Kikuchi
- Division of Natural Medicines, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-Ku, Tokyo, 105-8512, Japan.
| |
Collapse
|
3
|
Yang H, Wang J, Tan Q, Dong Z, Yang Z, Zhang P, Wang W. Supramolecular interaction between berberine hydrochloride and baicalin in aqueous solution: Reaction kinetics, spectral analysis and dynamic simulation. Heliyon 2024; 10:e29992. [PMID: 38756587 PMCID: PMC11096731 DOI: 10.1016/j.heliyon.2024.e29992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
The current study presents a comprehensive investigation on the precipitation reaction and supramolecular interactions between berberine hydrochloride (BBR) and baicalin (BA) in an aqueous system. Utilizing a combination of multi-spectral analytical techniques and molecular dynamic simulations, we elucidated the mechanism of the complexion process. The precipitate formation was observed within a drug concentration range of 0.1-1.0 mM, and a 1:1 stoichiometry ratio of BBR to BA was established by the Job's plot method. Morphological and structural characterizations of the precipitates were conducted using DSC, FTIR and PXRD. Additionally, UV-Vis absorption and 1H NMR spectroscopy were employed to compare the spectral characteristics of the precipitates with those of individual drug solution. Molecular dynamic simulations further dissected the intermolecular interactions and self-assembly mechanisms. The precipitates formed were amorphous microparticles with an average diameter of approximately 20 μm, primarily stabilized by hydrogen bonding and π-π stacking. This study contributes foundational insights into the supramolecular interactions between BBR and BA, therefore facilitated a better understanding of the precipitation process involving flavonoid-alkaloid pairs in mixed aqueous solutions.
Collapse
Affiliation(s)
- Hua Yang
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Jiao Wang
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Qiuru Tan
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Zhi Dong
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Zhizhong Yang
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Peng Zhang
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Wenping Wang
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China
| |
Collapse
|
4
|
Kim HY, Kim JH. Chemical Characterization of the Precipitate Found in and Its Effect on Drug Release of the Scutellaria baicalensis-Coptis chinensis Extract. Chem Biodivers 2023; 20:e202301461. [PMID: 37961037 DOI: 10.1002/cbdv.202301461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/15/2023]
Abstract
Precipitate generation is a challenging issue during the production of herbal decoction as it affects the stability and bioavailability of active compounds. Here we explored the composition of the natural precipitate formed from and its effect on drug release of Scutellaria baicalensis-Coptis chinensis paired extract (SCPE). Furthermore, the surface morphology of the SCPE precipitate was also investigated. Ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) was used to chemical component analysis and field emission scanning electron microscope (FE-SEM) was performed to particle observation. Baicalin (BA), berberine (BBR) and starch-arginine-rich polymers were abundant in the SCPE precipitate. FE-SEM micrographs showed spheroidal shaped particles in the SCPE supernatant, while spherical and porous tissue-shaped particles in the SCPE precipitate. In vitro drug release of baicalin and berberine contained in the precipitate may increase as the polymer is removed. The presence of polymer-related interactions were confirmed by the greater increase in solubility of baicalin upon addition of arginine and polymer. This was also supported by the solubility decrease of the BA-BBR complex in polymer solution and the gelation of the BA-BBR complex in arginine solution. Our results provide a scientific basis for elucidating the pharmaceutical properties of the decoction of S. baicalensis-C. chinensis-based herbal medicine.
Collapse
Affiliation(s)
- Han-Young Kim
- Research Institute for Korean Medicine, Pusan National University, Yangsan, Republic of Korea, 50612
| | - Jung-Hoon Kim
- Division of Pharmacology, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea, 50612
| |
Collapse
|
5
|
Chemical Influence of Scutellaria baicalensis—Coptis chinensis Pair on the Extraction Efficiencies of Flavonoids and Alkaloids at Different Extraction Times and Temperatures. SEPARATIONS 2023. [DOI: 10.3390/separations10020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
The Scutellaria baicalensis—Coptis chinensis pair is an herbal combination used for the treatment of various heat-related diseases. During the extraction process, two herbs can mutually influence the extraction efficiency of the chemical constituents contained in each herb. The concentrations of five flavonoids from S. baicalensis and seven alkaloids from C. chinensis were compared in paired or single hot-water extracts at different temperatures (80, 90, and 100 °C) and extraction times (60, 90, and 120 min). Temperature- and time-dependent increases in marker compound concentrations were observed in both paired and single extracts, with the exception of baicalin, berberine, and coptisine in the paired extracts at 100 °C. However, the extractions of the compounds in the paired and single extracts were affected differently by the extraction conditions. Furthermore, the concentrations of most marker compounds in single extracts were 1.09–44.13 times those in paired extracts. The contents of baicalin, wogonoside, coptisine, and berberine, known to be easily aggregated by the flavonoid–alkaloid complex, were changed by 0.024–0.764-fold in the paired extract. The effect of extraction temperature and time on the formation of the flavonoid–alkaloid complex was not significant. The extraction efficiency of the flavonoids and alkaloids can be affected by the pair of S. baicalensis—C. chinensis, which is a primary factor in the chemical modification of two herb-containing herbal extracts.
Collapse
|
6
|
Thermodynamics driving phytochemical self-assembly morphological change and efficacy enhancement originated from single and co-decoction of traditional chinese medicine. J Nanobiotechnology 2022; 20:527. [PMID: 36510210 PMCID: PMC9743513 DOI: 10.1186/s12951-022-01734-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Through the self-assembled strategy to improve the clinical efficacy of the existing drugs is the focus of current research. Herbal formula granule is a kind of modern dosage form of traditional Chinese medicine (TCM) which has sprung up in recent decades. However, whether it is equivalent to the TCM decoction that has been used for thousands of years has always been a controversial issue. In this paper, taking the herb pair of Coptidis Rhizoma-Scutellariae Radix and its main component berberine-baicalin as examples, the differences and mechanisms of self-assemblies originated from the co-decoction and physical mixture were studied, respectively. Moreover, the relationship between the morphology and antibacterial effects of self-assemblies was illuminated via multi-technology. Our study revealed that the physical mixture's morphology of both the herb pair and the phytochemicals was nanofibers (NFs), while their co-decoction's morphology was nanospheres (NPs). We also found that the antibacterial activity was enhanced with the change of self-assemblies' morphology after the driving by thermal energy. This might be attributed to that NPs could influence amino acid biosynthesis and metabolism in bacteria. Current study provides a basis that co-decoction maybe beneficial to enhance activity and reasonable use of herbal formula granule in clinic.
Collapse
|
7
|
Li Z, Liu Y, Wang J, Feng X, Nwafor EO, Zhang Y, Liu R, Dang W, Zhang Q, Yu C, Pi J, Liu Z. Baicalin-berberine complex nanocrystals orally promote the co-absorption of two components. Drug Deliv Transl Res 2022; 12:3017-3028. [PMID: 35476182 DOI: 10.1007/s13346-022-01167-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2022] [Indexed: 12/16/2022]
Abstract
Baicalin (BA)-berberine (BBR) have been proposed as the couple in the prevention and treatment of numerous diseases due to their multiple functional attributes. However, with regard to certain factors involving unsatisfactory aqueous solubility and low bioavailability associated with its clinical application, there is need for continuous researches by scientist. In this study, after successfully preparing BA-BBR complex, BA-BBR complex nanocrystals were obtained through high-pressure homogenization and evaluated (in vitro and in vivo). The particle size, distribution, morphology, and crystalline properties for the optimal BA-BBR complex nanocrystals were characterized by the use of scanning electron microscope, dynamic light scattering, powder X-ray diffraction, and differential scanning calorimetry. The particle size and poly-dispersity index of BA-BBR complex nanocrystals were 318.40 ± 3.32 nm and 0.26 ± 0.03, respectively. In addition, evaluation of the in vitro dissolution extent indicated that BA and BBR in BA-BBR complex nanocrystals were 3.30- and 2.35-fold than BA-BBR complex. Subsequently, single-pass intestinal perfusion combined with microdialysis test and oral pharmacokinetics in SD rats was employed to evaluate the in vivo absorption improvement of BA-BBR complex nanocrystals. The pharmacokinetics results exhibited that the area under curve of BA and BBR in the BA-BBR complex nanocrystals group were 622.65 ± 456.95 h·ng/ml and 167.28 ± 78.87 h·ng/ml, respectively, which were separately 7.49- and 2.64-fold than the complex coarse suspension. In conclusion, the above results indicate that the developed and optimized BA-BBR complex nanocrystals could improve the dissolution rate and extent and oral bioavailability, as well as facilitate the co-absorption of the drug prescriptions BA and BBR.
Collapse
Affiliation(s)
- Ziwei Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, 301617, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, 301617, China
| | - Yiting Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, 301617, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, 301617, China
| | - Jilin Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, 301617, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, 301617, China
| | - Xiaojiao Feng
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, 301617, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, 301617, China
| | - Ebuka-Olisaemeka Nwafor
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, 301617, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, 301617, China
| | - Ying Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, 301617, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, 301617, China
| | - Rui Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, 301617, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, 301617, China
| | - Wenli Dang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, 301617, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, 301617, China
| | - Qingqing Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, 301617, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, 301617, China
| | - Changxiang Yu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, 301617, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, 301617, China
| | - Jiaxin Pi
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, 301617, Tianjin, China. .,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, 301617, China.
| | - Zhidong Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, 301617, Tianjin, China. .,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin, 301617, China.
| |
Collapse
|
8
|
Hu Y, Ye Z, Wu M, She Y, Li L, Xu Y, Qin K, Hu Z, Yang M, Lu F, Ye Q. The Communication Between Intestinal Microbiota and Ulcerative Colitis: An Exploration of Pathogenesis, Animal Models, and Potential Therapeutic Strategies. Front Med (Lausanne) 2021; 8:766126. [PMID: 34966755 PMCID: PMC8710685 DOI: 10.3389/fmed.2021.766126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Ulcerative Colitis (UC) is a chronic inflammatory bowel disease. The prolonged course of UC and the lack of effective treatment management make it difficult to cure, affecting the health and life safety of patients. Although UC has received more attention, the etiology and pathogenesis of UC are still unclear. Therefore, it is urgent to establish an updated and comprehensive understanding of UC and explore effective treatment strategies. Notably, sufficient evidence shows that the intestinal microbiota plays an important role in the pathogenesis of UC, and the treating method aimed at improving the balance of the intestinal microbiota exhibits a therapeutic potential for UC. This article reviews the relationship between the genetic, immunological and microbial risk factors with UC. At the same time, the UC animal models related to intestinal microbiota dysbiosis induced by chemical drugs were evaluated. Finally, the potential value of the therapeutic strategies for restoring intestinal microbial homeostasis and treating UC were also investigated. Comprehensively, this study may help to carry out preclinical research, treatment theory and methods, and health management strategy of UC, and provide some theoretical basis for TCM in the treatment of UC.
Collapse
Affiliation(s)
- Yu Hu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhen Ye
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingquan Wu
- Department of Pharmacy, Sichuan Provincial Orthopedic Hospital, Chengdu, China
| | - Yingqi She
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Linzhen Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yujie Xu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kaihua Qin
- Health Preservation and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhipeng Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Maoyi Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fating Lu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiaobo Ye
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Huang Y, Zhao Y, Zhang Y, Sun L, Zhao C, Zhang X, Zhao M. Simultaneous Determination of Four Bioactive Flavonoids in Rat Plasma by UPLC-MS/MS and Comparative Pharmacokinetic Study after Oral Administration of Danyikangtai Powder and Three Compatibilities. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916666200130112247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Danyikangtai powder, a Traditional Chinese Medicine (TCM) formula, shows
promise to become a novel drug candidate for the simultaneous treatment of chronic cholecystitis and
chronic pancreatitis. However, the pharmacokinetic behavior of Danyikangtai powder remains unclear.
Objective:
We investigated the comparative pharmacokinetics of four flavonoids in rats after oral administration
of Danyikangtai powder and three compatibilities.
Materials and Methods:
The comparative pharmacokinetics was studied by ultra-performance liquid
chromatography-tandem mass spectrometry (UPLC–MS/MS). Chromatographic separation was performed
on a Universil XB-C18 column with a gradient mobile phase containing 0.1% (v/v) aqueous
formic acid and acetonitrile. All analytes and internal standard were quantitated in the multiple reaction
monitoring modes with a positive electrospray ionization interface.
Results and Discussion:
Danyikangtai powder and Scutellariae radix have similar pharmacokinetic
behaviors in rats after oral administration. However, the elimination of four flavonoids in rats after oral
administration of Danyikangtai powder was accelerated, which was possibly related to the reduction of
the potential hepatotoxicity of Scutellariae radix. The varying degrees of change in pharmacokinetic
parameters after oral administration of different herb combinations suggested that herb–herb interactions
occurred in vivo.
Conclusions:
This study will be helpful to reveal the safety, rational and mechanism of Danyikangtai
powder formula compatibility, thereby providing pre-clinical research data for its new drug development
and guidance for its rational clinical application.
Collapse
Affiliation(s)
- Yihe Huang
- College of Chemistry, Liaoning University, Shenyang 110036,China
| | - Yanhui Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; 3Shenyang Medical College, Shenyang 110034,China
| | - Yumeng Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; 3Shenyang Medical College, Shenyang 110034,China
| | - Lin Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; 3Shenyang Medical College, Shenyang 110034,China
| | - Chunjie Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; 3Shenyang Medical College, Shenyang 110034,China
| | - Xiangdong Zhang
- College of Chemistry, Liaoning University, Shenyang 110036,China
| | - Min Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; 3Shenyang Medical College, Shenyang 110034,China
| |
Collapse
|
10
|
Lu JZ, Ye D, Ma BL. Constituents, Pharmacokinetics, and Pharmacology of Gegen-Qinlian Decoction. Front Pharmacol 2021; 12:668418. [PMID: 34025427 PMCID: PMC8139575 DOI: 10.3389/fphar.2021.668418] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/26/2021] [Indexed: 12/24/2022] Open
Abstract
Gegen-Qinlian decoction (GQD) is a classic traditional Chinese medicine (TCM) formula. It is composed of four TCMs, including Puerariae Lobatae Radix, Scutellariae Radix, Coptidis Rhizoma, and Glycyrrhizae Radix et Rhizoma Praeparata cum Melle. GQD is traditionally and clinically used to treat both the "external and internal symptoms" of diarrhea with fever. In this review, key words related to GQD were searched in the Web of Science, PubMed, China National Knowledge Infrastructure (CNKI), and other databases. Literature published mainly from 2000 to 2020 was screened and summarized. The main constituents of GQD could be classified into eight groups according to their structures: flavonoid C-glycosides, flavonoid O-glucuronides, benzylisoquinoline alkaloids, free flavonoids, flavonoid O-glycosides, coumarins, triterpenoid saponins, and others. The parent constituents of GQD that enter circulation mainly include puerarin and daidzein from Puerariae Lobatae Radix, baicalin and wogonoside from Scutellariae Radix, berberine and magnoflorine from Coptidis Rhizoma, as well as glycyrrhetinic acid and glycyrrhizic acid from Glycyrrhizae Radix et Rhizoma Praeparata cum Melle. GQD is effective against inflammatory intestinal diseases, including diarrhea, ulcerative colitis, and intestinal adverse reactions caused by chemotherapeutic agents. Moreover, GQD has significant effects on metabolic diseases, such as nonalcoholic fatty liver and type 2 diabetes. Furthermore, GQD can be used to treat lung injury. In brief, the main constituents, the pharmacokinetic and pharmacological profiles of GQD were summarized in this review. In addition, several issues of GQD including effective constituents, interactions between the constituents, pharmacokinetics, interaction potential with drugs and pharmacological effects were discussed, and related future researches were prospected in this review.
Collapse
Affiliation(s)
- Jing-Ze Lu
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Ye
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bing-Liang Ma
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
De G, Chen A, Zhao Q, Xie R, Wang C, Li M, Zhao H, Gu X, McCarl LH, Zhang F, Cai W, Yang M, Lin P, Liu S, Bian B. A multi-herb-combined remedy to overcome hyper-inflammatory response by reprogramming transcription factor profile and shaping monocyte subsets. Pharmacol Res 2021; 169:105617. [PMID: 33872811 DOI: 10.1016/j.phrs.2021.105617] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 12/24/2022]
Abstract
Traditional Chinese multi-herb-combined prescriptions usually show better performance than a single agent since a group of effective compounds interfere multiple disease-relevant targets simultaneously. Huang-Lian-Jie-Du decoction is a remedy made of four herbs that are widely used to treat oral ulcers, gingivitis, and periodontitis. However, the active ingredients and underlying mechanisms are not clear. To address these questions, we prepared a water extract solution of Huang-Lian-Jie-Du decoction (HLJDD), called it as WEH (Water Extract Solution of HLJDD), and used it to treat LPS-induced systemic inflammation in mice. We observed that WEH attenuated inflammatory responses including reducing production of cytokines, chemokines and interferons (IFNs), further attenuating emergency myelopoiesis, and preventing mice septic lethality. Upon LPS stimulation, mice pretreated with WEH increased circulating Ly6C- patrolling and splenic Ly6C+ inflammatory monocytes. The acute myelopoiesis related transcriptional factor profile was rearranged by WEH. Mechanistically we confirmed that WEH interrupted LPS/TLR4/CD14 signaling-mediated downstream signaling pathways through its nine principal ingredients, which blocked LPS stimulated divergent signaling cascades, such as activation of NF-κB, p38 MAPK, and ERK1/2. We conclude that the old remedy blunts LPS-induced "danger" signal recognition and transduction process at multiple sites. To translate our findings into clinical applications, we refined the crude extract into a pure multicomponent drug by directly mixing these nine chemical entities, which completely reproduced the effect of protecting mice from lethal septic shock. Finally, we reduced a large number of compounds within a multi-herb water extract to seven-chemical combination that exhibited superior therapeutic efficacy compared with WEH.
Collapse
Affiliation(s)
- Gejing De
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongcheng District, Beijing 100700, China.
| | - Apeng Chen
- Department of Neurological Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Qinghe Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongcheng District, Beijing 100700, China
| | - Ran Xie
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongcheng District, Beijing 100700, China
| | - Chaoxi Wang
- First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Meng Li
- Berry Genomics Corp., Beijing, Science & Technology Park, Changping District, Beijing 102299, China
| | - Haiyu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongcheng District, Beijing 100700, China
| | - Xinru Gu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongcheng District, Beijing 100700, China
| | - Lauren H McCarl
- Department of Neurological Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Fangbo Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongcheng District, Beijing 100700, China
| | - Weiyan Cai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongcheng District, Beijing 100700, China
| | - Miyi Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongcheng District, Beijing 100700, China
| | - Peihui Lin
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Shaorong Liu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Baolin Bian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongcheng District, Beijing 100700, China.
| |
Collapse
|
12
|
Gu Q, Zhu C, Wu X, Peng L, Huang G, Hu R. Wogonoside promotes apoptosis and ER stress in human gastric cancer cells by regulating the IRE1α pathway. Exp Ther Med 2021; 21:411. [PMID: 33692842 PMCID: PMC7938446 DOI: 10.3892/etm.2021.9842] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 08/26/2020] [Indexed: 01/23/2023] Open
Abstract
Gastric cancer is a disease that occurs in the digestive system of humans and remains a problem in the medical field. Wogonoside, a natural flavonoid, has been reported to exert antitumor effects on various types of tumors. However, the effects of wogonoside on gastric cancer remain elusive. The aim of the present study was to detect whether wogonoside treatment could induce apoptosis and ER stress in gastric cancer cells. In the present study, CCK-8 assay was used to detect the cell viability, Annexin V/PI staining was used to detect the cells apoptosis, western blot analysis and real-time PCR analysis was used to detect the endoplasmic reticulum (ER) stress in the AGS and MKN-45 gastric cancer cell lines. Wogonoside treatment reduced the viability of AGS and MKN-45 cells and induced apoptosis. Furthermore, the expression level of caspase-3 and -9 significantly increased following wogonoside treatment compared with that in non-treated cells, and the protein expression levels of proapoptotic Bax and antiapoptotic Bcl-2 increased and decreased, respectively compared with that in the control group. In addition, the phosphorylated protein expression levels of mitogen-activated protein kinase kinase 5 (ASK1) and JNK increased following wogonoside treatment, and the protein expression levels of tumor necrosis factor receptor-associated factor 2 (TRAF2) and serine/threonine-protein kinase/endoribonuclease IRE1 (IRE1α) were also increased following treatment with 50 µM wogonoside for 48 h. Furthermore, the interactions between IRE1α, TRAF2 and ASK1 significantly increased following wogonoside treatment, suggesting that wogonoside induced endoplasmic reticulum (ER) stress in the AGS and MKN-45 cell lines. In addition, small interfering RNA-mediated silencing of IRE1α suppressed the activity of the IRE1α-TRAF2-ASK1 complex and prevented wogonoside-induced cell apoptosis. In conclusion, the results of the present study suggested that wogonoside exhibited antitumor activity by inducing ER stress-associated cell death through the IRE1α-TRAF2-ASK1 pathway.
Collapse
Affiliation(s)
- Qian Gu
- Department of Geriatrics, First People's Hospital of Zhenjiang, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
| | - Canhong Zhu
- Department of Geriatrics, First People's Hospital of Zhenjiang, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
| | - Xi Wu
- Department of Geriatrics, First People's Hospital of Zhenjiang, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
| | - Lianghuan Peng
- Department of Geriatrics, First People's Hospital of Zhenjiang, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
| | - Genya Huang
- Department of Geriatrics, First People's Hospital of Zhenjiang, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
| | - Rong Hu
- Department of Geriatrics, First People's Hospital of Zhenjiang, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
| |
Collapse
|
13
|
Okoshi K, Uekusa Y, Narukawa Y, Kiuchi F. Solubility enhancement of berberine-baicalin complex by the constituents of Gardenia Fruit. J Nat Med 2020; 75:76-83. [PMID: 32857337 PMCID: PMC8933372 DOI: 10.1007/s11418-020-01446-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022]
Abstract
A Kampo prescription usually consists of several crude drugs and contains many kinds of compounds. Physicochemical interactions between the compounds may occur in the process of decoction, by which Kampo prescriptions are usually prepared for ingestion, and the interactions may change the extraction yields of the constituents. Berberine and baicalin have been reported to form precipitates. Orengedokuto, which consist of Coptis Rhizome, Gardenia Fruit, Phellodendron Bark and Scutellaria Root, has been a representative Kampo prescription used to treat inflammatory diseases. In our previous papers, we revealed that the precipitates formed in the decoction of orengedokuto without Gardenia Fruit mainly consists of berberine–baicalin complex and that Gardenia Fruit reduced the amount of the precipitates in orengedokuto decoction. In this report, through solubility-enhancement assay based on HPLC, we identified crocins as the constituents of Gardenia Fruits, which enhanced the solubility of berberine–baicalin complex. All-trans crocin-1 (1) and 13-cis crocin-1 (5) showed high activities among the isolated crocins, and the number of glucosyl groups in the molecule seemed correlated with the activity. As berberine and baicalin were reported as the anti-inflammatory constituents of Coptis Rhizome and Phellodendron Bark, and Scutellaria Root, respectively, Gardenia Fruit contributes anti-inflammatory activity of orengedokuto by increasing solubilities of anti-inflammatory constituents of the other component crude drugs in the prescription. Our result will add a scientific basis to the understanding of the effectiveness of orengedokuto as a whole.
Collapse
Affiliation(s)
- Kazuki Okoshi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Yoshinori Uekusa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Yuji Narukawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Fumiyuki Kiuchi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| |
Collapse
|
14
|
Jia D, Dou Y, Li Z, Zhou X, Gao Y, Chen K, Cong W, Ma M, Wu Z, Li W. Design, synthesis and evaluation of a baicalin and berberine hybrid compound as therapeutic agent for ulcerative colitis. Bioorg Med Chem 2020; 28:115697. [PMID: 33069077 DOI: 10.1016/j.bmc.2020.115697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 12/13/2022]
Abstract
Structural modification of active natural compoundswhichwereoriginated fromTraditional Chinese Medicine (TCM) have showedgreat advantagesin thedevelopmentof new drugs. In TCM, "Huangqin-Huanglian" is a classic "medicine couple"thathas been used to treat intestinal diseases for thousands ofyears, while baicalinand berberine are the major active compoundsof Huangqin and Huanglianrespectively. Based onthis"medicine couple",wedesignedand synthesizeda newbaicalin and berberine hybrid compound (BBH).Its molecular structure wasconfirmedby spectroscopy.The antibacterial activity of BBH was detected in vitro.Results indicatedthat the new hybrid compound exhibited the best antibacterial activity forproteobacteria as compared with its original synthetic materials (baicalin andberberine). In vivo, the effect of BBHon ulcerative colitiswas alsoinvestigated.BBH treatment significantly ameliorated the disease symptoms andpreventedthe colon damage of ulcerative colitis. Furthermore, BBH showed asignificant anti-inflammatory effect through regulating activities of SOD, MPOandexpressions of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) in colontissue. Data also suggested that BBH was more superior than baicalin and berberine inameliorating colonic damage. This indicated that the new hybrid compound BBHshowed enhanced efficacy in treating ulcerative colitis.
Collapse
Affiliation(s)
- Dan Jia
- Guangzhou General Pharmaceutical Research Institute, Guangzhou, Guangdong 510240, PR China; Integrated Chinese and Western Medicine, Post-doctoral Research Station, Jinan University, Guangzhou, PR China; Shenzhen Institute of Geriatrics, Shenzhen 518020, PR China
| | - Yonghui Dou
- Basic Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Ziwen Li
- Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, PR China; Shenzhen Institute of Geriatrics, Shenzhen 518020, PR China
| | - Xinxin Zhou
- Academy of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Ying Gao
- Academy of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Keji Chen
- Xiyuan Hospital, China Academy of Chinese Medical Scineces, Beijing 100000, PR China
| | - Weihong Cong
- Labortary of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Scineces, Beijing 100000, PR China
| | - Min Ma
- Integrated Chinese and Western Medicine, Post-doctoral Research Station, Jinan University, Guangzhou, PR China.
| | - Zhengzhi Wu
- Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, PR China; Shenzhen Institute of Geriatrics, Shenzhen 518020, PR China.
| | - Weimin Li
- Academy of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| |
Collapse
|
15
|
Shii T, Kuroda M, Shamoto N, Mimaki Y. [An analysis of the ingredients in decoctions and extracts of Kampo medicines: Amounts of baicalin and baicalein in Kampo medicines containing Scutellariae Radix]. Nihon Ronen Igakkai Zasshi 2020; 57:72-80. [PMID: 32074563 DOI: 10.3143/geriatrics.57.72] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
AIM Kampo medicines containing Scutellariae Radix (the root of Scutellaria baicalensis Georgi; SR) sometimes cause serious adverse effects, including interstitial pneumonia and liver dysfunction. Baicalin (BL) is the major active component of SR and is presumed to be responsible for the adverse effects. We analyzed the amounts of BL in Kampo medicines to better understand how they can be used safely. METHODS We determined the amounts of BL in 28 Kampo decoctions containing SR (recommended daily dose: 1.5-4 g/day) and corresponding Kampo extract products by high-performance liquid chromatography. RESULTS The amounts of BL in the Kampo decoctions were 1.7-4.0-fold higher than those of the corresponding Kampo extract products. Inter-product variations in the amounts of BL in Shosaikoto, Otsujito, Daisaikoto, Saibokuto, Orengedokuto, and Saireito Kampo extracts from various companies were also examined. Significant differences in the amounts of BL were observed for Shosaikoto, Otsujito, Daisaikoto, and Saibokuto extract products (up to 2.6, 1.6, 1.5, and 1.3-fold differences, respectively), whereas no significant differences were observed for Orengedokuto and Saireito extract products. CONCLUSIONS Because the Kampo decoctions containing SR that we examined contained 1.7-4.0 times as much BL as the corresponding Kampo extract products, medical doctors and pharmacists should be aware that Kampo decoctions containing SR might cause more severe side effects than corresponding Kampo extract products. Furthermore, we recommend that the amounts of BL and its aglycone, baicalein (BA), in Kampo extract products be made known to practitioners and patients.
Collapse
Affiliation(s)
- Takashi Shii
- Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences.,Department of Pharmacy, Kitasato University Hospital
| | - Minpei Kuroda
- Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Noriko Shamoto
- Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Yoshihiro Mimaki
- Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
16
|
Li T, Wang P, Guo W, Huang X, Tian X, Wu G, Xu B, Li F, Yan C, Liang XJ, Lei H. Natural Berberine-Based Chinese Herb Medicine Assembled Nanostructures with Modified Antibacterial Application. ACS NANO 2019; 13:6770-6781. [PMID: 31135129 DOI: 10.1021/acsnano.9b01346] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The abuse of traditional antibiotics has caused a series of health problems including antimicrobial resistance, which threatens human health. Therefore, searching for broad sources of antimicrobial agents and developing multidimensional strategies to combat bacterial infections are urgent. Here, we reported two natural self-assembling modes between berberine (BBR) and flavonoid glycosides: nanoparticles (NPs) and nanofibers (NFs), which were both mainly governed by electrostatic and hydrophobic interactions. These two nanostructures exhibited different antibacterial properties from BBR. NPs showed significantly enhanced bacteriostatic activity, whereas NFs displayed a much weaker effect than BBR. The distinguishing properties can be attributed to the different spatial configurations and self-assembly processes of NPs and NFs. Flavonoid glycosides and BBR first formed a one-dimensional complex unit and subsequently self-assembled into three-dimensional nanostructures. With the hydrophilic glucuronic acid toward the outside, NPs exhibited stronger affinity to bacteria, thereby inducing the collapse of the bacteria population and the decrease in biofilm. In addition, in vitro hemolysis tests, cytotoxicity tests, and in vivo zebrafish toxicity evaluation showed that the obtained self-assemblies had good biocompatibility. This supramolecular self-assembly strategy can be applied to construct other nanoscale antibacterial drugs and thus provides weapons for the development of self-delivering drugs in bacterial infection treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Chinese Academy of Sciences , Beijing 100190 , P.R. China
| | | |
Collapse
|
17
|
Feng X, Sureda A, Jafari S, Memariani Z, Tewari D, Annunziata G, Barrea L, Hassan ST, Šmejkal K, Malaník M, Sychrová A, Barreca D, Ziberna L, Mahomoodally MF, Zengin G, Xu S, Nabavi SM, Shen AZ. Berberine in Cardiovascular and Metabolic Diseases: From Mechanisms to Therapeutics. Theranostics 2019; 9:1923-1951. [PMID: 31037148 PMCID: PMC6485276 DOI: 10.7150/thno.30787] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular and metabolic diseases (CVMD) are the leading causes of death worldwide, underscoring the urgent necessity to develop new pharmacotherapies. Berberine (BBR) is an eminent component of traditional Chinese and Ayurvedic medicine for more than 2000 years. Recently, BBR has attracted much interest for its pharmacological actions in treating and/or managing CVMD. Recent discoveries of basic, translational and clinical studies have identified many novel molecular targets of BBR (such as AMPK, SIRT1, LDLR, PCSK9, and PTP1B) and provided novel evidences supporting the promising therapeutic potential of BBR to combat CVMD. Thus, this review provides a timely overview of the pharmacological properties and therapeutic application of BBR in CVMD, and underlines recent pharmacological advances which validate BBR as a promising lead drug against CVMD.
Collapse
|
18
|
Oshima N, Shimizu T, Narukawa Y, Hada N, Kiuchi F. Quantitative analysis of the anti-inflammatory activity of orengedokuto II: berberine is responsible for the inhibition of NO production. J Nat Med 2018; 72:706-714. [PMID: 29671127 DOI: 10.1007/s11418-018-1209-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/22/2018] [Indexed: 12/28/2022]
Abstract
Orengedokuto is a Kampo formula that has been used for removing "heat" and "poison" to treat inflammation, hypertension, gastrointestinal disorders, and liver and cerebrovascular diseases. We report here our analysis of the anti-inflammatory effect of the component crude drugs of orengedokuto and their constituents using the inhibition of nitric oxide (NO) production in the murine macrophage-like cell line J774.1. An initial comparison of NO production inhibitory activities of the extracts of the component crude drugs and their combinations revealed that the activity could be attributed to Phellodendron Bark and Coptis Rhizome. Berberine (1), the major constituent of these crude drugs, showed potent activity (IC50 4.73 ± 1.46 μM). Quantitative analysis of 1 in the extracts of all combinations of component crude drugs revealed that the amount of 1 in each extract of the combination of Scutellaria Root with either Phellodendron Bark and/or Coptis Rhizome was lower than that in the corresponding mixtures of the extracts of the individual crude drugs and that 1 was present in the precipitates formed during the decoction process. To the contrary, the differences in the amounts of 1 were smaller in the extracts containing Gardenia Fruit. These results indicated that the constituents of Scutellaria Root precipitated with 1 and that the constituents of Gardenia Fruit dissolved the precipitates. To identify the constituents affecting the solubility of 1, we fractionated the hot-water extracts of Scutellaria Root based on solubility tests of 1 to give baicalin (2), wogonin (3) and oroxyloside (4), which formed precipitates with 1.
Collapse
Affiliation(s)
- Naohiro Oshima
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.,Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Tomofumi Shimizu
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Yuji Narukawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Noriyasu Hada
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.,Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Fumiyuki Kiuchi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| |
Collapse
|
19
|
Hao M, Li Y, Liu L, Yuan X, Gao Y, Guan Z, Li W. The design and synthesis of a novel compound of berberine and baicalein that inhibits the efficacy of lipid accumulation in 3T3-L1 adipocytes. Bioorg Med Chem 2017; 25:5506-5512. [DOI: 10.1016/j.bmc.2017.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/04/2017] [Accepted: 08/08/2017] [Indexed: 12/18/2022]
|
20
|
Li Z, Liu T, Liao J, Ai N, Fan X, Cheng Y. Deciphering chemical interactions between Glycyrrhizae Radix and Coptidis Rhizoma by liquid chromatography with transformed multiple reaction monitoring mass spectrometry. J Sep Sci 2017; 40:1254-1265. [PMID: 28098420 DOI: 10.1002/jssc.201601054] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/02/2016] [Accepted: 12/30/2016] [Indexed: 11/07/2022]
Abstract
In this study, we propose an integrated strategy for the efficient identification and quantification of herbal constituents using liquid chromatography with mass spectrometry. First, liquid chromatography with quadrupole time-of-flight mass spectrometry was employed for the chemical profiling of herbs, where a targeted following nontargeted approach was developed to detect trace constituents by using structural correlations and extracted ion chromatograms. Next, ion pairs and parameters of MS2 of quadrupole time-of-flight mass spectrometry were selected to design multiple reaction monitoring transitions for the identified compounds on liquid chromatography with triple quadrupole mass spectrometry. The relative concentration of each constituent was then calculated using a semiquantitative calibration curve. The proposed strategy was applied in a study of chemical interactions between Glycyrrhizae Radix and Coptidis Rhizoma. A total of 140 compounds were identified or tentatively characterized from the herbs, 132 of which were relatively quantified. The visualized quantitative results clearly showed codecoction produced significant constituent concentration variations especially for those with a low polarity. The case study also indicated that the present methodology could provide a reliable, accurate, and labor-saving solution for chemical studies of herbal medicines.
Collapse
Affiliation(s)
- Zhenhao Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ting Liu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jie Liao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ni Ai
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yiyu Cheng
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Lu W, Du S, Wang J. Berberine inhibits the proliferation of prostate cancer cells and induces G₀/G₁ or G₂/M phase arrest at different concentrations. Mol Med Rep 2014; 11:3920-4. [PMID: 25572870 DOI: 10.3892/mmr.2014.3139] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 09/19/2014] [Indexed: 11/05/2022] Open
Abstract
Prostate cancer is the second most common disease of the male reproductive system. Berberine is a quaternary ammonium salt that is extracted from plants. The aim of the current study was to explore the antitumor activity of berberine in prostate cancer cells and identify the underlying mechanism of its effects. PC3 human and RM‑1 mouse prostate cancer cells were treated with increasing concentrations of berberine, followed by analysis of the cell viability with an MTT assay. The results demonstrated that berberine markedly inhibited the proliferation of PC3 and RM‑1 cells, and that the inhibitory effects to PC3 and RM‑1 were enhanced in a concentration‑ and time‑dependent manner. Flow cytometry was used to analyze the cell cycle of PC3 human prostate cancer cells, and the results demonstrated that G0/G1 phase arrest was induced following treatment with 10 µM berberine (P<0.05). However, with an increased concentration of berberine (50 µM) the survival rate of PC3 cells at the G2/M phase was significantly increased compared with the cells treated with 10 µM berberine, which suggests that different cell cycle signaling pathways were activated when PC3 cells were treated with low and high concentrations of berberine. Thus, clarifying the mechanism underlying these effects in prostate cancer may provide novel molecular targets for prostate cancer therapy.
Collapse
Affiliation(s)
- Wei Lu
- Department of Urology, Jilin Province People's Hospital, Changchun, Jilin 130021, P.R. China
| | - Shanshan Du
- Department of Urology, Jilin Province People's Hospital, Changchun, Jilin 130021, P.R. China
| | - Jiaqiang Wang
- Department of Urology, Jilin Province People's Hospital, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
22
|
Zhang CH, Yu RY, Liu YH, Tu XY, Tu J, Wang YS, Xu GL. Interaction of baicalin with berberine for glucose uptake in 3T3-L1 adipocytes and HepG2 hepatocytes. JOURNAL OF ETHNOPHARMACOLOGY 2014; 151:864-872. [PMID: 24361332 DOI: 10.1016/j.jep.2013.11.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/15/2013] [Accepted: 11/27/2013] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Baicalin and berberine are important coexisting constituents of the combination of Radix Scutellariae and Rhizoma Coptidis, known as scutellaria-coptis herb couple (SC), which has heat clearing and detoxifying effects. The aims of the present study were to investigate the effects of the combination of baicalin+berberine on glucose uptake in 3T3-L1 adipocytes or HepG2 cells. MATERIALS AND METHODS Insulin-resistant adipocytes and hepatocytes models were established. Glucose consumption was assayed to evaluate the effects of berberine, baicalin, and berberine+baicalin on glucose uptake, and the interaction of baicalin with berberine for glucose uptake was evaluated in 3T3-L1 adipocytes or HepG2 cells. Moreover, the effects of baicalin on the dose-effect relationship of berberine for glucose uptake was also evaluated in 3T3-L1 adipocytes. RESULTS The results of the present study demonstrated that berberine increased glucose consumption in 3T3-L1 adipocytes and HepG2 hepatocytes in a dose-dependent manner. In contrast, statistical analyses indicated that baicalin (in doses up to 100μmol/L) produced no obvious effect. The effect of berberine+baicalin on glucose uptake was better than that of berberine or baicalin alone, which indicated that berberine and baicalin had the trend of synergetic effect on glucose uptake. Furthermore, these results showed that the synergistic effect occurred in a specific dose range, while the antagonistic effect was present in another dose range in the presence of 10μmol/L baicalin. Interestingly, the entire dose-response curves of berberine shifted down in the presence of 100μmol/L baicalin, and baicalin antagonised the effect of berberine on glucose uptake in 3T3-L1 adipocytes. CONCLUSIONS The results of the present study showed that berberine dose-dependently increased glucose consumption in 3T3-L1 adipocytes and HepG2 hepatocytes. Furthermore, interaction of baicalin with berberine was additive at low doses of baicalin and antagonistic at higher baicalin doses. Thus, it is possible that baicalin is a partial agonist. These results provided a basis for the study of the TCM compatibility mechanism and a new insight into the application for Gegen Qinlian Decoction (GGQLD) or SC in the clinic.
Collapse
Affiliation(s)
- Chang-Hua Zhang
- Department of Pharmacology, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine (TCM), Nanchang, Jiangxi 330004, China
| | - Ri-Yue Yu
- Department of Pharmacology, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine (TCM), Nanchang, Jiangxi 330004, China
| | - Yu-Hui Liu
- Department of Pharmacology, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine (TCM), Nanchang, Jiangxi 330004, China
| | - Xiu-Ying Tu
- Department of Pharmacology, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine (TCM), Nanchang, Jiangxi 330004, China
| | - Jun Tu
- Research Center for Differentiation and Development of Basic Theory of TCM, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Yue-Sheng Wang
- Research Center for Differentiation and Development of Basic Theory of TCM, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guo-Liang Xu
- Research Center for Differentiation and Development of Basic Theory of TCM, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China.
| |
Collapse
|