1
|
Geng X, Wang J, Liu Y, Liu L, Liu X, Zhao Y, Wang C, Liu J. Research progress on chemical diversity of saponins in Panax ginseng. CHINESE HERBAL MEDICINES 2024; 16:529-547. [PMID: 39606259 PMCID: PMC11589341 DOI: 10.1016/j.chmed.2024.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/24/2024] [Accepted: 08/29/2024] [Indexed: 11/29/2024] Open
Abstract
Saponins, the major bioactive components of Panax ginseng C. A. Mey., are gradually emerging as research hotspots owing to the possession of various pharmacological activities. This review updates the ginsenosides list from P. ginseng and the steam-processed ginseng (red ginseng and black ginseng) up to 271 by June of 2024, encompassing 243 saponins from different parts of P. ginseng (roots, stems, leaves, flowers, berries, and seeds), 103 from red ginseng, and 65 from black ginseng, respectively. Among 271 saponins, there are a total of 249 (1-249) dammarane type (with a - z subtypes) tetracyclic triterpene saponins reported from each part of P. ginseng and steam-processed ginseng, two (250-251) lanostane type tetracyclic triterpene saponins identified from red ginseng, 18 (252-269) oleanane type pentacyclic triterpenoid saponins discovered from each part of P. ginseng and steam-processed ginseng, and two (270-271) ursane type pentacyclic triterpenoid saponins reported from red ginseng. Overall, this review expounds on the chemical diversity of ginsenosides in various aspects, such as chemical structure, spatial distribution and subtype comparison, processed products, and transformation. This facilitates more in-depth research on ginsenosides and contributes to the future development of ginseng.
Collapse
Affiliation(s)
- Xiaoyu Geng
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
- School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China
| | - Jia Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yuwei Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Linxuan Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Xuekun Liu
- School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
2
|
Zhang N, Yang Y, Li C, Zhang K, GAO X, Shen J, Wang Y, Cheng D, Lv J, Sun J. Based on 1H NMR and LC-MS metabolomics reveals biomarkers with neuroprotective effects in multi-parts ginseng powder. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
3
|
Sun Y, Fu X, Qu Y, Chen L, Liu X, He Z, Xu J, Yang J, Ma W, Li J, Guo Q, Zhang Y. Characterization of Ginsenosides from the Root of Panax ginseng by Integrating Untargeted Metabolites Using UPLC-Triple TOF-MS. Molecules 2023; 28:molecules28052068. [PMID: 36903315 PMCID: PMC10004652 DOI: 10.3390/molecules28052068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
To compare the chemical distinctions of Panax ginseng Meyer in different growth environments and explore the effects of growth-environment factors on P. ginseng growth, an ultra-performance liquid chromatography-tandem triple quadrupole time-of-flight mass spectrometry (UPLC-Triple-TOF-MS/MS) was used to characterize the ginsenosides obtained by ultrasonic extraction from P. ginseng grown in different growing environments. Sixty-three ginsenosides were used as reference standards for accurate qualitative analysis. Cluster analysis was used to analyze the differences in main components and clarified the influence of growth environment factors on P. ginseng compounds. A total of 312 ginsenosides were identified in four types of P. ginseng, among which 75 were potential new ginsenosides. The number of ginsenosides in L15 was the highest, and the number of ginsenosides in the other three groups was similar, but it was a great difference in specie of ginsenosides. The study confirmed that different growing environments had a great influence on the constituents of P. ginseng, and provided a new breakthrough for the further study of the potential compounds in P. ginseng.
Collapse
Affiliation(s)
- Yizheng Sun
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaojie Fu
- Key Laboratory of Chemical Biology of Ministry of Education, Department of Natural Product Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Ying Qu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lihua Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaoyan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - Zichao He
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jing Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jiao Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wen Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jun Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qingmei Guo
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Correspondence: (Q.G.); (Y.Z.); Tel.: +86-0531-82805106 (Q.G.); +86-10-82805106 (Y.Z.)
| | - Youbo Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Correspondence: (Q.G.); (Y.Z.); Tel.: +86-0531-82805106 (Q.G.); +86-10-82805106 (Y.Z.)
| |
Collapse
|
4
|
Li X, Liu J, Zuo TT, Hu Y, Li Z, Wang HD, Xu XY, Yang WZ, Guo DA. Advances and challenges in ginseng research from 2011 to 2020: the phytochemistry, quality control, metabolism, and biosynthesis. Nat Prod Rep 2022; 39:875-909. [PMID: 35128553 DOI: 10.1039/d1np00071c] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 2011 to the end of 2020Panax species (Araliaceae), particularly P. ginseng, P. quinquefolius, and P. notoginseng, have a long history of medicinal use because of their remarkable tonifying effects, and currently serve as crucial sources for various healthcare products, functional foods, and cosmetics, aside from their vast clinical preparations. The huge market demand on a global scale prompts the continuous prosperity in ginseng research concerning the discovery of new compounds, precise quality control, ADME (absorption/disposition/metabolism/excretion), and biosynthesis pathways. Benefitting from the ongoing rapid development of analytical technologies, e.g. multi-dimensional chromatography (MDC), personalized mass spectrometry (MS) scan strategies, and multi-omics, highly recognized progress has been made in driving ginseng analysis towards "systematicness, integrity, personalization, and intelligentization". Herein, we review the advances in the phytochemistry, quality control, metabolism, and biosynthesis pathway of ginseng over the past decade (2011-2020), with 410 citations. Emphasis is placed on the introduction of new compounds isolated (saponins and polysaccharides), and the emerging novel analytical technologies and analytical strategies that favor ginseng's authentic use and global consumption. Perspectives on the challenges and future trends in ginseng analysis are also presented.
Collapse
Affiliation(s)
- Xue Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Jie Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Tian-Tian Zuo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Ying Hu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Zheng Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China. .,College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin 301617, China
| | - Hong-da Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Xiao-Yan Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Wen-Zhi Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - De-An Guo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China. .,Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| |
Collapse
|
5
|
Mendonça SC, Simas RC, Reis Simas DL, Leitão SG, Leitão GG. Mass spectrometry as a tool for the dereplication of saponins from Ampelozizyphus amazonicus Ducke bark and wood. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:262-282. [PMID: 32681766 DOI: 10.1002/pca.2972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 06/01/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Mass spectrometry in natural products research has been used as a first step to identify possible chemical structures and to guide subsequent efforts to isolate novel compounds. Preparations of Ampelozizyphus amazonicus Ducke (AA) are known for their high content of saponins, especially dammarane-type triterpenoid aglycones. In the Amazon, where it is known as "saracura-mirá", roots and bark are widely used for the treatment and prevention of malaria, while the wood is discarded. The extract prepared from the wood is also saponin-rich, but its exact chemical composition has not been described. OBJECTIVE This study provides information on the chemical profiling and tentative structural identification of the major compounds (saponins) present in aqueous and ethanol extracts of bark and wood of AA by mass spectrometry. METHODS The strategy used to identify compounds present in all samples was ultra-high-performance liquid chromatography with an ultraviolet detector coupled to tandem mass spectrometry (UHPLC-UV-MS/MS) for the analysis of fragmentation patterns through product ion scan using MZmine 2 software. Also, direct sample injection and electrospray ionisation combined with high-resolution mass spectrometry (DI-ESI-HRMS) measurements were performed. RESULTS The extracts showed chemical similarity, and 95 saponins were tentatively identified in AA wood and bark, including 73 which are described for the first time as tentative structures for this plant species. CONCLUSION This research describes a useful method for the fast and simultaneous tentative identification of major saponins in AA, contributing to the study of the chemical properties of this genus and family. Furthermore, it demonstrates the importance of the qualitative dereplication process, allowing a straightforward way to propose the tentative identification of compounds.
Collapse
Affiliation(s)
- Simony C Mendonça
- Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Rosineide C Simas
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Suzana G Leitão
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gilda G Leitão
- Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
6
|
Gong Y, Huang XY, Pei D, Duan WD, Zhang X, Sun X, Di DL. The applicability of high-speed counter current chromatography to the separation of natural antioxidants. J Chromatogr A 2020; 1623:461150. [PMID: 32505270 DOI: 10.1016/j.chroma.2020.461150] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/01/2020] [Accepted: 04/18/2020] [Indexed: 01/10/2023]
Abstract
Antioxidants play an essential role in human health, as they have been found to be capable of lowering the incidence of many diseases, such as cancer and angiocardiopathy. Currently, more attention is paid to natural antioxidants because of the possible insecurity of synthetic antioxidants. Thus, the development of efficient techniques or methods to separate antioxidants from natural sources is requested urgently. High-speed counter current chromatography (HSCCC) is a unique support-free liquid-liquid chromatographic technique and has been widely applied in the field of separation of natural products. In this review, we summarize and analyze the related researches on the application of HSCCC in the separation of various natural antioxidants so far. The purpose of the article is to provide a certain theoretical support for the separation of natural antioxidants by HSCCC, and to make full use of advantages of HSCCC in the separation of bioactive components. In particular, some key problems associated with the separation strategies, the structural categories of natural antioxidants, solvent system choices, and the application of different elution modes in HSCCC separation, are summarized and commented. We expect that the content reviewed can offer more evidence for the development of the field of natural antioxidants separation, so as to achieve large-scale preparation of natural antioxidants.
Collapse
Affiliation(s)
- Yuan Gong
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P.R. China; University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Xin-Yi Huang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P.R. China.
| | - Dong Pei
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P.R. China; Center of Resource Chemical and New Material, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Qingdao, P.R. China
| | - Wen-Da Duan
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P.R. China; University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Xia Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P.R. China; University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Xiao Sun
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P.R. China; University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Duo-Long Di
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P.R. China.
| |
Collapse
|
7
|
Zhang Y, Qiu Z, Qiu Y, Su T, Qu P, Jia A. Functional Regulation of Ginsenosides on Myeloid Immunosuppressive Cells in the Tumor Microenvironment. Integr Cancer Ther 2020; 18:1534735419886655. [PMID: 31729239 PMCID: PMC6859683 DOI: 10.1177/1534735419886655] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ginsenosides, the key components isolated from ginseng, have been extensively studied in antitumor treatment. Numerous studies have shown that ginsenosides have direct function in tumor cells through the induction of cancer cell apoptosis and the inhibition of cancer cell growth and enhance the antitumor immunity through the activation of cytotoxic T lymphocytes and natural killer cells. However, little is known about the function of ginsenosides on myeloid immunosuppressive cells including dendritic cells in tumor, tumor-associated macrophages, and myeloid-derived suppressor cells in the tumor microenvironments. Those myeloid immunosuppressive cells play important roles in promoting tumor angiogenesis, invasion, and metastasis. In the review, we summarize the regulatory functions of ginsenosides on myeloid immunosuppressive cells in tumor microenvironment, providing the novel therapeutic methods for clinical cancer treatment.
Collapse
Affiliation(s)
- Yanfei Zhang
- Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Zhidong Qiu
- Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Ye Qiu
- Northeast Normal University, Changchun, Jilin, People's Republic of China
| | - Ting Su
- Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Peng Qu
- National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Ailing Jia
- Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| |
Collapse
|
8
|
Abstract
This review covers newly isolated triterpenoids that have been reported during 2015.
Collapse
|
9
|
Chen W, Balan P, Popovich DG. Comparison of the ginsenoside composition of Asian ginseng (Panax ginseng) and American ginseng (Panax quinquefolius L.) and their transformation pathways. BIOACTIVE NATURAL PRODUCTS 2019. [DOI: 10.1016/b978-0-12-817901-7.00006-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
10
|
Wang Q, Li WY, Wang YD. A immunosuppressive triterpenoid saponin from the stems of Epigynum griffithianum. Nat Prod Res 2018; 34:1389-1393. [PMID: 30466320 DOI: 10.1080/14786419.2018.1512989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Chemical investigation of the stems of Epigunum griffithianum led to the isolation and identification of a new triterpenoid saponin (1) and two known compounds (epigynosides A (2) and B (3)). These structures were elucidated by means of spectroscopic analysis (1D and 2D NMR, MS, UV, IR) as well as comparison with the reported data. Compound 1 was evaluated in vitro for the immunosuppressive activities on proliferation of mice splenocyte and displayed significant immunosuppressive activities compared to the positive control (dexamethasone) with the concentration at 25 μM.[Formula: see text].
Collapse
Affiliation(s)
- Qun Wang
- Department of Hepatopancreatobiliary Surgery, Hu bei Cancer Hospital, Wuhan, People's Republic of China
| | - Wen-Yi Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming, Yunnan, People's Republic of China
| | - Yu-Dan Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming, Yunnan, People's Republic of China
| |
Collapse
|
11
|
Chen T, Li B, Qiu Y, Qiu Z, Qu P. Functional mechanism of Ginsenosides on tumor growth and metastasis. Saudi J Biol Sci 2018; 25:917-922. [PMID: 30108441 PMCID: PMC6087812 DOI: 10.1016/j.sjbs.2018.01.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 01/18/2018] [Indexed: 01/09/2023] Open
Abstract
Ginsengs, has long been used as one medicinal herb in China for more than two thousand years. Many studies have shown that ginsengs have preventive and therapeutic roles for cancer, and play a good complementary role in cancer treatment. Ginsenosides, as most important constituents of ginseng, have been extensively investigated and emphasized in cancer chemoprevention and therapeutics. However, the functional mechanism of Ginsenosides on cancer is not well known. This review will focus on introducing the functional mechanisms of ginsenosides and their metabolites, which regulate signaling pathways related with tumor growth and metastasis. Ginsenosides inhibit tumor growth via upregulating tumor apoptosis, inducing tumor cell differentiation and targeting cancer stem cells. In addition, Ginsenosides regulate tumor microenvironment via suppressing tumor angiogenesis-related proteins and pathways. Structural modification of ginsenosides and their administration alone or combinations with other Chinese medicines or chemical medicines have recently been developed to be a new therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Tianli Chen
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, PR China
| | - Bowen Li
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, PR China
| | - Ye Qiu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, PR China
| | - Zhidong Qiu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, PR China
| | - Peng Qu
- National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| |
Collapse
|
12
|
Wong FC, Chai TT, Xiao J. The influences of thermal processing on phytochemicals and possible routes to the discovery of new phytochemical conjugates. Crit Rev Food Sci Nutr 2018; 59:947-952. [PMID: 29787299 DOI: 10.1080/10408398.2018.1479681] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Fai-Chu Wong
- Centre for Biodiversity Research, Universiti Tunku Abdul Rahman, Kampar, Malaysia
- Biochemistry Program, Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar, Malaysia
| | - Tsun-Thai Chai
- Centre for Biodiversity Research, Universiti Tunku Abdul Rahman, Kampar, Malaysia
- Biochemistry Program, Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar, Malaysia
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, SKL of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau
| |
Collapse
|
13
|
Leem DG, Shin JS, Kim KT, Choi SY, Lee MH, Lee KT. Dammarane-type triterpene ginsenoside-Rg18 inhibits human non-small cell lung cancer A549 cell proliferation via G 1 phase arrest. Oncol Lett 2018; 15:6043-6049. [PMID: 29556318 DOI: 10.3892/ol.2018.8057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/17/2018] [Indexed: 12/16/2022] Open
Abstract
A previous study reported that a novel dammarane-type triterpene saponin, ginsenoside-Rg18, derived from the root of Panax ginseng, displayed hydroxyl radical scavenging, anti-bacterial and cytotoxic activities. However, the underlying molecular mechanisms of its anti-proliferative effect on non-small cell lung cancer (NSCLC) A549 cells remains unclear. In the present study, it was determined that Rg18 inhibited the proliferation of A549 cells with a half-maximal inhibitory concentration of 150 µM. Flow cytometry analysis indicated that cell cycle progression was blocked by Rg18 at G1 phase in A549 cells, which was accompanied by downregulation of cyclin-dependent kinase 2 (CDK2), CDK4, CDK6, cyclin D1, cyclin D2, cyclin E and phosphorylated retinoblastoma protein expression at the protein level. In addition, the CDK inhibitors (CDKNs), CDKN1A and CDKN1B, were upregulated following Rg18 treatment. Furthermore, Rg18 treatment resulted in the intracellular accumulation of reactive oxygen species (ROS), and a dose-dependent inhibition of p38 mitogen activated protein kinase (p38), c-Jun N-terminal kinase (JNK) and nuclear factor-κB (NF-κB)/p65 phosphorylation. Taken together, Rg18-mediated G1 phase arrest was closely associated with the generation of intracellular ROS, and p38, JNK and NF-κB/p65 inhibition in A549 human NSCLC cells.
Collapse
Affiliation(s)
- Dong-Gyu Leem
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.,Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ji-Sun Shin
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Tack Kim
- Traditional Food Research Center, Korea Food Research Institute, Seongnam 13539, Republic of Korea
| | - Sang Yoon Choi
- Traditional Food Research Center, Korea Food Research Institute, Seongnam 13539, Republic of Korea
| | - Myung-Hee Lee
- Traditional Food Research Center, Korea Food Research Institute, Seongnam 13539, Republic of Korea
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.,Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
14
|
Lee DG, Lee J, Kim KT, Lee SW, Kim YO, Cho IH, Kim HJ, Park CG, Lee S. High-performance liquid chromatography analysis of phytosterols in Panax ginseng root grown under different conditions. J Ginseng Res 2018; 42:16-20. [PMID: 29348717 PMCID: PMC5766704 DOI: 10.1016/j.jgr.2016.10.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 10/19/2016] [Accepted: 10/25/2016] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The Panax ginseng plant is used as an herbal medicine. Phytosterols of P. ginseng have inhibitory effects on inflammation-related factors in HepG2 cells. METHODS Phytosterols (e.g., stigmasterol and β-sitosterol) in the roots of P. ginseng grown under various conditions were analyzed using high-performance liquid chromatography. The P. ginseng roots analyzed in this study were collected from three cultivation areas in Korea (i.e., Geumsan, Yeongju, and Jinan) and differed by cultivation year (i.e., 4 years, 5 years, and 6 years) and production process (i.e., straight ginseng, red ginseng, and white ginseng). RESULTS The concentrations of stigmasterol and β-sitosterol in P. ginseng roots were 2.22-23.04 mg/g and 7.35-59.09 mg/g, respectively. The highest concentrations of stigmasterol and β-sitosterol were in the roots of 6-year-old P. ginseng cultivated in Jinan (82.14 mg/g and 53.23 mg/g, respectively). CONCLUSION Six-year-old white ginseng and white ginseng cultivated in Jinan containing stigmasterol and β-sitosterol are potentially a new source of income in agriculture.
Collapse
Affiliation(s)
- Dong Gu Lee
- Department of Integrative Plant Science, Chung-Ang University, Anseong, Republic of Korea
| | - Jaemin Lee
- Department of Integrative Plant Science, Chung-Ang University, Anseong, Republic of Korea
| | - Kyung-Tack Kim
- Korea Food Research Institute, Sungnam, Republic of Korea
| | - Sang-Won Lee
- Department of Medicinal Crop Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, Republic of Korea
| | - Young-Ock Kim
- Department of Medicinal Crop Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, Brain Korea 21 Plus Program, and Institute of Korean Medicine, College of Oriental Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hak-Jae Kim
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Chun-Gun Park
- Department of Medicinal Crop Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, Republic of Korea
| | - Sanghyun Lee
- Department of Integrative Plant Science, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
15
|
de Souza Figueiredo F, Celano R, de Sousa Silva D, das Neves Costa F, Hewitson P, Ignatova S, Piccinelli AL, Rastrelli L, Guimarães Leitão S, Guimarães Leitão G. Countercurrent chromatography separation of saponins by skeleton type from Ampelozizyphus amazonicus for off-line ultra-high-performance liquid chromatography/high resolution accurate mass spectrometry analysis and characterisation. J Chromatogr A 2017; 1481:92-100. [PMID: 28027839 DOI: 10.1016/j.chroma.2016.12.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/13/2016] [Accepted: 12/17/2016] [Indexed: 10/20/2022]
Abstract
Ampelozizyphus amazonicus Ducke (Rhamnaceae), a medicinal plant used to prevent malaria, is a climbing shrub, native to the Amazonian region, with jujubogenin glycoside saponins as main compounds. The crude extract of this plant is too complex for any kind of structural identification, and HPLC separation was not sufficient to resolve this issue. Therefore, the aim of this work was to obtain saponin enriched fractions from the bark ethanol extract by countercurrent chromatography (CCC) for further isolation and identification/characterisation of the major saponins by HPLC and MS. The butanol extract was fractionated by CCC with hexane - ethyl acetate - butanol - ethanol - water (1:6:1:1:6; v/v) solvent system yielding 4 group fractions. The collected fractions were analysed by UHPLC-HRMS (ultra-high-performance liquid chromatography/high resolution accurate mass spectrometry) and MSn. Group 1 presented mainly oleane type saponins, and group 3 showed mainly jujubogenin glycosides, keto-dammarane type triterpene saponins and saponins with C31 skeleton. Thus, CCC separated saponins from the butanol-rich extract by skeleton type. A further purification of group 3 by CCC (ethyl acetate - ethanol - water (1:0.2:1; v/v)) and HPLC-RI was performed in order to obtain these unusual aglycones in pure form.
Collapse
Affiliation(s)
- Fabiana de Souza Figueiredo
- Universidade Federal do Rio de Janeiro, Instituto de Pesquisas de Produtos Naturais, CCS, bloco H, Ilha do Fundão, 21941-590, RJ, Brazil
| | - Rita Celano
- Università di Salerno, Dipartimento di Farmacia, Via Giovanni Paolo II 132, 84084, Fisciano, Italy
| | - Danila de Sousa Silva
- Universidade Federal do Rio de Janeiro, Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, CCS, bloco A2, Ilha do Fundão, 21941-590, RJ, Brazil
| | - Fernanda das Neves Costa
- Universidade Federal do Rio de Janeiro, Instituto de Pesquisas de Produtos Naturais, CCS, bloco H, Ilha do Fundão, 21941-590, RJ, Brazil
| | - Peter Hewitson
- Advanced Bioprocessing Centre, Institute of Environment, Health & Societies, CEDPS, Brunel University London, Middlesex, UB8 3PH, UK
| | - Svetlana Ignatova
- Advanced Bioprocessing Centre, Institute of Environment, Health & Societies, CEDPS, Brunel University London, Middlesex, UB8 3PH, UK
| | - Anna Lisa Piccinelli
- Università di Salerno, Dipartimento di Farmacia, Via Giovanni Paolo II 132, 84084, Fisciano, Italy
| | - Luca Rastrelli
- Università di Salerno, Dipartimento di Farmacia, Via Giovanni Paolo II 132, 84084, Fisciano, Italy
| | - Suzana Guimarães Leitão
- Universidade Federal do Rio de Janeiro, Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, CCS, bloco A2, Ilha do Fundão, 21941-590, RJ, Brazil
| | - Gilda Guimarães Leitão
- Universidade Federal do Rio de Janeiro, Instituto de Pesquisas de Produtos Naturais, CCS, bloco H, Ilha do Fundão, 21941-590, RJ, Brazil.
| |
Collapse
|
16
|
Liu MY, Ren YP, Zhang LJ, Ding JY. Pretreatment with Ginseng Fruit Saponins Affects Serotonin Expression in an Experimental Comorbidity Model of Myocardial Infarction and Depression. Aging Dis 2016; 7:680-686. [PMID: 28053817 PMCID: PMC5198858 DOI: 10.14336/ad.2016.0729] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/29/2016] [Indexed: 01/08/2023] Open
Abstract
We previously demonstrated that serotonin (5-HT) and 5-HT2A receptor (5-HT2AR) levels in platelets were up- or down-regulated after myocardial infarction (MI) associated with depression. In this study, we further evaluated the effects of pretreatment with ginseng fruit saponins (GFS) on the expression of 5-HT and 5-HT2AR in MI with or without depression. Eighty Sprague-Dawley (SD) rats were treated with saline and GFS (n=40 per group). The animals were then randomly divided into four subgroups: sham, MI, depression, and MI + depression (n=10 per subgroup). Protein levels of 5-HT and 5-HT2AR in the serum, platelets and brain tissues were determined with ELISA. The results demonstrated that serum 5-HT levels was significantly increased by GFS pretreatment in all subgroups (except the sham subgroup) when compared with saline-treated counterparts (p<0.01). In platelets, GFS pretreatment significantly increased 5-HT levels in all subgroups when compared with their respective saline-treated counterparts (p<0.01). Brain 5-HT levels also declined with GFS pretreatment in the MI-only and depression-only subgroups (p<0.05 vs. saline pretreatment). With respect to 5-HT2AR levels, platelet 5-HT2AR was decreased in GFS pretreated MI, depression and MI + depression subgroups (p<0.01 vs. saline pretreatment). Similarly, brain 5-HT2AR levels decreased in all four subgroups pretreated with GFS (p<0.01 vs. saline pretreatment). We conclude that GFS plays a clear role in modulating 5-HT and 5-HT2AR expressions after MI and depression. Although the effects of GFS on brain 5-HT remain to be elucidated, its therapeutic potential for comorbidities of acute cardiovascular events and depression appears to hold much promise.
Collapse
Affiliation(s)
- Mei-Yan Liu
- 1Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Yan-Ping Ren
- 2Department of Geriatric-Cardiovascular Diseases, the First Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Li-Jun Zhang
- 3Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jamie Y Ding
- 4Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| |
Collapse
|